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We calculate, for nonzero momentum transfer, the dipole formula for
the high energy behaviour of elastic and quasielastic scattering of a virtual
photon. We obtain an expression of the nonforward photon impact fac-
tor and of the nonforward photon wave function, and we give a physical
interpretation.

PACS numbers: 12.38.—t

1. Introduction

The colour dipole picture [1, 2| of deep inelastic scattering at small x
has turned out to be very useful in describing, at low Q?, the transition
from pQCD to nonperturbative strong interactions. In a first sequence of
attempts models for the dipole cross section have been formulated in order to
describe the interaction between the quark—antiquark pair and the proton in
the forward direction [3-7|. Equivalently, in these models the interaction is
integrated over the full region of impact parameter b. More recently, atten-
tion has been given to the ¢t-dependence of diffractive vector production in
deep inelastic scattering. HERA data show significant differences compared
to hadron—hadron scattering. For example, in J/¥ production, the ¢-slope is
smaller, indicating a smaller transverse extension of the scattering system.
Also, shrinkage is considerably smaller, hinting at a quite different picture
in impact parameter space. A phenomenological analysis in [2] investigates
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the beginning of saturation at small impact parameter and low Q?. It there-
fore seems natural to understand the dipole picture at nonzero momentum
transfer, and then to search for models for the dipole cross section which
depend upon the impact parameter b.

First calculations of the photon impact factor for real photons in the
nonforward direction have been presented rather long time ago [8,9]. The
results have been obtained in momentum space, but at that time no at-
tempt has been made to find an interpretation in terms of the photon wave
function and a dipole cross section. More recently, the nonforward pho-
ton impact factor to an off-shell incoming and real outgoing photon with
massless quarks has been given in [11,12], and in [10,13] the nonforward
diffractive production of a vector particle has been analysed. Finally, in [14]
the nonforward diffractive production of a (massive) quark—antiquark pair
has been studied, but the result has not been presented in a form which is
convenient for the colour dipole picture analysis mentioned above.

In this paper we present an analysis of the nonforward photon impact
factor for all photon helicities, using massive quarks and the general kine-
matic v*(Q%) — v*(Q? ), and we present our result in the form of the colour
dipole picture: (photon wave function)-(colour dipole cross section)-(photon
wave function). We find the form of the (nonforward) photon wave function
and of the dipole cross section, and we give a physical interpretation in the
infinite momentum frame. Transforming to impact parameter, the dipole
cross section will be shown to depend upon the distance between one of
the quarks of the colour dipole and the target. For open quark antiquark
production we show that the integrated diffractive cross section can be ex-
pressed in terms of the same nonforward dipole cross section as the elastic
¥* — 4* scattering amplitude.

Our paper will be organised as follows. We first (Section 2) calculate,
in momentum space, the high energy behaviour of the elastic scattering
process v* + v* — 4* + ~4* in lowest order QCD. The resulting formula
leads to the nonforward photon impact factor which, when transformed to
transverse coordinate space, leads to the photon wave function and to the
nonforward dipole scattering amplitude (Section 3). The transformation to
impact parameter is done in Section 4, and a physical interpretation is given
in the infinite momentum frame. Section 5 briefly describes the nonforward
dipole formula for v*p scattering, and in Section 6 we present the formula
for open quark—antiquark production.

2. Nonforward impact factors

To be definitive, let us consider elastic y*y* scattering at high energies
and small (but nonzero) momentum transfer. In order to have a non-falling
cross section we consider the lowest order diagrams with two-gluon exchange.
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The scattering amplitude takes the form:

_is [ d’k P(q, k1) B(p,—k, )
Al =5 /(%)3 (k+0)° (k-1 @

The four diagrams which contribute to the photon impact factor @ are shown
in Fig. 1. As usual, the integration of the two longitudinal components of
the loop momenta are absorbed into the definition of the impact factors, and
the intermediate quark lines inside the impact factor are taken on-shell. Our
task here is the calculation of the photon impact factor, and its interpretation
in transverse coordinate space.

