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RENYI ENTROPY OF THE IDEAL GAS IN FINITEMOMENTUM INTERVALSA. Bialasa;by and W. CzyzaaM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandbH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Poland(Re
eived May 19, 2003)Dedi
ated to Jan Kwie
i«ski in honour of his 65th birthdayCoin
iden
e probabilities of multiparti
le events, as measured in �nitemomentum intervals for Bose and Fermi ideal gas, are 
al
ulated and 
om-pared with the exa
t expressions given in statisti
al physi
s.PACS numbers: 13.85.Hd, 65.40.Gr1. Introdu
tionRe
ently, we have proposed to measure the 
oin
iden
e probabilities inthe multiparti
le systems produ
ed in high-energy pro
esses in order to ob-tain an information about the entropy 
reated in the 
ollision [1℄. The
oin
iden
e probability of order l is de�ned as [1�3℄Cl �Xi [pi℄l ; (1)where pi is the probability for the system to be in the state i and the sum runsover all states of the system. For integer l, this quantity 
an be measuredsimply by 
ounting the number (Nl) of l-plets of the identi
al events observedin a given pro
ess. ThenCl = NlN(N � 1) : : : (N � l + 1) ; (2)where N is the total number of events in the sample (the denominator in(2) represents the total number of l-plets of observed events).y e-mail: bialas�th.if.uj.edu.pl (3363)



3364 A. Bialas, W. CzyzCl's are simply related to Renyi entropies [3℄Hl = � logCll � 1 (3)from whi
h, in turn, one may obtain the standard Shannon entropy by ex-trapolation to l = 1: S = liml!1Hl : (4)It is thus 
lear that the suggested measurements tou
h the very funda-mental properties of the system.As we have already remarked several times [1℄, the di�
ulty in perform-ing a measurement of the 
oin
iden
e probabilities is the 
ontinuous distri-bution of the parti
le momenta observed in the high-energy experiments.Due to this property of the spe
tra, the 
oin
iden
e measurement, if takenliterally, is not possible. Therefore some dis
retization pro
edure, i.e., adivision of the available phase-spa
e into �nite size momentum intervals, isne
essary.It should be realized that su
h a dis
retization pro
edure a�e
ts � inan important way � the expe
ted results of the 
oin
iden
e measurements.Clearly, the larger are the 
hosen intervals, the less �u
tuations 
an be ob-served and thus larger 
oin
iden
e probabilities are expe
ted.The purpose of the present paper is to dis
uss how a
tually the dis-
retization pro
edure a�e
ts the 
oin
iden
e measurements and how thesemeasurements should be interpreted. To this end we 
onsider in detail the
ase of ideal gas in equilibrium. The general formulae for Renyi entropiesare derived and the limits of very small and very large intervals are quanti-tatively analyzed.2. Ideal gas: formulation of the problemConsider a parti
le momentum interval �, 
entered at p0x; p0y; p0z and ofsize given by the inequalitiesjpx � p0xj � �x ; jpy � p0yj � �y ; jpz � p0zj � �z : (5)The �u
tuations atta
hed to this bin are given by the multipli
ity distribu-tion of parti
les whi
h happen to fall into �. Denoting the probability to�nd n parti
les in � by P (n) we haveCl(�) =Xn [P (n)℄l : (6)
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onsidered, the 
orresponding 
oin
iden
e probability is 
al-
ulated from the formulaCl(�1; : : :�M ) = Xn1;:::;nM [P (n1; : : : nM)℄l ; (7)i.e. we have to know the joint parti
le distribution in all M bins.In 
ase of the ideal gas, there are no 
orrelations between bins, thusP (n1; : : : nM ) = MYm=1Pm(nm) ; (8)so that we haveCl(�1; : : :�M ) = Xn1;:::;nM MYm=1[Pm(nm)℄l = MYm=1[Cl(�m)℄ (9)from whi
h it follows that the Renyi entropies (given by (3)) obey the addi-tivity 
onstraint and thus it is enough to 
onsider one single bin.We see from these formulae that the 
oin
iden
e probabilities are deter-mined from the multipli
ity distribution in the sele
ted bin �. This multi-pli
ity distribution depends on the parti
le energy levels whi
h are 
ontainedin �.Let us denote by ei the energy levels a

essible to one parti
le. In theideal gas at equilibrium, the probability to �nd si parti
les on the level i isgiven by pi(si) = (1� ui)usii (10)for bosons and pi(si) = usii1 + ui (11)for fermions, where ui = e��(ei��) : (12)For bosons si = 0; 1; 2; : : :, for fermions si = 0; 1, � is the 
hemi
al potential.



