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1. Introduction

Recently, we have proposed to measure the coincidence probabilities in
the multiparticle systems produced in high-energy processes in order to ob-
tain an information about the entropy created in the collision [1]. The
coincidence probability of order [ is defined as [1-3]

C EEZZ:MHV, (1)

where p; is the probability for the system to be in the state ¢ and the sum runs
over all states of the system. For integer [, this quantity can be measured
simply by counting the number (N;) of I-plets of the identical events observed
in a given process. Then

N

Cl:N(N—l)...(N—lJrl)’

(2)

where N is the total number of events in the sample (the denominator in
(2) represents the total number of [-plets of observed events).
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Cy’s are simply related to Renyi entropies [3]

_log G

H =
! -1

(3)

from which, in turn, one may obtain the standard Shannon entropy by ex-
trapolation to [ = 1:

S = lim Hj . (4)

=1

It is thus clear that the suggested measurements touch the very funda-
mental properties of the system.

As we have already remarked several times [1], the difficulty in perform-
ing a measurement of the coincidence probabilities is the continuous distri-
bution of the particle momenta observed in the high-energy experiments.
Due to this property of the spectra, the coincidence measurement, if taken
literally, is not possible. Therefore some discretization procedure, i.e., a
division of the available phase-space into finite size momentum intervals, is
necessary.

It should be realized that such a discretization procedure affects — in
an important way — the expected results of the coincidence measurements.
Clearly, the larger are the chosen intervals, the less fluctuations can be ob-
served and thus larger coincidence probabilities are expected.

The purpose of the present paper is to discuss how actually the dis-
cretization procedure affects the coincidence measurements and how these
measurements should be interpreted. To this end we consider in detail the
case of ideal gas in equilibrium. The general formulae for Renyi entropies
are derived and the limits of very small and very large intervals are quanti-
tatively analyzed.

2. Ideal gas: formulation of the problem

Consider a particle momentum interval A, centered at pg,pg,pg and of
size given by the inequalities

|px—pg| <Ay, |py_p:2| SAya |pz—pg| <A,. (5)

The fluctuations attached to this bin are given by the multiplicity distribu-
tion of particles which happen to fall into A. Denoting the probability to
find n particles in A by P(n) we have

Ci(4) =) [P(n)]'. (6)
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If M bins are considered, the corresponding coincidence probability is cal-
culated from the formula

Ci(Ay,...Ax) = Y [P(na,...nm)]", (7)

N1y

1.e. we have to know the joint particle distribution in all M bins.
In case of the ideal gas, there are no correlations between bins, thus

M
m=1
so that we have
M M
Ci(Ar,...Ax) = Y J[[Pu(na)) = [][Co(Am)] (9)
n1,...,nr m=1 m=1

from which it follows that the Renyi entropies (given by (3)) obey the addi-
tivity constraint and thus it is enough to consider one single bin.

We see from these formulae that the coincidence probabilities are deter-
mined from the multiplicity distribution in the selected bin A. This multi-
plicity distribution depends on the particle energy levels which are contained
in A.

Let us denote by e; the energy levels accessible to one particle. In the
ideal gas at equilibrium, the probability to find s; particles on the level 7 is
given by

pi(si) = (1 —ui)uj’ (10)
for bosons and
u’
(o)) — i 11
pz(sz) 1+ ( )
for fermions, where
u; = e Plei—h) (12)

For bosons s; = 0,1, 2,..., for fermions s; = 0, 1, p is the chemical potential.
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Consider now the interval A given by (5). One has to consider two cases.

(i) Large bins. Suppose that the interval is large enough to contain a
number [ of energy levels e;. Then the probability of finding precisely
n particle in this bin is

1
Pin)= > [lnriso, (13)

s1+...57=ni=1

where the product runs over all “elementary” cells which are inside the
bin A.

(i) Small bins. If the interval is so small that its size is smaller than the
distance Ay between the energy levels, the probability to find n bosons

in it is
> k!
Pn) = 3 pilh) s (1= )"
k=0
= (1 —wu) Z n‘(kki n)'v”(l — )kl
= (- w) )" S P
= 9!
= (1 =) (vuy)" [1 = (1 = v)u] "D
1—uy VU; "
T 11— <1—(1—v)ui> ’ (14)
where
U:AAO’ (n):vlgzuz_ (15)
For fermions we obtain
P(O):1—v1jui, P) = vt ()= P(). (16)

Note that for non-interacting particles in a box, the distance between the
energy levels, Ay, is (in each dimension) given by
27

Ay = 2.
S

Therefore, the size of the interval A below which the Egs. (14) and (16) are
applicable depends on the size of the system in the configuration space.

