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RELATION BETWEEN WIGNER FUNCTIONSAND THE SOURCE FUNCTIONS USED IN THEDESCRIPTION OF BOSE�EINSTEIN CORRELATIONSIN MULTIPLE PARTICLE PRODUCTIONK. ZalewskiyM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandandH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Polande-mail: zalewski�th.if.uj.edu.pl(Re
eived May 26, 2003)Dedi
ated to Jan Kwie
i«ski in honour of his 65th birthdayRelations between Wigner fun
tions and the sour
e fun
tions used inmodels of Bose�Einstein 
orrelations in multiple parti
le produ
tion arederived and dis
ussed. These relations are model dependent. In parti
ularit is important whether the parti
les are emitted simultaneously and if not,whether the produ
tion amplitudes 
orresponding to di�erent moments oftime 
an interfere with ea
h other.PACS numbers: 05.10.�a, 13.85.Hd1. Introdu
tionWhen dis
ussing Bose�Einstein 
orrelations among identi
al pions1 pro-du
ed in multiple parti
le produ
tion pro
esses, one often uses the sour
efun
tion S(X;K) (
f. e.g. [1℄ and referen
es quoted there) related to thesingle parti
le density matrix in the momentum representation by the for-y Partially supported by the Polish State Committee for S
ienti�
 Resear
h (KBN)grant 2P03B09322.1 Here and in the following we 
all for de�niteness the identi
al bosons pions the results,however, are valid for any identi
al bosons.(3379)



3380 K. Zalewskimula2 �(p;p0) = Z d4XeiqXS(X;K) ; (1)where q = p� p0 and K = (p+ p0)=2 are four-ve
tors 
onstru
ted from theon-shell single parti
le four momenta p and p0. The four 
omponents of Xare integration variables and, therefore, there is mu
h freedom in their in-terpretation. It is usual, however, to identify S(X;K) with the spa
e�timedistribution of the sour
es produ
ing the pions with momentum K and thenX is interpreted as the spa
e�time position of the sour
e. A sour
e fun
tions
ombines 
onveniently the information and/or prejudi
e about the spa
e�time (X) distribution of the sour
es and about the momentum distributionof the produ
ed parti
les. It yields the density matrix, whi
h 
an be used toget the (two- as well as more parti
le) 
orrelation fun
tion. Comparing thepredi
ted 
orrelation fun
tions with experiment one 
an improve the modelused to �nd S(X;K), �x its parameters et
. Note that the density matrixon the left hand side of formula (1) does not depend on time. Sin
e afterfreeze-out the parti
les propagate freely (we do not dis
uss the �nal stateintera
tions here), this means that for times after the freeze-out period theelements of the density matrix should be interpreted as the matrix elementsof the time dependent (S
hrödinger pi
ture) density operator between thetime dependent states jp; ti = eiE(p)tjpi, or equivalently as the matrix ele-ment of the time independent (intera
tion pi
ture) density operator betweenthe time independent states jpi.Formula (1) looks similar to the formula relating the Wigner fun
tionW (X;K) (
f. e.g. [2℄ and referen
es 
ontained there) to the density matrix:�(p;p0; t) = Z d3Xe�iq�XW (X;K; t) : (2)In fa
t the building blo
k of the sour
e fun
tion was originally a Wignerfun
tion (
f. [3℄ formula (7)). Be
ause of the similarity between formulae (1)and (2), the sour
e fun
tion is often referred to as a Wigner fun
tion, a kindof Wigner fun
tion, a pseudo-Wigner fun
tion et
. (
f. e.g. Ref. [4℄, fromwhi
h all these names have been taken). A dis
ussion of the a
tual relationbetween the sour
e fun
tion and the Wigner fun
tions, however, seems tobe missing in the literature. Let us begin with some general remarks.Formula (2) 
ontains the time dependent density matrix, i.e. the timedependent density operator in the representation of the time independent2 Often an equivalent formula with the density matrix repla
ed by the averagehâypâp0i = �(p0; p) is used. Also some authors in
lude on the left hand side a fa
torpEE0. Sin
e this fa
tor does not a�e
t our argument and is easy to introdu
e at anystage, we skip it.
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e Fun
tions . . . 3381states jpi. Thus �(p;p0; t) = e�iq0t�(p;p0) : (3)Relation (1) follows from (2), if we putS(X;K) =W (X;K; t0)Æ(X0 � t0) : (4)This 
hoi
e 
an be always made and has a simple physi
al interpretation.Choose a time t0 after freeze-out, when all the pions are already present, butnone have been registered yet. The state at t0 yields the initial 
onditionfrom whi
h any distribution at registration 
an be 
al
ulated. Assumingthat all the pions appeared simultaneously at t0 may be poor physi
s, butthis does not 
hange the fa
t that the predi
tions at registration time are
orre
t. There is an in�nite 
hoi
e of other sour
e fun
tions, whi
h alsosatisfy relation (1). Sin
e this relation is the only link between a sour
efun
tion and physi
al reality, there 
an be no obje
tion of prin
iple againstthe 
hoi
e (4). From the pra
ti
al point of view, however, another sour
efun
tion, whi
h 
an be 
al
ulated from some model, may be more 
onvenientand, of 
ourse, it is just as good, if it reprodu
es the density matrix equallywell. Note that the identity of fun
tions in (4) does not mean that theirargument have the same physi
al interpretation. In fa
t, on the left handside X and K denote the position of the sour
e in spa
e�time and the four-momentum of the pion, while on the right hand side X = 12 (x + x0) andK = 12(p + p0) are de�ned by referen
e to the arguments of the densitymatri
es of the pion in the 
oordinate representation and in the momentumrepresentation respe
tively, while t0 is the time. It is often reasonable toassume thatX andK on both sides are good approximations to the positionat t = t0 and momentum for t � t0 of the pion, but this is 
ertainly notalways the 
ase.Let us 
on
lude this se
tion with some more remarks. If one assumesthat all the parti
les were 
reated simultaneously at some 
ommon freeze-out time t = t0, then a �realisti
� sour
e fun
tion should be proportionalto Æ(X0 � t0) and the proportionality 
oe�
ient is the Wigner fun
tion asin (4). The sour
e fun
tion 
annot be equal to a Wigner fun
tion, be
ausethe dimensions are di�erent. The delta fun
tion in formula (4) brings intothe dimension the ne
essary fa
tor 1/time. What 
ould be equal to thesour
e fun
tion is what we will refer to as the di�erential Wigner fun
tionde�ned by the relation~W (X ;K; t0) = Wdt0(X ;K; t0)dt0 : (5)Here Wdt0 is the Wigner fun
tion at time t > t0 for the parti
les fromsour
es 
reated in the time interval dt0 around time t0. Note that we are



