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�� � SCATTERING: SATURATION ANDUNITARIZATION IN THE BFKL APPROACHS. Bondarenkoay M. Kozlovaz and E. Levina;bxaHEP Department, Shool of Physis and AstronomyRaymond and Beverly Sakler Faulty of Exat SieneTel Aviv University, Tel Aviv, 69978, Israelb DESY Theory Group, 22603, Hamburg, Germany(Reeived Marh 17, 2003)Dediated to Jan Kwiei«ski in honour of his 65th birthdayIn this paper ��� sattering with large, but more or less equal vir-tualities of two photons is disussed using BFKL dynamis, emphasizingthe large impat parameter behavior (bt) of the dipole�dipole amplitude.It is shown that the non-perturbative ontribution is essential to ful�llthe unitarity onstraints in the region of bt > 1=2m�, where m� is pionmass. The saturation and the unitarization of the dipole�dipole ampli-tude is onsidered in the framework of the Glauber�Mueller approah. Themain result is that we an satisfy the unitarity onstraints introduing thenon-perturbative orretions only in initial onditions (Born amplitude).PACS numbers: 12.38.Bx, 13.60.�r, 24.85.+p1. IntrodutionIn this paper we ontinue our investigation of ��� sattering at highenergies (see Ref. [1℄ for our previous attempts to study this proess inthe DGLAP dynamis). We onentrate our e�orts here on the ase of twophotons with large but almost equal virtualities. It has been argued [2,3℄ thatthis proess is the perfet tool to reover the BFKL dynamis [4℄ whih isthe key problem in our understanding of the low x (high energy) asymptotibehavior in QCD.It is well known that the orret degrees of freedom at high energy arenot quarks or gluon but olor dipoles [5�8℄ whih have transverse sizes rty e-mail: serg�post.tau.a.ilz e-mail: kozlov�post.tau.a.ilx e-mail: leving�post.tau.a.il (3081)



3082 S. Bondarenko, M. Kozlov, E. Levinand the fration of energy z. Therefore, two photon interations our intwo suessive steps. First, eah virtual photon deays into a olor dipole(quark�antiquark pair) with size rt. At large value of photon virtualities theprobability of suh a deay an be alulated in pQCD. The seond stage isthe interation of olor dipoles with eah other. The simple formula (see forexample Ref. [9℄) that desribes the proess of interation of two photonswith virtualities Q1 and Q2 (� Q1) is (see Fig. 1)�(Q1; Q2;W ) = Z d2bt NfXa;b 1Z0 d z1 Z d2 r1;t���	aT;L(Q1; z1; r1;t)���2 (1.1)� 1Z0 dz2 Z d2 r2;t���	 bT;L(Q2; z2; r2;t)���2 2N(x; r1;t; r2;t; bt) ;where the indexes a and b speify the �avors of interating quarks, T andL indiate the polarization of the interating photons where ri denote thetransverse separation between quark and antiquark in the dipole (dipole size)and zi are the energy frations of the quark in the �utuation of photon iinto quark�antiquark pair. N(x; r1;t; r2;t; bt) is the imaginary part of thedipole�dipole amplitude at x given byx = Q21 + Q22W 2 + Q21 + Q22 (1.2)for massless quarks (W is the energy of olliding photons in .m.f.), bt isthe impat parameter for dipole�dipole interation and it is equal to thetransverse distane between the dipole enters of mass.The wave funtions for virtual photon are known [10℄ and they are givenby (for massless quarks)���	aT(Q; z; rt)���2 = Xa 6�em�2 Z2a (z2 + (1� z)2) �Q2K21 ( �Qrt) ; (1.3)���	aL(Q; z; rt)���2 = Xa 6�em�2 Z2a Q2 z2(1� z)2K20 ( �Qrt) ; (1.4)with �Q2a = z(1�z)Q2 where Za denote the fration of quark harge of �avor a.Sine the main ontribution inEq. (1.1) is onentrated at r1;t� 1=Q1�1=� and r1;t � 1=Q2 � 1=� where � is the soft mass sale, we an safely usepQCD for alulation of the dipole�dipole amplitude N in Eq. (1.1).In this paper we study this proess in the region of high energy and largebut more�less equal photon virtualities (Q21 � Q22 � 1=�2) in the framework
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Fig. 1. The piture of interation of two photons with virtualities Q1 and Q2 largerthan a �soft� sale.of the BFKL dynamis. In the region of very small x (high energies) thesaturation of the gluon density is expeted [11�13℄. We will deal with thisphenomenon using Glauber�Mueller formula [5�7℄ whih is the simplest onethat re�ets all qualitative features of a more general approah based on non-linear evolution [11�14℄. For ��� sattering with large but equal photonvirtualities, the Glauber�Mueller approah is the only one on the marketsine the non-linear equation is justi�ed only for the ase when one of thephoton has larger virtuality than the other.In the next setion we disuss the dipole�dipole interation in the BFKLapproah of pQCD. The solution to the BFKL equation, that desribes thedipole�dipole interation in our kinemati region, has been found [15℄ andour main onern in this setion is to �nd the large impat parameter (bt)behavior of the solution. As was disussed in Ref. [1, 16�18℄, we have tointrodue non-perturbative orretions in the region of bt larger than 1=2m�where m� is the pion mass. We argue in this setion that it is su�ientto introdue the non-perturbative behavior into the Born approximation toobtain a reasonable solution at large bt.Se. 3 is devoted to Glauber�Mueller formula in the ase of the BFKLemission [4℄. Here, we use the advantage of photon�photon sattering withlarge photon virtualities, sine we an alulate the gluon density withoutunertainties related to non-perturbative initial distributions in hadronitarget. We onsider the low x behavior of the dipole�dipole ross setion andshow that the large impat parameter behavior, introdued in the Born rosssetion, ful�lls the unitarity restritions (unitarity bound [19℄). Therefore,we on�rm that the large bt behavior an be onentrated in the initialondition (see Refs. [1, 16, 18℄ without hanging the kernel of the non-linearequation that governs evolution in the saturation region as it is advoatedin Ref. [17℄.In the last setion we summarize our results.



