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FILLING PERTURBATIVE GROUND STATES�Paul HoyerDepartment of Physial Sienes and Helsinki Institute of PhysisPOB 64, 00014 University of Helsinki, Helsinki, Finland(Reeived April 2, 2003)Dediated to Jan Kwiei«ski in honour of his 65th birthdayI disuss a degree of freedom in formulating perturbation theory that isoften negleted: the in- and out-states need not be empty. The inlusion of(free) partiles in the asymptoti states modi�es the on-shell presriptionof the free propagator. This a�ets loop ontributions � but the modi�edexpansion is a priori as justi�ed as the standard one with Feynman pre-sription. It is possible to dress the quark propagator to all orders withzero-momentum gluons from the perturbative ground state. The dressedquark has no pole and thus annot appear as an external partile in theS-matrix. Chiral symmetry may be spontaneously broken, but Lorentzand gauge symmetry is exat. Adding loop orretions to this �dressed treeapproximation� gives a formally exat PQCD expansion.PACS numbers: 11.10.Jj, 11.15.Bt, 11.15.Pg, 11.30.Rd1. IntrodutionI have had the honor and pleasure of knowing Jan Kwiei«ski duringmost of my researh areer. Our early work together [1, 2℄ onerned theanalyti struture and high energy behavior of hadron amplitudes. 30 yearslater, we are still both ative in this area. In elebration of his 65th birthdayI shall informally disuss a longstanding interest of mine into perturbativeQCD with asymptoti (t ! �1) states that ontain free quark and gluonpairs. I disussed this line of researh publily for the �rst time at the 1982Zakopane shool [3℄. The reent developments [4, 5℄ address the analytistruture of quark and gluon amplitudes in the long distane regime.� Researh supported in part by the European Commission under ontrat HPRN-CT-2000-00130. (3121)



3122 P. HoyerLike many others, I ontinue to be tantalized by the fat that we haveknown Quantum Chromodynamis (QCD) for 30 years and yet are unable tounderstand (exept numerially) how hadrons and olor on�nement arise.The non-relativisti quark model gives a good phenomenologial desriptionof hadrons, making it a andidate for the �rst term in a systemati approx-imation sheme of QCD. At the same time we know that hadrons atuallyare highly relativisti states (98% of the proton mass is dynamial in origin).The QCD ground state apparently has a ondensate of quarks and gluons [6℄whih auses a spontaneous breaking of hiral symmetry. How an we derivethe simple intuitive quark model using rigorous QCD methods?My approah has been to have a loser look at perturbation theory. Thequark model shows that (onstituent) quarks are relevant degrees of free-dom. Conepts suh as orbital angular momentum that in atomi physisarise through QED perturbation theory are relevant also for the hadronspetrum. Phenomenologial analyses of high energy proesses indiate thathadron momentum distributions are well desribed by perturbatively alu-lated parton distributions down to low momenta [7℄.Perturbation theory is ompelling also beause there are few alternatives.Most quantitative results in QED as well as in QCD rely on the perturbativeexpansion. The series is formally exat and determined by the Lagrangian �well, almost. We need to speify the renormalization sheme and sometimesresum leading logarithms, but this is well understood. My fous is on anotherhoie that we usually make without omment or even reognition: we alwaysexpand around an empty state (aj0i = 0). Formally, we are allowed toassume empty in- and out-states at asymptoti times (t ! �1), sine theinteration terms in the Hamiltonian will turn them into the true groundstate during the propagation to �nite t.At lowest order of perturbation theory, however, nothing happens be-tween t = �1 and t = 0. The perturbative expansion starts from theempty in- and out-states. Given that the QCD ground state is a ondensateof partons, it is understandable that standard PQCD fails qualitatively atlow momentum sales where interations with ondensate partiles are sig-ni�ant. On the other hand, at sales Q whih are muh higher than that ofthe ondensate (�QCD ' 200 MeV) the ondensate ontributions are powersuppressed in �QCD=Q. The failure of the perturbative expansion an beaused by interations with the ondensate even though �s is moderate. It isin fat plausible that the Q2-dependene of �s freezes, �s(Q2 ! 0) ' 0:5 [7℄.It thus seems motivated to onsider the properties of perturbative ex-pansions around a free state whih ontains gluon or quark pairs. This isan interesting question regardless of its possible phenomenologial relevane.Perturbation theory is suh an important tool that we need to explore allits nooks and rannies.