(17)
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3. Coincidence probabilities in small intervals

In this case the calculation is fairly simple. Using (14) we obtain for

bosons
c — 1—uy li VU; ln
P\ (1= o)y B (1 —v)y,

B (1 — u;)t
= (1= v)u) — (vu)!
_ 1
(14 2) - ()
1

(T (M) = (n(A))

where (n(A)) is the average multiplicity in the bin A.
Using (16) we have for fermions

= (112 ) o () = - @) + s 9

1+ui

It is interesting to consider the limit when the bin is split into many
(M — o0) pieces of equal size. Using (9) we thus obtain

A n(A
A=t (n(ay) =2 (20)
and thus the Renyi entropy calculated for all M bins tends to a finite value
l
Hi(A)v—oo — l——1<n(A)> : (21)

This result is a manifestation of the “empty bin effect”. It depends only
on the assumption that there are no correlations between particles. We
see that in this limit one does not obtain any useful information about the
system, as everything is determined by the average multiplicity. It is also
seen that the extrapolation to [ = 1 does not make sense in this limit.

4. Multiplicity distribution and coincidence probabilities
in large intervals

To evaluate the multiplicity distribution of (13), which is necessary for
estimate of Cy, as is seen from (6), we employ the technique of the generating
function. Denoting

F(z)=) P(n)z" (22)
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we have

F(z) =[] #i(2). (23)
i
where ¢;(z) is the generating function of the distribution (13)
$i(2) =Y pilsi)z" . (24)
8i

Using (10) and (11) we obtain

1 —
#i(2) = (i) = T (25)
for bosons and
1 i
5i(2) = Bl ) = T (26)

for fermions.
In order to transform the product in (23) into a sum, we take the loga-
rithm:

3 3$
log F(2) = 1(2) = Y logloi(2)] ~ [ G logloz.]. @0
: A

where
u=u(p) = exp [~B(V/p? +m? - )] (28)

and where in the second equality of (27) we have explicitely used the as-
sumption that the interval A is large enough to contain many energy levels.
If this number is not very large, one has to keep the first equality of (27),
1.e. use explicitely the sum over the energy levels.

Using (24) and (25) we obtain

flz) = bpz", (29)
k

where

o.¢]

MU

bo=—Y be, b= kk (30)
k=1
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for bosons and

(o)
by = —Zbk,
k=1

b, = _% (31)

for fermions, with

Ze VrZEm? oy gy (32)

The sum runs over all energy levels contained in the interval A. In the limit
of large bins we have

V — 24m
Uy, = 2y / dpe FAVPPM? (33)
A

The average multiplicity in the bin A equals dF'(z)/dz|,—;. This implies

— i Kby, . (34)
k=1

We thus see that everything can be expressed by the expansion coefficients
by, and the average multiplicity (n). Unfortunately, the sums (integrals) (32)
and (33) cannot be easily evaluated, in general.

To obtain the multiplicity distribution we have to expand

=> P(n)z". (35)

This can be done as follows:
Consider the function

K
2) = exp [Z zkbk] . (36)
k=0

This function approaches F'(z) when K — oo.
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It is possible to develop Fk(z). We obtain

00 1 K M
F(z) = ) 35 [szbk]
M=0""" Lk=0

o

1 M M M
- ZMZ S Sk ka At 4 kg — M)

M=0""" ko=0k1=0 kr=0

M1 (bo)ko(zby e ... (2K bye)Fx
kolkn!. . kx!

(o¢] (o¢] o.¢] o.¢]
ko=0k1=0 k2=0 kx=0

(bo)ko (bl)kl (b2)k2 e (bK)kK Zk1+2k2+...+KkK
kolkilko! ... kx!

- Z Pg(n)2", (37)
n=0

where

o0 o0 o0
n) = e 3" 0k + 2k + ...+ Kk —n)

k1=0k2=0 kx=0
(b)* (bo)*2 ... (b )*x

kilko! .. kg! (38)
Actually, the sums in (38) are, for fixed n, limited:
SN0 6k 2k + ...+ Kk —n)

k1=0ko=0 k=0
[n/K] [(n=Kkg)/(K=1)]  n—2ky—..—Kkg
=y > > S(ki +2ky + ...+ Kkg —n), (39)
kr=0 kr—1=0 k1=0

where [...] denotes the integer part of the expression inside the brackets.