Fig.1. The diagrams contributing to the impact factor.

We first do the calculation in momentum space, and we compute the
discontinuity of the scattering amplitude. The assignment of the loop mo-
mentum is illustrated in Fig. 1; in all four graphs, the momenta of the cut
quark lines are identical, e.g. u — ¢ for the upper quark line. We use Su-
dakov variable with the light cone vectors p' = p + yq, y ~ —p?/2p - ¢ and
¢ = q+xp, v ~ —¢*/2p - q. For the incoming and outgoing photon we
introduce the invariants

Q% = —(¢%1)? s=(p+q° =2p -7, t=20% (2
The other photons involved in the process have similar expressions with the
momentum p instead of ¢. We write the momenta:

u=aq + Bp +ur,
k=ard + Bep' + ko,
l=orq + Bp + 10 (3)
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In terms of these parameters the photon virtualities are

Q?t = (I:F/Bl)s_lia (4)

where we used the fact that oy ~ |t|/s < 1 in the high energy limit. In the
following we use the Euclidian form of the transverse momenta marked in
boldface, i.e. k2 = —k? < 0. In the high energy limit, we also approximate
the numerator of the exchanged gluons by the first term in the decomposition

2
9w = ~ (s, + 1),0},) + Gy - (5)

With these simplifications, the integral of the first diagram takes the follow-
ing form:

B ddﬁd2
%62; / k/ a Uy

. <Wa—ﬂ@—xn+ui—mﬂ[(5—mm+wu—mi—mﬂ
[@(B—Br)s+ (u— )% —m[(a—1)(B—Pyta— s+ (u—h—)% —m7]

Telf (q+0) (=K —d =T +mPp (Gh—d+m§)f (q 1) (Gh—F +mP)p Gh—k+mF)].
(6)

Performing the two S-integration with the delta functions leads to the fol-
lowing relations

_(u—k)i—m? ui—m?
P = as + (1—a)s - (7)
ui—mfc
ﬁ:m—ﬂ”- (8)

For longitudinally polarized photons, the polarization vectors read:

g 1) = @iwq+@¢@—%jpiﬂ )

IQI

The calculation of the trace in Eq. (6) greatly simplifies if we make use of
the Ward identity, i.e. the addition of a vector proportional to ¢ £1 to the
polarization vector does not change the result. In this way the ¢’ dependence
of e1, can be eliminated. The trace is computed in terms of Sudakov variables
using the fact that p’ and ¢’ are light cone vectors. After summing the
contributions corresponding to the four diagrams in Fig. 1, given by the
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integrals of the type (6), the impact factor for the longitudinally polarized
photons takes the form:

dQ
Pualarkl) = on/NE=T¢ 54V 0110- |/da/

() g

The four terms have been written in a factorised form, each of them corre-
sponds to one Feynman graph in Fig. 1, where we have used:

DY =(u+(1-a)l)® + o(l— ) QL + m7, (11)
Dy =(u—kFoal)’ + ol -a)QL + mj. (12)
Setting ¢ = 0 one gets the well known expression in the forward direc-

tion. In the same way we calculate the transverse impact factor where the
transverse polarization vector reads:

h)
h B, 20l
o) =l £ = (¢ —p 2 1), (13)
where h = £ denotes two helicity states and
1
) = = (0,1,£4,0). (14)

e, = 7
After some algebra and the use of the Ward identity, the expression for the
transverse impact factor becomes:

1
. d*u
@%@(q,k,l) = ag\/N2 — le? z:qfc\/ZE/doz/—(zﬁ)2
f 0
N NFf\ [N Ny
x{—4a(1—a) e,--( ::_— i)( 1 2_)6;
Dl D2 Dl D2
(N NS Ny Ny
teie) || = - =2 —
D} D Dy D,
1 1 1 1
TEE
"\of pf)\pr Dy

e; = 1/V2(1,+i) (16)

where
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are two-dimensional polarization vectors corresponding to the two transverse
polarizations j = £. Again, it was possible to write the result in a factorised
form where we used the following definitions:

NE = u+t(1-a) Nf=u—k¥adl. (17)

Setting ¢ = 0 and summing over the two helicity states, one gets the well-
known expressions in the forward direction, see e.g. [15]. This result also
agrees with the one for real photons obtained in [8].

