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� SCATTERING: SATURATION ANDUNITARIZATION IN THE BFKL APPROACHS. Bondarenkoay M. Kozlovaz and E. Levina;bxaHEP Department, S
hool of Physi
s and AstronomyRaymond and Beverly Sa
kler Fa
ulty of Exa
t S
ien
eTel Aviv University, Tel Aviv, 69978, Israelb DESY Theory Group, 22603, Hamburg, Germany(Re
eived Mar
h 17, 2003)Dedi
ated to Jan Kwie
i«ski in honour of his 65th birthdayIn this paper 
��
� s
attering with large, but more or less equal vir-tualities of two photons is dis
ussed using BFKL dynami
s, emphasizingthe large impa
t parameter behavior (bt) of the dipole�dipole amplitude.It is shown that the non-perturbative 
ontribution is essential to ful�llthe unitarity 
onstraints in the region of bt > 1=2m�, where m� is pionmass. The saturation and the unitarization of the dipole�dipole ampli-tude is 
onsidered in the framework of the Glauber�Mueller approa
h. Themain result is that we 
an satisfy the unitarity 
onstraints introdu
ing thenon-perturbative 
orre
tions only in initial 
onditions (Born amplitude).PACS numbers: 12.38.Bx, 13.60.�r, 24.85.+p1. Introdu
tionIn this paper we 
ontinue our investigation of 
��
� s
attering at highenergies (see Ref. [1℄ for our previous attempts to study this pro
ess inthe DGLAP dynami
s). We 
on
entrate our e�orts here on the 
ase of twophotons with large but almost equal virtualities. It has been argued [2,3℄ thatthis pro
ess is the perfe
t tool to re
over the BFKL dynami
s [4℄ whi
h isthe key problem in our understanding of the low x (high energy) asymptoti
behavior in QCD.It is well known that the 
orre
t degrees of freedom at high energy arenot quarks or gluon but 
olor dipoles [5�8℄ whi
h have transverse sizes rty e-mail: serg�post.tau.a
.ilz e-mail: kozlov�post.tau.a
.ilx e-mail: leving�post.tau.a
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3082 S. Bondarenko, M. Kozlov, E. Levinand the fra
tion of energy z. Therefore, two photon intera
tions o

ur intwo su

essive steps. First, ea
h virtual photon de
ays into a 
olor dipole(quark�antiquark pair) with size rt. At large value of photon virtualities theprobability of su
h a de
ay 
an be 
al
ulated in pQCD. The se
ond stage isthe intera
tion of 
olor dipoles with ea
h other. The simple formula (see forexample Ref. [9℄) that des
ribes the pro
ess of intera
tion of two photonswith virtualities Q1 and Q2 (� Q1) is (see Fig. 1)�(Q1; Q2;W ) = Z d2bt NfXa;b 1Z0 d z1 Z d2 r1;t���	aT;L(Q1; z1; r1;t)���2 (1.1)� 1Z0 dz2 Z d2 r2;t���	 bT;L(Q2; z2; r2;t)���2 2N(x; r1;t; r2;t; bt) ;where the indexes a and b spe
ify the �avors of intera
ting quarks, T andL indi
ate the polarization of the intera
ting photons where ri denote thetransverse separation between quark and antiquark in the dipole (dipole size)and zi are the energy fra
tions of the quark in the �u
tuation of photon iinto quark�antiquark pair. N(x; r1;t; r2;t; bt) is the imaginary part of thedipole�dipole amplitude at x given byx = Q21 + Q22W 2 + Q21 + Q22 (1.2)for massless quarks (W is the energy of 
olliding photons in 
.m.f.), bt isthe impa
t parameter for dipole�dipole intera
tion and it is equal to thetransverse distan
e between the dipole 
enters of mass.The wave fun
tions for virtual photon are known [10℄ and they are givenby (for massless quarks)���	aT(Q; z; rt)���2 = Xa 6�em�2 Z2a (z2 + (1� z)2) �Q2K21 ( �Qrt) ; (1.3)���	aL(Q; z; rt)���2 = Xa 6�em�2 Z2a Q2 z2(1� z)2K20 ( �Qrt) ; (1.4)with �Q2a = z(1�z)Q2 where Za denote the fra
tion of quark 
harge of �avor a.Sin
e the main 
ontribution inEq. (1.1) is 
on
entrated at r1;t� 1=Q1�1=� and r1;t � 1=Q2 � 1=� where � is the soft mass s
ale, we 
an safely usepQCD for 
al
ulation of the dipole�dipole amplitude N in Eq. (1.1).In this paper we study this pro
ess in the region of high energy and largebut more�less equal photon virtualities (Q21 � Q22 � 1=�2) in the framework
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Fig. 1. The pi
ture of intera
tion of two photons with virtualities Q1 and Q2 largerthan a �soft� s
ale.of the BFKL dynami
s. In the region of very small x (high energies) thesaturation of the gluon density is expe
ted [11�13℄. We will deal with thisphenomenon using Glauber�Mueller formula [5�7℄ whi
h is the simplest onethat re�e
ts all qualitative features of a more general approa
h based on non-linear evolution [11�14℄. For 
��
� s
attering with large but equal photonvirtualities, the Glauber�Mueller approa
h is the only one on the marketsin
e the non-linear equation is justi�ed only for the 
ase when one of thephoton has larger virtuality than the other.In the next se
tion we dis
uss the dipole�dipole intera
tion in the BFKLapproa
h of pQCD. The solution to the BFKL equation, that des
ribes thedipole�dipole intera
tion in our kinemati
 region, has been found [15℄ andour main 
on
ern in this se
tion is to �nd the large impa
t parameter (bt)behavior of the solution. As was dis
ussed in Ref. [1, 16�18℄, we have tointrodu
e non-perturbative 
orre
tions in the region of bt larger than 1=2m�where m� is the pion mass. We argue in this se
tion that it is su�
ientto introdu
e the non-perturbative behavior into the Born approximation toobtain a reasonable solution at large bt.Se
. 3 is devoted to Glauber�Mueller formula in the 
ase of the BFKLemission [4℄. Here, we use the advantage of photon�photon s
attering withlarge photon virtualities, sin
e we 
an 
al
ulate the gluon density withoutun
ertainties related to non-perturbative initial distributions in hadroni
target. We 
onsider the low x behavior of the dipole�dipole 
ross se
tion andshow that the large impa
t parameter behavior, introdu
ed in the Born 
rossse
tion, ful�lls the unitarity restri
tions (unitarity bound [19℄). Therefore,we 
on�rm that the large bt behavior 
an be 
on
entrated in the initial
ondition (see Refs. [1, 16, 18℄ without 
hanging the kernel of the non-linearequation that governs evolution in the saturation region as it is advo
atedin Ref. [17℄.In the last se
tion we summarize our results.
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tion in the BFKL approximationIn this se
tion we dis
uss the one parton shower intera
tion in the BFKLdynami
s (see Fig. 3). We start with the Born approximation whi
h is theex
hange of two gluons (see Fig. 2) or the diagrams of Fig. 3 without emissionof a gluon.
1
2

