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TESTING RESUMMED NLO�BFKL KERNELSR. Pes
hanskiCEA/DSM/SPhT, Unité de re
her
he asso
iée au CNRSCE-Sa
lay, F-91191 Gif-sur-Yvette Cedex, Fran
ee-mail: pes
h�spht.sa
lay.
ea.fr(Re
eived Mar
h 20, 2003)Dedi
ated to Jan Kwie
i«ski in honour of his 65th birthdayWe propose a new method to test the (resummed) next-to-leading-order BFKL evolution kernels using the Mellin transformed j-moments ofthe proton stru
ture fun
tion F2:PACS numbers: 12.38.Cy, 12.38.Qk1. How to test BFKL evolution equations?The Balitsky Fadin Kuraev Lipatov (BFKL) evolution equation [1℄, de-rived in the framework of perturbative QCD, has held the attention of thes
ienti�
 
ommunity sin
e a long time. The summation of leading logarithmsof energy in the perturbative expansion gives valuable tools for the inves-tigation of deep-inelasti
 s
attering at small xBj (equivalently large energysquared W 2 � Q2=xBj). Indeed, the �rst experimental results from HERA
on�rmed the existen
e of a strong rise of the proton stru
ture fun
tion F2with energy in agreement with the trends implied by the solution of theBFKL equation. It has been possible [2℄ to des
ribe the old data at smallxBj and in a 
ertain range of Q2: However the pri
e to pay was to get a phe-nomenologi
al value of the inter
ept (the exponent of 1=xBj in the BFKLformula, see later in the text) less than the predi
ted range (the 
orrespond-ing value of the strong 
oupling 
onstant is �s � 0:1 instead of � 0:2). Thiswas revealing the need for rather sizable higher order 
orre
tions.At the next-to-leading log level, these 
orre
tions have been 
al
ulatedafter mu
h e�orts [3℄ and appeared to be so large that they overshoot the ex-pe
ted phenomelogi
al e�e
t and 
ould even invalidate the whole approa
h.Soon after, it was realized [4℄ that the main problem 
ame from the exis-ten
e of spurious singularities whi
h ought to be 
an
elled by an appropriate(3001)
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hanskiresummation at all orders of the perturbative expansion. This is required bythe QCD renormalization group. Indeed, various resummation s
hemes havebeen proposed [4�6℄ whi
h satisfy the renormalization group requirementswhile retaining the exa
t value of the next-leading log term in the BFKLkernel 
omputed in Refs. [3℄. Hen
e, the 
onstraints 
an be satis�ed and thenext-to-leading order introdu
ed without destroying the whole s
heme.However, the resummation s
hemes possess some ambiguity, sin
e higherorder logs (beyond the next-to-leading ones) are not known. Su
h variationsappear, e.g. in Ref. [4℄, where four di�erent resummation s
hemes havebeen proposed. These s
hemes, denoted s
heme 1,...4 in the following, willbe the subje
t of our present study. Other s
hemes have been proposed [5,6℄and will be studied as well later [7℄. It is worth to 
onfront these variouss
hemes with data, to 
he
k their validity and distinguish between di�erentresummation options.Pre
ise phenomenologi
al tests of QCD evolution equations are one ofthe main goals of deep inelasti
 s
attering phenomenology. For DGLAP evo-lution [8℄, it has been possible to test it in various ways with next-to-leadinglog Q2 (NLO) 
orre
tions and it works quite well in a large range of Q2: Test-ing pre
isely BFKL evolution beyond leading order is mu
h more di�
ult.The main problem is the 
ompli
ated mismat
h between QCD perturbativeand non perturbative inputs, sin
e the 
orresponding fa
torization proper-ties, i.e. kT fa
torization [9℄, are more involved than for DGLAP evolution.A way out 
ould be to stay within the perturbative regime by using onlymassive or highly virtual 
olliding parti
les, like 
��
� s
attering, but thedata are yet too impre
ise that no de�nite 
on
lusion 
an be drawn. Notealso that some perturbative QCD ingredients (su
h as the so-
alled �impa
tfa
tors�) are not yet but will be soon available [10℄.In the present paper, we propose a method for testing the (resummed)BFKL predi
tions for the proton stru
ture fun
tions, via a transformationto Mellin spa
e.On the one hand, the present set of data allows for a pre
ise determina-tion of the Mellin transform of F2 in a large range of Q2 and j; the Mellin
onjugate of xBj; 
onsidered as a 
ontinuous variable. On the other hand,the BFKL predi
tions at leading order and beyond are easier to formulatein Mellin spa
e sin
e one 
an obtain tests of the evolution kernels whi
hare essentially dependent on the 
al
ulable perturbative part. In our for-mulation, we assume that kT fa
torization remains valid for the resummedkernel. An improved formulation of kT fa
torization 
ontaining the NLO 
�impa
t fa
tors when they will be available, will allow to re�ne our study inthe future.The proposed method has the following features. It treats in parallel bothLO and (resummed) NLO BFKL kernels. It uses a kT fa
torized formula-



