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RENYI ENTROPY OF THE IDEAL GAS IN FINITEMOMENTUM INTERVALSA. Bialasa;by and W. CzyzaaM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandbH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Poland(Reeived May 19, 2003)Dediated to Jan Kwiei«ski in honour of his 65th birthdayCoinidene probabilities of multipartile events, as measured in �nitemomentum intervals for Bose and Fermi ideal gas, are alulated and om-pared with the exat expressions given in statistial physis.PACS numbers: 13.85.Hd, 65.40.Gr1. IntrodutionReently, we have proposed to measure the oinidene probabilities inthe multipartile systems produed in high-energy proesses in order to ob-tain an information about the entropy reated in the ollision [1℄. Theoinidene probability of order l is de�ned as [1�3℄Cl �Xi [pi℄l ; (1)where pi is the probability for the system to be in the state i and the sum runsover all states of the system. For integer l, this quantity an be measuredsimply by ounting the number (Nl) of l-plets of the idential events observedin a given proess. ThenCl = NlN(N � 1) : : : (N � l + 1) ; (2)where N is the total number of events in the sample (the denominator in(2) represents the total number of l-plets of observed events).y e-mail: bialas�th.if.uj.edu.pl (3363)



3364 A. Bialas, W. CzyzCl's are simply related to Renyi entropies [3℄Hl = � logCll � 1 (3)from whih, in turn, one may obtain the standard Shannon entropy by ex-trapolation to l = 1: S = liml!1Hl : (4)It is thus lear that the suggested measurements touh the very funda-mental properties of the system.As we have already remarked several times [1℄, the di�ulty in perform-ing a measurement of the oinidene probabilities is the ontinuous distri-bution of the partile momenta observed in the high-energy experiments.Due to this property of the spetra, the oinidene measurement, if takenliterally, is not possible. Therefore some disretization proedure, i.e., adivision of the available phase-spae into �nite size momentum intervals, isneessary.It should be realized that suh a disretization proedure a�ets � inan important way � the expeted results of the oinidene measurements.Clearly, the larger are the hosen intervals, the less �utuations an be ob-served and thus larger oinidene probabilities are expeted.The purpose of the present paper is to disuss how atually the dis-retization proedure a�ets the oinidene measurements and how thesemeasurements should be interpreted. To this end we onsider in detail thease of ideal gas in equilibrium. The general formulae for Renyi entropiesare derived and the limits of very small and very large intervals are quanti-tatively analyzed.2. Ideal gas: formulation of the problemConsider a partile momentum interval �, entered at p0x; p0y; p0z and ofsize given by the inequalitiesjpx � p0xj � �x ; jpy � p0yj � �y ; jpz � p0zj � �z : (5)The �utuations attahed to this bin are given by the multipliity distribu-tion of partiles whih happen to fall into �. Denoting the probability to�nd n partiles in � by P (n) we haveCl(�) =Xn [P (n)℄l : (6)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3365If M bins are onsidered, the orresponding oinidene probability is al-ulated from the formulaCl(�1; : : :�M ) = Xn1;:::;nM [P (n1; : : : nM)℄l ; (7)i.e. we have to know the joint partile distribution in all M bins.In ase of the ideal gas, there are no orrelations between bins, thusP (n1; : : : nM ) = MYm=1Pm(nm) ; (8)so that we haveCl(�1; : : :�M ) = Xn1;:::;nM MYm=1[Pm(nm)℄l = MYm=1[Cl(�m)℄ (9)from whih it follows that the Renyi entropies (given by (3)) obey the addi-tivity onstraint and thus it is enough to onsider one single bin.We see from these formulae that the oinidene probabilities are deter-mined from the multipliity distribution in the seleted bin �. This multi-pliity distribution depends on the partile energy levels whih are ontainedin �.Let us denote by ei the energy levels aessible to one partile. In theideal gas at equilibrium, the probability to �nd si partiles on the level i isgiven by pi(si) = (1� ui)usii (10)for bosons and pi(si) = usii1 + ui (11)for fermions, where ui = e��(ei��) : (12)For bosons si = 0; 1; 2; : : :, for fermions si = 0; 1, � is the hemial potential.