1
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− −Fig. 2. Dipole�dipole intera
tion in the Born approximation.
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Fig. 3. One parton shower intera
tion in the BFKL approa
h.2.1. Born approximationThese diagrams have been 
al
ulated in Ref. [1℄ using the approa
h ofRef. [20℄ and they lead to the following expression for the dipole�dipoleamplitudeNBA(r1;t; r2;t; bt) = ��2s N2
 � 12N2
  ln (~b� z1~r1 � z2~r2)2(~b� �z1~r1 � �z2~r2)2(~b� �z1~r1 � z2~r2)2(~b� z1~r1 � �z2~r2)2!2= ��2s N2
 � 12N2
 ln2 �21;10�22;20�21;20�22;10! ; (2.1)
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h 3085where zi is the fra
tion of the energy of the dipole 
arried by quarks;�zi = zi � 1 and �i;k = ~�i � ~�k. ~�i is the 
oordinate of quark i (see Fig. 2).All ve
tors are two dimensional in Eq. (2.1).Ea
h diagrams in Fig. 2 is easy to 
al
ulate [24℄ and the �rst diagram isequal to ��2s N2
 � 12N2
 ln�21;10 ln�22;20 : (2.2)Summing all diagrams we obtain Eq. (2.1).We are interested mostly in the limit of large bt � r1;t � r2;t where thedipole�dipole amplitude 
an be redu
ed to a simple form.NBA(r1;t; r2;t; bt)! ��2s N2
 � 1N2
 r21;tr22;tb4t ; (2.3)after integration over azimuthal angles.Therefore, we have a power-like de
rease of the dipole�dipole amplitudeat large bt, namely NBA / r21;tr22;tb4t . Su
h behavior 
annot be 
orre
t sin
e it
ontradi
ts the general postulates of analyti
ity and 
rossing symmetry ofthe s
attering amplitude [19℄. Sin
e the spe
trum of hadrons has no parti
leswith mass zero, the s
attering amplitude should de
rease as e�2m�bt [19℄. InRef. [1℄ we suggested a pro
edure of how to 
ure this problem whi
h is basedon the results of QCD sum rules [21℄. Following this pro
edure we rewritethe dipole�dipole amplitude as the integral over the mass of two gluons int-
hannel; and we assume, as in QCD sum rules, that this integral des
ribesall hadroni
 states on average. Restri
ting the integral over mass by theminimal mass of hadroni
 states (2 m�) we obtain the model whi
h providesthe exponential fall at large bt � 1=(2m�) and does not 
hange the powerlike behavior for small bt � 1=(2m�).We 
hoose for the Born amplitude the following formulaNBA(r1;t; r2;t; bt) = ��2s N2
 � 1N2
 r21;t r21;tm4�3 K4(2m�bt) : (2.4)One 
an easily see that Eq. (2.4) reprodu
es Eq. (2.3) and leads toNBA(r1;t; r2;t; bt)! ��2s N2
 � 1N2
 r21;t r22;tm4�3 r �2m� bt e�2m� bt (2.5)at large bt � 1=(2m�).