Testing Resummed NLO�BFKL Kernels 3003tion of the stru
ture fun
tions whi
h in
ludes the fa
torized Green fun
tionsolution derived in Ref. [5℄. The present essay is of introdu
tory nature,and present a �rst, non sophisti
ated, phenomenologi
al investigation of theproton stru
ture fun
tions [11,12℄, where we 
ompare the LO-DGLAP GRVparametrization [13℄ of proton stru
ture fun
tions with the BFKL kernelpredi
tions. In a forth
oming publi
ation [7℄, we shall give an extensive andmore systemati
 study using our method.The plan of 
ontents is organized as follows; In the next se
tion, westart by expressing the LO BFKL predi
tions in Mellin spa
e, de�ning three
hara
teristi
 relations. In Se
tion 3 we elaborate the 
orresponding set ofpredi
tions for the resummed NLO-BFKL kernels. An appli
ation to theDGLAP/BFKL 
omparison is presented in Se
tion 4. Se
tion 5 provides a
on
lusion and an outlook on future work.2. BFKL predi
tions in Mellin spa
eThe formulation of the proton stru
ture fun
tions in the (LO) BFKLapproximation 
an be expressed as follows [2℄:0�FTFLG 1A = Z d
2i� �Q2Q20�
 e�sN
� �LO(
) ln(1=xBj)0�hThL1 1A!(
) (1)where one has written the BFKL kernel as�LO(
) = 2 (1) �  (
) �  (1� 
) : (2)In formula (1), with 
onventional notations, FT; FL; G stand respe
tivelyfor transverse , longitudinal and gluon stru
ture fun
tions, �s is the (�xed)
oupling 
onstant, !(
) is an (unknown) non-perturbative 
oupling to theproton while� hThL � = �s3�
 (� (1� 
)� (1 + 
))3� (2� 2
)� (2 + 2
) 11� 23
 � (1 + 
)(1� 
2 )
(1� 
) � ; (3)
orrespond to the known perturbative 
ouplings to the photon, usually 
alledLO �impa
t fa
tors� in the literature. Note that, in the framework of kTfa
torization, 
 plays the r�le of a �running� anomalous dimension, whosephysi
al value is determined by the integration of (1). As already men-tionned in the introdu
tion, formula (1) gives rise to an interesting e�e
tiveBFKL phenomenology [2℄ in the small xBj region, but it has to rely on theparametrization of the unknown non perturbative fun
tion !(
) and leadsto values of �s quite smaller than expe
ted.
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hanskiMellin-transforming (1) in j-spa
e, one easily �nds0� ~FT~FL~G 1A = Z d
2i� �Q2Q20�
 1j � 1� �sN
� �LO(
) 0�hThL1 1A!(
) : (4)Looking for the poles in 
; it is straightforward to use the residue formula1and get0� ~FT~FL~G 1A =Xi 1�sN
� [��0LO(
i(j))℄ �Q2Q20�
i(j)0�hT(
i(j))hL(
i(j))1 1A !(
i(j)) ; (5)where 
i(j) are the (
i < 1=2) roots of the equationj � 1 = �sN
� �LO(
i(j)) : (6)In fa
t, with good a