3366 A. Bialas, W. CzyzConsider now the interval � given by (5). One has to 
onsider two 
ases.(i) Large bins. Suppose that the interval is large enough to 
ontain anumber I of energy levels ei. Then the probability of �nding pre
iselyn parti
le in this bin isP (n) = Xs1+:::sI=n IYi=1 pi(si) ; (13)where the produ
t runs over all �elementary� 
ells whi
h are inside thebin �.(ii) Small bins. If the interval is so small that its size is smaller than thedistan
e �0 between the energy levels, the probability to �nd n bosonsin it is P (n) = 1Xk=0 pi(k) k!n!(k � n)!vn(1� v)k�n= (1� ui) 1Xk=n k!n!(k � n)!vn(1� v)k�nuki= (1� ui) (vui)n 1Xj=0 (n+ j)!n!j! [(1 � v)ui℄j= (1� ui) (vui)n [1� (1� v)ui℄�(n+1)= 1� ui1� (1� v)ui � vui1� (1� v)ui�n ; (14)where v = ��0 ; hni = v ui1� ui : (15)For fermions we obtainP (0) = 1� v 11 + ui ; P (1) = v ui1 + ui ; hni = P (1) : (16)Note that for non-intera
ting parti
les in a box, the distan
e between theenergy levels, �0, is (in ea
h dimension) given by�0 = 2�L : (17)Therefore, the size of the interval � below whi
h the Eqs. (14) and (16) areappli
able depends on the size of the system in the 
on�guration spa
e.
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iden
e probabilities in small intervalsIn this 
ase the 
al
ulation is fairly simple. Using (14) we obtain forbosons Cl = � 1� ui1� (1� v)ui�l 1Xn=0� vui1� (1� v)ui�l n= (1� ui)l[1� (1� v)ui℄l � (vu)l= 1�1 + vui1�ui�l � � vui1�ui�l= 1(1 + hn(�)i)l � hn(�)il ; (18)where hn(�)i is the average multipli
ity in the bin �.Using (16) we have for fermionsCl = �1� vui1 + ui�l +� vui1 + ui�l = (1� hn(�)i)l + hn(�)il : (19)It is interesting to 
onsider the limit when the bin is split into many(M !1) pie
es of equal size. Using (9) we thus obtain�M � �M ; hn(�M )i = hn(�)iM (20)and thus the Renyi entropy 
al
ulated for all M bins tends to a �nite valueHl(�)M!1 ! ll � 1hn(�)i : (21)This result is a manifestation of the �empty bin e�e
t�. It depends onlyon the assumption that there are no 
orrelations between parti
les. Wesee that in this limit one does not obtain any useful information about thesystem, as everything is determined by the average multipli
ity. It is alsoseen that the extrapolation to l = 1 does not make sense in this limit.4. Multipli
ity distribution and 
oin
iden
e probabilitiesin large intervalsTo evaluate the multipli
ity distribution of (13), whi
h is ne
essary forestimate of Cl, as is seen from (6), we employ the te
hnique of the generatingfun
tion. Denoting F (z) �Xn P (n)zn (22)