3086 S. Bondarenko, M. Kozlov, E. Levin2.2. BFKL equationThe emission of a gluon is des
ribed by the BFKL equation [4℄ whi
h wassolved in Ref. [15℄ for �xed bt (see Ref. [22�24℄ for many useful dis
ussionof the di�erent aspe
ts of the solution). The solution 
an be presented infa
torized form (see Fig. 3).N(x; r1;t; r2;t; bt) = Z d�2� i �in(�; r1;t; bt)� Z d2R1d2R2 Æ(~R1 � ~R2 �~bt) e!(�) y V (r1;t; R1; �)V (r2;t; R2;��) ; (2.6)with !(�) = �sN
� �2 (1) �  �12 � i���  �12 + i��� ; (2.7)where  (f) = d ln� (f)=df , � (f) is Euler gamma fun
tion and whereV (ri;t; Ri; �) =  r2i;t(~Ri + 12~ri;t)2(~Ri � 12~ri;t)2! 12�i� (2.8)using the following notations: y = ln(x0=x); ri:t is the size of the 
olor dipole�i� and Ri is the position of the 
enter of mass of this dipole.In Eq. (2.6) fun
tion �in(�; r2;t; bt) should be found from the initial 
on-dition whi
h determines the dipole amplitude at �xed x = x0, namely,N(x = x0; r1;t; r2;t; bt) = NBA(x = x0; r1;t; r2;t; bt).It should be stressed that the BFKL equation is a linear equation inwhi
h the kernel does not depend on bt (see Ref. [14℄). Therefore, �in(�; bt)
ould be an arbitrary fun
tion on bt.In Eq. (2.6) we 
an take the integral over R2 whi
h leads toV (r2;t; R2;��) =  r22;t(~R1 +~bt + 12~r2;t)2(~R1 +~bt � 12~r2;t)2! 12+i� : (2.9)We are interested in the large bt behavior, namely, bt � r1;t � r2;t. It isinstru
tive to 
onsider two 
ases:� DLA: 12�i�!0. This is so 
alled double log approximation of pQCD(DLA) in whi
h we 
onsider r1;t � r2;t and �s ln(1=x) ln(r22;t=r21;t) � 1while �s ln(1=x) � 1 as well as �s ln(r22;t=r21;t) � 1 and �s � 1.We have 
onsidered this 
ase in Ref. [1℄ and found that the emissionof gluons does not indu
e any additional dependen
e on bt whi
h is
on
entrated only in the Born amplitude. Indeed, we 
an see thisproperty dire
tly from the solution of Eq. (2.6).
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h 3087Integrating over R1 we�nd that the integrand of this integral falls downrapidly for R1 > bt due to R1 dependen
e of the vertex V (r2;t; R2; �)(see Eq. (2.9)) providing a good 
onvergen
e for the integral.For R1 < bt we 
an negle
t R1 dependen
e of the vertex V (r2;t; R2; �)and 
onsider it as �r22;t=b4t �12+i� . The integral over R1 of V (r1;t; R1; �)for R1 < bt gives (r1;t) 12�i�(b2t )2i� .Therefore, R d2R1V (r1;t; R1; �)V (r2;t; bt; �) ! (r22;t=b2t )(r21;t=r22) 12�i� .Finally, taking�in(�; r1;t; bt) = ��sN2
 � 13N2
 (m�)2(r1;tbt)2K4(2m�bt) 112 � i� ;the dipole amplitude has a formNDLA(x; r1;t; r2;t; bt) = NBA(x; r1;t; r2;t; bt)� Z d�2�ie!(�)y+( 12�i�) ln(r21;t=r22;t) : (2.10)Considering r2;t � r1;t and taking into a

ount that !(�)! (�sN
=�)(1=12 � i�) at 12 � i� ! 0 one 
an take the integral in Eq. (2.10)expli
itly. The answer is well known (see Ref. [1℄ for example), namely,at low xNDLA(x; r1;t; r2;t; bt) = NBA(x; r1;t; r2;t; bt)� I0 2r�sN
� y ln(r22;t=r21;t)! (2.11)for �xed 
oupling 
onstant1.� Di�usion approximation: � � 1. For su
h small values of � theintegral over R1 is 
onvergent for R1 > r1;t (see Ref. [22℄) and, there-fore, we negle
t the R1 dependen
e in V (r2;t; bt; �). Introdu
ing a newvariable ~� = ~R1=r1;t we see thatZ d2R1V (r1;t; R1; �)= (r21;t) 12+i� Z d2���~� + 12~n�2 �~� � 12~n�2� 12+i� ; (2.12)1 In this paper we 
onsider only the 
ase of �xed QCD 
oupling sin
e the BFKLequation is not proven for running �s.



3088 S. Bondarenko, M. Kozlov, E. Levinwhere ~n is a unit ve
tor in the dire
tion of ~r1;t. The integral is afun
tion of � only and 
an be absorbed in �in(�; bt) in Eq. (2.6). ForV (r2;t; bt;��) at bt � r2;t we haveV (r2;t; bt;��) =  r22;tb4t ! 12+i� : (2.13)Therefore, the dipole amplitude isNDF(x; r1;t; r2;t; bt) = Z d�2�i�in(�; bt)e!(�)y  r21;tr22;tb4t ! 12+i� : (2.14)We 
hoose �in(�; bt) to be of the form�in(�; bt) = ��sN2
 � 13N2
 (m�bt)4K4(2m�bt) 112 � i� : (2.15)At small values of � we 
an expand !(�)!(�) = !L �D�2 (2.16)with !L = �sN
� 4 ln 2 ; D = �sN
� 14�(3) : (2.17)Finally, we 
an evaluate the integral over � in Eq. (2.14) using themethod of steepest de
ent and obtain the following expression fordipole amplitude:NDF(x; r1;t; r2;t; bt) = ��s 2(N2
 � 1)3N2
 (r1;tr2;tm4�b2t )K4(2m�bt)�r �Dy e!Ly� ln2 r21;tr22;tb4t4Dy : (2.18)At 1=(2m�) > bt > r1;t � r2;tNDF(x; r1;t; r2;t; bt)!��s 2(N2
 � 1)3N2
 r1;tr2;tb2t r �Dy e!Ly� ln2 r21;tr22;tb4t4Dy (2.19)while at bt > 1=(2m�)NDF(x; r1;t; r2;t; bt) ! ��s 2(N2
 � 1)3N2
 (r1;tr2;tm4�b2t )�r �2m�btr �Dy e!Ly� ln2 r21;tr22;tb4t4Dy �2m�bt : (2.20)
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h3.1. Glauber�Mueller formulaThe Glauber�Mueller approa
h [5�7℄ takes into a

