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We study an importance of the longitudinally polarized virtual pho-
tons 7f in the semi-inclusive ep processes in the ep center-of-mass and
Breit frames, and for various distributions. We used the factorization for-
mulae for the unpolarized inclusive and semi-inclusive ep processes which
hold in an arbitrary reference frame. The numerical studies were performed
for the ep HERA collider for a process with a large-pr (prompt) photons
production, i.e., the unpolarized Compton process ep — ey X, in the Born
approximation. In the ep center-of-mass frame we found that the differ-
ential cross section for the longitudinally polarized intermediate photon,
doy,, and the term due to the interference between the longitudinal- and
transverse-polarization states of the photon, dm,1, are small, ¢.e. below 10%
of the cross section. Moreover, these two contributions almost cancel one
another, leading to a stronger domination of the transversely polarized vir-
tual photon, even for its large virtuality Q2. We found that in this frame
the interference term gives non-vanishing contributions even for the cross
sections integrated over the azimuthal angle, contrary to a naive expec-
tation. Relevance of the contributions of the longitudinal photon in a jet
production in DIS events at the HERA collider is commented. A relatively
large (~ 30%) effect due to the interference term drmr was found for the
considered process at the HERA collider in the azimuthal-angle distribu-
tion in the Breit frame. Here this contribution vanishes in the cross section
integrated over ¢.

PACS numbers: 13.60.Fz, 12.38.Bx, 14.70.Bh
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1. Introduction

Assuming that the one-photon exchange dominates in the deep inelastic
lepton—nucleon collisions (DIS), a cross section for such a process can be
described in terms of two transverse (T) and one longitudinal (L) polar-
ization states of the intermediate virtual photon v*. The differential cross
section for the unpolarized IN — [X process can always be decomposed
into two differential cross sections, dor and dor,, describing the processes
with the transversely and the longitudinally polarized v*, vy N — X and
YN — X, respectively [1-6]. When the initial particles in the discussed
process IN — [ X are polarized, or when for the unpolarized particles a semi-
inclusive process [N — laX is considered, there appear in addition terms
coming from the interference between the longitudinally and transversely
polarized virtual photons, and between two different transverse-polarization
states of v}, drr and drpr, respectively [6].

It is well known that for the two-photon exchange processes, for instance
in the eTe™ collisions, the interference terms occur in the cross sections, as
discussed in [6,9]'. The detailed study of relevance of various contributions,
especially of the interference terms, has been performed in [10, 11] for the
process ete” — eTe  uTpu~, for the kinematical range of the PLUTO and
LEP experiments. For a corresponding subprocess y*y* — p+pu~ large cross
sections for the contribution involving at least one longitudinally polarized
photon were found. Moreover, the interference terms were found to give a
large negative contribution. Both contributions vary strongly as a function
of the kinematical variables, and for some kinematical regions a cancellation
between the cross sections for processes with one or two ; and the inter-
ference contributions occurs. The conclusion from this analysis was that
both types of contributions have to be taken into account in extracting from
the data the leptonic (mionic) structure functions of the virtual photon (see
also [12]). However, in some of the measurements of the structure functions
F) " and F *, the interference terms and cross section for two longitudinally
polarized virtual photons were neglected, see [13,14], and [15].

The contributions due to the longitudinally polarized virtual photons
occur also in electroproduction and the question is how significant such con-
tributions are. Moreover, this question is related to the ongoing discus-
sion on the relevance of the resolved-v{ contributions in the hard processes
[16-22|. For example, it was pointed out in [22] that, in the case of the di-
jet production in the ep HERA collider, the contributions coming from the
longitudinally polarized photon are sizeable and the partonic content of the
7, should be taken into account in describing the data. However, it is clear

1In ete™ collisions, the interference terms are also important for the Higgs boson
production via WW or ZZ fusion as was shown in [7,8].
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that the study of cross sections with ~f for the large-pt processes should
be accompanied by a consideration of the corresponding interference terms
containing 7f . Unfortunately, there is a lack of such studies in the literature.
In this paper we would like to initiate a discussion on the relevance of such
terms in the semi-inclusive ep processes.

It is well known that to get access to the interference between ~f and
¥, or between two different transverse-polarization states of v, it is natu-
ral to consider the azimuthal-angle dependence in a special reference frame
called the Breit frame [28-35]. Recently, the azimuthal asymmetries for
the charged-hadrons production in the neutral-current deep inelastic e™p
scattering have been measured with the ZEUS detector at HERA [41], and
indeed effects due to the corresponding interference terms were observed.