3368 A. Bialas, W. Czyzwe have F (z) =Yi �i(z) ; (23)where �i(z) is the generating fun
tion of the distribution (13)�i(z) =Xsi pi(si)zsi : (24)Using (10) and (11) we obtain�i(z) = �(z; ui) = 1� ui1� zui (25)for bosons and �i(z) = �(z; ui) = 1 + zui1 + ui (26)for fermions.In order to transform the produ
t in (23) into a sum, we take the loga-rithm: logF (z) � f(z) =Xi log[�i(z)℄ ! Z� d3pd3x(2�)3 log[�(z; u)℄ ; (27)where u = u(p) = exp h��(pp2 +m2 � �)i (28)and where in the se
ond equality of (27) we have expli
itely used the as-sumption that the interval � is large enough to 
ontain many energy levels.If this number is not very large, one has to keep the �rst equality of (27),i.e. use expli
itely the sum over the energy levels.Using (24) and (25) we obtainf(z) =Xk bkzk ; (29)where b0 = � 1Xk=1 bk ; bk = �kUkk (30)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3369for bosons and b0 = � 1Xk=1 bk ;bk = �(��)kUkk (31)for fermions, with Uk =Xi e�k�ppi2+m2 ; � = �� : (32)The sum runs over all energy levels 
ontained in the interval �. In the limitof large bins we haveUk = V(2�)3 Z� d3pe�k�pp2+m2 : (33)The average multipli
ity in the bin � equals dF (z)=dzjz=1. This implieshni = 1Xk=1 kbk : (34)We thus see that everything 
an be expressed by the expansion 
oe�
ientsbk and the average multipli
ity hni. Unfortunately, the sums (integrals) (32)and (33) 
annot be easily evaluated, in general.To obtain the multipli
ity distribution we have to expandF (z) = ef(z) =Xn P (n)zn : (35)This 
an be done as follows:Consider the fun
tionFK(z) � exp" KXk=0 zkbk# : (36)This fun
tion approa
hes F (z) when K ! 1.



3370 A. Bialas, W. CzyzIt is possible to develop FK(z). We obtainFK(z) = 1XM=0 1M ! " KXk=0 zkbk#M= 1XM=0 1M ! MXk0=0 MXk1=0 : : : MXkK=0 Æ(k1 + k2 + : : :+ kK �M)�M !(b0)k0(zb1)k1 : : : (zKbK)kKk0!k1! : : : kK != 1Xk0=0 1Xk1=0 1Xk2=0 : : : 1XkK=0�(b0)k0(b1)k1(b2)k2 : : : (bK)kKk0!k1!k2! : : : kK ! zk1+2k2+:::+KkK= 1Xn=0PK(n)zn ; (37)where PK(n) = eb0 1Xk1=0 1Xk2=0 : : : 1XkK=0 Æ(k1 + 2k2 + : : :+KkK � n)�(b1)k1(b2)k2 : : : (bK)kKk1!k2! : : : kK ! : (38)A
tually, the sums in (38) are, for �xed n, limited:1Xk1=0 1Xk2=0 : : : 1XkK=0 Æ(k1 + 2k2 + : : :+KkK � n)= [n=K℄XkK=0 [(n�KkK)=(K�1)℄XkK�1=0 : : : n�2k2�:::�KkKXk1=0 Æ(k1 + 2k2 + : : : +KkK � n); (39)where [: : :℄ denotes the integer part of the expression inside the bra
kets.One also sees that only K � n 
ontributes at a given n. Therefore, inthe limit K ! 1 we have[n=K℄XkK=0 [(n�KkK)=(K�1)℄XkK�1=0 : : : n�2k2�:::�KkNXk1=0 Æ(k1 + 2k2 + : : :+KkK � n)= 1Xkn=0 [(n�nkn)=(n�1)℄Xkn�1=0 : : : n�2k2�:::�nknXk1=0 Æ(k1 + 2k2 + : : :+ nkn � n) (40)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3371and thus �nallyP (n) = eb0 1Xkn=0 [(n�nkn)=(n�1)℄Xkn�1=0 : : : n�2k2�:::�nknXk1=0 Æ(k1 + 2k2 + : : :+ nkn � n)�(b1)k1(b2)k2 : : : (bn)knk1!k2! : : : kn! : (41)These formulae 
omplete the evaluation of the multipli
ity distribution. Us-ing (6) we �nd for the 
oin
iden
e probabilitiesCl = eb0l 1Ys=1Sl(s) ; (42)where Sl(s) = 1Xk=1 (bs)lk(k!)l : (43)Note that for l = 2 we have S2(s) = I0(2bs) : (44)5. Asymptoti
 limit of large densityThe formulae of the previous se
tion are useful as long as hni is not toolarge. For large hni the asymptoti
 formulae may be more appropriate andone 
an thus try to 
al
ulate the expansion 
oe�
ients dire
tly using theCau
hy integral formulaP (n) = 1n!F (n)(z)jz=0 = 12�i I� F (z)zn+1 dz : (45)This integral is best 
al
ulated along a 
ir
le of radius r:P (n) = eab̂0 12� �Z�� d� exp "�in�� n log r + a 1Xk=1 bkeik�# : (46)To apply the saddle-point method, we denotebk = ab̂k ! hni = aXk kb̂k (47)