ount the intera
tionof many parton showers with the target as is shown in Fig. 4. In our 
aseof more or less equal but large virtualities of both photons this approa
hgives a unique opportunity to study the high energy asymptoti
 behaviorof the dipole amplitude sin
e other methods based on non-linear evolutionequation [11�14,25,26℄ do not work in the 
ase of two dipoles with more-lessequal sizes.
γ*

γ *

dipoles

Q

Q
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2Fig. 4. The Glauber�Mueller approa
h for the dipole-dipole s
attering amplitude.The main idea of this approa
h is that the 
olor dipoles are the 
orre
tdegrees of freedom for high energy s
attering (this idea was formulated byMueller in Ref. [8℄). Indeed, the 
hange of the value of the dipole size rt (�rt)during the passage of the 
olor dipole through the target is proportional tothe number of res
atterings (or the size of the target R) multiplied by theangle kt=E where E is the energy of the dipole and kt is the transversemomentum of the t-
hannel gluon whi
h is emitted by the fast dipole�rt / RktE : (3.1)Sin
e kt and rt are 
onjugate variables and due to the un
ertainty prin
iplekt / 1rt :Therefore,�rt / RktE � rt if R� r2tE or x� 12mR : (3.2)Sin
e the 
olor dipoles are 
orre
t degrees of freedom, they diagonalizethe intera
tion matrix at high energy as well as the unitarity 
onstraints,whi
h have the form2N(x; r1;t; r2;t; bt) = ���ael(x; r1;t; r2;t; bt)���2 +Gin(x; r1;t; r2;t; bt) ; (3.3)
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 amplitude of the dipole�dipole intera
tion and N isthe imaginary part of ael (N = Imael).Assuming that the amplitude is pure imaginary at high energy, one 
an�nd a simple solution to Eq. (3.3), namelyael(x; r1;t; r2;t; bt) = i�1� e�
(x;r1;t;r2;t;bt)2 � ; (3.4)Gin(x; r1;t; r2;t; bt) = �1� e�
(x;r1;t;r2;t;bt)� ; (3.5)where 
 is the arbitrary real fun
tion.In Glauber�Mueller approa
h the opa
ity 
 is 
hosen as 
 = 2NOPS(x; r1;t; r2;t; bt) where NOPS is the dipole�dipole amplitude for one partonshower intera
tion that has been found in the previous se
tion (see Eq. (2.6)).3.2. SaturationOne 
an see that if we substitute the expli
it solution to the BFKL equa-tion of Eq. (2.18) at any �xed bt the opa
ity 
 = 2NDF in
reases at x! 0.Therefore, the dipole�dipole amplitude given by Glauber�Mueller formulaof Eq. (3.4) tends to unity in the region of low x. This statement is 
alledsaturation [11�13℄ sin
e the physi
al interpretation of N is the density of
olor dipoles at least when N is not very large. In this dis
ussion the satu-ration appears to be the 
onsequen
e of unitarity for �xed bt. However, wehave learned several examples where the dipole density 
ould rea
h a maxi-mum value without having any e�e
t on the elasti
 dipole�dipole amplitudeat �xed bt (see Ref. [13℄ and paper of Kov
hegov and Mueller in Ref. [25℄).However, for 
��
� s
attering of two small dipoles the initial 
ondition isgiven by Born amplitude of Eq. (2.1) whi
h is small. Therefore, we have noreason to expe
t that the dipole density will be high due to the �nal stateintera
tion. 3.3. UnitarizationTo obtain the unitarity bound for the dipole�dipole 
ross se
tion we haveto integrate over bt, namely�(dipole� dipole) = 2Z d2btNGM(x; r1;t; r2;t; bt)= 2Z d2bt �1� e�NDF(x;r1;t;r2;t;bt)� : (3.6)
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h 3091Following Froissart [19℄, we divide the region of integration over bt inEq. (3.6) in two parts�(dipole� dipole) = 2� b20(x)Z0 db2tNGM(:::; bt)+ 1Zb20(x) db2tNGM(:::; bt) ; (3.7)where b0(x) is de�ned from the equationNDF(x; r1;t; r2;t; b0(x)) = 1 : (3.8)It is easy to see that for bt < b0(x) NGM � 1 sin
e NDF > 1, whilefor bt � 1 and for NDF < 1 NGM � NDF Therefore, we have the followingunitarity bound�(dipole� dipole) � 2�0B�b20(x) + 1Zb0(x) db2tNGM(:::; bt)1CA : (3.9)Let us 
onsider two possibilities. The �rst one that b0(x) � 1=(2m�).In this 
ase the solution to Eq. (3.8) follows dire
tly from Eq. (2.19) for theamplitude NDF and for y � 1ln r21;tr22;tb40(x) ! = �2pD!Ly ; (3.10)or b20(x) / r1;tr2;tepD!Ly : (3.11)Substituting Eq. (3.11) into Eq. (3.9) we 
an obtain�(dipole� dipole) � 2�b20(x)f1 + 2g / eqD!L2 y ; (3.12)where the se
ond term is 
al
ulated by integrating �rst over bt Eq. (2.14)and after that using saddle point approa
h. Sin
e �saddle turns out to besmall at low x and we negle
t it.Therefore, in this kinemati
 region we fa
e a power-like in
rease of thedipole�dipole 
ross se
tion as was pointed out in Refs. [17℄.