In this article we study the contributions due to 4y and ~7 in unpolarized
ep collisions at HERA, taking as an example the process with a production
of high-pr (prompt) photon: ep — eyX (Compton process). In Section 2
a short derivation of the factorization formulae for the inclusive and semi-
inclusive ep processes is presented in an arbitrary frame (some details are
given also in Appendix A). In the case of the semi-inclusive collision, two
cross sections, do and dot,, and two additional terms due to the interference
between different polarization states of ~*, drr and drrr, appear. The
relation of these interference terms to the contributions proportional to cos ¢
and cos2¢ in the azimuthal-angle distribution for a final « in the Breit
frame is discussed in Section 3 and Appendix B. Section 4 is devoted to the
numerical studies of the different contributions for the process ep — ey X
in the Born approximation. Conclusions are presented in Section 5. In
the Appendices the explicit form of the polarization vectors of the v* and
factorization formulae for the semi-inclusive process are presented both in a
frame-independent form and for the Breit frame.

2. Factorization in the inclusive and semi-inclusive
unpolarized lepton—nucleon scattering

2.1. Inclusive process ep — eX (DIS)

We start with a short description of the standard DIS process for unpo-
larized ep collisions (Fig. 1),
ep — eX, (1)
assuming that the one-photon exchange dominates. The corresponding dif-
ferential cross section is denoted by do®?~¢X  and we use the following no-
tation for the kinematical variables: k* (k'#) denotes the four-momentum
of the initial (final) electron, p}, the four-momentum of the initial proton,
g" the four-momentum of the intermediate photon, and Q? = —¢® > 0 is
the photon’s virtuality. We denote by &' (i = Ty, T, L) the two transverse-
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and one longitudinal-polarization vectors of the exchanged virtual photon
~v*. The standard scaling variables are z = Q2/2ppq and y = ppq/ppk.

2

t=0

Fig.1. Kinematics and notation for the process ep — eX with the one-photon
exchange. The optical theorem relation of the squared matrix element for ep — eX
and the imaginary part of the amplitude for ep — ep at t = 0.

It is well known that for the considered process (1) there is a factorization
of the differential cross section onto the lepton and hadron parts and a
separation between the contributions of the longitudinal- and transverse-
polarization states of the intermediate photon [1-6]. So, we have here:

do®P7eX = Ip da%*pﬁx + I3 daz*pﬁx = dor + doy, , (2)
where da%*p =X and daz*p X are the cross sections for the v*p collision with
the virtual photon polarized transversely and longitudinally, respectively.
The functions It and I7, describe the probabilities of the emission, by the
initial electron, of a virtual photon in the transverse- and the longitudinal-
polarization states, respectively.

The above factorization and separation formula can be obtained in vari-
ous ways [1-6]. For example, the cross section for the process ep — eX (see
Fig. 1) can be expressed as a convolution of the lowest order leptonic tensor

LE”(k, q) and the hadronic tensor W) (pp, ¢), both symmetric in the indices
p and v. Namely we have (for k* = &'? = 0, pj = M?)

1
daep—)eX ~ q4 [euu ”rlﬁw ’ (3)
where:

LY (koq) = 2(2KMK — ¢"K” — K'q" + 54°g"), (4)

q“q"\  Ws Ppq Ppq
Wi (pp,q) = Wi <—g“y+q—2) ta2 <p5 - ;;QQ#> <PZ - ;%ff/) - (5)
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The gauge invariance leads to the conditions:
@l =gl =0,  qW)" =q¢W}”=0. (6)

On the other hand, one can express the hadronic tensor in terms of the
polarization states of the exchanged photon. Using the explicit form of
the longitudinal-polarization vector and the completeness relation given in
Appendix A, we obtain

T2 B _ (ppa)* — &*pp W,
Wi = Wi 3 eifer+ (W —Waetep, W= TR,
T=T1

(7)
From the above form of W} (7) one can easily derive formula (2).
Another way of obtaining the considered formula (2) is “the propagator
decomposition method” [26,27]. In this method the cross section for process
(1) is represented in the following form:

X Jap Gvp
doP7eX ~ L2P 2R 2Ry (8)
q q
where 9;—; g{;f represents the propagators of the exchanged photon in the

Feynman gauge. One can decompose two propagators occurring in Eq. (8)
by using the completeness relation (A.3). This leads straightforwardly to
the factorization of the cross section for the considered process and, after
some calculations, to the separation into two parts related to f and ~yp.
This method is especially useful in analysing the semi-inclusive processes?,
which we will discuss below.