One also sees that only K < n contributes at a given n. Therefore, in
the limit K — oo we have
[n/K] [(n—Kkr)/(K-1)]  n—2ko—...—Kky
> 5(ky 4 2ko + ... + Kkg —n)
k=0 krx_1=0 k1=0
1 [(n—nkyp)/(n—1)] n—2ks—...—nknp

=Y > o> Okt +2ka + ..+ nk, — n) (40)

kn=0 kn—1=0 k1=0
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and thus finally

1 [(n—nkyn)/(n—1)] n—2ko—...—nkn
p(n):eboz Z S(k1 +2kg + ...+ nk, —n)
kn=0  kp_1=0 k1=0
(b1)F1(b2)*2 ... (bp)* (41)
kilko!. .. kp! )

These formulae complete the evaluation of the multiplicity distribution. Us-
ing (6) we find for the coincidence probabilities

Cr=e" T Su(s), (42)
s=1

where

& Ik
Si(s) = ((b];))l . (43)

k=1

Note that for [ = 2 we have

SQ(S) = I()(Qbs) . (44)

5. Asymptotic limit of large density

The formulae of the previous section are useful as long as (n) is not too
large. For large (n) the asymptotic formulae may be more appropriate and
one can thus try to calculate the expansion coefficients directly using the
Cauchy integral formula

P(n) = =F™(2)|,—0 = — dz . (45)

This integral is best calculated along a circle of radius r:

~ 1 A o .
P(n) = eabo o /dq§ exp [—rmqs —nlogr+a Z bkeZk¢] . (46)
k=1

—T

To apply the saddle-point method, we denote

by =aby, — (n)=a_ kby (47)
k
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with a — o0 and lA)k finite. The saddle-point method gives:

h(¢) = —ing —nlogr +a Z brei*?

k=1
s ~ .
W(¢) = —in+iay  kbprFe*?,
k=1
h"(¢) = —aZkQI;krkeik¢. (48)
k=1
The condition h'(¢) = 0 implies
s A~ .
a Z kbprkei*® = n (49)

k=1

and thus we obtain ¢9 = 0, and r must be a solution of the equation
(o¢]
a Z kbt =n. (50)
k=1
From (48) we deduce that the second derivative at ¢ = 0 is
(o¢]
K'(0) = —a ) Kber®, (51)
k=1
and thus the saddle point method gives

b 1 2 1 1 o ik
Pln) = et el | s = Tt (s2)
\/2770& S opoy k2bgrk

The condition (50) can be rewritten as

a

Zkf}krk:ac, =", (53)
k=1

From which it follows that r is a function of z. And the expression (52)
becomes

i Nz 1 N —
P(n) = o —exp | — kIt . 54
(n) Joen S R p L kz_l / ] (54)
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The check of this procedure is to verify if > P(n) = 1.
We thus write

iea‘ Z?:l Ekrk

~ F 1
g P(n) ~ e \/_i/dx . —
n 2 0\ ks KPbert '

with the condition

(o0} n r o0
> kbt = —=z 5 ?Zkakrk =1
k=1 k=1

We use the saddle point method:

o
ZP(n) ~ eabo va /dx ! = e9(®)
. V2T S K2k

with
o
g(z) = —axlogr—i—aZbkrk,
k=1
/ r' r' o i k
= —alogr —azx— +a— ) kbr® =—al
g (x) alogr axr+arkz_1 KT alogr,

where in the last step we have used (56). The condition ¢’ = 0 gives

(o)
alogr =0 — ro=r(rg) =1 — 9= Zki’k
k=1
Furthermore
r! 1

”.’L‘:—a——>”.’L‘ = —O0———F.
') = 0 o ) = o

Consequently the saddle point value of the integral (55) is

€

va \/2m SO 2Dy,

00 27,
abo V 27 2 k=1 K2 va 0@ 0 b — qaboga X7 by — g

3373

(55)

(56)

(57)

(58)
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Since this procedure does work, we are encouraged to calculate the Renyi
entropies. First, coincidence coefficients:

P a dx 1 o ik
Cl = Z[P(n)]l = elabo (27ra)l/2 / N 1/2 palz ealezl b : (62)
" (352 Kbt

The saddle point method can be used in a similar way as before. The
result is
(2 302, k2by,) /2 a
@ (2ra X, k)2
1

" (ara s, ko)

C =

/2

and thus

_ llogl 1 S
Hl = 21_1+210g<27'rakz_1k bk>

11 1 > k2
= 3 ogl 11 (%@)L’“) . (64)

-1 2 zozlkbk

This is actually a general formula for any ideal gas. For the photon gas we
obtain

H = % llo_gll + %log <2w<n)@> . (65)

The extrapolation to [ =1 gives

H=5= % [1 +log <2W(n)%>] , (66)

which is to be compared with standard expression S = (n){(4)/¢(3) (see
the last position of Ref. [1]). Remember that this last expression is obtained
when A — oo and fluctuations occur on the scale of “elementary” cells.

The most important conclusion from this analysis is that the Renyi en-
tropies obtained from these measurements depend only logarithmically on
the number of particles.
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6. Comparison with exact formulae from statistical physics

It is interesting to confront our results with those obtained in standard
statistical physics approach. We only consider the case of Bose gas.
The [-th Renyi entropy of the Bose gas is

l

1
H = 1_l20g 1 (67)

U

with u; given by (12). Furthermore, the average number of particles can be
expressed as

(n)y =3 . (68)

1—
i 7

In the limit of very small interval A the sum in (67) and (68) reduce to
one single term and thus the elimination of u from C; = (1 — u)!/(1 — u!)
and (n) = u/(1 — u) leads immediately to Eq. (18).

In the case of a large interval A, the result is, however, markedly differ-
ent. The reason is that the statistical physics calculation takes into account
all fluctuations which may occur in the system, whereas the coincidence
measurements ignore fluctuations on the scale smaller than A. This can
be directly demonstrated using Egs. (67) and (68). Changing sums into
integrals we obtain

v s u(p) _ -
(n(4) = oz [ Er 2 =3 (69)

and
1 Vv U !
) = Ty | ron Ty
A
1V —u(p)’ | o= u(p)t
= f(zw)S/Adgp[_lkz_:l k +kz_1 2
l o0
- el (70)

One sees that this formula is very different from those obtained in Section 4.
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The case of the photon gas can be discussed explicitely. Then we have
u =0 and thus

A
V _ 14 —
0

212k
A
v _ kd)?
= o [l—e hd <1+kd+ %)] : (71)
where d = AB. Using this we obtain from (70)
d2
(1) = = [<O) — (@)~ dn(d) + Frog (1-e)] .
and
l V 1
H = e [G(d) — l—4G(ld)] (73)
with
72 o0 e—kz
G(r) = () — gula) — 2a(x) ~ Sgnle). gpl0) =3 S ()
k=1

The limit of high average number of particles, (n), can be achieved either
by taking a large volume V' or by taking the high temperature (6 — 0). In
the limit V' — oo and fixed temperature one obtains the standard thermo-
dynamical expressions.

To obtain a relation between H; and (n) in the high temperature limit
(AB — 0) from (72) and (73) is however very tricky. It is much simpler to
deal directly with the integrals (69) and (70). Indeed, the leading term for
(n(A)) (remember that also Ap < 1) is

R4 5 e PP Y 1V 1 )
0d) = s [ o ~ g [ A = g AA) (79

A 0
and for H;(A)

A

1V 1—e B v 1 I

H(4) = [amog G Tl o )
A 0
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But, in this limit, we also have —log 8A > 1/3. Thus from (75) and (76)
we get

oL (77)

()~ G

and

H(4) ~ 7 Llo_gi log <(2w)2@)] , (78)

where o = V A3. This limiting formula is different from the one obtained for
high density of photons with coincidences calculated for the large interval A
(65). So, the fluctuations on a scale much smaller than A — as is the case
in the standard statistical physics — do introduce important corrections.

7. Conclusions

We have given several examples of how a discretization procedure affects
the coincidence measurements performed for ideal gases.

We find that — as expected — the larger are the intervals of discretiza-
tion the less fluctuations can be observed, which result in larger coincidence
probabilities.
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for Polish Science NP 1/99 and by the Polish State Committee for Scientific
Research (KBN) Grant No 2 P03 B 09322.
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