3092 S. Bondarenko, M. Kozlov, E. LevinHowever, this power-like in
rease will stop for b0(x) > 1=2m�. Indeed,for su
h large values of bt we should use Eq. (2.20) for the dipole amplitudeNDF. For su
h large values of b0(x) Eq. (3.8) has a solutionwhi
h at lowx isb0(x) = !L2m� y +O(ln y) ; (3.13)whi
h leads to�(dipole� dipole) � 2�b20(x) = 2�!2L4m2� ln2 �x0x � ; (3.14)whi
h 
omes from the �rst term in Eq. (3.9). It is easy to understand thatthe se
ond term in this equation gives a term whi
h does not in
rease with y.Eq. (3.14) is the unitarity bound whi
h has the same energy dependen
e asfor hadron�hadron 
ollisions [19℄ but in our approa
h we are able to 
al
ulatethe 
oe�
ient in front of y2. The bound of Eq. (3.14) is the same as wasderived in [16, 18℄.It should be stressed that the di�usion approximation that we used wasderived only at small values of saddle point in � integration in Eq. (2.14)whi
h is equal to ����saddle��� = ln r21;tr22;tb40(x)2Dy � 1 (3.15)at bt = b0(x) from Eq. (3.13).3.4. Saturation s
aleEq. (3.8) does not have a solution at any values of r1;t and r2;t (formally,we obtain a negative values of b0(x)). The same equation at bt = 0, namelyN(x; rsat; r2;t; bt = 0) = 1 ; (3.16)determines the saturation s
ale. At r1;t � rsat the opa
ity 
 in Glauber�Mueller formula is larger than unity (
 � 1), Eq. (3.8) has a solution andwe are in the saturation region with Eq. (3.14) for the unitarity bound. Ifr1;t � rsat, opa
ity 
 < 1 at any value of bt. This is a domain of perturbativeQCD in virtual photon s
attering.N(x; r1;t; r2;t; bt = 0) we 
an �nd from Eq. (2.6) integrating over R1,namelyN(x; r1;t; r2;t; bt = 0)= Z d�2�i�in(�; bt = 0)d2R1e!(�)yV (r1;t; R1; �)V (r2;t; R1;��) : (3.17)
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h 3093Sin
e rsat from Eq. (3.16) is mu
h smaller than r2;t we need to �nd Eq. (3.17)only for r1;t � r2;t. This observation simpli�es the 
al
ulations. Indeed, themain 
ontribution in the integral over R1 stems from R1 � r2;t. Therefore,we 
an negle
t the R1-dependen
e of vertex V (r2;t; R1;��) whi
h has theform V (r2;t; R1;��) =  16r22;t! 12+i� : (3.18)To perform the integration over R1 we use the following formula (see equa-tion 3.198 of Ref. [27℄)B�12 � i�; 12 � i�� 1(~Ri + 12~ri;t)2(~Ri � 12~ri;t)2! 12�i�= 1Z0 dt(t(1� t))� 12�i�  R21 + (1� 2t)~R1 � ~r1;t + r21;t4 !�1+2i� ; (3.19)where B(�; �) = � (�)� (�)=� (�+ �) is the Euler beta-fun
tion. IntegratingEq. (3.17) over R1 using Eq. (3.19) we obtain thatN(x; r1;t; r2;t; bt = 0)= Z d�2�i�in(�; bt)e!(�)yB(12 + i�; 12 + i�)B(12 � i�; 12 � i�) 12i�  16r21;tr22;t ! 12+i� : (3.20)The Born approximation at bt = 0 and at r2;t � r1;t 
an be redu
ed to [1℄NBA(r1;t; r2;t; bt = 0)! ��2s N2
 � 1N2
 r21;tz22 ~z22r22;t : (3.21)It is easy to 
hoose �in(�; bt = 0) in su
h a way that the �nal answer forN(x; r1;t; r2;t; bt = 0) isN(x; r1;t; r2;t; bt = 0)= ��2s N2
 � 1N2
 z22 ~z22 Z d�2�i 112 � i� e!(�)y+( 12+i�) ln(r21;t=r22;t) : (3.22)We 
an �nd the solution to Eq. (3.16) in the saddle point approximationfor the integral over � in Eq. (3.22) [11, 28℄. Introdu
ing a new variable
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 = 12 + i� we have the following equation for the saddle point value of
 = 
S d!(
)d
 �����
=
Sy + ln(r21;t=r22;t) = 0 : (3.23)Substituting Eq. (3.23) in Eq. (3.22) we obtainN(x; r1;t; r2;t; bt = 0)/ e!(
S)y�
S ln� r22;tr12;t� = eyn!(
S)�
S d!(
)d
 j
=
So : (3.24)Using Eq. (3.24) we 
an solve Eq. (3.16) in semi
lassi
al approximation (seeRef. [11, 25℄ in whi
h we 
annot 
al
ulate the numeri
al fa
tor in front ofEq. (3.24)). Indeed, N(x; r1;t; r2;t; bt = 0) is 
onstant on the lined!(
)d
 j
=
0y + ln r2sat(x)r22;t ! = 0 ; (3.25)where 
0 is the solution to the equation [11, 28℄2!(
0)
0 = d!(
)d
 ���
=
0 : (3.26)Eq. (3.25) leads to a power-like in
rease of the saturation momentum(Qsat(x) = 2=rsat) at high energies (low x). Namely,Q2sat(x) / 1r22;t �1x�!(
0)
0 � Q22�1x�!(
0)
0 : (3.27)A
tually, the pre-exponential fa
tors in the steepest de
ent method of takingintegral over 
 