2.2. Semi-inclusive process ep — eyX (Compton process)

Let us now consider the semi-inclusive process ep — eaX, assuming
that all particles are unpolarized. Here, in comparison to the DIS process
ep — eX, one additional particle a is produced. In the following we choose as
particular final state a prompt photon (i.e. @ = ), with four-momentum p.

We will study the factorization of the cross section for this process, lim-
iting ourselves to the case in which the v is emitted from the hadronic part
of the diagram only (Fig. 2). Of course, the final photon can be emitted
also from the electron line — a typical bremsstrahlung process also called the
Bethe—Heitler process; a relevance of this contribution is discussed at the
beginning of Section 4.

2 In the case of the semi-inclusive processes, one can also use the first method, but
then the explicit form of the hadronic vertex has to be known (see [3]).
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e (k)

t=20
Fig.2. Kinematics and notation for the semi-inclusive process ep — eyX with
a one-photon exchange. The optical theorem which relates o(ep — eyX) to the
imaginary part of the forward amplitude for the process ep AN ep (t =0) is also
shown.

The differential cross section for the unpolarized process
ep — ey X (9)
can be written as for process (1), namely

R (10)

where the corresponding hadronic tensor T (py, g, p) is introduced (cf. (8)).
Here the hadronic tensor T (p,, ¢, p) depends not only on the four-momenta
of the intermediate photon ¢ and of the proton p,, but also on the four-
momentum of the final photon p. New scaling variables appear here, e.g.
2y = ppp/Ppq. Using “the propagator decomposition method” one can obtain
the factorization formula in which the interference between two different
transverse-, and between the transverse- and the longitudinal-polarization
states of the exchanged photon, denoted by TT and LT (or TL), may appear.
We obtain:

T2
do?> N = N Prdoy PN+ Y Dydr PN (1)
T=T1 4,5=T1,T2;ij
T2
+1do] P 4 3 (Prdrl P 4 P Y) L (12)

T=T1
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Below we will use the following short notation for the groups of contributions
which appear in (11) and (12)3:

dotP—erX = dot + drrr + dot, + dmir . (13)

We see that the cross section (13) for the considered process (9) contains
do, dog, and in addition two interference terms, drpr and dmr (see also [6]).
These four terms are related by the optical theorem (see Fig. 2) to the
corresponding amplitudes:

dov ~ LS (e ] e T#(5,), (14)
T=T1
don. ~ q%uez)uLs”(eL)u] (o)™ ()] (15)
drer ~ = Y (DI LI, (16)
T =112
dnr ~ 22 3 (LI e ()T (6
T=T1,T2

+ 37 UL )] (o) u T ()] ¢ - (17)

T=T1,T>

It is worth noticing that the decomposition of the differential cross sec-
tion do®?¢X into three components: dét = dot + drrr, doy, and dmr,
does not depend on the choice of the reference frame or of the basis for the po-
larization vectors. Note that in the differential cross section do®?~¢"X there
are two independent terms related to the longitudinal-polarization state of
the virtual photon: dot, and dmr.

Obviously the above factorization formula (13) holds for the semi-inclu-
sive process with arbitrary final-state particle a.

3. Azimuthal-angle distribution for ep — ey X

In studies of the process ep — ey X it is useful to consider the azimuthal-
angle (¢) distribution. This angle is defined as the difference between the
azimuthal angle of the final electron (¢.) and that of the final photon v (¢ ):

b= de— Py (18)

3 Although the symbols or and op have appeared already in (2) for other process
(DIS), this should not lead to any confusion, as in the rest of the paper we consider
only the semi-inclusive process (9).
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In the special reference frames in which the momenta of the virtual
photon and of the proton are antiparallel (for example in the Breit frame
or in the 4*p center-of-mass frame) ¢ is the angle between the electron
scattering-plane and the plane defined by the momenta of the exchanged
~v* and the final v (Fig. 3). In such reference frames, the cross section

Fig.3. The azimuthal angle ¢ defined in the Breit frame for the Compton process
ep = ey X.

