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TESTING RESUMMED NLO�BFKL KERNELSR. PeshanskiCEA/DSM/SPhT, Unité de reherhe assoiée au CNRSCE-Salay, F-91191 Gif-sur-Yvette Cedex, Franee-mail: pesh�spht.salay.ea.fr(Reeived Marh 20, 2003)Dediated to Jan Kwiei«ski in honour of his 65th birthdayWe propose a new method to test the (resummed) next-to-leading-order BFKL evolution kernels using the Mellin transformed j-moments ofthe proton struture funtion F2:PACS numbers: 12.38.Cy, 12.38.Qk1. How to test BFKL evolution equations?The Balitsky Fadin Kuraev Lipatov (BFKL) evolution equation [1℄, de-rived in the framework of perturbative QCD, has held the attention of thesienti� ommunity sine a long time. The summation of leading logarithmsof energy in the perturbative expansion gives valuable tools for the inves-tigation of deep-inelasti sattering at small xBj (equivalently large energysquared W 2 � Q2=xBj). Indeed, the �rst experimental results from HERAon�rmed the existene of a strong rise of the proton struture funtion F2with energy in agreement with the trends implied by the solution of theBFKL equation. It has been possible [2℄ to desribe the old data at smallxBj and in a ertain range of Q2: However the prie to pay was to get a phe-nomenologial value of the interept (the exponent of 1=xBj in the BFKLformula, see later in the text) less than the predited range (the orrespond-ing value of the strong oupling onstant is �s � 0:1 instead of � 0:2). Thiswas revealing the need for rather sizable higher order orretions.At the next-to-leading log level, these orretions have been alulatedafter muh e�orts [3℄ and appeared to be so large that they overshoot the ex-peted phenomelogial e�et and ould even invalidate the whole approah.Soon after, it was realized [4℄ that the main problem ame from the exis-tene of spurious singularities whih ought to be anelled by an appropriate(3001)



3002 R. Peshanskiresummation at all orders of the perturbative expansion. This is required bythe QCD renormalization group. Indeed, various resummation shemes havebeen proposed [4�6℄ whih satisfy the renormalization group requirementswhile retaining the exat value of the next-leading log term in the BFKLkernel omputed in Refs. [3℄. Hene, the onstraints an be satis�ed and thenext-to-leading order introdued without destroying the whole sheme.However, the resummation shemes possess some ambiguity, sine higherorder logs (beyond the next-to-leading ones) are not known. Suh variationsappear, e.g. in Ref. [4℄, where four di�erent resummation shemes havebeen proposed. These shemes, denoted sheme 1,...4 in the following, willbe the subjet of our present study. Other shemes have been proposed [5,6℄and will be studied as well later [7℄. It is worth to onfront these variousshemes with data, to hek their validity and distinguish between di�erentresummation options.Preise phenomenologial tests of QCD evolution equations are one ofthe main goals of deep inelasti sattering phenomenology. For DGLAP evo-lution [8℄, it has been possible to test it in various ways with next-to-leadinglog Q2 (NLO) orretions and it works quite well in a large range of Q2: Test-ing preisely BFKL evolution beyond leading order is muh more di�ult.The main problem is the ompliated mismath between QCD perturbativeand non perturbative inputs, sine the orresponding fatorization proper-ties, i.e. kT fatorization [9℄, are more involved than for DGLAP evolution.A way out ould be to stay within the perturbative regime by using onlymassive or highly virtual olliding partiles, like ��� sattering, but thedata are yet too impreise that no de�nite onlusion an be drawn. Notealso that some perturbative QCD ingredients (suh as the so-alled �impatfators�) are not yet but will be soon available [10℄.In the present paper, we propose a method for testing the (resummed)BFKL preditions for the proton struture funtions, via a transformationto Mellin spae.On the one hand, the present set of data allows for a preise determina-tion of the Mellin transform of F2 in a large range of Q2 and j; the Mellinonjugate of xBj; onsidered as a ontinuous variable. On the other hand,the BFKL preditions at leading order and beyond are easier to formulatein Mellin spae sine one an obtain tests of the evolution kernels whihare essentially dependent on the alulable perturbative part. In our for-mulation, we assume that kT fatorization remains valid for the resummedkernel. An improved formulation of kT fatorization ontaining the NLO �impat fators when they will be available, will allow to re�ne our study inthe future.The proposed method has the following features. It treats in parallel bothLO and (resummed) NLO BFKL kernels. It uses a kT fatorized formula-