ould 
hange the x-dependen
e of the saturation s
ale addingsome log(1=x) dependen
e in Eq. (3.27) (see Ref. [28℄ for an analysis of su
h
orre
tions). 3.5. Unitarity bounds for 
��
� s
atteringTo obtain the unitarity bounds for 
��
� s
attering we need to substi-tute the unitarity bound for dipole�dipole 
ross se
tion (see Eq. (3.14)) intoEq. (1.1) and to perform integrations over ri;t and zi. R d2rtj	L(Q; z; rt)j2 is
onvergent while R d2rtj	T(Q; z; rt)j2 has a logarithmi
 divergen
e that we2 
0 was 
alled k0 in Ref. [11℄ and �0 in Ref. [28℄. The numeri
al solution of Eq. (3.26)leads to 
0 = 0:63.
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h 3095need to deal with. Eq. (3.14) holds only for r1;t > rsat sin
e if r1;t < rsatdipole�dipole 
ross se
tion is small and proportional to R d2btNOPS. As hasbeen mentioned we 
onsider r1;t � r2;t. On the other hand K1(z) � 1=z atz < 1. Finally, one 
an see1= �Q1Zrsat d2rt 1Z0 dz1j	T(Q; z; rt)j2 = CQ43 ln �Q2sat(x)r22;t� ; (3.28)where CQ =Pa 6�em� Z2a . We re
all that Q2sat(x)r22;t does not depend on r2;t.The integration over r2;t is 
on
entrated at the limits r1;t � r2;t � 1= �Q2and leads to Z d2r2;tdz2j	Tj2 = CQ 43 ln 1r1;tQ22 :Finally, for 
��
� 
ross se
tions we have�T;T(
��
�) � C2Q 169 �ln Qsat(x)Q21 ln Qsat(x)Q22 ���!Lm2� ln2 x0x � ; (3.29)�T;L(
��
�) � C2Q 169 �ln Qsat(x)Q21 �� �!L2m2� ln2(x0=x)� ; (3.30)�L;T(
��
�) � C2Q 169 �ln Qsat(x)Q22 �� �!L2m2� ln2(x0=x)� ; (3.31)�L;L(
��
�) � C2Q 169 � �!L2m2� ln2(x0=x)� : (3.32)Sin
e the saturation s
ale in
reases as a power of (1=x) one 
an see thatthe energy behavior of the unitarity 
onstraints is�T;T(
��
�) � �C2Q 163 �0��!L(!(
0)
0 )2m2� 1A ln4(x0=x) ; (3.33)�T;L(
��
�) � �C2Q 163 �0��!L(!(
0)
0 )2m2� 1A ln3(x0=x) ; (3.34)�L;L(
��
�) � �C2Q 163 �� �!L2m2�� ln2(x0=x): (3.35)Note that only �L;L(
��
�) has the same energy dependen
e as hadron�hadron 
ollisions [19℄ but even this 
ross se
tion has a di�erent 
oe�
ientin front. CQ as well as the numeri
al fa
tor 2=3 
ome from the photonwave fun
tion while !L re�e
ts the BFKL dynami
s making Eq. (3.35) andEq. (3.32) quite di�erent from the unitarity bound for hadroni
 rea
tions.
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lusionsIn this paper we use 
��
� s
attering as the laboratory for studying thelarge impa
t parameter behavior of the amplitude in the saturation region.At �rst sight, this pro
esses o

ur at short distan
es for both photons withlarge virtualities and 
ould be 
al
ulated in perturbative QCD. We demon-strated that the non-perturbative QCD 
orre
tions have to be introdu
edfor large bt even for this pro
ess. The main result of this paper is the state-ment that it is enough to in
lude the non-perturbative QCD 
orre
tions inthe Born approximation and negle
t them in the kernel of the BFKL equa-tion. This result 
on�rms the me
hanism suggested in Refs. [16, 18℄ but it
ontradi
ts the arguments of Ref. [17℄.This result does not mean that the BFKL kernel 
orre
tly des
ribes thelarge bt behavior. The un
ertainties in the large bt tail of the kernel will nota�e
t the high energy asymptoti
 behavior of the dipole amplitude. Let usassume that kernel of the BFKL equation 
an be written as K +�K whereK is normal BFKL kernel in pQCD and �K in
ludes the non-perturbative
ontribution. We know that �K / e�2m�bt from general properties of thestrong intera
tion [19℄. Let us treat �K as a small 
orre
tion and 
al
ulatethe �rst digram of the order of �K (see Fig. 5).
N