3084 S. Bondarenko, M. Kozlov, E. Levin2. Dipole�dipole interation in the BFKL approximationIn this setion we disuss the one parton shower interation in the BFKLdynamis (see Fig. 3). We start with the Born approximation whih is theexhange of two gluons (see Fig. 2) or the diagrams of Fig. 3 without emissionof a gluon.
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Fig. 3. One parton shower interation in the BFKL approah.2.1. Born approximationThese diagrams have been alulated in Ref. [1℄ using the approah ofRef. [20℄ and they lead to the following expression for the dipole�dipoleamplitudeNBA(r1;t; r2;t; bt) = ��2s N2 � 12N2  ln (~b� z1~r1 � z2~r2)2(~b� �z1~r1 � �z2~r2)2(~b� �z1~r1 � z2~r2)2(~b� z1~r1 � �z2~r2)2!2= ��2s N2 � 12N2 ln2 �21;10�22;20�21;20�22;10! ; (2.1)



��� Sattering: Saturation and Unitarization in the BFKL Approah 3085where zi is the fration of the energy of the dipole arried by quarks;�zi = zi � 1 and �i;k = ~�i � ~�k. ~�i is the oordinate of quark i (see Fig. 2).All vetors are two dimensional in Eq. (2.1).Eah diagrams in Fig. 2 is easy to alulate [24℄ and the �rst diagram isequal to ��2s N2 � 12N2 ln�21;10 ln�22;20 : (2.2)Summing all diagrams we obtain Eq. (2.1).We are interested mostly in the limit of large bt � r1;t � r2;t where thedipole�dipole amplitude an be redued to a simple form.NBA(r1;t; r2;t; bt)! ��2s N2 � 1N2 r21;tr22;tb4t ; (2.3)after integration over azimuthal angles.Therefore, we have a power-like derease of the dipole�dipole amplitudeat large bt, namely NBA / r21;tr22;tb4t . Suh behavior annot be orret sine itontradits the general postulates of analytiity and rossing symmetry ofthe sattering amplitude [19℄. Sine the spetrum of hadrons has no partileswith mass zero, the sattering amplitude should derease as e�2m�bt [19℄. InRef. [1℄ we suggested a proedure of how to ure this problem whih is basedon the results of QCD sum rules [21℄. Following this proedure we rewritethe dipole�dipole amplitude as the integral over the mass of two gluons int-hannel; and we assume, as in QCD sum rules, that this integral desribesall hadroni states on average. Restriting the integral over mass by theminimal mass of hadroni states (2 m�) we obtain the model whih providesthe exponential fall at large bt � 1=(2m�) and does not hange the powerlike behavior for small bt � 1=(2m�).We hoose for the Born amplitude the following formulaNBA(r1;t; r2;t; bt) = ��2s N2 � 1N2 r21;t r21;tm4�3 K4(2m�bt) : (2.4)One an easily see that Eq. (2.4) reprodues Eq. (2.3) and leads toNBA(r1;t; r2;t; bt)! ��2s N2 � 1N2 r21;t r22;tm4�3 r �2m� bt e�2m� bt (2.5)at large bt � 1=(2m�).



3086 S. Bondarenko, M. Kozlov, E. Levin2.2. BFKL equationThe emission of a gluon is desribed by the BFKL equation [4℄ whih wassolved in Ref. [15℄ for �xed bt (see Ref. [22�24℄ for many useful disussionof the di�erent aspets of the solution). The solution an be presented infatorized form (see Fig. 3).N(x; r1;t; r2;t; bt) = Z d�2� i �in(�; r1;t; bt)� Z d2R1d2R2 Æ(~R1 � ~R2 �~bt) e!(�) y V (r1;t; R1; �)V (r2;t; R2;��) ; (2.6)with !(�) = �sN� �2 (1) �  �12 � i���  �12 + i��� ; (2.7)where  (f) = d ln� (f)=df , � (f) is Euler gamma funtion and whereV (ri;t; Ri; �) =  r2i;t(~Ri + 12~ri;t)2(~Ri � 12~ri;t)2! 12�i� (2.8)using the following notations: y = ln(x0=x); ri:t is the size of the olor dipole�i� and Ri is the position of the enter of mass of this dipole.In Eq. (2.6) funtion �in(�; r2;t; bt) should be found from the initial on-dition whih determines the dipole amplitude at �xed x = x0, namely,N(x = x0; r1;t; r2;t; bt) = NBA(x = x0; r1;t; r2;t; bt).It should be stressed that the BFKL equation is a linear equation inwhih the kernel does not depend on bt (see Ref. [14℄). Therefore, �in(�; bt)ould be an arbitrary funtion on bt.In Eq. (2.6) we an take the integral over R2 whih leads toV (r2;t; R2;��) =  r22;t(~R1 +~bt + 12~r2;t)2(~R1 +~bt � 12~r2;t)2! 12+i� : (2.9)We are interested in the large bt behavior, namely, bt � r1;t � r2;t. It isinstrutive to onsider two ases:� DLA: 12�i�!0. This is so alled double log approximation of pQCD(DLA) in whih we onsider r1;t � r2;t and �s ln(1=x) ln(r22;t=r21;t) � 1while �s ln(1=x) � 1 as well as �s ln(r22;t=r21;t) � 1 and �s � 1.We have onsidered this ase in Ref. [1℄ and found that the emissionof gluons does not indue any additional dependene on bt whih isonentrated only in the Born amplitude. Indeed, we an see thisproperty diretly from the solution of Eq. (2.6).