Filling Perturbative Ground States 31232. The boundaries of path integralsIn a path integral derivation of perturbation theory the hoie of in- andout-states is usually swept neatly under the rug. Let me reall the argumentfor �4 theory, L = 12 �(���)2 �m2�2�� �4! �4 � L0 + Lint : (1)We express the generating funtional Z[J ℄ of Green funtions by extrat-ing the interations as derivatives with respet to the soures J ,Z[J ℄ = exp �iSint� ÆÆJ��Z0[J ℄ ; (2)where the free funtional Z0[J ℄ ontains only Gaussian path integrals whihan be done exatly,Z0[J ℄ = Z D[�℄ exp�iZ d4x [L0(�) + J(x)�(x)℄� (3)= exp ��12 Z d4p(2�)4J(�p)D(p)J(p)� : (4)The free propagator is found to beiDF(p) = ip2 �m2 + i" (5)and the Feynman i" presription is often motivated by the onvergene ofthe path integral. The perturbative expansion follows by expanding theexp(iSint) fator in (2).This elegant derivation gets the `orret' result without referene to thein- and out-states at t = �1. A more pedanti approah1 would be to startwith a path integral de�ned over a �nite time interval �T � t � T ,Z0[J ℄ = TZt=�T D[�(t;p)℄Yp exp8<:�i2 TZ�T dt ��(t;p)� �2�t2 + p2 +m2��(t;p)+ i TZ�T dt J(t;�p)�(t;p)� C(p)2 hj�(�T;p)j2 + j�(T;p)j2i9=; : (6)1 In retrospet, the main (albeit trivial) point I learnt in [3℄ was the importane ofonsidering path integrals over a �nite time interval, thus exposing the wave funtions.



3124 P. HoyerHere the Gaussian wave funtions at t = �T guarantee the onvergene ofthe path integral. The parameter C(p) is readily determined by reallingthat the free Hamiltonian orresponding to our theory (1),H0(t) = 12 Z d3p(2�)3 �j�(t;p)j2 + (p2 +m2)j�(t;p)j2� (7)is a sum (over 3-momentum p) of unoupled harmoni osillator Hamiltoni-ans. The (empty) ground state wave funtion of the harmoni osillator isGaussian, with C(p) = Ep �pp2 +m2 : (8)It is indeed straightforward to show [4℄ that as T !1 the path integral (6)with this value of C(p) gives (4) with the Feynman propagator (5).The more expliit expression (6) of the path integral leads naturally tothe next question: What if we hoose a Gaussian wave funtion in (6) withweight di�erent from (8)? Fromexp ��12C(p)j�j2�=Xn (�1)n2nn! [C(p)�Ep℄n j�(t;p)j2n exp ��12Epj�(t;p)j2�(9)we see that this may be interpreted as a oherent superposition of statesontaining partile pairs. The Gaussian integrals an be done with equalease for any C. The result is that the free generating funtional still has theform (4), but a term proportional toi [C(p)�Ep℄ Æ(p0 �Ep) (10)is added to the Feynman propagator DF(p) in (5). Thus only the on-shellpresription of the free propagator is a�eted.In an exat alulation (formally represented by the full perturbativesum) the various hoies of in- and out-states will relax to the true groundstate at �nite t. Thus we may in priniple freely hoose the value of C(p),and hene the on-shell presription of the free propagator, for eah value ofp. However, when p 6= 0 the asymptoti states are not (even perturbatively)boost invariant. Hene Lorentz invariane is broken order by order in theperturbative expansion. Expliit Lorentz invariane is preserved only formassless partiles with zero momentum in the perturbative ground state [8℄.With this onstraint we have a single parameter C(p = 0), whih gives afree massless propagator of the formiD�(p) = ip2 + i" + �2(2�)4Æ4(p) ; (11)where � has the dimension of mass.