Finally, with the same procedure one can study the impact factor for
the incoming photon longitudinally polarized while the outgoing photon is
transversely polarized.

1
| d*u
@L(%)(q,k,l) = as\/@gz q12"2|Q+|\/E/da/W
f 0

x a(l —a)(1 — 2a) (Di;r — D%) (1;—?— Z—g) -g5. (18)

It is important to realize that the impact factor @1 is nonzero in the nonfor-
ward direction in contrast to the forward case. This corrects the statement
made in the analysis [12] in which @11 = 0 in the nonforward case was
claimed. The reason for @11 # 0 is the symmetry property of the integrand
of the integral over « in Eq. (18). While in the forward case (I = 0) the
integrand is antisymmetric with respect to the transformation o — (1 — «),
thus giving zero after the integration over «, it becomes symmetric in the
nonforward case (I # 0), leading to the nonzero result.

3. Formulation in the coordinate space

It is instructive to transform these results to coordinate space. We start
from the general formulae:

1 d2r
kQ + 62 = /gelk TKO((ST)a
k Er e T
m = /ﬁe ’Lé;Kl((ST'), (19)

where K (z) are modified Bessel functions. Let us concentrate first on the
longitudinal impact factor. After using the first relation from the above,
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Eq. (10) takes the form

1
d*u
¢LL(Qakal) — asme22q?4v 47T|Q+||Q|/daa2(1—05)2/(2ﬂ_)2
f 0

d2r

geiu-r (ei(lfa)lﬂ‘ _ e*i(kﬁLo‘l)'r) K0(5+7')

2.0 , . , . A :
([ e oot ) )
2

where 62 = a(l — @)Q3 + mfc The integration over w leads to the delta
function,

which allows to perform the integration over r’. Thus we obtain

1
: : d*r
Pu1(g,k,1) = as wvz—1622#4V4w|@+||@—|/da/W
f 0

x a2(1 - a)? pill-a)lr Ko(d_7) (1_efi(kJrl)-r)(l_ei(kfl)-r) pil—a)l-r Ko(847) .

(21)

It is important to note that the integrand (the second line) in (21) is in-
variant under the transformation: « — 1 — a and r — —». This reflects
the symmetry of the dipole formula under the interchange of quark and
antiquark.

The underlined elements in (21) are proportional to the light-cone wave
functions of the longitudinal incoming and outgoing photons. To be precise,
in the nonforward case the longitudinal photon wave function W)(\), y (where
N(X) = + denotes the helicity of the (anti)quark) for a given flavour f is
given by

e el
Wﬂ,(qil,r,a) = W9+:27T%’/Nc04(1 — ) |Qx| Ko(62r) eFi(l—a)lr

), =v’ =0. (22)

The above wave function differs from the photon wave function with only
longitudinal momentum, known from the total cross section for the y**
scattering [1], by the exponential factor involving transverse momentum I
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and the longitudinal momentum fraction « (this factor has also been found
in [10,11]). It has important consequences for the discussion of the impact
parameter representation presented in the next section. Summarising, the
impact factor (21) in the coordinate space becomes

1
/N2 -1 , _
QSLL(Q, k,l) — 47‘(’3/2 Qs #/da/d2r<1_eZ(k+l)-r>(1_el(kl)-’r)
c 0
—0
x Z Z {W)\:)\(q—l,r,a)%(\)/)\(q—i—l,r,a)} ; (23)
foMA

where ¥ is complex conjugate to ¥. Inserting this relation into the formula

(1) for the y*v* scattering amplitude, we find for the longitudinally polarized
external photons