��� Sattering: Saturation and Unitarization in the BFKL Approah 3087Integrating over R1 we�nd that the integrand of this integral falls downrapidly for R1 > bt due to R1 dependene of the vertex V (r2;t; R2; �)(see Eq. (2.9)) providing a good onvergene for the integral.For R1 < bt we an neglet R1 dependene of the vertex V (r2;t; R2; �)and onsider it as �r22;t=b4t �12+i� . The integral over R1 of V (r1;t; R1; �)for R1 < bt gives (r1;t) 12�i�(b2t )2i� .Therefore, R d2R1V (r1;t; R1; �)V (r2;t; bt; �) ! (r22;t=b2t )(r21;t=r22) 12�i� .Finally, taking�in(�; r1;t; bt) = ��sN2 � 13N2 (m�)2(r1;tbt)2K4(2m�bt) 112 � i� ;the dipole amplitude has a formNDLA(x; r1;t; r2;t; bt) = NBA(x; r1;t; r2;t; bt)� Z d�2�ie!(�)y+( 12�i�) ln(r21;t=r22;t) : (2.10)Considering r2;t � r1;t and taking into aount that !(�)! (�sN=�)(1=12 � i�) at 12 � i� ! 0 one an take the integral in Eq. (2.10)expliitly. The answer is well known (see Ref. [1℄ for example), namely,at low xNDLA(x; r1;t; r2;t; bt) = NBA(x; r1;t; r2;t; bt)� I0 2r�sN� y ln(r22;t=r21;t)! (2.11)for �xed oupling onstant1.� Di�usion approximation: � � 1. For suh small values of � theintegral over R1 is onvergent for R1 > r1;t (see Ref. [22℄) and, there-fore, we neglet the R1 dependene in V (r2;t; bt; �). Introduing a newvariable ~� = ~R1=r1;t we see thatZ d2R1V (r1;t; R1; �)= (r21;t) 12+i� Z d2���~� + 12~n�2 �~� � 12~n�2� 12+i� ; (2.12)1 In this paper we onsider only the ase of �xed QCD oupling sine the BFKLequation is not proven for running �s.



3088 S. Bondarenko, M. Kozlov, E. Levinwhere ~n is a unit vetor in the diretion of ~r1;t. The integral is afuntion of � only and an be absorbed in �in(�; bt) in Eq. (2.6). ForV (r2;t; bt;��) at bt � r2;t we haveV (r2;t; bt;��) =  r22;tb4t ! 12+i� : (2.13)Therefore, the dipole amplitude isNDF(x; r1;t; r2;t; bt) = Z d�2�i�in(�; bt)e!(�)y  r21;tr22;tb4t ! 12+i� : (2.14)We hoose �in(�; bt) to be of the form�in(�; bt) = ��sN2 � 13N2 (m�bt)4K4(2m�bt) 112 � i� : (2.15)At small values of � we an expand !(�)!(�) = !L �D�2 (2.16)with !L = �sN� 4 ln 2 ; D = �sN� 14�(3) : (2.17)Finally, we an evaluate the integral over � in Eq. (2.14) using themethod of steepest deent and obtain the following expression fordipole amplitude:NDF(x; r1;t; r2;t; bt) = ��s 2(N2 � 1)3N2 (r1;tr2;tm4�b2t )K4(2m�bt)�r �Dy e!Ly� ln2 r21;tr22;tb4t4Dy : (2.18)At 1=(2m�) > bt > r1;t � r2;tNDF(x; r1;t; r2;t; bt)!��s 2(N2 � 1)3N2 r1;tr2;tb2t r �Dy e!Ly� ln2 r21;tr22;tb4t4Dy (2.19)while at bt > 1=(2m�)NDF(x; r1;t; r2;t; bt) ! ��s 2(N2 � 1)3N2 (r1;tr2;tm4�b2t )�r �2m�btr �Dy e!Ly� ln2 r21;tr22;tb4t4Dy �2m�bt : (2.20)



��� Sattering: Saturation and Unitarization in the BFKL Approah 30893. Saturation and unitarization in the Glauber�Mueller approah3.1. Glauber�Mueller formulaThe Glauber�Mueller approah [5�7℄ takes into aount the interationof many parton showers with the target as is shown in Fig. 4. In our aseof more or less equal but large virtualities of both photons this approahgives a unique opportunity to study the high energy asymptoti behaviorof the dipole amplitude sine other methods based on non-linear evolutionequation [11�14,25,26℄ do not work in the ase of two dipoles with more-lessequal sizes.
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2Fig. 4. The Glauber�Mueller approah for the dipole-dipole sattering amplitude.The main idea of this approah is that the olor dipoles are the orretdegrees of freedom for high energy sattering (this idea was formulated byMueller in Ref. [8℄). Indeed, the hange of the value of the dipole size rt (�rt)during the passage of the olor dipole through the target is proportional tothe number of resatterings (or the size of the target R) multiplied by theangle kt=E where E is the energy of the dipole and kt is the transversemomentum of the t-hannel gluon whih is emitted by the fast dipole�rt / RktE : (3.1)Sine kt and rt are onjugate variables and due to the unertainty priniplekt / 1rt :Therefore,�rt / RktE � rt if R� r2tE or x� 12mR : (3.2)Sine the olor dipoles are orret degrees of freedom, they diagonalizethe interation matrix at high energy as well as the unitarity onstraints,whih have the form2N(x; r1;t; r2;t; bt) = ���ael(x; r1;t; r2;t; bt)���2 +Gin(x; r1;t; r2;t; bt) ; (3.3)