3366 A. Bialas, W. CzyzConsider now the interval � given by (5). One has to onsider two ases.(i) Large bins. Suppose that the interval is large enough to ontain anumber I of energy levels ei. Then the probability of �nding preiselyn partile in this bin isP (n) = Xs1+:::sI=n IYi=1 pi(si) ; (13)where the produt runs over all �elementary� ells whih are inside thebin �.(ii) Small bins. If the interval is so small that its size is smaller than thedistane �0 between the energy levels, the probability to �nd n bosonsin it is P (n) = 1Xk=0 pi(k) k!n!(k � n)!vn(1� v)k�n= (1� ui) 1Xk=n k!n!(k � n)!vn(1� v)k�nuki= (1� ui) (vui)n 1Xj=0 (n+ j)!n!j! [(1 � v)ui℄j= (1� ui) (vui)n [1� (1� v)ui℄�(n+1)= 1� ui1� (1� v)ui � vui1� (1� v)ui�n ; (14)where v = ��0 ; hni = v ui1� ui : (15)For fermions we obtainP (0) = 1� v 11 + ui ; P (1) = v ui1 + ui ; hni = P (1) : (16)Note that for non-interating partiles in a box, the distane between theenergy levels, �0, is (in eah dimension) given by�0 = 2�L : (17)Therefore, the size of the interval � below whih the Eqs. (14) and (16) areappliable depends on the size of the system in the on�guration spae.



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 33673. Coinidene probabilities in small intervalsIn this ase the alulation is fairly simple. Using (14) we obtain forbosons Cl = � 1� ui1� (1� v)ui�l 1Xn=0� vui1� (1� v)ui�l n= (1� ui)l[1� (1� v)ui℄l � (vu)l= 1�1 + vui1�ui�l � � vui1�ui�l= 1(1 + hn(�)i)l � hn(�)il ; (18)where hn(�)i is the average multipliity in the bin �.Using (16) we have for fermionsCl = �1� vui1 + ui�l +� vui1 + ui�l = (1� hn(�)i)l + hn(�)il : (19)It is interesting to onsider the limit when the bin is split into many(M !1) piees of equal size. Using (9) we thus obtain�M � �M ; hn(�M )i = hn(�)iM (20)and thus the Renyi entropy alulated for all M bins tends to a �nite valueHl(�)M!1 ! ll � 1hn(�)i : (21)This result is a manifestation of the �empty bin e�et�. It depends onlyon the assumption that there are no orrelations between partiles. Wesee that in this limit one does not obtain any useful information about thesystem, as everything is determined by the average multipliity. It is alsoseen that the extrapolation to l = 1 does not make sense in this limit.4. Multipliity distribution and oinidene probabilitiesin large intervalsTo evaluate the multipliity distribution of (13), whih is neessary forestimate of Cl, as is seen from (6), we employ the tehnique of the generatingfuntion. Denoting F (z) �Xn P (n)zn (22)



3368 A. Bialas, W. Czyzwe have F (z) =Yi �i(z) ; (23)where �i(z) is the generating funtion of the distribution (13)�i(z) =Xsi pi(si)zsi : (24)Using (10) and (11) we obtain�i(z) = �(z; ui) = 1� ui1� zui (25)for bosons and �i(z) = �(z; ui) = 1 + zui1 + ui (26)for fermions.In order to transform the produt in (23) into a sum, we take the loga-rithm: logF (z) � f(z) =Xi log[�i(z)℄ ! Z� d3pd3x(2�)3 log[�(z; u)℄ ; (27)where u = u(p) = exp h��(pp2 +m2 � �)i (28)and where in the seond equality of (27) we have expliitely used the as-sumption that the interval � is large enough to ontain many energy levels.If this number is not very large, one has to keep the �rst equality of (27),i.e. use expliitely the sum over the energy levels.Using (24) and (25) we obtainf(z) =Xk bkzk ; (29)where b0 = � 1Xk=1 bk ; bk = �kUkk (30)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3369for bosons and b0 = � 1Xk=1 bk ;bk = �(��)kUkk (31)for fermions, with Uk =Xi e�k�ppi2+m2 ; � = �� : (32)The sum runs over all energy levels ontained in the interval �. In the limitof large bins we haveUk = V(2�)3 Z� d3pe�k�pp2+m2 : (33)The average multipliity in the bin � equals dF (z)=dzjz=1. This implieshni = 1Xk=1 kbk : (34)We thus see that everything an be expressed by the expansion oe�ientsbk and the average multipliity hni. Unfortunately, the sums (integrals) (32)and (33) annot be easily evaluated, in general.To obtain the multipliity distribution we have to expandF (z) = ef(z) =Xn P (n)zn : (35)This an be done as follows:Consider the funtionFK(z) � exp" KXk=0 zkbk# : (36)This funtion approahes F (z) when K ! 1.