do®=~e7X [d¢ is linear in cos ¢, cos 2¢, sin ¢ and sin2¢. In the Born approx-
imation the terms containing sin ¢ and sin2¢ vanish as a consequence of a
time-reversal invariance, so the azimuthal-angle distribution reduces to the
following form [28-35] (see also Appendix B):

do.ep%e'yX
d¢

with independent on ¢ coefficients oy, o1 and gs. These coefficients cal-
culated for instance in the Breit frame, are related to the terms dot/d¢,
dop/d¢, drr/dé and drpr/dp, introduced in Sect. 2.2, calculated in the
same reference frame. In the circular-polarization basis, where the polar-
ization vectors correspond to the definite helicity states, the term o9 cos2¢
arises from the interference between two different transverse-polarization
states of the exchanged photon (~ d7pr). The longitudinal-transverse inter-
ference (~ dmr) gives rise to the term oj cos ¢. The oy consists of the sum
of the cross sections with the intermediate photon polarized transversely and
longitudinally (~ (doy, + dor)). Obviously, since o1 and o9 (and og) do not
depend on ¢, the contributions due to the interferences will disappear after
integrating over ¢.

=00 + 01 CoS ¢ + 0208 2¢, (19)
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The interference terms can be extracted in a straightforward way from
the data for the azimuthal-angle distribution do/d¢ in the frames with an-
tiparallel virtual photon’s and proton’s momenta, for example in the Breit
frame.

In other frames, 7.e. in frames in which the momenta of the virtual photon
and proton are not antiparallel, the dependence on the azimuthal angle is
more complicated. Each of the four terms contributing to the differential
cross section (see Eqgs. (13)—(17)) consists of the part that does not depend
on the azimuthal angle. Consequently the interference terms integrated over
a ¢ give non-zero result. This important fact was mentioned in papers [7,8],
where the Higgs boson production via WW or ZZ fusion in e*e™ collisions
has been studied.

4. Numerical results

We perform calculations of the cross sections for the unpolarized Comp-
ton process ep — eyX. We consider the one-photon exchange only; this
approximation is correct for the virtuality of the intermediate photon Q? <
M?Z, while for larger values of Q* the Z/W boson exchange should be in-
cluded. Below we present predictions for HERA for the beam energies equal
to: B, = 27.5 GeV and E, = 920 GeV.

We analyse, at the Born level, the emission of the prompt photon from
the hadronic vertex, i.e. we consider the Compton subprocess: v*q — ~q.
In principle, the Bethe-Heitler (BH) process, where the prompt photons can
be emitted from the electron line and the interference between the Compton
and BH amplitudes, should also be included in the calculation [37-39]. Both
latter contributions dominate the cross section in the electron—proton center-
of-mass frame for the rapidity range of the final photon’s Y < 0, while for
greater rapidities the Compton process dominates [40]. We expect that our
results should be reliable for positive values of the Y in the CMg.

Results presented below were obtained for two frames: the electron—
proton center-of-mass frame (CM,,) and the Breit frame. The transverse
momentum pr of the final photon is defined as perpendicular to the direction
of the electron in the ep collision in the CM,, frame or to the direction of
the v*p collision in the Breit frame.

For the quark density in the proton ¢?(z, QQ) we use the CTEQ5L par-
ton parametrization [36] with a fixed number of flavors: N; = 4. This
parametrization imposes the limit on a range of a hard scale Q2% it has to
be greater than 1 GeV and less than 10* GeV. In our calculations we use as
a hard scale ) the transverse momentum of the final photon pr; effects of
other choices of the hard scale were studied by us, and are briefly discussed
below.
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Fig.4. Various contributions to the differential cross section do/dQ? in the CM,,
frame for the prompt-photon production ((pr)min =1 GeV) at HERA. The contri-
bution due to the transverse-polarization states: dér = dot + drpr (long-dashed
line), the cross section for the longitudinally polarized intermediate photon: doy,
(short-dashed line) and the absolute value of the interference term: |dm,r| (dotted
line), together with the sum of all terms do (solid line), are shown.

First we consider the differential cross section do/dQ? in the CMg,, frame,
integrated over pr from (pr)min = 1 GeV t0 (PT)max = \/S_ep/Q, as a func-
tion of Q?. We consider separately four frame-independent contributions:
dér = dot + drr, doy, and |drr| as a function of Q2. As it is presented
in Fig. 4, the Q? dependence is roughly similar for all contributions. The
differential cross section is dominated by the contribution due to the trans-
versely polarized intermediate photon, i.e. doT = doT + drprr. The doy,
contributes at the few per cent level to the whole cross section, similarly to
the interference term dr;r. Moreover, doy, is positive while dmr negative,
and these two contributions almost cancel one another. The resulting cross
section do/dQ?, even for large values of Q? (~ 100 GeV?), is described with
a high accuracy by the dot term only.