3090 S. Bondarenko, M. Kozlov, E. Levinwhere ael is the elasti amplitude of the dipole�dipole interation and N isthe imaginary part of ael (N = Imael).Assuming that the amplitude is pure imaginary at high energy, one an�nd a simple solution to Eq. (3.3), namelyael(x; r1;t; r2;t; bt) = i�1� e�
(x;r1;t;r2;t;bt)2 � ; (3.4)Gin(x; r1;t; r2;t; bt) = �1� e�
(x;r1;t;r2;t;bt)� ; (3.5)where 
 is the arbitrary real funtion.In Glauber�Mueller approah the opaity 
 is hosen as 
 = 2NOPS(x; r1;t; r2;t; bt) where NOPS is the dipole�dipole amplitude for one partonshower interation that has been found in the previous setion (see Eq. (2.6)).3.2. SaturationOne an see that if we substitute the expliit solution to the BFKL equa-tion of Eq. (2.18) at any �xed bt the opaity 
 = 2NDF inreases at x! 0.Therefore, the dipole�dipole amplitude given by Glauber�Mueller formulaof Eq. (3.4) tends to unity in the region of low x. This statement is alledsaturation [11�13℄ sine the physial interpretation of N is the density ofolor dipoles at least when N is not very large. In this disussion the satu-ration appears to be the onsequene of unitarity for �xed bt. However, wehave learned several examples where the dipole density ould reah a maxi-mum value without having any e�et on the elasti dipole�dipole amplitudeat �xed bt (see Ref. [13℄ and paper of Kovhegov and Mueller in Ref. [25℄).However, for ��� sattering of two small dipoles the initial ondition isgiven by Born amplitude of Eq. (2.1) whih is small. Therefore, we have noreason to expet that the dipole density will be high due to the �nal stateinteration. 3.3. UnitarizationTo obtain the unitarity bound for the dipole�dipole ross setion we haveto integrate over bt, namely�(dipole� dipole) = 2Z d2btNGM(x; r1;t; r2;t; bt)= 2Z d2bt �1� e�NDF(x;r1;t;r2;t;bt)� : (3.6)



��� Sattering: Saturation and Unitarization in the BFKL Approah 3091Following Froissart [19℄, we divide the region of integration over bt inEq. (3.6) in two parts�(dipole� dipole) = 2� b20(x)Z0 db2tNGM(:::; bt)+ 1Zb20(x) db2tNGM(:::; bt) ; (3.7)where b0(x) is de�ned from the equationNDF(x; r1;t; r2;t; b0(x)) = 1 : (3.8)It is easy to see that for bt < b0(x) NGM � 1 sine NDF > 1, whilefor bt � 1 and for NDF < 1 NGM � NDF Therefore, we have the followingunitarity bound�(dipole� dipole) � 2�0B�b20(x) + 1Zb0(x) db2tNGM(:::; bt)1CA : (3.9)Let us onsider two possibilities. The �rst one that b0(x) � 1=(2m�).In this ase the solution to Eq. (3.8) follows diretly from Eq. (2.19) for theamplitude NDF and for y � 1ln r21;tr22;tb40(x) ! = �2pD!Ly ; (3.10)or b20(x) / r1;tr2;tepD!Ly : (3.11)Substituting Eq. (3.11) into Eq. (3.9) we an obtain�(dipole� dipole) � 2�b20(x)f1 + 2g / eqD!L2 y ; (3.12)where the seond term is alulated by integrating �rst over bt Eq. (2.14)and after that using saddle point approah. Sine �saddle turns out to besmall at low x and we neglet it.Therefore, in this kinemati region we fae a power-like inrease of thedipole�dipole ross setion as was pointed out in Refs. [17℄.



3092 S. Bondarenko, M. Kozlov, E. LevinHowever, this power-like inrease will stop for b0(x) > 1=2m�. Indeed,for suh large values of bt we should use Eq. (2.20) for the dipole amplitudeNDF. For suh large values of b0(x) Eq. (3.8) has a solutionwhih at lowx isb0(x) = !L2m� y +O(ln y) ; (3.13)whih leads to�(dipole� dipole) � 2�b20(x) = 2�!2L4m2� ln2 �x0x � ; (3.14)whih omes from the �rst term in Eq. (3.9). It is easy to understand thatthe seond term in this equation gives a term whih does not inrease with y.Eq. (3.14) is the unitarity bound whih has the same energy dependene asfor hadron�hadron ollisions [19℄ but in our approah we are able to alulatethe oe�ient in front of y2. The bound of Eq. (3.14) is the same as wasderived in [16, 18℄.It should be stressed that the di�usion approximation that we used wasderived only at small values of saddle point in � integration in Eq. (2.14)whih is equal to ����saddle��� = ln r21;tr22;tb40(x)2Dy � 1 (3.15)at bt = b0(x) from Eq. (3.13).3.4. Saturation saleEq. (3.8) does not have a solution at any values of r1;t and r2;t (formally,we obtain a negative values of b0(x)). The same equation at bt = 0, namelyN(x; rsat; r2;t; bt = 0) = 1 ; (3.16)determines the saturation sale. At r1;t � rsat the opaity 
 in Glauber�Mueller formula is larger than unity (
 � 1), Eq. (3.8) has a solution andwe are in the saturation region with Eq. (3.14) for the unitarity bound. Ifr1;t � rsat, opaity 
 < 1 at any value of bt. This is a domain of perturbativeQCD in virtual photon sattering.N(x; r1;t; r2;t; bt = 0) we an �nd from Eq. (2.6) integrating over R1,namelyN(x; r1;t; r2;t; bt = 0)= Z d�2�i�in(�; bt = 0)d2R1e!(�)yV (r1;t; R1; �)V (r2;t; R1;��) : (3.17)