1 1
ALL(S,l) = is/d2r1/d2r1/da1/dag
0 0

—0
Tynlg—1,r,00) 9, (g + 1,7, 041)}

i AMA
XN(Tl,TQ,l)
=0
X3S AT D+ 1r2,00) Ba(p = Lras00) b, (24)
fa M

where N (r1,r9,1) is the scattering amplitude of two dipoles of the transverse
size r1 and 7r9 with the momentum transfer 21, in the two gluon exchange
approximation

N(ry,ra,l) = Oég (N}?VC; 2 / (k +l;ig2(k,; —1)2
% (1 _ e—i(k+z).m> (1 _ ei(k—l)-rl) (1 _ ei(k+l)~r2> (1 _ e—i(k—l)~r2> '
(25)

Let us concentrate now on the impact factor for transverse photons @%23 ,
Eq. (15). Using formulas (19) and repeating the steps presented in the

longitudinal case, we obtain
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(a4, k1) =
1
0 NI 1Y Vi faaf 5 (1 et (1 - o)
s c - ! (27)2
0
_ _ &j-r —i(l—a)l.r\* (i " T
x{ 40(1 a)( _Ky(6_r)e )( .
+6;5 (5, Kq(6_7) e_i(l_"‘)”) <5+ Kq(d4m) ei(l_a)l'r>

+dij my <K0(5—7") e_i(l_a)h‘)* (KO((;*T) ei(l_a)“‘)} ’ 26)

(5+K1 (5+,r)ei(lfa)l-r>

where we used the fact that g; - s}k. = d;;. The above formula can be written
in a similar form as Eq. (23) using helicity wave functions

(ij)( k1) =

47r3/2as\/7/da/d2 —i(k+D)- )(1—ei(k*l)"‘>

XZ Z{Wi',\ q—1lr a) W,\'A(Q‘H,T,Ot)} (27)

foNA

where 4, are the helicities of the incoming and outgoing photon, respec-
tively, and A’'(\) denotes the helicity of the (anti)quark. The photon wave
functions are defined in terms of these helicities as:

vl (g+1,7 ) ;eng VN, ot 5i Ky (0ar)etilallr - (2g)

ieq
V. (g*lr,a)= 23f2\/ (1-a)

r 5iK1 (5ir)e:ti(1—a)l-'r’

(29)
vt (q:l:l T, Q) reds vV N.(1—a) rdszl((s:t'f')eii(l_a)l'r,
2 3/2
(30)
V- (gxl,r, «) zeqf /N a‘E* 64 Ki(0gr iz‘(ka)z.r’ 31
5 73/2
(&
W ++ =vZ (q:l:l,r,a) ( q§/2 \/ cmyf KO (Si'r') +i(l—a)l-r (32)

v =v,, =0. (33)
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Again, the exponentials in the above are due to the transverse momentum
of the photons. Similar wave functions were defined in [11] and [14]. The
difference between reference [11] and our results lies in the minus sign in
(29) and (30), and we found a different relative normalisation between (32)
and the rest of the nonzero wave functions (28)—(31) compared to [14]. It is
important to realize that in the forward case, when I = 0 and 7 = j, after
the summation over the two transverse polarizations, the expression in the
curly brackets in Eq. (26) becomes a well known expression for the square
of the photon wave function in forward kinematics

(g, r, @) ~ Y ef {[o” + (1 — )] 6* K7 (0r) + mF K (or)}
f

where 62 = a(1 — a)Q? + m? 7- The structure of the full v*y* amplitude for
transverse photons is the same as in Eq. (24) with the wave function factors
replaced by those in the curly brackets in Eq. (27).

For completeness we also present the formula for the impact factor with
mixed polarization (18)

(j)(k 1) =

47320, VNG -1 /da/d2 —i(k+1)- ) (1 _ei(kfl)-r>

XZZ{ wala —Z,T,a)w)\/)\(q—{—l,r,a)}, (34)

A

In each presented case the v*4* scattering amplitude A(s,l) has the form
of Eq. (24) with the wave function replacement which takes into account
helicities of the external photons.