The ratio [doy,/dQ?] / [dor/dQ?] as a function of virtuality Q? for the
CM,, frame and the Breit frame? is presented in Fig. 5. In the CMg,
frame it grows slowly with the virtuality of the intermediate photon up
to Q? ~ (pr)2;,, then this ratio slowly decreases. In the Breit frame the
corresponding growth is much faster, the ratio reaches its maximum at much
larger Q? (10 times (p1)min)- Also the maximum is higher (two times) in the
Breit frame than in the CM,, one. At Q? = 100 GeV? the considered ratio
[dot,/dQ?] / [dor/dQ?] is equal to about 0.02 for the CM,, frame, while it
is about four times larger for the Breit frame.

* The value of pr changes when we are going from the CM.,, frame to the Breit frame.
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Fig.5. The ratio [dor,/dQ?] / [dor/dQ?] for prompt-photon production in the ep

collision at HERA ((pr)min = 1 GeV), as a function of Q?, in the CM,, frame
(solid line) and in the Breit frame (dashed line), is shown.

Figure 6 shows results for the differential cross section do/dY dpt in the
CMg, frame. The pr distribution for a fixed value of the photon rapidity,
Y =0, is shown in Fig. 6 (left), while the Y distribution at pr = 5 GeV is
shown in Fig. 6 (right). We see that these distributions are described with
a very good accuracy by the dor terms only. Contributions dor, and dmr
are small and there is almost a cancellation between them. In other words,
the measurements of such cross sections in the CM,, frame are not sensitive
to the individual contributions involving the longitudinally polarized virtual
photon: doy, and/or dry.

Another interesting and important fact is that, in the CM,, frame the
interference term gives non-vanishing contributions even for the cross sec-
tions integrated over the azimuthal angle (defined by Eq. (18)), as it was
supposed. This can be seen in the azimuthal-angle distribution for the inter-
ference term in this frame (Fig. 7). It is clear that the dm T integrated over ¢
gives a non-vanishing contribution. This is the main difference between the
CM,, frame and the Breit frame (or other frames with antiparallel virtual
photon and proton). In the latter frame the contributions due to the inter-
ference terms disappear in the cross sections integrated over ¢, see below.

Finally, we study the azimuthal-angle distribution of the final photon in
the Breit frame (19). As discussed in Sect. 3, in this frame the coefficients o7,
o9 and o are independent of ¢. They are directly related to the interference
terms drpr/dé, drir/dé and to the sum: dor,/d¢ + dor/dp, respectively.
(For more details see also Appendix B.)
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Fig.6. Various contributions to the do/(dYdpr) in the CM,, frame for high-pr
photon production at HERA ((p1)min = 1 GeV) as a function of (a) pr at Y =0
and (b) Y at pr =5 GeV. Same notation as in Fig. 4.
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Fig.7. The d61t = dot + drrT1, doy, and dr 1 contributions to the high-pr photon
production at HERA. Results for the azimuthal-angle distributions do /(dY dpt d¢)
in the CM,, frame, for Y = 0 and py = 5 GeV.

The numerical calculations for the azimuthal-angle distribution for the
Compton process in the Breit frame are performed for the same kinematical
region in which the charged-hadrons production was measured in the ZEUS
experiment at the HERA collider [41]: 180 GeV? < Q? < 7220 GeV?, 0.2 <
y < 0.8,0.2 < zy < 1.0 and the (p1)min = 2 GeV. Results for the Compton
process are presented in Fig. 8. The contribution related to the interference
between two transverse polarization states of v* (the term proportional to
09 cos 2¢) gives a negligible effect, while the interference between the virtual
photon polarized longitudinally and transversely (the term proportional to
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o1 cos ¢) leads to a visible effect (about 30%). Clearly, both interference
contributions being symmetric under the ¢ — —¢ transformation disappear
after the integration over the ¢ angle over —7 to +.

0.13 T T T 1
0.12
0.11
0.1
0.09

do /d¢ (pb)

0.08
0.07 |- .
0.06 I N B B

¢ (rad.)