ura
y at large enough Q2; (
omparable to the leadingtwist approximation in DGLAP evolution), one 
an only retain the rightmostpole 
1(j): We are thus left with the following simple formula as a startingpoint of our analysis:0� ~FT~FL~G 1A � 1�sN
� [��0LO(
1(j))℄ �Q2Q20�
1(j)0�hT(
1(j))hL(
1(j))1 1A !(
1(j)) : (7)From equation (7), three model-independent predi
tions, i.e. indepen-dent of non-perturbative assumptions, 
an be drawn:(i) The Mellin transform of F2 � FT + FL should verify:ln ~F2(j;Q2) = 
1(j) ln(Q2) + f(j) (8)in some range of j near 1 where the BFKL equation is expe
ted to berelevant. The fun
tion f(j) regroups all Q2-independent terms in (7).(ii) 
1(j); extra
ted from (7) as the slope in ln(Q2); should verify theequation (6) for the anomalous dimension, namely�LO(
1(j)) � ��sN
 (j�1) ; (9)with 
onstant �s; and �LO given by (2).1 Care is to be taken of the 
ontour at in�nity, see the se
ond referen
e of [7℄.



Testing Resummed NLO�BFKL Kernels 3005(iii) The gluon stru
ture fun
tion (one may also 
hoose the obervable FL)should verify, via Mellin transform:ln( ~G(j;Q2)) = ln� ~F2(j;Q2)�� 
1(j) ln (hT + hL) : (10)The predi
tions (8), (9) (10) represents a stringent set of 
onstraintswhi
h have to be veri�ed by the Mellin-transformed of the proton stru
turefun
tions in a region j near 1. In fa
t we will 
on�rm that the (LO) BFKLkernel does not pass this step.3. Resummed NLO-BFKL predi
tions in Mellin spa
eInterestingly, using a reasonable kT fa
torized ansatz2, the predi
tions(i)�(iii) remain valid for NLO-BFKL resummation kernels, up to spe
i�
modi�
ations due to the running of the 
oupling 
onstant.Let us formulate the (resummed) NLO-BFKL stru
ture fun
tions inMellin spa
e as follows:0� ~FT~FL~G 1A = Z d
2i�  Q2�2QCD!
 e� 1b(j�1) X(
;j)0� hThLhG1A �(
) ; (11)where, by de�nition ��
X(
; j) � �NLO(
; j) : (12)The fun
tion X(
; j) appears in the solution of the Green fun
tion derived3from the renormalization-group improved small-xBj equation [5℄, �NLO(
; j)is the resummed NLO-BFKL kernel and b = 11 � 2=3 Nf=N
 de�nes therunning of the 
oupling 
onstantN
� �s(Q2) = 1b ln�Q2=�2QCD� : (13)Before going further, let us 
omment formula (11). This formula 
apturesthe (large) Q2-dependent part of the gluon Green fun
tion whi
h has beenshown to have fa
torization properties [5℄. In fa
t the non perturbative
ontribution has been fa
torized out in the fun
tion �(
): Some unknown2 kT fa
torization has not been yet proven at NLO, but is a reasonable ansatz ful�llingthe known theoreti
al requirements on the kernel properties dis
ussed in [5℄.3 The se
ond variable of X(
; j) in (12) 
orresponds to the 
hoi
e of a referen
e s
ale� ! j � 1 di
tated by the treatment of the Green fun
tion �u
tuations near thesaddle-point [5℄.
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hanskiQ2-dependen
e may still remain in the NLO 
ontributions to the impa
tfa
tor ve
tor (h); whi
h we negle
ted in the present analysis.Starting from this ansatz, let us derive the NLO 
onstraints similar to(8)�(10). At large enough Q2=�2QCD; one 
an use the saddle-point appox-imation to evaluate (11). Assuming that the perturbative impa
t fa
torsand the non-perturbative fun
tion � do not vary mu
h4, the saddle-point
ondition readsj � 1 � 1b ln�Q2=�2QCD��NLO(�
; j) = N
 �s(Q2)� �NLO(�
; j) ; (14)where �
(j;Q2) is the saddle-point value. Relation (14) is nothing else thanthe NLO extension of 
ondition (ii) of (9) to the 
ase of a running 
oupling
onstant (13).Inserting the saddle point de�ned by (14) in formula (11), one obtainsthe new set of 
onstraints at NLO level as follows:(i) The Mellin transform of F2 � FT + FL veri�es:�� ln(Q2) ln ~F2(j;Q2) � �
(j;Q2) ; (15)where �
(j;Q2) is now a smoothly Q2-dependent e�e
tive anomalousdimension de�ned by the following property.(ii) �
(j;Q2) veri�es the anomalous dimension equation, namely�NLO(�
(j;Q2)) � ��s(Q2)N
 (j�1) ; (16)where �NL0 is one of the resummed NLO-BFKL 
andidate kernelsproposed in the literature.(iii) The gluon stru
ture fun
tion (one may also 
hoose the obervable FL)veri�es, via Mellin transform:ln( ~G(j;Q2)) = ln� ~F2(j;Q2)�� �
(j;Q2) ln [hT(�
) + hL(�
)℄ ; (17)where NLO e�e
ts of impa
t fa
tors are negle
ted.4 We do not take into a