4. Impact parameter

In our notation, the four-momentum transfer squared ¢ between the two
qq systems is given by the transverse two-dimensional vector A = 2I, i.e.
t = —A?. The impact parameter b is defined as a Fourier conjugate variable
to A, and the v*v* scattering amplitude in the impact parameter space is
given by

~ 2 .
A(s,b) = / (‘;732 A A5, A). (35)

Performing this integral, we keep the total energy +/s as well as virtualities of
the external photons, Q% and P?, fixed. Let us concentrate on the amplitude
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for longitudinal photons (24) with the wave function (22). The dependence
on A (or l) resides in the exponential factors in the wave functions and the
dipole-dipole scattering amplitude N (r1,79, A), Eq. (25). Thus performing
the transformation (35) the amplitude (24) we find

1 1
A(s,b) = is/d2r1/d2r1/da1/da2
0 0

X Z Z {@X)\(Q—a r1, C(l) W)\’)\(Q-I-a ri, al)}

i N

X N(Tl,TQ,b+ (1 — 041)1"1 + (1 — 042)1"2)

X Z Z {@AIA(P_F,TQ,OKQ) W)\I)\(P_,’I"Q,CKQ)} . (36)

f2 N

The wave functions above are the forward photon wave functions with the
indicated photon virtualities, given by Egs. (28) with the exponential factors
being removed. This is due to the fact that, when transforming to impact
parameter, we have to include the momentum transfer dependence of these
factors into the definition of the dipole—dipole scattering amplitude N:

N(’I‘l,’rg,b—i- (1 — 051)7"1 + (1 — 042)7"2)

A bt (1—ar)m 4 (1—as)rs)-A
- [ G N(rira,A). (37

From (37) we see that, in the dipole-dipole scattering amplitude, the de-
pendence upon the impact parameter contains an a-dependent shift relative
to the impact parameter b which refers to the external photon Eq. (35):
b - b+ (1 —aj)r; + (1 — ag)re. Furthermore, as we have already re-
marked after Eq. (21), the dipole scattering amplitude (for fixed transverse
dipole sizes and longitudinal momenta) is invariant under the interchanges
a1 — (1 —ay), 71 — —ry or/and ag — (1 — an), r9 = —7a.

Let us give a physical interpretation of this result. In the high energy
limit, the incoming photon and the quark—antiquark pair are conveniently
described in an infinite momentum frame. In this frame, as it has been shown
many years ago [16,17], there exists a subgroup of the Poincare group which
is isomorphic to the symmetry group of Galilei transformations in nonrela-
tivistic two-dimensional quantum mechanics. This two dimensional motion
takes place in the transverse plane, and the longitudinal momentum plays
the role of the nonrelativistic mass. In our case of dipole-dipole scattering
we choose the upper incoming photon to move in the positive z-direction, i.e.
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in light cone variables g has a large ¢ component. Inside the upper impact
factor, the upper quark line with longitudinal momentum fraction 1 — oy
carries the 'mass’ m, = (1 — a1)qs, whereas the lower quark line has the
‘mass’ m; = a1q4. The vector 1 denotes the transverse distance between
the upper and lower quark line, and the impact parameter b is the transverse
distance between the two incoming photons. If we interpret the upper in-
coming photon as being in the center of mass of the upper quark—antiquark
system, see Fig. 2, the two vectors

my

b+ m’l"l =b+ (1 — 051)7"1 (38)
and
m
b-— m“ =b—ayr (39)

denote the position of the upper and lower quark, respectively. A similar
argument holds for the lower dipole, i.e. the vector

b+ (1—a)ri+ (1 —az)re (40)

denotes the distance between the upper quark line in the upper dipole and
the lower quark line in the lower dipole. The peculiar b-dependence of
Eq. (37) then says that the interaction between the upper and lower colour
dipoles depends upon the distance between one of the two quarks of the
upper dipole and one of the quarks in the lower dipole (and not upon the
distance b between the center of mass coordinates of the two dipoles). More-
over, because of the symmetry under « — 1 — a, » = —7r we are free to
interchange the quarks inside one of the two colour dipoles.