3372 A. Bialas, W. Czyzwith a ! 1 and b̂k �nite. The saddle-point method gives:h(�) = �in�� n log r + a 1Xk=1 b̂krkeik� ;h0(�) = �in+ ia 1Xk=1 kb̂krkeik� ;h00(�) = �a 1Xk=1 k2b̂krkeik� : (48)The 
ondition h0(�) = 0 impliesa 1Xk=1 kb̂krkeik� = n ; (49)and thus we obtain �0 = 0, and r must be a solution of the equationa 1Xk=1 kb̂krk = n : (50)From (48) we dedu
e that the se
ond derivative at � = 0 ish00(0) = �a 1Xk=1 k2b̂krk ; (51)and thus the saddle point method givesP (n) = eab̂0 12� eh(0)s 2��h00(0) = 1q2�aP1k=1 k2b̂krk 1rn eaP1k=1 b̂krk : (52)The 
ondition (50) 
an be rewritten as1Xk=1 kb̂krk = x ; x = na : (53)From whi
h it follows that r is a fun
tion of x. And the expression (52)be
omes P (n) = eab̂0 pxp2�nP1k=1 rk=k2 1rn exp"nx 1Xk=1 rk=k4# : (54)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3373The 
he
k of this pro
edure is to verify if PP (n) = 1.We thus writeXn P (n) � eab̂0 pap2� 1Z0 dx 1qP1k=1 k2b̂krk 1rax eaP1k=1 b̂krk (55)with the 
ondition1Xk=1 kb̂krk = na � x ! r0r 1Xk=1 k2b̂krk = 1 : (56)We use the saddle point method:Xn P (n) � eab̂0 pap2� 1Z0 dx 1qP1k=1 k2b̂krk eg(x) (57)with g(x) = �ax log r + a 1Xk=1 b̂krk ;g0(x) = �a log r � axr0r + ar0r 1Xk=1 kb̂krk = �a log r ; (58)where in the last step we have used (56). The 
ondition g0 = 0 givesa log r = 0 ! r0 � r(x0) = 1 ! x0 = 1Xk=1 kb̂k : (59)Furthermore g00(x) = �ar0r ! g00(x0) = �a 1P1k=1 k2b̂k : (60)Consequently the saddle point value of the integral (55) iseab̂0q2�P1k=1 k2b̂kpa paq2�P1k=1 k2b̂k eaP1k=1 b̂k = eab̂0eaP1k=1 b̂k = 1 : (61)



3374 A. Bialas, W. CzyzSin
e this pro
edure does work, we are en
ouraged to 
al
ulate the Renyientropies. First, 
oin
iden
e 
oe�
ients:Cl =Xn [P (n)℄l = elab̂0 a(2�a)l=2 Z dx�P1k=1 k2b̂krk�l=2 1ralx ealP1k=1 b̂krk :(62)The saddle point method 
an be used in a similar way as before. Theresult is Cl = (2�P1k=1 k2b̂k)1=2(al)1=2 a(2�aP1k=1 k2b̂k)l=2= 1l1=2 1�2�aP1k=1 k2b̂k�(l�1)=2 ; (63)and thus Hl = 12 log ll � 1 + 12 log 2�a 1Xk=1 k2b̂k!= 12 log ll � 1 + 12 log 2�hniP1k=1 k2b̂kP1k=1 kb̂k ! : (64)This is a
tually a general formula for any ideal gas. For the photon gas weobtain Hl = 12 log ll � 1 + 12 log�2�hni�(2)�(3)� : (65)The extrapolation to l = 1 givesH1 � S = 12 �1 + log�2�hni�(2)�(3)�� ; (66)whi
h is to be 
ompared with standard expression S = hni�(4)=�(3) (seethe last position of Ref. [1℄). Remember that this last expression is obtainedwhen �!1 and �u
tuations o