3382 K. Zalewskiusing the Wigner fun
tions normalized to the numbers of parti
les and notto one. When the amplitudes of the pions produ
ed at di�erent times addin
oherently, formula (2) 
an be rewritten in terms of the di�erential Wignerfun
tion ~W as: �(p; p0) = Z d4XeiqX ~W (X;K) ; (6)where the fourth 
omponent of the ve
tor X = (X ;X0) is t0. Comparingthis formula with formula (1) we �nd a parti
ular solution for the sour
efun
tion S(X;K) = ~W (X;K) : (7)We stress that this is only one out of the in�nity of sour
e fun
tions, whi
hwhen substituted into formula (1) yield the 
orre
t density matrix and thatfor the sour
es in
oheren
e in the 
reation time has been assumed.2. GGLP modelsIn the seminal paper of the Goldhabers, Lee and Pais [5℄ the assumptionwas made that pion produ
tion amplitudes at di�erent spa
e points arein
oherent. In this simple 
ase there is no need to distinguish between thesour
es and the pions at t = t0. A natural generalization (
f. e.g. [6℄)was to assume more generally that pions produ
tion amplitudes at di�erentspa
e�time points are in
oherent. Further we refer to su
h models as GGLPmodels.Let us begin with the simpler 
ase, when all the pions appear simultane-ously at t = t0. For t > t0 they are assumed to propagate freely. The timeindependent density matrix for t > t0 is:�(p;p0) = Z d3xhp; tjx; t; t0i�(x; t0)hx; t; t0jp0ti : (8)Here jx; t; t0i = exp[�i(t � t0)Ĥ0℄jxi is the time dependent state, evolvinga

ording to the free parti
le Hamiltonian Ĥ0 from the initial state jxi,whi
h 
orresponds to a pion lo
alized at x at time t0. One 
ould also saythat in spa
e�time the position of the sour
e is (x; t0). Let us note for furtheruse the formula hp; tjx; t; t0i = eiE(p)t0hpjxi ; (9)where E(p) = pp2 +m2�. Formula (8) is perfe
tly a

eptable from thepoint of view of quantum me
hani
s, in spite of the fa
t that a

ording tothe pi
ture des
ribed in Ref. [5℄ a pion with momentum p is produ
ed atpoint x, whi
h would 
ontradi
t the un
ertainty prin
iple. Sin
e the densitymatrix is diagonal in x (in the x, whi
h labels the in
oherent states, not