Filling Perturbative Ground States 3125One we have de�ned the on-shell presription of the free propagator, theperturbative expansion follows in the usual way through the Taylor expan-sion of exp(iSint) in (2). The standard Feynman rules thus apply with theexpression (11) for the free propagator. An analogous onlusion is reahedfor fermion �elds [4℄.Sine the relevant modi�ation ours in the free setor of the theory, theabove disussion for a salar �eld is appliable also to transverse gluons inQCD. Adding transverse gluons to the asymptoti states should, in partiu-lar, preserve gauge invariane. This was heked in [9℄ through a alulationof the stati QCD potential in Feynman and Coulomb gauge. Sine theon-shell presription was modi�ed for a �nite range of jpj the equivalene ofthe two alulations was quite non-trivial. The alulations that I desribein the next setion similarly hek gauge invariane in a non-trivial way. Itwould of ourse be desirable to have a general proof that gauge invarianeremains exat.3. Dressing the quark propagator with a gluon ondensate [5℄The modi�ed gluon propagator analogous to (11) is (in Feynman gauge),iD��ab (p) = �Æab g�� � ip2 + i" + �2g (2�)4 Æ4(p)� : (12)The perturbative expansion of a Green funtion G is then a power series intwo parameters, whih may be hosen as �s and �s�2g,G = 1X̀=0(�s)` 1Xn=0C`;n (�s�2g)n : (13)The power n ounts how many times we pik the `ondensate' term / Æ4(p)in internal gluon propagators, and the power ` gives the number of times wetake the standard part of the gluon propagator.We reently alulated the full sum over n for ` = 0 in the ase of thequark propagator, in the limit of a large number of olors N !1 [5℄. Forthis leading ondensate ontribution there is a Æ4(p) fator in eah loop, sothat we are e�etively dealing with a tree approximation. Fig. 1 shows typ-ial diagrams that ontribute in this approximation. Non-planar diagramsand quark loops do not ontribute in the limit of large N with g2N �xed [10℄.We also exlude diagrams that involve sattering among the ondensate glu-ons themselves. Suh diagrams are proportional to the volume of spae-time,Æ4(0), and we expet them to fatorize from physial quantities (but haveno proof of this).
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(c)Fig. 1. Quark propagator Sg(p) in a gluon ondensate. A ut on a gluon lineindiates that only the ondensate term / �2g in the free propagator (12) is taken.(a) Order �s�2g . (b) Order �2s�4g . () A generi diagram of order (�s�2g)n.The sum over diagrams is most easily done by noting that the self-onsisteny equation for the dressed quark propagator Sg(p) shown in Fig. 2generates through iteration all relevant diagrams (f. Fig. 1). The ut (on-densate) gluon arries zero four-momentum. This eliminates the loop inte-gral and redues this Dyson�Shwinger type equation to an algebrai seondorder equation for the dressed quark propagator,p=Sg(p) = 1� 12�2g �Sg(p)�Sg(p) ; (14)where CF ' N=2 in the N !1 limit and�2g = g2N �2g : (15)
S (p) =  =  g

p
+Fig. 2. Self-onsisteny equation for the dressed quark propagator Sg(p). The fullblob denotes the gluon ondensate dressing.We �nd two solutions of (14),Sg1(p) = 2p=p2 +qp2(p2 � 4�2g) ; (16)Sg2(p) = � 1�2g �p= �qp2 + 12�2g� (17)