Testing Resummed NLO�BFKL Kernels 3003tion of the struture funtions whih inludes the fatorized Green funtionsolution derived in Ref. [5℄. The present essay is of introdutory nature,and present a �rst, non sophistiated, phenomenologial investigation of theproton struture funtions [11,12℄, where we ompare the LO-DGLAP GRVparametrization [13℄ of proton struture funtions with the BFKL kernelpreditions. In a forthoming publiation [7℄, we shall give an extensive andmore systemati study using our method.The plan of ontents is organized as follows; In the next setion, westart by expressing the LO BFKL preditions in Mellin spae, de�ning threeharateristi relations. In Setion 3 we elaborate the orresponding set ofpreditions for the resummed NLO-BFKL kernels. An appliation to theDGLAP/BFKL omparison is presented in Setion 4. Setion 5 provides aonlusion and an outlook on future work.2. BFKL preditions in Mellin spaeThe formulation of the proton struture funtions in the (LO) BFKLapproximation an be expressed as follows [2℄:0�FTFLG 1A = Z d2i� �Q2Q20� e�sN� �LO() ln(1=xBj)0�hThL1 1A!() (1)where one has written the BFKL kernel as�LO() = 2 (1) �  () �  (1� ) : (2)In formula (1), with onventional notations, FT; FL; G stand respetivelyfor transverse , longitudinal and gluon struture funtions, �s is the (�xed)oupling onstant, !() is an (unknown) non-perturbative oupling to theproton while� hThL � = �s3� (� (1� )� (1 + ))3� (2� 2)� (2 + 2) 11� 23 � (1 + )(1� 2 )(1� ) � ; (3)orrespond to the known perturbative ouplings to the photon, usually alledLO �impat fators� in the literature. Note that, in the framework of kTfatorization,  plays the r�le of a �running� anomalous dimension, whosephysial value is determined by the integration of (1). As already men-tionned in the introdution, formula (1) gives rise to an interesting e�etiveBFKL phenomenology [2℄ in the small xBj region, but it has to rely on theparametrization of the unknown non perturbative funtion !() and leadsto values of �s quite smaller than expeted.



3004 R. PeshanskiMellin-transforming (1) in j-spae, one easily �nds0� ~FT~FL~G 1A = Z d2i� �Q2Q20� 1j � 1� �sN� �LO() 0�hThL1 1A!() : (4)Looking for the poles in ; it is straightforward to use the residue formula1and get0� ~FT~FL~G 1A =Xi 1�sN� [��0LO(i(j))℄ �Q2Q20�i(j)0�hT(i(j))hL(i(j))1 1A !(i(j)) ; (5)where i(j) are the (i < 1=2) roots of the equationj � 1 = �sN� �LO(i(j)) : (6)In fat, with good auray at large enough Q2; (omparable to the leadingtwist approximation in DGLAP evolution), one an only retain the rightmostpole 1(j): We are thus left with the following simple formula as a startingpoint of our analysis:0� ~FT~FL~G 1A � 1�sN� [��0LO(1(j))℄ �Q2Q20�1(j)0�hT(1(j))hL(1(j))1 1A !(1(j)) : (7)From equation (7), three model-independent preditions, i.e. indepen-dent of non-perturbative assumptions, an be drawn:(i) The Mellin transform of F2 � FT + FL should verify:ln ~F2(j;Q2) = 1(j) ln(Q2) + f(j) (8)in some range of j near 1 where the BFKL equation is expeted to berelevant. The funtion f(j) regroups all Q2-independent terms in (7).(ii) 1(j); extrated from (7) as the slope in ln(Q2); should verify theequation (6) for the anomalous dimension, namely�LO(1(j)) � ��sN (j�1) ; (9)with onstant �s; and �LO given by (2).1 Care is to be taken of the ontour at in�nity, see the seond referene of [7℄.



Testing Resummed NLO�BFKL Kernels 3005(iii) The gluon struture funtion (one may also hoose the obervable FL)should verify, via Mellin transform:ln( ~G(j;Q2)) = ln� ~F2(j;Q2)�� 1(j) ln (hT + hL) : (10)The preditions (8), (9) (10) represents a stringent set of onstraintswhih have to be veri�ed by the Mellin-transformed of the proton struturefuntions in a region j near 1. In fat we will on�rm that the (LO) BFKLkernel does not pass this step.3. Resummed NLO-BFKL preditions in Mellin spaeInterestingly, using a reasonable kT fatorized ansatz2, the preditions(i)�(iii) remain valid for NLO-BFKL resummation kernels, up to spei�modi�ations due to the running of the oupling onstant.Let us formulate the (resummed) NLO-BFKL struture funtions inMellin spae as follows:0� ~FT~FL~G 1A = Z d2i�  Q2�2QCD! e� 1b(j�1) X(;j)0� hThLhG1A �() ; (11)where, by de�nition ��X(; j) � �NLO(; j) : (12)The funtion X(; j) appears in the solution of the Green funtion derived3from the renormalization-group improved small-xBj equation [5℄, �NLO(; j)is the resummed NLO-BFKL kernel and b = 11 � 2=3 Nf=N de�nes therunning of the oupling onstantN� �s(Q2) = 1b ln�Q2=�2QCD� : (13)Before going further, let us omment formula (11). This formula apturesthe (large) Q2-dependent part of the gluon Green funtion whih has beenshown to have fatorization properties [5℄. In fat the non perturbativeontribution has been fatorized out in the funtion �(): Some unknown2 kT fatorization has not been yet proven at NLO, but is a reasonable ansatz ful�llingthe known theoretial requirements on the kernel properties disussed in [5℄.3 The seond variable of X(; j) in (12) orresponds to the hoie of a referene sale� ! j � 1 ditated by the treatment of the Green funtion �utuations near thesaddle-point [5℄.