��� Sattering: Saturation and Unitarization in the BFKL Approah 3093Sine rsat from Eq. (3.16) is muh smaller than r2;t we need to �nd Eq. (3.17)only for r1;t � r2;t. This observation simpli�es the alulations. Indeed, themain ontribution in the integral over R1 stems from R1 � r2;t. Therefore,we an neglet the R1-dependene of vertex V (r2;t; R1;��) whih has theform V (r2;t; R1;��) =  16r22;t! 12+i� : (3.18)To perform the integration over R1 we use the following formula (see equa-tion 3.198 of Ref. [27℄)B�12 � i�; 12 � i�� 1(~Ri + 12~ri;t)2(~Ri � 12~ri;t)2! 12�i�= 1Z0 dt(t(1� t))� 12�i�  R21 + (1� 2t)~R1 � ~r1;t + r21;t4 !�1+2i� ; (3.19)where B(�; �) = � (�)� (�)=� (�+ �) is the Euler beta-funtion. IntegratingEq. (3.17) over R1 using Eq. (3.19) we obtain thatN(x; r1;t; r2;t; bt = 0)= Z d�2�i�in(�; bt)e!(�)yB(12 + i�; 12 + i�)B(12 � i�; 12 � i�) 12i�  16r21;tr22;t ! 12+i� : (3.20)The Born approximation at bt = 0 and at r2;t � r1;t an be redued to [1℄NBA(r1;t; r2;t; bt = 0)! ��2s N2 � 1N2 r21;tz22 ~z22r22;t : (3.21)It is easy to hoose �in(�; bt = 0) in suh a way that the �nal answer forN(x; r1;t; r2;t; bt = 0) isN(x; r1;t; r2;t; bt = 0)= ��2s N2 � 1N2 z22 ~z22 Z d�2�i 112 � i� e!(�)y+( 12+i�) ln(r21;t=r22;t) : (3.22)We an �nd the solution to Eq. (3.16) in the saddle point approximationfor the integral over � in Eq. (3.22) [11, 28℄. Introduing a new variable



3094 S. Bondarenko, M. Kozlov, E. Levin = 12 + i� we have the following equation for the saddle point value of = S d!()d �����=Sy + ln(r21;t=r22;t) = 0 : (3.23)Substituting Eq. (3.23) in Eq. (3.22) we obtainN(x; r1;t; r2;t; bt = 0)/ e!(S)y�S ln� r22;tr12;t� = eyn!(S)�S d!()d j=So : (3.24)Using Eq. (3.24) we an solve Eq. (3.16) in semilassial approximation (seeRef. [11, 25℄ in whih we annot alulate the numerial fator in front ofEq. (3.24)). Indeed, N(x; r1;t; r2;t; bt = 0) is onstant on the lined!()d j=0y + ln r2sat(x)r22;t ! = 0 ; (3.25)where 0 is the solution to the equation [11, 28℄2!(0)0 = d!()d ���=0 : (3.26)Eq. (3.25) leads to a power-like inrease of the saturation momentum(Qsat(x) = 2=rsat) at high energies (low x). Namely,Q2sat(x) / 1r22;t �1x�!(0)0 � Q22�1x�!(0)0 : (3.27)Atually, the pre-exponential fators in the steepest deent method of takingintegral over  ould hange the x-dependene of the saturation sale addingsome log(1=x) dependene in Eq. (3.27) (see Ref. [28℄ for an analysis of suhorretions). 3.5. Unitarity bounds for ��� satteringTo obtain the unitarity bounds for ��� sattering we need to substi-tute the unitarity bound for dipole�dipole ross setion (see Eq. (3.14)) intoEq. (1.1) and to perform integrations over ri;t and zi. R d2rtj	L(Q; z; rt)j2 isonvergent while R d2rtj	T(Q; z; rt)j2 has a logarithmi divergene that we2 0 was alled k0 in Ref. [11℄ and �0 in Ref. [28℄. The numerial solution of Eq. (3.26)leads to 0 = 0:63.



��� Sattering: Saturation and Unitarization in the BFKL Approah 3095need to deal with. Eq. (3.14) holds only for r1;t > rsat sine if r1;t < rsatdipole�dipole ross setion is small and proportional to R d2btNOPS. As hasbeen mentioned we onsider r1;t � r2;t. On the other hand K1(z) � 1=z atz < 1. Finally, one an see1= �Q1Zrsat d2rt 1Z0 dz1j	T(Q; z; rt)j2 = CQ43 ln �Q2sat(x)r22;t� ; (3.28)where CQ =Pa 6�em� Z2a . We reall that Q2sat(x)r22;t does not depend on r2;t.The integration over r2;t is onentrated at the limits r1;t � r2;t � 1= �Q2and leads to Z d2r2;tdz2j	Tj2 = CQ 43 ln 1r1;tQ22 :Finally, for ��� ross setions we have�T;T(���) � C2Q 169 �ln Qsat(x)Q21 ln Qsat(x)Q22 ���!Lm2� ln2 x0x � ; (3.29)�T;L(���) � C2Q 169 �ln Qsat(x)Q21 �� �!L2m2� ln2(x0=x)� ; (3.30)�L;T(���) � C2Q 169 �ln Qsat(x)Q22 �� �!L2m2� ln2(x0=x)� ; (3.31)�L;L(���) � C2Q 169 � �!L2m2� ln2(x0=x)� : (3.32)Sine the saturation sale inreases as a power of (1=x) one an see thatthe energy behavior of the unitarity onstraints is�T;T(���) � �C2Q 163 �0��!L(!(0)0 )2m2� 1A ln4(x0=x) ; (3.33)�T;L(���) � �C2Q 163 �0��!L(!(0)0 )2m2� 1A ln3(x0=x) ; (3.34)�L;L(���) � �C2Q 163 �� �!L2m2�� ln2(x0=x): (3.35)Note that only �L;L(���) has the same energy dependene as hadron�hadron ollisions [19℄ but even this ross setion has a di�erent oe�ientin front. CQ as well as the numerial fator 2=3 ome from the photonwave funtion while !L re�ets the BFKL dynamis making Eq. (3.35) andEq. (3.32) quite di�erent from the unitarity bound for hadroni reations.