ount modi�
ations e.g. 
oming from powers of 
 in theprefa
tors whi
h may shift the saddle point [5℄. We thus assume a smoothness ofthe stru
ture fun
tion integrand around the saddle-point in agreement with the phe-nomenology [7℄.



Testing Resummed NLO�BFKL Kernels 3007The interest of the relations (15)�(17) is that they are formally similarwith the LO ones by the dire
t substitution of the LO kernel by the NLOones and of a �xed 
oupling 
onstant by the running one at one-loop. Theyare only approximate, sin
e they rely on a saddle-point approximation whi
hmay not be always justi�ed (see [5℄ for a dis
ussion). However, in the present
ontext, the validity of the saddle-point approximation 
an be tested dire
tlyfrom the phenomenologi
al analysis. Due to the observed smoothness of theMellin transforms, we do not expe
t large 
orre
tions to the saddle-pointresults. 4. Appli
ation: the �proximity� betweenDGLAP and NLO-BFKLIn this se
tion, we want to 
he
k the reliability of the Mellin spa
emethod by a study of DGLAP parametrizations of the data [11℄ . It iswell-known that DGLAP parametrizations �t well the data in a large rangeof xBj and Q2 > 1 GeV. Choosing su
h a parametrization of stru
ture fun
-tions, namely the GRV set of stru
ture fun
tions [13℄, we are able to Mellintransform them easily, and thus dis
uss the 
omparison between DGLAPand LO/NLO BFKL evolution equations. DGLAP evolution is automat-i
ally obeyed by the input fun
tions and we want to 
ompare them withBFKL evolution using relations (8)�(10) for LO and (15)�(17) for NLO.The physi
al question we ask in this appli
ation is whether or not there mayexist a 
ompatibility between DGLAP and BFKL evolution equations.Let us �rst 
onsider the singlet density distribution in Mellin spa
e ~� �(q+�q)(j); see Fig. 1. It is an easy exer
ise to obtain it from the input GRVparametrizations [13℄ and LO DGLAP matrix elements in Mellin spa
e [8℄.It is 
lear from Fig. 1 that there exists an interval 1:3 � j � 1:7 in whi
hthe slope of ln ~� as a fun
tion of lnQ2 is almost 
onstant. The observedapproximate 
onstan
y meets the requirement5 of 
ondition (i). We willfo
us our study to this region whi
h is Mellin-
onjugated to the small xBjregion.Taking into a