Fig.8. The ¢ distributions in the Breit frame (see text) obtained for: 180 GeV? <
Q? < 7220 GeV?, 0.2 < y < 0.8, 0.2 < z, < 1.0 and the (pT)min = 2 GeV, for
ep = ey X at HERA.

Now we compare our results for the prompt-photon production with
those obtained in the ZEUS experiment for the charged hadrons [41]. In the
ZEUS data the term o cos ¢ is clearly seen for all four considered values of
pr cut: (pT)min = 0.5, 1, 1.5 and 2 GeV, while the term o9 cos2¢ gives
a negligible effect for lower values of (p)min, becoming visible for a larger
(pT)min- This is different from the Compton process discussed above, where
the corresponding oy term is very small, even for (pr)min = 2 GeV (see
Fig. 8). This difference arises from the following fact: in the case of the
Compton process ep — ey X, calculated in the Born approximation, there is
only one subprocess v*q — yg that contributes to the cross section. For the
charged-hadrons production there are, at the Born level, two subprocesses,
v*q — gq and v*g — qq. The second process v*g — ¢q dominates in the
02 cos 2¢ term, while the contribution coming from the process v*q¢ — gq
(analogous to our y*q — yq process) dominates in the o; cos ¢ term. There-
fore both contributions can (and are) visible in the azimuthal-angle distri-
bution of the charged-hadrons production, while in our case, based on one
subprocess, the visible effect is expected only in o7 cos ¢.

Finally, let us comment on the dependence of our results on a choice of
the hard scale. Although all the cross sections presented above are computed
for a hard scale equal to pt, one can choose for the considered process

also other scales: e.g. Q? or \/ p?r + Q2. We have checked by an explicit
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calculation that the cross sections obtained when the hard scale is equal
to @ or y/p% + @? are slightly larger (not more than 5%) than the ones

obtained when the hard scale is equal to pr. This difference is not significant
and does not change our main conclusions.

5. Conclusions

In this paper we investigated the importance of the contributions due to
the longitudinal virtual photon in unpolarized, semi-inclusive ep collisions at
HERA. In general there are two such contributions: the cross section for 4 p
collision dotp,, and the interference term drr. As a particular semi-inclusive
process we chose the Compton process, where the prompt photon is emitted
from the hadronic system. For the semi-inclusive process ep — eyX at
HERA energies we analysed three contributions: the cross section doy,, dmr
coming from the interference between the longitudinal- and the transverse-
polarization states of v* and the contribution due to y;: doT = dor +
drrr. The calculations were performed in the Born approximation. In the
ep center-of-mass frame we studied various distributions, the pr and the
rapidity distributions, as well as the Q2 distribution, were the contributions
mentioned simply add up. We found that both dop, and dm 1 are small
and of similar size, below 10% of the cross section. This suggests that the
contribution dor, and the interference terms need be included on the same
footing. Additionally, because of their opposite signs, they almost cancel in
the cross section. This leads to a strong domination of the considered cross
section by a contribution due to transversely polarized virtual photon, even
for large values of its virtuality Q2.

Although our results are based on the Compton process in a Born approx-
imation only, we think that they already shed some light on the importance
of contributions due to 7 in other semi-inclusive processes, like the jet pro-
duction in the DIS events at the HERA collider. It is clear that in order to
reach a final conclusion on the importance of the contributions related to
the v, as advocated in some analysis, further studies are needed, with the
incorporation of the relevant interference terms for consistency.

The studies of the azimuthal-angle dependence of do®?~?X /d¢ in the
Breit frame give access to the interference term drr, as expected. Its effect
is about 30%, showing in this case the importance of the { contributions
in the form of the interference drry, term.

Finally, it is worth noticing that in the CM,,, frame the interference term
gives non-vanishing contributions even for the cross sections integrated over
the azimuthal angle, in contrast to the Breit-frame, where such contribution
vanishes.
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Appendix A

Polarization vectors of v* and factorization formula
for the Compton process

Below we present the polarization vectors of a virtual photon v* (with the
four-momentum ¢*: ¢ < 0) in a form that is independent of the reference
frame for the two types of basis for the polarization vectors: linear and
circular.