(1-oa)r,

-(1- a,) I,

Fig.2. The interpretation of relation (40) in the transverse coordinate plane: the
wavy lines denote the incoming photons, the full lines the quark antiquarks of the
upper and the lower colour dipoles.
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Finally, the appearance of the phase factors exp{£i(1 — a)l - r} in (28)
can be understood as follows. Inverting (19) we find, for example, for the
upper incoming longitudinal photon

Ko(6,7) ei(1-0tr — d?_ke—i(k—(l—a)l)r 1 (41)
+ o k2 52 )

i.e. the momentum conjugate to the transverse distance r is (k — (1 — a)l)
rather than k. The incoming photon carries transverse momentum [ and
splits into quark and antiquark with longitudinal and transverse momenta
(1 — a, k) and (a, —k + 1), respectively. In the infinite momentum frame
this corresponds to the masses m; = (1 — a)gy and ms = ag;. From
nonrelativistic mechanics we know that the relative momentum of the quark—
antiquark pair (7.e. the momentum conjugate to the relative coordinate r)
is given by

msy mi

po=ak—(1—a)(-k+1l)=k—(1—-a)l. (42)

b, —
m1+m2 m1+m2

So the appearance of the phase factor looks very natural.

5. Nonforward dipole—proton scattering amplitude

In a case when the lower photon is replaced by the proton, an uninte-
grated gluon distribution f(z+,,k,l) appears [18], where z+ = Q2% /s and
the adopted notation means that f depends on both the variables. Thus,
strictly speaking, f is a nondiagonal (skewed or generalised) unintegrated
gluon distribution since both the longitudinal and transverse momenta of
the exchanged gluons, k &+ [, are not equal, see Fig. 2. In the proton case,
the amplitude (1) reads

A(s,l = A)2) =

/ k. (q.k,1) f(zs, k1) (43)
( .

2] 23 (k+1)% (k—1)

Repeating the steps from Section 3, we find in the coordinate space the
analogue of Eq. (24)

A(s,l = A/2)

zs/d2 /daZZ{WNA —lLr,a)N(zy,r, )Ur(g+1,r 04)} ;

)
(44)
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where now N(z4,7,l) is a nonforward dipole-proton scattering amplitude

/N2 -1
N(Iiaral): o .

4w3/2 N,

x / o +l;§(’2 7 (1 _ e—i(k+l)~r) (1 _ ei(k—l)'r) Flaake.l) . (45)

In the impact parameter representation we have:

A(Sa b) =
7 VA

1
is/er/daZZ {@,\/,\(Q,, r, Q)N (22,7, b +(1—a)r) ¥y (Qq, 7, a)}
0

(46)

with

~ 2 .
N(zx,7,b+ (1 —a)r)l = / (‘; ?Qel(bJr(lo‘)")'AN(xi,r,l = A/2). (47)
7T

Again, there are forward photon wave functions in (46) since the nonforward
exponentials are incorporated into (47). As we have mentioned before, this
expression is invariant under the replacement: @ — 1—« and r — —r, which
can be easily seen by inserting (45) into (47) and performing the symmetry
transformation.

For completeness we also quote the formula for diffractive vector produc-
tion in the nonforward direction [10], e.g. for the production of longitudinal
p-mesons. In our kinematics, the impact factor has the form (44), with the
wave function for the outgoing photon, ¥(q — [, r, @), being replaced by the
meson wave function:

V(g —1I,ra) — W,(r,a)e -olr, (48)

As in the case of v*v* scattering, the extra phase factor accounts for the
nonzero transverse momentum of the vector particle.

