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We study the fourth-order squeezing in the most general case of su-
perposition of two coherent states by considering ()| (AXp)?* [¢)) where
Xy = Xicos0 + Xsosinf, X; +iXs = a is annihilation operator, 8 is real,
|¥) = Zy|a) + Z2|8), |a) and |B) are coherent states and Zi, Zo, a,
are complex numbers. We find the absolute minimum value 0.050693 for
an infinite combinations with a — 8 = 1.30848 exp[+i(7/2) + 6], Z1/Z> =
exp(a*f — af*) with arbitrary values of @ + § and #. For this minimum
value of (| (AXy)?* |h), the expectation value of photon number can vary
from the minimum value 0.36084 (for o + 8 = 0) to infinity. We note
that the variation of ()| (AXy)* |1)) near the absolute minimum is less flat
when the expectation value of photon number is larger. Thus the fourth-
order squeezing can be observed at large intensities also, but settings of the
parameters become more demanding.

PACS numbers: 42.50.Dv

A state is said to be squeezed if variance of a quadrature amplitude is
less than that for vacuum state [1] and this is a purely quantum phenomenon
which can not be explained on the basis of classical probability concept. Ear-
lier, study [2] of squeezing was largely in academic interest because of this
point but now its utility in reducing noise has been well realized [1, 3]. With
the development of techniques for making higher order correlation measure-
ments in quantum optics, the higher order moments of the radiation have
also become interesting. From the point of view of noise reduction, higher-
order squeezing [4] (i.e., reduction in expectation value of the N-th power
(N > 2) of fluctuations in one of the quadrature amplitude operators, below
the level associated with the coherent state of the radiation or the vacuum
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state) may be particularly interesting because of a larger possible fractional
reduction in the expectation value of a higher power of fluctuation than
that for the second power studied in second order squeezing. Higher order
squeezing was earlier studied [5] by Buzek, Vidiella-Barranco and Knight
in some special cases of superposition of two coherent states, like the even,
odd and the Yurke-stoler [6] coherent states. In this paper we study the
fourth order squeezing of the most general hermitian quadrature amplitude
operator, Xy = X cos 4+ X2 sinf, where 0 is a real angle, X 9 are the Her-
mitian quadrature amplitude operators defined by X; + X9 = a, and « is
the annihilation operator, in the most general superposition of two coherent
states in a single mode of radiation of the form |¢) = Z1 |a) + Z3 |3). Here,
71, are complex numbers and |a), |3) are the coherent states defined by
ala) = ala), a|B) = B|8). The complex numbers Zy, Z, a, [ and the
real 0 are regarded completely arbitrary subject to the only constraint given
by

* 1 *
(019 = 121 + |2 + 2Re | Zi Zyexp { =3 1ol +167) + '8} = 1.
We show that expectation value of fourth power of AXy = Xy — (¢| X |9))
in the state |¢) given [4] by

(1 (AX)' 1) = (] : (AXo)" - 1) + 5 01 : (AKX [+ =, (2)
where an operator put between two colons denotes its normal value, has an
absolute minimum value 0.050693 (which is less than the value 0.1875 for the
coherent state ) for an infinite combinations with 7, /Z; = exp(fa* — f*a),
a — [ = 1.30848 exp[+i(n/2) + 6], and with arbitrary values of a +
and 6. For this minimum value of the variance of Xy, the expectation value
of photon number in state |1) can vary from the minimum value 0.36084
(for @ + 8 = 0) to infinity. We find that large higher-order squeezing can
be observed at large intensities also, but settings of the parameters become
more important in this case. Single mode radiation coherent state |a) defined
by a|a) = a|a) is given by [7]

) = exp (—% |a|2) 3 (a"/v/n1) In) = D(@) |0) . 3)
n=0

where |n) is the occupation number state and D(«) is the displacement
operator given by D(a) = exp(aa™ — a*a). It is easily seen that

D*(a) Xg D(a) = Xy + ay cos 0 + i sin (4)
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where o, + iq; = a, and hence expectation values of powers of A Xyin any
state |¢) will be same as that in D(«) |1). This observation and the relation

[7]
D(a) D(B) = exp(ap® — pa’) D(a + f) (5)

suggests that we can write the state 1)) = Z1 |a) + Z5 |3) as
9= (3l 8) W, W =20 +A1-0, €=3@-5). ©

where Z], = Z12exp[+ 2(ap* — Ba*)]. The state |¢1) can be written in
terms of superp0s1t1on of the even and odd coherent states defined by

6,4) = Ka(j6) £]—€); Ki= ([l xe 2F)) s (7)

in the form

|9h1) = cos 5 If +) +Sln ¢ 16, —) (8)

where 0 < x <7, —m < ¢ < w . Here we have taken coefficient of |£, +) as
real without any loss of generality. For the states |£,+), we have

al¢, %) = K& |6, F) and a’f¢,£) =2 [¢, %), (9)
where €1 = £(1 F e 2¢12) and K = (1 — exp(—4[¢[*))"2
|

We calculate (| (AXg)* |9) = (1] (AXp)*|¢1) using the result given in
Eq. (2). We note that