A.1 Polarization vectors

The Lorentz condition for the polarization vectors gives rise to the phys-
ical observables

enq’=0. (A1)

Consequently, the scalar-polarization state of the v*, described by the fol-
lowing vector

m
=L (A.2)
—q

does not contribute to the physical observables. We can write the complete-
ness relation as follows:

v T2
—g“"+q‘;‘§ = Y (@) (en)” — (1) (e0)”. (A3)
T=T1

The four polarization vectors of the virtual photon satisfy also the orthonor-
mality relation:

(E:n)u (5n)ﬂ = CmOmn » where (=1, (s=(r=-1. (A.4)
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A.2 Linear polarization

The linear-polarization states are represented by the real polarization
vectors. The longitudinal-polarization vector (¢2 = 1) for the electron—
proton collisions depends on the four-momenta of the virtual photon (¢*)

and proton (ph) or quark (pj = zph), (see also [6]):

no_ A 2H
Moo (pr)q qpp . (A5)

LT V=4 (ppq)

For the semi-inclusive processes we need to construct the two transverse-
polarization vectors (¢ = —1). In order to construct them we have to
introduce the third four-momentum; for the Compton process we use the
momentum of the final photon (p*) and obtain:

—2 (ap)(Ppq) — ¢*(ppp)
po— 2 no_ poy P P A6
€] T (ppp)d" — (Ppq)p o) Pl (A.6)
and
M 2 wap
&y = € QV(pp)ap,B s (A7)
stu

where stu = 4[2(ppq)(ppp)(qp) — ¢*(pyp)?] . This transverse-polarization
vectors satisfy in addition the following equations:

ewpp=0, ep=0 and gapp = 0.

A.8 Circular polarization

Using the above forms of the linear-polarization vectors (Egs. (A.5),
(A.6), (A.7)), one can define the circular-polarization vectors of the ~*,
namely the longitudinal-polarization vector denoted by €5 and the transverse
ones denoted by 6’fr and €”. These vectors correspond to the helicities of
the intermediate photon equal to A = 0,+, and —, respectively. We get

e = ief, (A.8)

el = %(6’{ +igh), (A.9)
and

el = %(6’{ —igh). (A.10)
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A.J Factorization formula for the Compton process

The general factorization formula for the electron—quark scattering with
the photon in the final state has the following form for massless quarks:

dod=eav

6,4 angrs fQy 3
e’ Q,Re [Lm/;TTW] = Q—4q Re ZCU (Le agefa6j> (6§VEfTW) ,
i’j v W
EL,L'J' ETji
(A.11)

where 4,5 denote the polarization states of the virtual photon (i, =
L,T1,T2 for the linear polarization and 7,5 = 0, +, — for the circular polar-
ization), (rr = (T = —1, while in the remaining cases (;; = 1. The tensor
Le (g, k)3 is related to the emission of the virtual photon by the electron,
while the tensor T}, (¢, pq, p) describes the absorption of the virtual photon
by the quark (from proton), with the subsequent production of a prompt
photon.

Two of the contributions to the cross section, dot (14) and drr (16),
depend on the choice of the basis of the polarization states of v*. But the
propagator decomposition method assures that their sum: dér = dor +
drrr, as well as the individual terms doy, (15) and dmpp (17) are the same
in any basis. This fact can also be checked by using the relations between
the linear and circular transverse-polarization vectors (Eqgs. (A.9), (A.10)).

The calculations presented in this paper rely on the lowest order sub-
process 7*q — ~q (the Born approximation). The corresponding partonic
tensor has the following form®:

T (q,pq,P)
P
= —{g"(v* + 5"+ 2¢°) + 2u2¢"q" + ¢" (v — ") + (P —P")0"]

—2s(phiq” + q"ply) + 2¢°[4ppl + 2p"p” + ¢" (2 — ")
+(2p4 — p")q” — 2php” — 2p"pyl}, (A.12)

where s, t, u are the Mandelstam variables for the process v*q¢ — v¢:

s=(q+pg)°, t=(qa—-py)°>, u=(pg—py)°. (A.13)

® The leptonic tensor L. ., (q, k) is given by Eq. (4).