3096 S. Bondarenko, M. Kozlov, E. Levin4. ConlusionsIn this paper we use ��� sattering as the laboratory for studying thelarge impat parameter behavior of the amplitude in the saturation region.At �rst sight, this proesses our at short distanes for both photons withlarge virtualities and ould be alulated in perturbative QCD. We demon-strated that the non-perturbative QCD orretions have to be introduedfor large bt even for this proess. The main result of this paper is the state-ment that it is enough to inlude the non-perturbative QCD orretions inthe Born approximation and neglet them in the kernel of the BFKL equa-tion. This result on�rms the mehanism suggested in Refs. [16, 18℄ but itontradits the arguments of Ref. [17℄.This result does not mean that the BFKL kernel orretly desribes thelarge bt behavior. The unertainties in the large bt tail of the kernel will nota�et the high energy asymptoti behavior of the dipole amplitude. Let usassume that kernel of the BFKL equation an be written as K +�K whereK is normal BFKL kernel in pQCD and �K inludes the non-perturbativeontribution. We know that �K / e�2m�bt from general properties of thestrong interation [19℄. Let us treat �K as a small orretion and alulatethe �rst digram of the order of �K (see Fig. 5).
N

GM-

K∆Fig. 5. The diagrams for the �rst order orretion with respet to �K, whihinludes the non-perturbative QCD ontribution at large values of the impat pa-rameter.The sum of all diagrams in Fig. 5 leads to a ontribution�K �1�NGM(x; r1;t; r2;t; bt)� = �Ke�NOPS(x;r1;t;r2;t;bt) : (4.1)Sine for bt < b0(x) NGM is very lose to unity, the above orretions aresuppressed. Only for bt � b0(x) we an expet a onsiderable ontribu-tion. However, this ontribution is proportional to e�2m�b0(x) = e�!L ln(x0=x).Therefore, they turn out to be very small. This simple disussion shows whythe strategy to inlude the non-perturbative orretions in the Born ampli-tude, works.



��� Sattering: Saturation and Unitarization in the BFKL Approah 3097Atually, the main result of this paper, namely Eq. (3.13), is based ona simple physis (see Ref. [16℄). We have demonstrated here that the multiresattering proesses embraed by the Glauber�Mueller formula lead toa di�erent resulting parton asade than is given by the BFKL approah.The priniple di�erene is the fat that the multi parton shower interationreates a new sale or mean parton transverse momentum (saturation sale)given by Eq. (3.27).N(x; r1;t; r2;t; bt) denotes the parton density, onsequently the fat thatN(x; r1;t; r2;t; bt) ! 1 an be understood as the fat that the partons reaha maximal density at lowx. This phenomenon is alled saturation [11�13℄.Therefore, at low x we have the parton distribution in the transverse planepresented in Fig. 6: the uniform distribution of partons (dipoles) with sizesof the order of 1=Qsat(x) in the dis of radius R(x). If one of the dipoleinside of the dis will emit one extra parton this emitted parton will interatwith others partons and as a result of this interation its transverse momen-tum will be of the order of Qsat(x). It means that this emitted gluon willnot hange its position in impat parameter spae sine due to unertaintypriniple �btpt � 1 ; (4.2)its �bt � 1=Qsat(x). However, for the parton at the edge of the dis thesituation is di�erent sine the emitted parton in the diretion outside ofthe dis an move freely without any interation. This parton hanges thesize of the dis by its displaement in bt, namely �bt � 1=pt � 1=2m�.
1/Qsat (x)

1/2mπ
bt

R = a ln(1/x)

ln
(1

/x
) parton cascade

parton distribution
in transverse plane

γ∗

γ∗Fig. 6. The struture of the parton asade of the fast photon in the frame wherethe seond photon is at rest. The piture is the three-dimensional one sine thethikness of the vertial line re�ets the value of the transverse momentum. Thethiker the line the larger value of the parton transverse momentum. The left partof the piture shows the parton distribution in the transverse plane.



3098 S. Bondarenko, M. Kozlov, E. LevinIn this estimate we onsider the non-perturbative emission with pt � 2m�beause, as have been disussed, a non-perturbative emission is needed toprovide the unitarization of our proess. Sine the emission that leads toa growth of the dis ours in one diretion (the exterior of the dis) it leadsto R =< j�btj > n where n is the number of emission at given x. Sine theemission takes plae at the edge of the dis where the parton density is rathersmall, N(x; r1;t; r2;t; bt) is determined by the BFKL dynamis only [16, 18℄.In the BFKL approah [4℄n = !l ln(x0=x) sine NOPS / en = e!l ln(x0=x).Therefore, we obtain Eq. (3.13), namely, R(x) � b0(x) = !L=2m� ln(x0=x).We have disussed in this paper the struture of dipole�dipole interationin the Glauber�Mueller approah whih is the only one on the market for theinteration of two dipoles of the same sizes. However, for two dipoles withsmall but di�erent sizes the non-linear evolution equation [11�14℄ should besolved to whih the BFKL emission is only an approximation in the regionof small partoni densities. Comparison of the result of this paper with thedipole�dipole interation in, so alled, double log approximation [1℄ showsthat the BFKL dynamis does not hange physis at large bt. The non-linearevolution equation at �xed bt was solved [29℄ in the ase when the BFKLkernel was replaed by the double log one. The solution leads to the answerin the saturation region with geometrial sale [18, 29, 30℄N(x; r1;t; r2;t; bt) = F �� = r21;tQ2sat(x)e�4m�bt� : (4.3)Therefore, we believe that for the BFKL dynamis Eq. (4.3) will hold.This belief is based on the similarity between double log and BFKL approx-imation for ��� proesses.We wish to thank Johen Bartels, Errol Gotsman and Uri Maor for veryfruitful disussions on the subjet. One of us (E.L.) would like to thank theDESY Theory Group for their hospitality and reative atmosphere duringseveral stages of this work. He is indebted to the Alexander-von-HumboldtFoundation for the award that gave him a possibility to work on low xphysis during the last year. This researh was supported in part by theGIF grant # I-620-22.14/1999 and by Israeli Siene Foundation, foundedby the Israeli Aademy of Siene and Humanities.



