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I discuss a degree of freedom in formulating perturbation theory that is
often neglected: the in- and out-states need not be empty. The inclusion of
(free) particles in the asymptotic states modifies the on-shell prescription
of the free propagator. This affects loop contributions — but the modified
expansion is a priori as justified as the standard one with Feynman pre-
scription. It is possible to dress the quark propagator to all orders with
zero-momentum gluons from the perturbative ground state. The dressed
quark has no pole and thus cannot appear as an external particle in the
S-matrix. Chiral symmetry may be spontaneously broken, but Lorentz
and gauge symmetry is exact. Adding loop corrections to this “dressed tree
approximation” gives a formally exact PQCD expansion.

PACS numbers: 11.10.Jj, 11.15.Bt, 11.15.Pg, 11.30.Rd

1. Introduction

I have had the honor and pleasure of knowing Jan Kwieciriski during
most of my research career. Our early work together [1,2]| concerned the
analytic structure and high energy behavior of hadron amplitudes. 30 years
later, we are still both active in this area. In celebration of his 65th birthday
I shall informally discuss a longstanding interest of mine into perturbative
QCD with asymptotic (¢ — +00) states that contain free quark and gluon
pairs. I discussed this line of research publicly for the first time at the 1982
Zakopane school [3]. The recent developments [4, 5] address the analytic
structure of quark and gluon amplitudes in the long distance regime.
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Like many others, I continue to be tantalized by the fact that we have
known Quantum Chromodynamics (QCD) for 30 years and yet are unable to
understand (except numerically) how hadrons and color confinement arise.
The non-relativistic quark model gives a good phenomenological description
of hadrons, making it a candidate for the first term in a systematic approx-
imation scheme of QCD. At the same time we know that hadrons actually
are highly relativistic states (98% of the proton mass is dynamical in origin).
The QCD ground state apparently has a condensate of quarks and gluons [6]
which causes a spontaneous breaking of chiral symmetry. How can we derive
the simple intuitive quark model using rigorous QCD methods?

My approach has been to have a closer look at perturbation theory. The
quark model shows that (constituent) quarks are relevant degrees of free-
dom. Concepts such as orbital angular momentum that in atomic physics
arise through QED perturbation theory are relevant also for the hadron
spectrum. Phenomenological analyses of high energy processes indicate that
hadron momentum distributions are well described by perturbatively calcu-
lated parton distributions down to low momenta [7].

Perturbation theory is compelling also because there are few alternatives.
Most quantitative results in QED as well as in QCD rely on the perturbative
expansion. The series is formally exact and determined by the Lagrangian —
well, almost. We need to specify the renormalization scheme and sometimes
resum leading logarithms, but this is well understood. My focus is on another
choice that we usually make without comment or even recognition: we always
expand around an empty state (a|0) = 0). Formally, we are allowed to
assume empty in- and out-states at asymptotic times (¢ — £00), since the
interaction terms in the Hamiltonian will turn them into the true ground
state during the propagation to finite ¢.

At lowest order of perturbation theory, however, nothing happens be-
tween t = oo and ¢t = 0. The perturbative expansion starts from the
empty in- and out-states. Given that the QCD ground state is a condensate
of partons, it is understandable that standard PQCD fails qualitatively at
low momentum scales where interactions with condensate particles are sig-
nificant. On the other hand, at scales () which are much higher than that of
the condensate (Aqcn =~ 200 MeV) the condensate contributions are power
suppressed in Agcn/Q. The failure of the perturbative expansion can be
caused by interactions with the condensate even though «g is moderate. It is
in fact plausible that the Q%-dependence of ag freezes, as(Q? — 0) ~ 0.5 [7].

It thus seems motivated to consider the properties of perturbative ex-
pansions around a free state which contains gluon or quark pairs. This is
an interesting question regardless of its possible phenomenological relevance.
Perturbation theory is such an important tool that we need to explore all
its nooks and crannies.



Filling Perturbative Ground States 3123

2. The boundaries of path integrals

In a path integral derivation of perturbation theory the choice of in- and
out-states is usually swept neatly under the rug. Let me recall the argument
for ¢* theory,

L= 3 (@) ~m?] — 5 6" = Lo+ Lim. 1)
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We express the generating functional Z[.J] of Green functions by extract-
ing the interactions as derivatives with respect to the sources J,

217) = exp [z'sim (%)] Zol), @)

where the free functional Zy[.J] contains only Gaussian path integrals which
can be done exactly,

ZolJ] = /D[¢] exp {i/d4$ [Lo(¢) +J($)¢($)]} (3)
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The free propagator is found to be

. 1
ZDF(p) - pg —m2 +ic (5)
and the Feynman ie prescription is often motivated by the convergence of
the path integral. The perturbative expansion follows by expanding the
exp(iSint) factor in (2).