3006 R. PeshanskiQ2-dependene may still remain in the NLO ontributions to the impatfator vetor (h); whih we negleted in the present analysis.Starting from this ansatz, let us derive the NLO onstraints similar to(8)�(10). At large enough Q2=�2QCD; one an use the saddle-point appox-imation to evaluate (11). Assuming that the perturbative impat fatorsand the non-perturbative funtion � do not vary muh4, the saddle-pointondition readsj � 1 � 1b ln�Q2=�2QCD��NLO(�; j) = N �s(Q2)� �NLO(�; j) ; (14)where �(j;Q2) is the saddle-point value. Relation (14) is nothing else thanthe NLO extension of ondition (ii) of (9) to the ase of a running ouplingonstant (13).Inserting the saddle point de�ned by (14) in formula (11), one obtainsthe new set of onstraints at NLO level as follows:(i) The Mellin transform of F2 � FT + FL veri�es:�� ln(Q2) ln ~F2(j;Q2) � �(j;Q2) ; (15)where �(j;Q2) is now a smoothly Q2-dependent e�etive anomalousdimension de�ned by the following property.(ii) �(j;Q2) veri�es the anomalous dimension equation, namely�NLO(�(j;Q2)) � ��s(Q2)N (j�1) ; (16)where �NL0 is one of the resummed NLO-BFKL andidate kernelsproposed in the literature.(iii) The gluon struture funtion (one may also hoose the obervable FL)veri�es, via Mellin transform:ln( ~G(j;Q2)) = ln� ~F2(j;Q2)�� �(j;Q2) ln [hT(�) + hL(�)℄ ; (17)where NLO e�ets of impat fators are negleted.4 We do not take into aount modi�ations e.g. oming from powers of  in theprefators whih may shift the saddle point [5℄. We thus assume a smoothness ofthe struture funtion integrand around the saddle-point in agreement with the phe-nomenology [7℄.



Testing Resummed NLO�BFKL Kernels 3007The interest of the relations (15)�(17) is that they are formally similarwith the LO ones by the diret substitution of the LO kernel by the NLOones and of a �xed oupling onstant by the running one at one-loop. Theyare only approximate, sine they rely on a saddle-point approximation whihmay not be always justi�ed (see [5℄ for a disussion). However, in the presentontext, the validity of the saddle-point approximation an be tested diretlyfrom the phenomenologial analysis. Due to the observed smoothness of theMellin transforms, we do not expet large orretions to the saddle-pointresults. 4. Appliation: the �proximity� betweenDGLAP and NLO-BFKLIn this setion, we want to hek the reliability of the Mellin spaemethod by a study of DGLAP parametrizations of the data [11℄ . It iswell-known that DGLAP parametrizations �t well the data in a large rangeof xBj and Q2 > 1 GeV. Choosing suh a parametrization of struture fun-tions, namely the GRV set of struture funtions [13℄, we are able to Mellintransform them easily, and thus disuss the omparison between DGLAPand LO/NLO BFKL evolution equations. DGLAP evolution is automat-ially obeyed by the input funtions and we want to ompare them withBFKL evolution using relations (8)�(10) for LO and (15)�(17) for NLO.The physial question we ask in this appliation is whether or not there mayexist a ompatibility between DGLAP and BFKL evolution equations.Let us �rst onsider the singlet density distribution in Mellin spae ~� �(q+�q)(j); see Fig. 1. It is an easy exerise to obtain it from the input GRVparametrizations [13℄ and LO DGLAP matrix elements in Mellin spae [8℄.It is lear from Fig. 1 that there exists an interval 1:3 � j � 1:7 in whihthe slope of ln ~� as a funtion of lnQ2 is almost onstant. The observedapproximate onstany meets the requirement5 of ondition (i). We willfous our study to this region whih is Mellin-onjugated to the small xBjregion.Taking into aount the anomalous dimension values6, it is now straight-forward to look for the LO predition (9) and the various NLO preditions(16) depending on the hoie of resummation sheme in [4℄.We have displayed in Fig. 2 for omparison the results for both thestandard (LO) BFKL and for one of the Resummed NLO BFKL shemes(sheme 4). In our appliation plotting �(i(ji)) as a funtion of ji should5 The NLO ondition (15) implies a smooth variation of the slope. Presently, we willstudy the Q2 average only, delaying a more re�ned (but deserved) study of the Q2dependene of the slope for a forthoming publiation [7℄.6 In this preliminary study we onsidered only disrete values i(ji); where ji =1:3; 1:4; 1:5; 1:6; 1:7: determined for a �xed range 2 � logQ2 � 6:



3008 R. Peshanski
ln(Q  )

ln(q+q)

2

6

5 ln(Q  )

ln(q+q)

2

6

1

ln(Q  )

ln(q+q)

2

6

1
ln(Q  )

ln(q+q)

2

6

1

0.4
1

ln(Q  )

ln(q+q)

2

61
0.2

0.5

61
ln(Q  )2ln(q+q)

-0.18

-0.14

Fig. 1. Evolution of the Mellin transformed (q + �q)(j) as a funtion of Q2: Fromleft to right and top to bottom: j = 1:1; 1:3; 1:4; 1:5; 1:6; 1:8:give points aligned on a straight line extrapolating to 0 at j = 1: The slopegives the (average) value of �NC=�s: By simple inspetion of Fig. 2, it islear that there is a large di�erene between LO and NLO (sheme 4 of [4℄)results. The LO test ompletely fails in shape and magnitude, while the NLOtest is satisfatory. In this ase, the measured slope leads to an average value� � 0:23 whih is reasonable for the Q2 range onsidered for the struturefuntions.Some omments are in order. We have here used a set of struturefuntions whih, on the one hand veri�es the DGLAP evolution and, inthe other hand give a satisfatory �t of data. The onlusion of our testwould be that there is not muh di�erene between DGLAP evolved e�etiveanomalous dimensions from DGLAP evolution and from some well-hoosen
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Fig. 2. Study of the LO and NLO BFKL kernels in Mellin j-spae. Top: (LO)BFKL kernel; bottom: Resummed NLO BFKL kernel, sheme 4 of Ref. [4℄.resummed NLO-BFKL kernels. This remark orroborates the proximity ofDGLAP and NLO-BFKL preditions for the gluon anomalous dimensionin [5℄ and, in a di�erent ontext, the smallness of BFKL-like orretions tothe DGLAP evolution equation found in [14℄ for HERA data.The new point is that our method allows for sensitive tests of the re-summed NLO-BFKL kernels. For instane the shemes 1,2 fail [12℄ and thisis to be related to the fat that not all large logs are resummed [4℄. Sheme3 gives a satisfatory shape but with an averaged �s � 0:27 quite too strong.This is for illustration of the sensitiveness of the method.



3010 R. PeshanskiWe postpone to a more systemati study [7℄ the omparison betweendi�erent sets of struture funtions, di�erent methods, and also the onsid-eration of non-DGLAP parametrizations in order to evaluate the systematibiases whih ould our from these di�erent options. We also leave forfuture study the relations (10), (17) whih gave promising results in [11℄.5. Conlusion and outlook� We have proposed a method for onfronting with preision �data� thevarious resummed BFKL kernels with next-to-leading log auray.These �data� are the Mellin-transformed of the proton struture fun-tion.� Due to the high preision of modern experimental data on F2, weexpet the Mellin transform to be well determined, at least in theregion of j and Q2 needed for the test.� We make use of a kT fatorized formulation of the struture funtionwhih grasps the onstraints oming from the QCD renormalizationgroup improved small-xBj equation [5℄.� In a �rst, preliminary, appliation using the GRV parametrization [13℄as input, the method leads with high sensibility to an inompatibilityof the LO BFKL kernel while only one of the four resummed NLOBFKL shemes of Ref. [4℄ shows a ompatibility with the DGLAPparametrization of data.The appliation we have performed is far from omplete, and was onlyserving as a test of the method sensitivity. Further studies in various inter-esting diretions deserve to be pursued [7℄. Let us quote some of them.It is interesting to test whether the present set of data and with whihauray, the Mellin transformed of the struture funtions an be obtained.In partiular, it would be useful to see eventual di�erenes between DGLAPand non-DGLAP parametrizations of data, to see whether and where thereould be a systematial bias introdued by the DGLAP framework.Conerning the resummation shemes, the appliation of the methodwith the orret NLO auray requires to take fully into aount the ou-pling onstant running. It is thus required to separate data in small regionsof Q2 and make the tests separately in eah region, in order to follow theQ2 evolution of the oupling onstant.We expet to be able to answer these questions soon [7℄.
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