3370 A. Bialas, W. CzyzIt is possible to develop FK(z). We obtainFK(z) = 1XM=0 1M ! " KXk=0 zkbk#M= 1XM=0 1M ! MXk0=0 MXk1=0 : : : MXkK=0 Æ(k1 + k2 + : : :+ kK �M)�M !(b0)k0(zb1)k1 : : : (zKbK)kKk0!k1! : : : kK != 1Xk0=0 1Xk1=0 1Xk2=0 : : : 1XkK=0�(b0)k0(b1)k1(b2)k2 : : : (bK)kKk0!k1!k2! : : : kK ! zk1+2k2+:::+KkK= 1Xn=0PK(n)zn ; (37)where PK(n) = eb0 1Xk1=0 1Xk2=0 : : : 1XkK=0 Æ(k1 + 2k2 + : : :+KkK � n)�(b1)k1(b2)k2 : : : (bK)kKk1!k2! : : : kK ! : (38)Atually, the sums in (38) are, for �xed n, limited:1Xk1=0 1Xk2=0 : : : 1XkK=0 Æ(k1 + 2k2 + : : :+KkK � n)= [n=K℄XkK=0 [(n�KkK)=(K�1)℄XkK�1=0 : : : n�2k2�:::�KkKXk1=0 Æ(k1 + 2k2 + : : : +KkK � n); (39)where [: : :℄ denotes the integer part of the expression inside the brakets.One also sees that only K � n ontributes at a given n. Therefore, inthe limit K ! 1 we have[n=K℄XkK=0 [(n�KkK)=(K�1)℄XkK�1=0 : : : n�2k2�:::�KkNXk1=0 Æ(k1 + 2k2 + : : :+KkK � n)= 1Xkn=0 [(n�nkn)=(n�1)℄Xkn�1=0 : : : n�2k2�:::�nknXk1=0 Æ(k1 + 2k2 + : : :+ nkn � n) (40)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3371and thus �nallyP (n) = eb0 1Xkn=0 [(n�nkn)=(n�1)℄Xkn�1=0 : : : n�2k2�:::�nknXk1=0 Æ(k1 + 2k2 + : : :+ nkn � n)�(b1)k1(b2)k2 : : : (bn)knk1!k2! : : : kn! : (41)These formulae omplete the evaluation of the multipliity distribution. Us-ing (6) we �nd for the oinidene probabilitiesCl = eb0l 1Ys=1Sl(s) ; (42)where Sl(s) = 1Xk=1 (bs)lk(k!)l : (43)Note that for l = 2 we have S2(s) = I0(2bs) : (44)5. Asymptoti limit of large densityThe formulae of the previous setion are useful as long as hni is not toolarge. For large hni the asymptoti formulae may be more appropriate andone an thus try to alulate the expansion oe�ients diretly using theCauhy integral formulaP (n) = 1n!F (n)(z)jz=0 = 12�i I� F (z)zn+1 dz : (45)This integral is best alulated along a irle of radius r:P (n) = eab̂0 12� �Z�� d� exp "�in�� n log r + a 1Xk=1 bkeik�# : (46)To apply the saddle-point method, we denotebk = ab̂k ! hni = aXk kb̂k (47)