Relation Between Wigner Fun
tions and the Sour
e Fun
tions . . . 3383in position at time t) and t = t0 = t0 , we 
an identify the 
omponents ofthe ve
tor x with X1;X2;X3 and the parameter t0 with X0. The matrixelement (8) 
an be rewritten as�(p;p0) = Z d3X(2�)3 exp(iqX)�(X) : (10)Using (3) and 
omparing with (2) this yieldsW (X;K) = �(X)(2�)3 : (11)The sour
e fun
tion is given by formula (4), be
ause by assumption all theparti
le produ
tion happens at t = t0. The 
omponents of X are the three
omponents of the position ve
tor of the point where the parti
le was pro-du
ed and its time of produ
tion (freeze-out time). Sin
e after freeze-outthe momentum ve
tor of ea
h parti
le is 
onserved separately, the momentaentering K 
an be taken at any time not earlier than t0. The a
tual time ofobservation does not o

ur in the formula at all.Note that for this 
lass of models the Wigner fun
tion does not depend onmomenta. With the present interpretation this would lead to disaster when
omparing with experiment. The Goldhabers, Lee and Pais [5℄ pro
eededdi�erently. They were interested in n-pion ex
lusive states for n = 4; 5; 6with no more than two pions of a given 
harge. Using matrix (8) they 
on-stru
ted the probability distributions P (p1; : : : ; pn). These were interpretedas momentum distributions only after the sets of momenta 
ontradi
tingenergy and/or momentum 
onservation were proje
ted out. In pra
ti
e theyinterpreted the P -s as integrands of the 
orresponding phase spa
e inte-grals. This 
ould not be generalized to in
lusive pro
esses, led to rather
ompli
ated integrations and gave results, whi
h at that time were 
onsid-ered a

eptable, but whi
h soon were shown to be in violent disagreementwith experiment [7℄. Most of these di�
ulties were over
ome by Kopylov,Podgoretsky and 
oworkers as des
ribed in the next se
tion.Let us 
onsider now the more general 
ase, when the pions are produ
edat di�erent moments of time, but there is no interferen
e between the am-plitudes 
orresponding to produ
tion at di�erent moments. Then at timeslarger than the largest freeze-out time the density matrix is given by an in-tegral over the freeze-out time t0 of the (di�erential version of the) densitymatrix (10) 
orresponding to parti
les produ
ed at given time t0:�(p; p0) = Z d4X(2�)3 exp(iqX)~�(X) : (12)Note that in order to keep the dimensions right �(X), whi
h is a densityin spa
e, has been repla
ed by ~�(X) whi
h is a density in spa
e time. In
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t, �(X) are diagonal elements of the time independent single pion densitymatrix in the jx; t; t0i representation, while ~�(X) are the diagonal elementsof the 
orresponding di�erential density matrix related to �(X) by a formulaanalogous to (5). Comparing with (1) it is seen that one solution for S(X;K)is S(X;K) = ~�(X)(2�)3 : (13)Sin
e there is in
oheren
e in time, the relation between the sour
e fun
tionand Wigner's fun
tion is S(X;K) = ~W (X;K) (7).This seems to be the perfe
t situation: the sour
e fun
tion reprodu
esexa
tly the distribution of (in
oherent) sour
es in spa
e�time and 
oin
ideswith the di�erential Wigner fun
tion. However, (13) is only one of the in�n-ity of sour
e fun
tions, whi
h yield the same density matrix. A quite di�erentone 
an be obtained e.g. by 
al
ulating the Wigner fun
tion 
orrespondingto the density matrix �(p1;p2; t) and substituting it into formula (4). We
an 
on
lude only that for this 
lass of (unrealisti
) models there is an a
-
eptable sour
e fun
tion, whi
h 
an be interpreted as a di�erential Wignerfun
tion. Therefore, it 
an be argued that this parti
ular sour
e fun
tion iseasier to �nd than others.3. In
luding 
oheren
e in spa
eAn important extension of the GGLP approa
h is to assume that atany given 
reation time there may be 
oheren
e between the amplitudes ofthe pions produ
ed at di�erent points in spa
e, though pions produ
ed atdi�erent times t0 do not interfere. Models of this type, also in the moregeneral version with 
oheren
e in time, have been introdu
ed by Kopylovand Podgoretsky [8℄. In terms of sour
es this may be quite 
ompli
ated.For instan
e, in the model des
ribed by Kopylov and Podgoretsky [8℄ all thesour
es are produ
ed simultaneously and live for some time. The averagingover the energy of ea
h sour
e (not of the pion!), however, kills the inter-feren
e between the amplitudes for the produ
tion of the pion by the samesour
e at di�erent moments of time. Therefore one 
an repla
e ea
h origi-nal sour
e by a set of sour
es distributed in time and produ
ing the pionsinstantly. These are not quite satisfa
tory models, be
ause it is di�
ult toexplain why the 
reation amplitudes from neighboring time moments shouldnot interfere, while those from neighboring spa
e points do. Moreover, rela-tivisti
ally the 
reation pro
esses whi
h are at di�erent times in one Lorentzframe may be simultaneous in another Lorentz frame. As seen from formula(4), however, even in the simplest 
ase of simultaneous produ
tion, su
hmodels 
an reprodu
e 
orre
tly any single parti
le density matrix and 
on-