ount the anomalous dimension values6, it is now straight-forward to look for the LO predi
tion (9) and the various NLO predi
tions(16) depending on the 
hoi
e of resummation s
heme in [4℄.We have displayed in Fig. 2 for 
omparison the results for both thestandard (LO) BFKL and for one of the Resummed NLO BFKL s
hemes(s
heme 4). In our appli
ation plotting �(
i(ji)) as a fun
tion of ji should5 The NLO 
ondition (15) implies a smooth variation of the slope. Presently, we willstudy the Q2 average only, delaying a more re�ned (but deserved) study of the Q2dependen
e of the slope for a forth
oming publi
ation [7℄.6 In this preliminary study we 
onsidered only dis
rete values 
i(ji); where ji =1:3; 1:4; 1:5; 1:6; 1:7: determined for a �xed range 2 � logQ2 � 6:
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Fig. 1. Evolution of the Mellin transformed (q + �q)(j) as a fun
tion of Q2: Fromleft to right and top to bottom: j = 1:1; 1:3; 1:4; 1:5; 1:6; 1:8:give points aligned on a straight line extrapolating to 0 at j = 1: The slopegives the (average) value of �NC=�s: By simple inspe
tion of Fig. 2, it is
lear that there is a large di�eren
e between LO and NLO (s
heme 4 of [4℄)results. The LO test 
ompletely fails in shape and magnitude, while the NLOtest is satisfa
tory. In this 
ase, the measured slope leads to an average value� � 0:23 whi
h is reasonable for the Q2 range 
onsidered for the stru
turefun
tions.Some 
omments are in order. We have here used a set of stru
turefun
tions whi
h, on the one hand veri�es the DGLAP evolution and, inthe other hand give a satisfa
tory �t of data. The 
on
lusion of our testwould be that there is not mu
h di�eren
e between DGLAP evolved e�e
tiveanomalous dimensions from DGLAP evolution and from some well-
hoosen
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Fig. 2. Study of the LO and NLO BFKL kernels in Mellin j-spa
e. Top: (LO)BFKL kernel; bottom: Resummed NLO BFKL kernel, s
heme 4 of Ref. [4℄.resummed NLO-BFKL kernels. This remark 
orroborates the proximity ofDGLAP and NLO-BFKL predi
tions for the gluon anomalous dimensionin [5℄ and, in a di�erent 
ontext, the smallness of BFKL-like 
orre
tions tothe DGLAP evolution equation found in [14℄ for HERA data.The new point is that our method allows for sensitive tests of the re-summed NLO-BFKL kernels. For instan
e the s
hemes 1,2 fail [12℄ and thisis to be related to the fa
t that not all large logs are resummed [4℄. S
heme3 gives a satisfa
tory shape but with an averaged �s � 0:27 quite too strong.This is for illustration of the sensitiveness of the method.
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hanskiWe postpone to a more systemati
 study [7℄ the 
omparison betweendi�erent sets of stru
ture fun
tions, di�erent methods, and also the 
onsid-eration of non-DGLAP parametrizations in order to evaluate the systemati
biases whi
h 
ould o

ur from these di�erent options. We also leave forfuture study the relations (10), (17) whi
h gave promising results in [11℄.5. Con
lusion and outlook� We have proposed a method for 
onfronting with pre
ision �data� thevarious resummed BFKL kernels with next-to-leading log a

ura
y.These �data� are the Mellin-transformed of the proton stru
ture fun
-tion.� Due to the high pre
ision of modern experimental data on F2, weexpe
t the Mellin transform to be well determined, at least in theregion of j and Q2 needed for the test.� We make use of a kT fa
torized formulation of the stru
ture fun
tionwhi
h grasps the 
onstraints 
oming from the QCD renormalizationgroup improved small-xBj equation [5℄.� In a �rst, preliminary, appli
ation using the GRV parametrization [13℄as input, the method leads with high sensibility to an in
ompatibilityof the LO BFKL kernel while only one of the four resummed NLOBFKL s
hemes of Ref. [4℄ shows a 
ompatibility with the DGLAPparametrization of data.The appli
ation we have performed is far from 
omplete, and was onlyserving as a test of the method sensitivity. Further studies in various inter-esting dire
tions deserve to be pursued [7℄. Let us quote some of them.It is interesting to test whether the present set of data and with whi
ha

ura
y, the Mellin transformed of the stru
ture fun
tions 
an be obtained.In parti
ular, it would be useful to see eventual di�eren
es between DGLAPand non-DGLAP parametrizations of data, to see whether and where there
ould be a systemati
al bias introdu
ed by the DGLAP framework.Con
erning the resummation s
hemes, the appli
ation of the methodwith the 
orre
t NLO a

ura
y requires to take fully into a

ount the 
ou-pling 
onstant running. It is thus required to separate data in small regionsof Q2 and make the tests separately in ea
h region, in order to follow theQ2 evolution of the 
oupling 
onstant.We expe
t to be able to answer these questions soon [7℄.
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