This elegant derivation gets the ‘correct’ result without reference to the
in- and out-states at t = +00. A more pedantic approach!' would be to start

with a path integral defined over a finite time interval =T <t < T,
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! In retrospect, the main (albeit trivial) point I learnt in [3] was the importance of
considering path integrals over a finite time interval, thus exposing the wave functions.
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Here the Gaussian wave functions at ¢ = £7T guarantee the convergence of
the path integral. The parameter C(p) is readily determined by recalling
that the free Hamiltonian corresponding to our theory (1),

3
Ho(t) =5 [ (s )P + (07 + ) lole. )] @

is a sum (over 3-momentum p) of uncoupled harmonic oscillator Hamiltoni-
ans. The (empty) ground state wave function of the harmonic oscillator is

Gaussian, with
C(p) = Ep = Vp? +m?. (8)

It is indeed straightforward to show [4] that as T — oo the path integral (6)
with this value of C(p) gives (4) with the Feynman propagator (5).

The more explicit expression (6) of the path integral leads naturally to
the next question: What if we choose a Gaussian wave function in (6) with
weight different from (8)? From

exp [-3C(p)|¢I*] =) (2—71171)‘71 [C(p) — Ep]" |$(t,p)|*" exp [—3 Ep|4(t, p) ]
' )

we see that this may be interpreted as a coherent superposition of states
containing particle pairs. The Gaussian integrals can be done with equal
ease for any C. The result is that the free generating functional still has the
form (4), but a term proportional to

i[C(p) — Ep 6(p° — Ep) (10)

is added to the Feynman propagator Dp(p) in (5). Thus only the on-shell
prescription of the free propagator is affected.

In an exact calculation (formally represented by the full perturbative
sum) the various choices of in- and out-states will relax to the true ground
state at finite t. Thus we may in principle freely choose the value of C(p),
and hence the on-shell prescription of the free propagator, for each value of
p. However, when p # 0 the asymptotic states are not (even perturbatively)
boost invariant. Hence Lorentz invariance is broken order by order in the
perturbative expansion. Explicit Lorentz invariance is preserved only for
massless particles with zero momentum in the perturbative ground state [8§].
With this constraint we have a single parameter C(p = 0), which gives a

free massless propagator of the form
)
iD(p) = A2 (2m)tot 11
? )\(p) p2+i€+ (ﬂ-) (p)7 ( )
where A\ has the dimension of mass.
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Once we have defined the on-shell prescription of the free propagator, the
perturbative expansion follows in the usual way through the Taylor expan-
sion of exp(iSint) in (2). The standard Feynman rules thus apply with the
expression (11) for the free propagator. An analogous conclusion is reached
for fermion fields [4].

Since the relevant modification occurs in the free sector of the theory, the
above discussion for a scalar field is applicable also to transverse gluons in
QCD. Adding transverse gluons to the asymptotic states should, in particu-
lar, preserve gauge invariance. This was checked in [9] through a calculation
of the static QCD potential in Feynman and Coulomb gauge. Since the
on-shell prescription was modified for a finite range of |p| the equivalence of
the two calculations was quite non-trivial. The calculations that I describe
in the next section similarly check gauge invariance in a non-trivial way. It
would of course be desirable to have a general proof that gauge invariance
remains exact.

3. Dressing the quark propagator with a gluon condensate [5]

The modified gluon propagator analogous to (11) is (in Feynman gauge),

iD (p) = —dup g [ 12 @m)t o) (12)

p? +ie
The perturbative expansion of a Green function G is then a power series in

two parameters, which may be chosen as «; and Oés>\§,

o

G = Z(Ofs)l Z Cé,n (QSAZ)H . (13)
n=0

£=0

The power n counts how many times we pick the ‘condensate’ term o §%(p)
in internal gluon propagators, and the power ¢ gives the number of times we
take the standard part of the gluon propagator.