Relation Between Wigner Fun
tions and the Sour
e Fun
tions . . . 3385sequently any single parti
le momentum distribution without doing phasespa
e integrations. Thus they 
an be applied to des
ribe in
lusive pro
esses.In
luding interferen
e in spa
e and summing without interferen
e overtime 
orresponds to the following generalization of formula (8)�(p;p0) = Z dt0 Z d3xZ d3x0hp; tjx; t; t0i~�(x;x0; t0)hx0; t; t0jp0; ti : (14)There are many equivalent ways of rewriting this relation. For instan
e,one may use a representation j�i, where the (di�erential) density matrix~�(x;x0; t0) is diagonal. Then (14) gets repla
ed by�(p;p0) = Z dt0 Z d�eiq0t0hpj�i~�(�; t0)h�jp0i : (15)It is instru
tive to 
ompare this model, to the GGLP models. At t0 thelo
alized states jxi = jx; t0; t0i have been repla
ed by the states j�i =j�; t0; t0i. The plane waves hpjxi have been repla
ed by the fun
tions hpj�i,whi
h are known under a variety of names: as waved pa
kets, as sour
es,or as 
urrents. The sour
e fun
tion for su
h models was introdu
ed byPratt [3℄. His statement that3 �S(X;K) 
an be identi�ed as the probabilityof emitting a pion of momentum K from spa
e�time point X� is, however,only an approximation.Kopylov and Podgoretsky [8℄ assumed that (�; t0) is a point in spa
e�time, so that formula (15) 
an be rewritten as�(p;p0) = Z d4x0hpj x0i~�(x0)h x0 jp0ieiq0t0 : (16)This approa
h yields an alternative method of des
ribing the distribution ofpions in phase spa
e. In the integrand, hpj x0i is the probability amplitudefor �nding a pion with momentum p produ
ed by a sour
e labelled x0. Whenthe states j x0i 
orrespond to parti
les well lo
alized in spa
e, p and x0 givea reasonably good des
ription of the position of the pion in phase spa
e. One
ould obje
t that this is only a rough des
ription, but the same is true forthe Wigner fun
tion: K andX give only approximately the momentum andposition of the pion. An exa
t determination of the pion position in phasespa
e is possible only in 
lassi
al physi
s.In Ref. [8℄ the states j�i = j x0i were supposed to be related by spa
etime translations so that x0(x) � hxj x0i =  (x� x0) ; (17)hpj x0i = eipx0�(p); �(p) = hpj 0i : (18)3 This has been 
hanged to our notation. Pratt has written g; ~p; x where we havewritten S;K; X.



3386 K. ZalewskiThe se
ond formula is, of 
ourse, equivalent to the �rst. Another 
hoi
e hasbeen made in the �
ovariant 
urrent ensemble formalism� [10�13℄. Thereea
h sour
e is labelled by a position in spa
e�time x0 and a four-momentump0. Usually x0 and p0 denote the 
enters of the wave pa
ket in ordinaryspa
e and in momentum spa
e, respe
tively. The time 
omponent of x0 ist0 � the freeze-out time of the wave pa
ket. The time 
omponent of p0 is
al
ulated from the 
ondition p20 = m2, where m 
an [13℄, but does not haveto [4℄ be the pion mass. The ni
e feature of this parametrization of the wavepa
kets is that one 
an substitute a 
lassi
al traje
tory x0(t);p0(t) for thesour
e and remain in agreement with the Heisenberg un
ertainty prin
iplefor the pions. The 
hoi
e for the s
alar produ
ts ishpj x0;p0i = eipx0j �pp0m � : (19)Thus, the sour
es are related by spa
e�time translations and when ea
h ofthe 
urrents j is 
onsidered in its rest frame where p0 = (m; 0), they areidenti
al. Formulae (17) and (19) have been applied also to relativisti
ally
ovariant models 
f. e.g. [8℄, [12℄.Another way of rewriting relation (14) is�(p; p0) = Z d4X exp(iqX)Z d3y(2�)3 exp(�iK � y)~�(x; x0; t0) ; (20)where X = (x+ x0)=2, y = x� x0 and X0 = t0. A