ur on the s
ale of �elementary� 
ells.The most important 
on
lusion from this analysis is that the Renyi en-tropies obtained from these measurements depend only logarithmi
ally onthe number of parti
les.
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t formulae from statisti
al physi
sIt is interesting to 
onfront our results with those obtained in standardstatisti
al physi
s approa
h. We only 
onsider the 
ase of Bose gas.The l-th Renyi entropy of the Bose gas isHl = 11� lXi log (1� ui)l1� uli (67)with ui given by (12). Furthermore, the average number of parti
les 
an beexpressed as hni =Xi ui1� ui : (68)In the limit of very small interval � the sum in (67) and (68) redu
e toone single term and thus the elimination of u from Cl = (1 � u)l=(1 � ul)and hni = u=(1 � u) leads immediately to Eq. (18).In the 
ase of a large interval �, the result is, however, markedly di�er-ent. The reason is that the statisti
al physi
s 
al
ulation takes into a

ountall �u
tuations whi
h may o

ur in the system, whereas the 
oin
iden
emeasurements ignore �u
tuations on the s
ale smaller than �. This 
anbe dire
tly demonstrated using Eqs. (67) and (68). Changing sums intointegrals we obtainhn(�)i = V(2�)3 Z d3p u(p)1� u(p) = 1Xk=1 kbk (69)and Hl(�) = 11� l V(2�)3 Z� d3p log (1� u(p))l1� u(p)l= 11� l V(2�)3 Z� d3p"�l 1Xk=1 u(p)kk + 1Xk=1 u(p)klk #= ll � 1 1Xk=1 [bk � bkl℄ : (70)One sees that this formula is very di�erent from those obtained in Se
tion 4.



3376 A. Bialas, W. CzyzThe 
ase of the photon gas 
an be dis
ussed expli
itely. Then we have� = 0 and thusbk = V(2�)3k Z� d3pe�k�p = V2�2k �Z0 p2dpe�k�p= V�2�3k4 �1� e�kd�1 + kd+ (kd)22 �� ; (71)where d � ��. Using this we obtain from (70)hni = V�2�3 ��(3)� g3(d)� dg2(d) + d22 log �1� e�d�� ; (72)and Hl = ll � 1 V�2�3 �G(d)� 1l4G(ld)� (73)with G(x) = �(4)� g4(x)� xg3(x)� x22 g2(x) ; gp(x) = 1Xk=1 e�kxkp : (74)The limit of high average number of parti
les, hni, 
an be a
hieved eitherby taking a large volume V or by taking the high temperature (� ! 0). Inthe limit V ! 1 and �xed temperature one obtains the standard thermo-dynami
al expressions.To obtain a relation between Hl and hni in the high temperature limit(�� ! 0) from (72) and (73) is however very tri
ky. It is mu
h simpler todeal dire
tly with the integrals (69) and (70). Indeed, the leading term forhn(�)i (remember that also �p� 1) ishn(�)i = V(2�)3 Z� d3p e��p1� e��p � V2�2 �Z0 dpp2 1�p = V�3 1(2�)2 (��)2 ; (75)and for Hl(�)Hl(�) = 11� l V(2�)3 Z� d3p log (1� e��p)l1� e�l�p � V2�2 11� l �Z0 dpp2 log (�p)ll�p= V2�2 1�3 (��)3� log ll � 1 � log ��+ 13� : (76)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3377But, in this limit, we also have � log �� � 1=3. Thus from (75) and (76)we get hn(�)i � �(2�)2 1�� ; (77)and Hl(�) � �2�2 � log ll � 1 + log�(2�)2 hn(�)i� �� ; (78)where � = V�3. This limiting formula is di�erent from the one obtained forhigh density of photons with 
oin
iden
es 
al
ulated for the large interval �(65). So, the �u
tuations on a s
ale mu
h smaller than � � as is the 
asein the standard statisti
al physi
s � do introdu
e important 
orre
tions.7. Con
lusionsWe have given several examples of how a dis
retization pro
edure a�e
tsthe 
oin
iden
e measurements performed for ideal gases.We �nd that � as expe
ted � the larger are the intervals of dis
retiza-tion the less �u
tuations 
an be observed, whi
h result in larger 
oin
iden
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