We recently calculated the full sum over n for £ = 0 in the case of the
quark propagator, in the limit of a large number of colors N — oo [5]. For
this leading condensate contribution there is a §*(p) factor in each loop, so
that we are effectively dealing with a tree approximation. Fig. 1 shows typ-
ical diagrams that contribute in this approximation. Non-planar diagrams
and quark loops do not contribute in the limit of large N with g? N fixed [10].
We also exclude diagrams that involve scattering among the condensate glu-
ons themselves. Such diagrams are proportional to the volume of space-time,
§*(0), and we expect them to factorize from physical quantities (but have
no proof of this).
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Fig.1. Quark propagator S,(p) in a gluon condensate. A cut on a gluon line
indicates that only the condensate term o )\3 in the free propagator (12) is taken.
(a) Order agA2. (b) Order aZXj. (c) A generic diagram of order (asA2)™.

The sum over diagrams is most easily done by noting that the self-
consistency equation for the dressed quark propagator S, (p) shown in Fig. 2
generates through iteration all relevant diagrams (cf. Fig. 1). The cut (con-
densate) gluon carries zero four-momentum. This eliminates the loop inte-
gral and reduces this Dyson—Schwinger type equation to an algebraic second
order equation for the dressed quark propagator,

PSg(p) =1 — 5157 Sg(p) 1Sy (p) , (14)
where Cr ~ N/2 in the N — oo limit and
,u?] =¢’N )\3. (15)

Sg(p) = —>p—Q = > + ﬁ

Fig. 2. Self-consistency equation for the dressed quark propagator S,(p). The full
blob denotes the gluon condensate dressing.

We find two solutions of (14),

2p
Sg1(p) = , (16)
" p? + /p?(p? — 4u3)
Se2(p) = —% <;¢ +/p? + %uf,) (17)
g
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both of which have a novel analytic structure. This is a result of the all-
orders sum, and cannot be seen from the first order correction (Fig. 1(a),
given by Eq. (2.6) in Ref. [4]).

The S solution (16) conserves chiral symmetry and reduces to the free
propagator in the p? — oo limits. But the pole at p?> = 0 of the free
propagator has turned into a 1/ \/ﬁ branch point in the dressed propagator.
This has the consequence that the Fourier transformed propagator

oo

Su(t.p) = [ 28, (0) exp(itpo) (18)

— 00

vanishes at large times,
Sut.i)  ~ 0 (1/VH). (19)
[t|—o00

Thus the quark has, startlingly, been removed from the asymptotic states
and does not appear in S-matrix elements.

The second solution Sgo in (17) breaks chiral symmetry. It is non-
perturbative in the sense that it does not reduce to the free propagator
for py — 0. It also does not approach the free propagator for p? = +oo.
However, we see that S;1 = Syo at p? = —,ug/Q. Hence it appears possible
to pick the Syo solution in a loop integral over the range

—\/P? = p2/2 <p° < \/p? — 1Z/2. (20)

This will give amplitudes with spontaneously broken chiral symmetry.

Using the same approximation we evaluated also the dressed quark-
photon vertex [5]. The Ward identity between the vertex and the inverse
propagators is exactly satisfied. The photon self-energy correction leaves the
physical photon pole at p?> = 0. Hence the photon remains an asymptotic,
S-matrix state. It would obviously be of interest to study whether this is
true more generally for color-singlet states.

4. Remarks

Adding a condensate term to the gluon propagator as in (12) appears
to be formally allowed and leads to results which differ in interesting ways
from those of standard PQCD in the long distance limit. In particular, the
sum of leading condensate contributions allows to define a “dressed tree ap-
proximation”, to which loop corrections (¢ > 0 in (13)) can be systematically
added. The dressed tree amplitudes have a novel analytic structure as shown
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by the quark propagators (16), (17). This should allow studies of previous
conjectures [11,12] that confined partonic Green functions have an analytic
structure which differs from the standard one.

Analyticity is closely related to unitarity. Sums over intermediate states
are saturated by hadrons rather than partons in a confining theory. It will
thus be interesting to see how unitarity is satisfied in the present framework.

The dressing of the gluon propagator involves a richer set of diagrams
than those shown in Fig. 1. The low order contributions (n = 1,2 in (13))
have the transverse structure required by gauge invariance [5,13]. The ex-
pectation value (F,, F'*") is non-vanishing due to a contribution from the
4-gluon coupling [8,13]. Hence the study of the gluon sector promises to be
rewarding.

This was written in celebration of Jan Kwieciniski, whom I greatly value
as a friend and colleague. I thank the organizers of this Festschrift for asking
me to write a contribution. Most of the work described above was done in
collaboration with Stéphane Peigné.
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