GM-

K∆Fig. 5. The diagrams for the �rst order 
orre
tion with respe
t to �K, whi
hin
ludes the non-perturbative QCD 
ontribution at large values of the impa
t pa-rameter.The sum of all diagrams in Fig. 5 leads to a 
ontribution�K �1�NGM(x; r1;t; r2;t; bt)� = �Ke�NOPS(x;r1;t;r2;t;bt) : (4.1)Sin
e for bt < b0(x) NGM is very 
lose to unity, the above 
orre
tions aresuppressed. Only for bt � b0(x) we 
an expe
t a 
onsiderable 
ontribu-tion. However, this 
ontribution is proportional to e�2m�b0(x) = e�!L ln(x0=x).Therefore, they turn out to be very small. This simple dis
ussion shows whythe strategy to in
lude the non-perturbative 
orre
tions in the Born ampli-tude, works.
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h 3097A
tually, the main result of this paper, namely Eq. (3.13), is based ona simple physi
s (see Ref. [16℄). We have demonstrated here that the multires
attering pro
esses embra
ed by the Glauber�Mueller formula lead toa di�erent resulting parton 
as
ade than is given by the BFKL approa
h.The prin
iple di�eren
e is the fa
t that the multi parton shower intera
tion
reates a new s
ale or mean parton transverse momentum (saturation s
ale)given by Eq. (3.27).N(x; r1;t; r2;t; bt) denotes the parton density, 
onsequently the fa
t thatN(x; r1;t; r2;t; bt) ! 1 
an be understood as the fa
t that the partons rea
ha maximal density at lowx. This phenomenon is 
alled saturation [11�13℄.Therefore, at low x we have the parton distribution in the transverse planepresented in Fig. 6: the uniform distribution of partons (dipoles) with sizesof the order of 1=Qsat(x) in the dis
 of radius R(x). If one of the dipoleinside of the dis
 will emit one extra parton this emitted parton will intera
twith others partons and as a result of this intera
tion its transverse momen-tum will be of the order of Qsat(x). It means that this emitted gluon willnot 
hange its position in impa
t parameter spa
e sin
e due to un
ertaintyprin
iple �btpt � 1 ; (4.2)its �bt � 1=Qsat(x). However, for the parton at the edge of the dis
 thesituation is di�erent sin
e the emitted parton in the dire
tion outside ofthe dis
 
an move freely without any intera
tion. This parton 
hanges thesize of the dis
 by its displa
ement in bt, namely �bt � 1=pt � 1=2m�.
1/Qsat (x)

1/2mπ
bt

R = a ln(1/x)

ln
(1

/x
) parton cascade

parton distribution
in transverse plane

γ∗

γ∗Fig. 6. The stru
ture of the parton 
as
ade of the fast photon in the frame wherethe se
ond photon is at rest. The pi
ture is the three-dimensional one sin
e thethi
kness of the verti
al line re�e
ts the value of the transverse momentum. Thethi
ker the line the larger value of the parton transverse momentum. The left partof the pi
ture shows the parton distribution in the transverse plane.
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onsider the non-perturbative emission with pt � 2m�be
ause, as have been dis
ussed, a non-perturbative emission is needed toprovide the unitarization of our pro
ess. Sin
e the emission that leads toa growth of the dis
 o