6. Open quark—antiquark production

In the final step of our discussion we remove, in the upper dipole system,
the wave function of the outgoing photon, i.e. we consider the diffractive
production of an open quark—antiquark pair in the nonforward direction,
v 4+ p — (qq) + p. We follow our previous notation: the incoming photon
carries the momentum ¢ + [, and the outgoing antiquark and quark have
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the momenta ¢ — u and u — [, respectively. The scattering amplitude has
the form (43) with the replacement: &(q,k,l) — @},*)\_)(qq)(q,u,k,l). For
the longitudinal photon, the new impact factor for open quark—antiquark
production is given by:

* = 2 _

@07 (g e 1) = 2(2m)" 05 [NE L e (1 - @) Q|

» 1 n 1 B 1 B 1
Dut(1—al)  Dlu—(1ta)l) D(utk—al) D(u—k—al)

with D(k) = k* + a(1 — «)Q% = k? + 62. Inserting (19), we arrive at:

N2 1
N,

@077*a(£ﬂ7) (q’ u, k, l) -9 (277)3/205s

nid efla(l = a)*?|Q4|

x/d;rl gl (1—e*i(k+l)'r’> (1—ei(k*l)'r’> =T R (5,0") . (50)
s

From the discussion at the end of Section 3 we know that the transverse
distance between the outgoing quark an antiquark, r, is conjugate to the
transverse momentum u — (1 — a)l. We therefore define the scattering am-
plitude for the production of a dipole of the size r by taking the Fourier
transform

@Q’Y"ﬁ(qﬂﬂ k1) = d’u fi(uf(lfa)l)-r¢07’7*ﬁ(qtﬂ k.1 51
+-— (qara 7)— (271’)26 +— (qaua ’ )a ( )

and

N2 1

07D (g p k1) = 227 o ef[a(l — )% Q4

Xei(lia)llr (1 . efi(kJrl)"") (1 _ ei(kfl).r) ei(lfa)l-’r K()((5+’l")
Y/ 7 s pp—
weill—a)lr (1 _ e—z‘(km.r) (1 _ ei(kfl)-r) Wif(q +1,7,0). (52)

Finally, the scattering amplitude of the dipole on a proton our result takes
the form:

Ar,_)(q@(s, a,r,l) =isV 277\/a(1—a)ei(1_a)l'TN(xi,r,l)Wﬂ_(q +1,ra)
(53)
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with the dipole scattering amplitude from (45). When transforming to im-
pact parameter b, again the shifted variable b+ (1— )l appears, the distance
from the target center to the quark. For the integrated and spin summed
cross section

1
do 11 1 d*u s (qa
= — o AV D) — A/9)2
A~ 161252 47 a(l — @) /do‘/ (27)? AZ;' o (seul=A4/2)F,
0
(54)

we obtain after transforming to transverse coordinates:

1
do 1 —
= 1ar [ do [ P W@ L) NG P B+ L)
5 N

(55)
This generalises the well-known formula for the diffractive quark—antiquark
production in the forward direction [1]. In particular, the integrated cross
section for diffractive quark—antiquark production contains the same dipole
scattering amplitude as the elastic y*p process (45).

7. Conclusions

In this paper we have discussed the generalisation of the colour dipole
picture to the nonforward direction. For the elastic scattering of two colour
dipoles we found that the dipole cross section depends upon the transverse
distance between the ends of the two dipoles, and not between the centres of
the two quark—antiquark pairs. This result also holds for diffractive vector
production. For open ¢g-production, we confirm the well-known result of the
forward direction: the integrated (over the transverse size of the produced
quark-antiquark pair) cross section is described by the square of the elastic
dipole cross section.

We believe that our findings might be useful in several respects. First,
it may provide some guidance in modelling the b-dependence of the dipole
cross section. As we have indicated in our introduction, the b-dependence
represents the mayor challenge in understanding the transition from the re-
gion of perturbative to nonperturbative QCD, and our formula may provide
a starting point along these lines. Secondly, our general expression for the
nonforward impact factor will be of use also in electroweak physics where
higher order contributions to vector boson scattering are of interest [19].
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