Filling Perturbative Ground States 3127both of whih have a novel analyti struture. This is a result of the all-orders sum, and annot be seen from the �rst order orretion (Fig. 1(a),given by Eq. (2.6) in Ref. [4℄).The Sg1 solution (16) onserves hiral symmetry and redues to the freepropagator in the p2 ! �1 limits. But the pole at p2 = 0 of the freepropagator has turned into a 1=pp2 branh point in the dressed propagator.This has the onsequene that the Fourier transformed propagatorSg(t;p) = 1Z�1 dp02� Sg(p) exp(�itp0) (18)vanishes at large times,jSg1(t; ~p)j �jtj!1 O �1=pjtj� : (19)Thus the quark has, startlingly, been removed from the asymptoti statesand does not appear in S-matrix elements.The seond solution Sg2 in (17) breaks hiral symmetry. It is non-perturbative in the sense that it does not redue to the free propagatorfor �g ! 0. It also does not approah the free propagator for p2 ! �1.However, we see that Sg1 = Sg2 at p2 = ��2g=2. Hene it appears possibleto pik the Sg2 solution in a loop integral over the range�qp2 � �2g=2 � p0 �qp2 � �2g=2 : (20)This will give amplitudes with spontaneously broken hiral symmetry.Using the same approximation we evaluated also the dressed quark-photon vertex [5℄. The Ward identity between the vertex and the inversepropagators is exatly satis�ed. The photon self-energy orretion leaves thephysial photon pole at p2 = 0. Hene the photon remains an asymptoti,S-matrix state. It would obviously be of interest to study whether this istrue more generally for olor-singlet states.4. RemarksAdding a ondensate term to the gluon propagator as in (12) appearsto be formally allowed and leads to results whih di�er in interesting waysfrom those of standard PQCD in the long distane limit. In partiular, thesum of leading ondensate ontributions allows to de�ne a �dressed tree ap-proximation�, to whih loop orretions (` > 0 in (13)) an be systematiallyadded. The dressed tree amplitudes have a novel analyti struture as shown



3128 P. Hoyerby the quark propagators (16), (17). This should allow studies of previousonjetures [11,12℄ that on�ned partoni Green funtions have an analytistruture whih di�ers from the standard one.Analytiity is losely related to unitarity. Sums over intermediate statesare saturated by hadrons rather than partons in a on�ning theory. It willthus be interesting to see how unitarity is satis�ed in the present framework.The dressing of the gluon propagator involves a riher set of diagramsthan those shown in Fig. 1. The low order ontributions (n = 1; 2 in (13))have the transverse struture required by gauge invariane [5, 13℄. The ex-petation value hF��F ��i is non-vanishing due to a ontribution from the4-gluon oupling [8,13℄. Hene the study of the gluon setor promises to berewarding.This was written in elebration of Jan Kwiei«ski, whom I greatly valueas a friend and olleague. I thank the organizers of this Festshrift for askingme to write a ontribution. Most of the work desribed above was done inollaboration with Stéphane Peigné.REFERENCES[1℄ P. Hoyer, J. Kwieinski, Nul. Phys. B60, 26 (1973).[2℄ P. Hoyer, J. Kwieinski, Nul. Phys. B145, 409 (1978).[3℄ P. Hoyer, Ata Phys. Pol. B 14, 203 (1983).[4℄ P. Hoyer, hep-ph/0203236.[5℄ P. Hoyer, S. Peigné, hep-ph/0304010.[6℄ M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nul. Phys. B147, 385, 448,519 (1979); E.V. Shuryak, Phys. Rep. 115, 151 (1984).[7℄ Yu.L. Dokshitzer, Plenary talk at ICHEP 98, Pro. Vanouver 1998, Highenergy physis, Vol. 1, 305-324, hep-ph/9812252.[8℄ A. Cabo, S. Peñaranda, R. Martinez, Mod. Phys. Lett. A10, 2413 (1995).[9℄ P. Hoyer. J. Rathsman, J. High Energy Phys. 105, 20 (2001).[10℄ G. 't Hooft, Nul. Phys. B72, 461 (1974); Nul. Phys. B75, 461 (1974).[11℄ R.C. Brower, W.L. Spene, J.H. Weis, Phys. Rev. D18, 499 (1978).[12℄ V.N. Gribov, Eur. Phys. J. C10, 91 (1999).[13℄ A. Cabo, M. Rigol, Eur. Phys. J. C23, 289 (2002).