5 The tensor for the process: ey* — ey at the Born level with massive fermions was
calculated in [42]. The hadronic tensor T#” obtained by us is in agreement with this
tensor for the massless fermions.
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Appendix B
The Breit frame

B.1 Kinematical variables

The special reference frame, called the Breit frame (see also [31]), is
defined by choosing the momenta of the exchanged photon and the electrons
in the following form:

¢ = /Q*(0,0,0,1), —¢*=Q% (B.1)
k* = %\/@(coshl/),sinhl/)cos be,sinhpsinge, 1), k2 =0; (B.2)

1
k' = EN/QQ(COS}M/), sinh 4 cos ¢e, sinh 1 sin ¢, —1), k'2=10. (B.3)

@e is the azimuthal angle of the scattered electron. The hyperbolic functions
of the angle ¢ are related to the variables y = ¢p,/kp, as follows:

cosh¢:$(2—y), sinhq/;z%dl—y. (B.4)

The momenta of the initial proton (p}), the initial quark (p§) and the final
photon (p*) are given by:

pl; = (Epa Oa Oa _Ep) 3 pg = iﬁpg (B5)
and . p
COS
"= — i Sckal I B.6
b br <SiIl 0’7 , COS QS’W sin ¢’77 sin 07 ) ( )

where E), is the energy of the initial proton’, z the Bjorken scaling variable,
pr the transverse momentum of the prompt photon (perpendicular to the
momenta of the initial proton), ¢~ the azimuthal angle of the v and 6, —
the polar angle of the final photon.

B.2 Polarization vectors of the v* in the Breit frame

The longitudinal polarization vector in the Breit frame has a very simple
form:

e =—iey=(1,0,0,0). (B.8)

" This is limited by the energy of the initial electron and S., in the ep centre-of-mass
frame:

Sep = (k+pp)”. (B.7)
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The transverse-polarization vectors also simplified in this frame, but they
still depend on a choice of the basis. For the linear polarization we obtain:

el = (0,cos8 ¢y, sing,,0), (B.9)
eh = (0,—sing,, cosg,,0). (B.10)
while for the circular polarization we have:
1
V2
e = —(0,cos ¢y +ising,, sing, —icosg,,0). (B.12)

(0,cos ¢, —ising,, sing, +icos¢,,0), (B.11)

|
S

B.3 Factorization formula

From the momenta and polarization vectors defined above one can obtain
the explicit form of the coefficients L;; and T;; (defined in Eq. (A.11)). They
can be treated as the elements of the matrices L and T, respectively (the
ordering of the rows and columns is T'1, L, T'2 for the linear-polarization basis
and +, 0, — for the circular-polarization basis). These matrices calculated in
the Born approximation (in the Breit frame) depend on the base considered:

e Linear polarization

2sinh? ¢ cos® p +2 —sinh 2¢) cos ¢ sinh? ¢ sin 2¢

2
L= Q— — sinh 2¢) cos ¢ 2sinh? ¢ —sinh2¢sin¢
sinh? 4 sin 2¢ —sinh2¢sing  2sinh? ) sin? ¢ + 2
(B.13)
and
([ U- 4p —4prE 0
T=2"| —4prF U-4F>+E) 0 ; (B.14)
s 0 0 ~U

e Circular polarization

cosh? ¢ + 1 — 5 sinh 2y e ' ginh? ¢ e ¢

L= ﬁ sinh 2¢ e'® 2sinh? ¢ ﬁ sinh 2¢) e~
sinh? ¢ e%¢ — \% sinh 2¢ e'® cosh? ¢ + 1
(B.15)
and
o [ U=t —i2VIprk —2%
T=2"- i2V2prE U —4(E?+ E2) i2v/2prE |, (B.16)

—2p% —i2V2prE —U - 2p%
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where B = By~ E, (B, = 0By, By = £5-), U = £ 2t and ¢ = g — by,

B.J The azimuthal-angle distribution

In both bases the azimuthal-angle distribution for the Compton process
(in the Born approximation) depends only on cos ¢ and cos 2¢, namely:

doca—=eqy
d¢

It is only for the circular-polarization basis that the coefficients oy,
(¢ =0,1,2) in formula (B.17) are strictly related to the corresponding four
contributions dor, dot,, drt and drpr, calculated in the Breit frame:

= 0¢ + 01 CO8 ¢ + 09 cOs 2¢ . (B.17)

dor doy, 1 . ~
oy = b + 7 —ALE[(cosh2 ¢ +1) ph + 2sinh? [E? + Eg] + U],
(B.18)
drip 8 . -
o1C08¢ = ~ — sinh 2yprE cos ¢, (B.19)
d¢ SU
d —4
09€082¢ = ;;T ~ sinh? ¢p% cos 2¢. (B.20)

The longitudinal-transverse interference does not depend on the choice
of the basis for the polarizaton vectors and consequently, it is related to the
cos ¢ term also for the linear-polarization vectors.
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