urs in one dire
tion (the exterior of the dis
) it leadsto R =< j�btj > n where n is the number of emission at given x. Sin
e theemission takes pla
e at the edge of the dis
 where the parton density is rathersmall, N(x; r1;t; r2;t; bt) is determined by the BFKL dynami
s only [16, 18℄.In the BFKL approa
h [4℄n = !l ln(x0=x) sin
e NOPS / en = e!l ln(x0=x).Therefore, we obtain Eq. (3.13), namely, R(x) � b0(x) = !L=2m� ln(x0=x).We have dis
ussed in this paper the stru
ture of dipole�dipole intera
tionin the Glauber�Mueller approa
h whi
h is the only one on the market for theintera
tion of two dipoles of the same sizes. However, for two dipoles withsmall but di�erent sizes the non-linear evolution equation [11�14℄ should besolved to whi
h the BFKL emission is only an approximation in the regionof small partoni
 densities. Comparison of the result of this paper with thedipole�dipole intera
tion in, so 
alled, double log approximation [1℄ showsthat the BFKL dynami
s does not 
hange physi
s at large bt. The non-linearevolution equation at �xed bt was solved [29℄ in the 
ase when the BFKLkernel was repla
ed by the double log one. The solution leads to the answerin the saturation region with geometri
al s
ale [18, 29, 30℄N(x; r1;t; r2;t; bt) = F �� = r21;tQ2sat(x)e�4m�bt� : (4.3)Therefore, we believe that for the BFKL dynami
s Eq. (4.3) will hold.This belief is based on the similarity between double log and BFKL approx-imation for 
��
� pro
esses.We wish to thank Jo
hen Bartels, Errol Gotsman and Uri Maor for veryfruitful dis
ussions on the subje
t. One of us (E.L.) would like to thank theDESY Theory Group for their hospitality and 
reative atmosphere duringseveral stages of this work. He is indebted to the Alexander-von-HumboldtFoundation for the award that gave him a possibility to work on low xphysi
s during the last year. This resear
h was supported in part by theGIF grant # I-620-22.14/1999 and by Israeli S
ien
e Foundation, foundedby the Israeli A
ademy of S
ien
e and Humanities.
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h 3099Appendix AThe integration over R1 in Eq. (2.6) 
an be taken expli
itly [23, 24℄ andEq. (2.6) 
an be redu
ed toZ d2R1V (r1;t; R1; �)V (r1;t; j~R1 �~btj;��) = �2(14 + �2)2� 
1xhx�hF (h; h; 2h; x)F (h; h; 2h; x�)+ 
2x1�hx�1�hF (1�h; 1�h; 2�2h; x)F (1�h; 1�h; 2�2h; x�) ; (A.1)where F (�; �; 
; z) is the hyper-geometri
al fun
tion (see Ref. [27℄); x is the
omplex anharmoni
 ratiox = r1;tr2;t(b� z1r1;t � �z2r2;t)(b� �z1r1;t � z2r2;t) (A.2)and h = 12 + i�. xx� givesxx� = r21;tr22;t(~b� z1~r1;t � �z2~r2;t)2(~b� �z1~r1;t � z2~r2;t)2 : (A.3)One sees that Eq. (A.3) is invariant with respe
t to rotation in the plane.The 
oe�
ients 
1 and 
2 have been 
al
ulated in Ref. [24℄ and they areequal to 
2 = �2�1+4i� � (i�)� (12 + i�) ; (A.4)
1
2 = ��� (2� 2h)� (2h) �2� � (h)� (1� h)�4 : (A.5)However, one 
an see that Eq. (A.1) does not reprodu
e the Born termof Eq. (2.1) at y = 0. To understand why it is so we should 
onsider thevertex V (r1;t; R1; �) in momentum representation (see Ref. [23℄), namely,V (r1;t; Q; �) = Z d2R1ei ~Q�~b2 V (r1;t; R1; �) : (A.6)It turns out [23℄ thatV (r1;t; Q; �) = (QQ�)i�2�6i�� 2(1� i�)� �J�i� �Q�r1;t4 �J�i� �Qr�1;t4 �� Ji� �Q�r1;t4 � Ji� �Qr�1;t4 �� : (A.7)



3100 S. Bondarenko, M. Kozlov, E. LevinAt small Q Eq. (A.7) leads to the following behavior of vertexV (r � 1; t; Q; �):V (r � 1; t; Q; �)! ���Q2!0� r2t16��i�  1� (Q2)2i� � r2t16�i2�! : (A.8)As have been dis
ussed the mat
hing with the Born approximation o

ursat i� ! 12 . In this limitV (r1;t; Q; �)! r1;t4 �1�Q2 r2t16� ; (A.9)whi
h has 
orre
t analyti
al behavior. A
tually this behavior di
tates the
hoi
e of the 
oe�
ients 
1 and 
2 in Eq. (A.4) and Eq. (A.5).However, at �i� ! 12 the low Q behavior has a singularity 1=Q2. There-fore, the symmetry of Eq. (2.6) with respe
t to sign of � is broken. Muellerand Tang [31℄ pointed out that this problem 
an be 
ured by adding to theexpression of V (r1;t; Q; �) of Eq. (2.8), namelyV (r1;t; R1; �)! V MT(r1;t; R1; �)= V (r1;t; R1; �)� 1(~R1 + 12~r1;t)2! 12�i� � 1(~R1 � 12~r1;t)2! 12�i� : (A.10)As was found [15℄ su
h terms 
an be added due to gauge invarian
e of QCD.In momentum representation (see Eq. (A.6)) V MT(r1;t; Q; �) 
an be writtenas a sum of three terms as it is shown in Fig. 7.
;ν )V

MT(r1, Q

V
=   − −

BFKL PomeronFig. 7. Stru
ture of the Mueller�Tang vertex.The Mueller�Tang vertex leads to the Born approximation amplitudein the form of Eq. (2.1). However, as was dis
ussed in Refs. [15, 22, 24℄,it has not been proven that this vertex will satisfy the BFKL equation. Thesolution in the form of Eq. (A.1) has a di�erent form of the Born amplitude,namely NBA / ln��1;2�10;20�1;20�10;2� ln��1;2�10;20�1;10�20;2� : (A.11)




��
� S
attering: Saturation and Unitarization in the BFKL Approa
h 3101However, these two expressions for the Born amplitude are equivalent dueto gauge invarian
e of QCD [15℄.Using Eq. (A.1) we 
an 
al
ulate the dipole�dipole amplitude at bt = 0and, therefore, the saturation s
ale with better a

ura
y than withinEq. (3.22). On the other hand the saturation momentum in
reases for x! 0.Su
h an in
rease guarantees that Eq. (3.22) approa
hes the amplitude givenby Eq. (A.1) in the region of low x. This is the reason why we prefer to usea simple solution of Eq. (A.1) instead of full expression of Eq. (A.1).It is easy to show that Eq. (A.1) des
ribes all properties of di�usionapproximation that has been dis
ussed in Se
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