��� Sattering: Saturation and Unitarization in the BFKL Approah 3099Appendix AThe integration over R1 in Eq. (2.6) an be taken expliitly [23, 24℄ andEq. (2.6) an be redued toZ d2R1V (r1;t; R1; �)V (r1;t; j~R1 �~btj;��) = �2(14 + �2)2� 1xhx�hF (h; h; 2h; x)F (h; h; 2h; x�)+ 2x1�hx�1�hF (1�h; 1�h; 2�2h; x)F (1�h; 1�h; 2�2h; x�) ; (A.1)where F (�; �; ; z) is the hyper-geometrial funtion (see Ref. [27℄); x is theomplex anharmoni ratiox = r1;tr2;t(b� z1r1;t � �z2r2;t)(b� �z1r1;t � z2r2;t) (A.2)and h = 12 + i�. xx� givesxx� = r21;tr22;t(~b� z1~r1;t � �z2~r2;t)2(~b� �z1~r1;t � z2~r2;t)2 : (A.3)One sees that Eq. (A.3) is invariant with respet to rotation in the plane.The oe�ients 1 and 2 have been alulated in Ref. [24℄ and they areequal to 2 = �2�1+4i� � (i�)� (12 + i�) ; (A.4)12 = ��� (2� 2h)� (2h) �2� � (h)� (1� h)�4 : (A.5)However, one an see that Eq. (A.1) does not reprodue the Born termof Eq. (2.1) at y = 0. To understand why it is so we should onsider thevertex V (r1;t; R1; �) in momentum representation (see Ref. [23℄), namely,V (r1;t; Q; �) = Z d2R1ei ~Q�~b2 V (r1;t; R1; �) : (A.6)It turns out [23℄ thatV (r1;t; Q; �) = (QQ�)i�2�6i�� 2(1� i�)� �J�i� �Q�r1;t4 �J�i� �Qr�1;t4 �� Ji� �Q�r1;t4 � Ji� �Qr�1;t4 �� : (A.7)



3100 S. Bondarenko, M. Kozlov, E. LevinAt small Q Eq. (A.7) leads to the following behavior of vertexV (r � 1; t; Q; �):V (r � 1; t; Q; �)! ���Q2!0� r2t16��i�  1� (Q2)2i� � r2t16�i2�! : (A.8)As have been disussed the mathing with the Born approximation oursat i� ! 12 . In this limitV (r1;t; Q; �)! r1;t4 �1�Q2 r2t16� ; (A.9)whih has orret analytial behavior. Atually this behavior ditates thehoie of the oe�ients 1 and 2 in Eq. (A.4) and Eq. (A.5).However, at �i� ! 12 the low Q behavior has a singularity 1=Q2. There-fore, the symmetry of Eq. (2.6) with respet to sign of � is broken. Muellerand Tang [31℄ pointed out that this problem an be ured by adding to theexpression of V (r1;t; Q; �) of Eq. (2.8), namelyV (r1;t; R1; �)! V MT(r1;t; R1; �)= V (r1;t; R1; �)� 1(~R1 + 12~r1;t)2! 12�i� � 1(~R1 � 12~r1;t)2! 12�i� : (A.10)As was found [15℄ suh terms an be added due to gauge invariane of QCD.In momentum representation (see Eq. (A.6)) V MT(r1;t; Q; �) an be writtenas a sum of three terms as it is shown in Fig. 7.
;ν )V

MT(r1, Q

V
=   − −

BFKL PomeronFig. 7. Struture of the Mueller�Tang vertex.The Mueller�Tang vertex leads to the Born approximation amplitudein the form of Eq. (2.1). However, as was disussed in Refs. [15, 22, 24℄,it has not been proven that this vertex will satisfy the BFKL equation. Thesolution in the form of Eq. (A.1) has a di�erent form of the Born amplitude,namely NBA / ln��1;2�10;20�1;20�10;2� ln��1;2�10;20�1;10�20;2� : (A.11)