3372 A. Bialas, W. Czyzwith a ! 1 and b̂k �nite. The saddle-point method gives:h(�) = �in�� n log r + a 1Xk=1 b̂krkeik� ;h0(�) = �in+ ia 1Xk=1 kb̂krkeik� ;h00(�) = �a 1Xk=1 k2b̂krkeik� : (48)The ondition h0(�) = 0 impliesa 1Xk=1 kb̂krkeik� = n ; (49)and thus we obtain �0 = 0, and r must be a solution of the equationa 1Xk=1 kb̂krk = n : (50)From (48) we dedue that the seond derivative at � = 0 ish00(0) = �a 1Xk=1 k2b̂krk ; (51)and thus the saddle point method givesP (n) = eab̂0 12� eh(0)s 2��h00(0) = 1q2�aP1k=1 k2b̂krk 1rn eaP1k=1 b̂krk : (52)The ondition (50) an be rewritten as1Xk=1 kb̂krk = x ; x = na : (53)From whih it follows that r is a funtion of x. And the expression (52)beomes P (n) = eab̂0 pxp2�nP1k=1 rk=k2 1rn exp"nx 1Xk=1 rk=k4# : (54)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3373The hek of this proedure is to verify if PP (n) = 1.We thus writeXn P (n) � eab̂0 pap2� 1Z0 dx 1qP1k=1 k2b̂krk 1rax eaP1k=1 b̂krk (55)with the ondition1Xk=1 kb̂krk = na � x ! r0r 1Xk=1 k2b̂krk = 1 : (56)We use the saddle point method:Xn P (n) � eab̂0 pap2� 1Z0 dx 1qP1k=1 k2b̂krk eg(x) (57)with g(x) = �ax log r + a 1Xk=1 b̂krk ;g0(x) = �a log r � axr0r + ar0r 1Xk=1 kb̂krk = �a log r ; (58)where in the last step we have used (56). The ondition g0 = 0 givesa log r = 0 ! r0 � r(x0) = 1 ! x0 = 1Xk=1 kb̂k : (59)Furthermore g00(x) = �ar0r ! g00(x0) = �a 1P1k=1 k2b̂k : (60)Consequently the saddle point value of the integral (55) iseab̂0q2�P1k=1 k2b̂kpa paq2�P1k=1 k2b̂k eaP1k=1 b̂k = eab̂0eaP1k=1 b̂k = 1 : (61)



3374 A. Bialas, W. CzyzSine this proedure does work, we are enouraged to alulate the Renyientropies. First, oinidene oe�ients:Cl =Xn [P (n)℄l = elab̂0 a(2�a)l=2 Z dx�P1k=1 k2b̂krk�l=2 1ralx ealP1k=1 b̂krk :(62)The saddle point method an be used in a similar way as before. Theresult is Cl = (2�P1k=1 k2b̂k)1=2(al)1=2 a(2�aP1k=1 k2b̂k)l=2= 1l1=2 1�2�aP1k=1 k2b̂k�(l�1)=2 ; (63)and thus Hl = 12 log ll � 1 + 12 log 2�a 1Xk=1 k2b̂k!= 12 log ll � 1 + 12 log 2�hniP1k=1 k2b̂kP1k=1 kb̂k ! : (64)This is atually a general formula for any ideal gas. For the photon gas weobtain Hl = 12 log ll � 1 + 12 log�2�hni�(2)�(3)� : (65)The extrapolation to l = 1 givesH1 � S = 12 �1 + log�2�hni�(2)�(3)�� ; (66)whih is to be ompared with standard expression S = hni�(4)=�(3) (seethe last position of Ref. [1℄). Remember that this last expression is obtainedwhen �!1 and �utuations our on the sale of �elementary� ells.The most important onlusion from this analysis is that the Renyi en-tropies obtained from these measurements depend only logarithmially onthe number of partiles.



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 33756. Comparison with exat formulae from statistial physisIt is interesting to onfront our results with those obtained in standardstatistial physis approah. We only onsider the ase of Bose gas.The l-th Renyi entropy of the Bose gas isHl = 11� lXi log (1� ui)l1� uli (67)with ui given by (12). Furthermore, the average number of partiles an beexpressed as hni =Xi ui1� ui : (68)In the limit of very small interval � the sum in (67) and (68) redue toone single term and thus the elimination of u from Cl = (1 � u)l=(1 � ul)and hni = u=(1 � u) leads immediately to Eq. (18).In the ase of a large interval �, the result is, however, markedly di�er-ent. The reason is that the statistial physis alulation takes into aountall �utuations whih may our in the system, whereas the oinidenemeasurements ignore �utuations on the sale smaller than �. This anbe diretly demonstrated using Eqs. (67) and (68). Changing sums intointegrals we obtainhn(�)i = V(2�)3 Z d3p u(p)1� u(p) = 1Xk=1 kbk (69)and Hl(�) = 11� l V(2�)3 Z� d3p log (1� u(p))l1� u(p)l= 11� l V(2�)3 Z� d3p"�l 1Xk=1 u(p)kk + 1Xk=1 u(p)klk #= ll � 1 1Xk=1 [bk � bkl℄ : (70)One sees that this formula is very di�erent from those obtained in Setion 4.