(1] : X5« |ghr) = é{Re[WJﬂ a' [y1) e ")+ 4Re[(4h1| aTa® [yhr) e

+3((¢1la™a® [91) 1), (10)
(P1] : X5+ oh1) = i{Re[(dJll a® [¢1) e+ 3Re[(¢h1] a*a® [1) e ]} (11)
(P1] 2 X5« oh1) = %{Re[(dal a® 1) e ]+ (| atalyr)} . (12)

If we write £ = Aexp(ifg) and § = O¢ — 6, straight forward calculations lead
to the expectation of the fourth power of fluctuation in Xy,

(W (AXp) [9) = (4] (AXp)" )
= b X ) + 6 X ) (] Ko )’
=3((¢pr]: Xo:[91)) " — 4 (4 X3 :4n) (1] X [¢hn)

[t X3 ) — (9] X n))?) (13)
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and the final result is

(W] (AXg)* 9h) = — + £ A% (cos 46 + 4f cos26 + 3)—3m

+= { L A%(f+cos26) — 2} 4K mA3 sin x(cos ¢ cos® §

—i—smgzﬁsm 5 e 2Y) + 3A%m2(f + cos 26) (14)

f EK2(1—|—6_4A2 —2cos Xe_2A2); m = K Asin x(cos ¢ cos d —sin ¢ sin 56_2’42).

The corresponding results for second order squeezing is simpler [8] and per-
mits finding minima with ¢, x and § analytically. We calculate the min-
imum value of(¢| (AXy)* |4h) given above using a computer programming.
We get the minimum value 0.050693 of (1| (AXy)*|#) at A = 0.65424, x
=0, § = /2 and it is independent of ¢. The variations of (1| (AXp)*|4)
with A, x and J near this minima are shown in figures 1(a), 1(b), and 1(c)
respectively.

©
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Fig. 1. (a)The variation of (1| (AXg)* |¢) (on Y-axis) with A (on X-axis)at x = 0,
§ = 7/2. (b)The variation of (1| (AXg)*|¢) (on Y-axis) with § (on X-axis)at A =
0.65424, x = 0. (c)The variation of (1| (AXg)*|¢) (on Y-axis) with x (on X-axis)
at A = 0.65424,0 = /2.
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In terms of Z1, Zs, o, B and 6, we conclude, therefore, that the maxi-
mum forth-order squeezing of Xy in the state |1) occurs for an infinite combi-
nations with Z; /Zs = exp(a*f—af*) and a—f = 1.30848 exp[+i(7/2)+16],
and with arbitrary values of a + 8 and 6. For this state the average pho-
ton number is 0.36084. Since, the action of displacement operator D(«) on
|1) does not affect the expectation value of AXy but can change photon
number, it is obvious that this large squeezing can occur at arbitrarily large
intensities. To illustrate this point we consider the state in the form

W’I> = K'(|lz) + ‘$6i7>) ; K ={2[1+ e~ (1=cos) cos(z? siny )]}_% )
(15)
This state has the expectation value of fourth power of AXjy,

1
<1/J" (AXy)! ‘1ﬁ'> = % + gK'2$4[6 + 4 cos 26 + cos 40 + cos(4y — 40)

+C1{cos(4y — 46 + C3) + cos(40 + Cy) + 4 cos(y + 260 + Cy)

+4cos(3y — 20 + Cy) + 4cos(2y — 20) + 6 cos(2y + Ca)}]

+3K"0 2 M2 4 cos 20 + cos(2y — 26) 4+ C1{cos(2y — 20 + Cy)

+ c0s(20 4 Cy) + 2cos(y + Cp)}] — 3K8 2 M* — K"z M[4 cos® 0
+4cos3(y — 0) + C1{cos(3y — 30 + Cy) + cos(30 + Cs)

+3cos(2y — 0 + Cs) + 3cos(y + 0 + Ca)}] + 2[5 K"22%[2 + cos 20

+ cos(2y — 20) + C1{cos(2y — 20 + Cs) + cos(26 + Cy)

+2cos(y + Cy)}] — K22 M2, (16)

where ,
Ci=e® (1%037); Co = z?sinvy

and
M = cos + cos(y — 0) + C1{cos(y — 0+ C3) + cos(0 + Cs) }.

We see that this state may have the minimum fourth order moment of Xy
as 0.050693, if _ _
z(1 —e") = 1.30848¢"(F2+0) | (17)

This is satisfied for an infinite combinations of z, v and 6. For example v =
0.0029, 6 = /2 and z = 451.28, the minimum value of the expectation of
the fourth-order fluctuations is 0.050693. The Variation of (| (AXy)* [4')
with z for v = 0.0029 and 6 = /2 and is shown in Fig. 2(a). As compared
to earlier results, the variation is fast. For the same minimum value of
(4| (AXg)* |4f') variation with A shown in Fig. 1(a) is much slower than
the variation with x shown in Fig. 2(a). Both A and z are related to the
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Fig.2. (a) The variation of (4| (AX4)* |¢') (on Y-axis) with # (on X-axis) at y —
0.0029 and § = 0.00145. (b) The variation of ()| (AX4)*|¢') (on Y-axis) with v
(on X-axis) at = 451.28, § = 0.00145.

average photon number. Figure 2(b) shows that the phase angle v plays
an important role for the maximum fourth-order squeezing. Thus large
higher-order squeezing can be produced with high intensity also, but, for its
observation settings of parameters become more demanding.
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