��� Sattering: Saturation and Unitarization in the BFKL Approah 3101However, these two expressions for the Born amplitude are equivalent dueto gauge invariane of QCD [15℄.Using Eq. (A.1) we an alulate the dipole�dipole amplitude at bt = 0and, therefore, the saturation sale with better auray than withinEq. (3.22). On the other hand the saturation momentum inreases for x! 0.Suh an inrease guarantees that Eq. (3.22) approahes the amplitude givenby Eq. (A.1) in the region of low x. This is the reason why we prefer to usea simple solution of Eq. (A.1) instead of full expression of Eq. (A.1).It is easy to show that Eq. (A.1) desribes all properties of di�usionapproximation that has been disussed in Se. 2.REFERENCES[1℄ M. Kozlov, E. Levin, hep-ph/0211348.[2℄ J. Bartels, A. De Roek, H. Lotter, Phys. Lett. B389, 742 (1996).[3℄ S.J. Brodsky, F. Hautmann, D.E. Soper, Phys. Rev. D56, 6957 (1997).[4℄ E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977);Ia. Balitsky, L.N. Lipatov, Sov. J. Nul. Phys. 28, 822 (1978); L.N. Lipatov,Sov. Phys. JETP 63, 904 (1986).[5℄ A.H. Mueller, Nul. Phys. B335, 115 (1990).[6℄ E.M. Levin, M.G. Ryskin, Sov. J. Nul. Phys. 45, 150 (1987).[7℄ A. Zamolodhikov, B. Kopeliovih, L. Lapidus, JETP Lett. 33, 595 (1981).[8℄ A.H. Mueller, Nul. Phys. B415, 373 (1994).[9℄ A. Donnahie, H.G. Dosh, M. Rueter, Eur. Phys. J. C13, 141 (2000).[10℄ N.N. Nikolaev, B.G. Zakharov, Z. Phys. C49, 607 (1991); E.M. Levin,A.D. Martin, M.G. Ryskin, T. Teubner, Z. Phys. C74, 671 (1997).[11℄ L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983).[12℄ A.H. Mueller, J. Qiu, Nul. Phys. B268, 427 (1986).[13℄ L. MLerran, R. Venugopalan, Phys. Rev. D49, 2233 (1994); Phys. Rev. D50,2225 (1994); Phys. Rev. D53, 458 (1996); Phys. Rev. D59, 09400 (1999).[14℄ Ia. Balitsky, Nul. Phys. B463, 99 (1996); Yu. Kovhegov, Phys. Rev. D60,034008 (2000).[15℄ L.N. Lipatov, Sov. Phys. JETP 63, 904 (1986).[16℄ E.M. Levin, M.G. Ryskin, Phys. Rep. 189, 267 (1990).[17℄ A. Kovner, U.A. Wiedemann, Taming the BFKL Interept via Gluon Satura-tion, hep-ph/0208265; Phys. Lett. B551, 311 (2003); Phys. Rev. D66, 034031(2002); Phys. Rev. D66, 051502 (2002).[18℄ E. Ferreiro, E. Ianu, K. Itakura, L. MLerran, Nul. Phys. A710, 373 (2002).[19℄ M. Froissart, Phys. Rev. 123, 1053 (1961); A. Martin, Sattering Theory:Unitarity, Analitysity and Crossing, Leture Notes in Physis, Springer-Verlag,Berlin-Heidelberg-New-York 1969.



3102 S. Bondarenko, M. Kozlov, E. Levin[20℄ I.F. Ginzburg, S.L. Pan�l, V.G. Serbo, Nul. Phys. B284, 685 (1987); Nul.Phys. B296, 569 (1988); I.F. Ginzburg, D.Yu. Ivanov, Nul. Phys. B388, 376(1992); D.Y. Ivanov, R. Kirshner, Phys. Rev. D58, 114026 (1998).[21℄ P. Colangelo, A. Khodjamirian, QCD Sum Rules: A Modern Perspetive,hep-ph/0010175; V.E. Markushin, Ata Phys. Pol. B 31, 2665 (2000);O.I. Yakovlev, R. Rukl, S. Weinzierl, QCD Sum Rules for Heavy Flavors,hep-ph/0007344; M.A. Shifman, QCD Sum Rules, Ed. F. Lenz, et al.,: Le-tures on QCD: Foundations, p. 170�187; S. Narison, World Si. Let. NotesPhys. 26, 1 (1989); M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nul. Phys.B147, 385 (1979), Nul. Phys. B147, 448 (1979); Nul. Phys. B147, 519(1979).[22℄ J. Bartels, J.R. Forshaw, H. Lotter, L.N. Lipatov, M.G. Ryskin, M. Wustho�,Phys. Lett. B348, 589 (1995).[23℄ H. Navelet, R. Peshanski, Nul. Phys. B634, 291 (2002); Phys. Rev. Lett.82, 137 (1999); Nul. Phys. B507, 353 (1997).[24℄ L.N. Lipatov, Phys. Rep. 286, 131 (1997).[25℄ J.C. Collins, J. Kwieinski, Nul. Phys. B335, 89 (1990); J. Bartels, J. Blum-lein, G. Shuler, Z. Phys. C50, 91 (1991); A.L. Ayala, M.B. Gay Duati,E.M. Levin, Nul. Phys. B493, 305 (1997); Nul. Phys. B510, 355 (1990);Yu. Kovhegov, Phys. Rev. D54, 5463 (1996); Phys. Rev. D55, 5445 (1997);Phys. Rev. D61, 074018 (2000); A.H. Mueller, Nul. Phys. B572, 227 (2000);Nul. Phys. B558, 285 (1999); Yu.V. Kovhegov, A.H. Mueller, Nul. Phys.B529, 451 (1998); E. Ianu, A. Leonidov, L. MLerran, Nul. Phys. A692,583 (2001); M. Braun, Eur. Phys. J. C16, 337 (2000).[26℄ J. Jalilian-Marian, A. Kovner, L. MLerran� H. Weigert, Phys. Rev.D55, 5414(1997); J. Jalilian-Marian, A. Kovner, H. Weigert, Phys. Rev. D59, 014015(1999); J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev.D59, 034007 (1999); Erratum Phys. Rev. D59, 099903 (1999); A. Kovner,J. Guilherme Milhano, H. Weigert, Phys. Rev. D62, 114005 (2000);H. Weigert, Nul. Phys. A703, 823 (2002).[27℄ I. Gradstein, I. Ryzhik, Tables of Series, Produts and Integrals, Verlag MIR,Moskau 1981.[28℄ A.H. Mueller, D.N. Triantafyllopoulos, Nul. Phys. B640, 331 (2002);D.N. Triantafyllopoulos, Nul. Phys. B648, 293 (2003).[29℄ E. Levin, K. Tuhin, Nul. Phys. B573, 833 (2000); Nul. Phys. A691, 779(2001); Nul. Phys. A693, 787 (2001).[30℄ J. Bartels, E. Levin, Nul. Phys. B387, 617 (1992). A.M. Stasto, K. Gole-Biernat, J. Kwieinski, Phys. Rev. Lett. 86, 596 (2001); E. Ianu, K. Itakura,L. MLerran, Nul. Phys. A708, 327 (2002); Phys. Lett. B510, 145 (2001);Understanding Geometri Saling at Small x, hep-ph/0205198.[31℄ A.H. Mueller, W.K. Tang, Phys. Lett. B284, 123 (1992).