3376 A. Bialas, W. CzyzThe ase of the photon gas an be disussed expliitely. Then we have� = 0 and thusbk = V(2�)3k Z� d3pe�k�p = V2�2k �Z0 p2dpe�k�p= V�2�3k4 �1� e�kd�1 + kd+ (kd)22 �� ; (71)where d � ��. Using this we obtain from (70)hni = V�2�3 ��(3)� g3(d)� dg2(d) + d22 log �1� e�d�� ; (72)and Hl = ll � 1 V�2�3 �G(d)� 1l4G(ld)� (73)with G(x) = �(4)� g4(x)� xg3(x)� x22 g2(x) ; gp(x) = 1Xk=1 e�kxkp : (74)The limit of high average number of partiles, hni, an be ahieved eitherby taking a large volume V or by taking the high temperature (� ! 0). Inthe limit V ! 1 and �xed temperature one obtains the standard thermo-dynamial expressions.To obtain a relation between Hl and hni in the high temperature limit(�� ! 0) from (72) and (73) is however very triky. It is muh simpler todeal diretly with the integrals (69) and (70). Indeed, the leading term forhn(�)i (remember that also �p� 1) ishn(�)i = V(2�)3 Z� d3p e��p1� e��p � V2�2 �Z0 dpp2 1�p = V�3 1(2�)2 (��)2 ; (75)and for Hl(�)Hl(�) = 11� l V(2�)3 Z� d3p log (1� e��p)l1� e�l�p � V2�2 11� l �Z0 dpp2 log (�p)ll�p= V2�2 1�3 (��)3� log ll � 1 � log ��+ 13� : (76)



Renyi Entropy of the Ideal Gas in Finite Momentum Intervals 3377But, in this limit, we also have � log �� � 1=3. Thus from (75) and (76)we get hn(�)i � �(2�)2 1�� ; (77)and Hl(�) � �2�2 � log ll � 1 + log�(2�)2 hn(�)i� �� ; (78)where � = V�3. This limiting formula is di�erent from the one obtained forhigh density of photons with oinidenes alulated for the large interval �(65). So, the �utuations on a sale muh smaller than � � as is the asein the standard statistial physis � do introdue important orretions.7. ConlusionsWe have given several examples of how a disretization proedure a�etsthe oinidene measurements performed for ideal gases.We �nd that � as expeted � the larger are the intervals of disretiza-tion the less �utuations an be observed, whih result in larger oinideneprobabilities.This investigation was supported in part by the Subsydium of Foundationfor Polish Siene NP 1/99 and by the Polish State Committee for Sienti�Researh (KBN) Grant No 2 P03 B 09322.REFERENCES[1℄ A. Bialas, W. Czyz, J. Wosiek, Ata Phys. Pol. B30, 107 (1999); A. Bialas,W. Czyz, Phys. Rev. D61, 074021 (2000); A. Bialas, W. Czyz, Ata Phys.Pol. B31, 687 (2000); A. Bialas, W. Czyz, Ata Phys. Pol. B32, 2793 (2001);A. Bialas, W. Czyz, A. Ostruszka, Ata Phys. Pol. B34, 69 (2003); A. Bialas,W. Czyz, Ata Phys. Pol. B31, 2803 (2000).[2℄ S.K. Ma, Statistial Mehanis, World Sienti�, Singapore 1985; S.K. Ma, J.Stat. Phys. 26, 221 (1981).[3℄ A. Renyi, it On Measures of Entropy and Information, in Pro. 4th Berke-ley Symp. on Math. Stat. Prob. 1960, Vol.1, University of California Press,Berkeley, Los Angeles 1961, p. 547.