ording to formula (1)a possible 
hoi
e of the sour
e fun
tion isS(X;K) = Z d3y(2�)3 exp(�iK � y)~�(x;x0; t0) : (21)The di�erential Wigner fun
tion is the Wigner transform of the di�erentialdensity matrix as it should. The relation of this parti
ular sour
e fun
tionto the Wigner fun
tion is again given by formula (7). We 
on
lude thatamong the in�nitely many sour
e fun
tions whi
h give the same densitymatrix in the momentum representation there is one, whi
h 
an be relatedto the Wigner fun
tion as des
ribed. Note that this sour
e fun
tion dependson K, but does not depend on K0.4. In
luding 
oheren
e in spa
e and timeFinally let us 
onsider the 
ase, when neither 
oheren
e in spa
e, nor
oheren
e in time is assumed. Then the density matrix is�(p;p0) = Z d4xZ d4x0hp; tjx; t; t0i~�(x; x0)hx0; t; t00jp0; ti ; (22)



Relation Between Wigner Fun
tions and the Sour
e Fun
tions . . . 3387where x = (x; t0) and x0 = (x0; t00). For an appli
ation of a formula of thistype see e.g. Ref. [9℄, where PF MF (x)MF (x0) stand for our ~�(x; x0).Formula (22) 
an be rewritten as�(p;p0) = Z d4X Z d4y exp[iqX + iKy℄~�(x; x0)=(2�)3 ; (23)where X = 12(x+ x0) and y = x� x0. Comparison with formula (1) gives asone of the solutions for the sour
e fun
tionS(X;K) = Z d4y(2�)3 exp[iKy℄~�(x; x0) : (24)The right hand side is rather remote from what one usually 
alls a Wignerfun
tion. The di�erential Wigner fun
tion was at least proportional to aWigner fun
tion, though only for the parti
les from sour
es produ
ed in thetime interval dt0 around the time t = t0. Fun
tion (24) is proportional tothe 
ontribution to the Wigner fun
tion from the interferen
e of the produ
-tion amplitude in the time interval dt0 around t = t0 with the produ
tionamplitude in the time interval dt00 around t = t00, integrated over t00 � t0 at�xed t00 + t0.Formula (22) rewritten in terms of wave pa
kets reads�(p;p0) = Z dt0 Z dt00 Z d�hp; tj�; t; t0i~�(�; t0; t00)h�; t; t00jp0; ti : (25)Note that the state j�; t; t0i may, but does not have to, be 
onne
ted to thestate j�; t; t00i by a smooth Hamiltonian evolution. The sour
e at time t0
an be, as well, something quite di�erent from the sour
e at time t00. Onthe other hand, the evolution of j�; t; t0i in the time t for t later than thefreeze-out of the parti
le is the ordinary free parti
le evolution. The variousmodels are de�ned by the 
hoi
e of �, of the states j�; t; t0i and of the weightfun
tion ~�(�; t0; t00). Examples 
an be found in Refs. [4, 8, 12℄.5. Con
lusionsA sour
e fun
tion 
annot be equal to a Wigner fun
tion, be
ause theyhave di�erent dimensions. Moreover, for a given state of the system itsWigner fun
tion is well de�ned, while its sour
e fun
tion is not. The prob-lem is, therefore, to 
hose some spe
ial sour
e fun
tion and try to relate itsomehow to a Wigner fun
tion.When all the parti
les are produ
ed simultaneously and when this is as-sumed to mean that the sour
e fun
tion is proportional to a delta fun
tion intime, the proportionality 
oe�
ient is unambiguously de�ned as the Wigner



3388 K. Zalewskifun
tion of the pions at the time of freeze-out (4). When it is assumedthat the produ
tion amplitudes at di�erent times add in
oherently, one 
anuse the sour
e fun
tion proportional to the di�erential Wigner fun
tion asgiven in (13). When the produ
tion amplitudes at di�erent times interfere,a sour
e fun
tion 
an be related to a pie
e of the Wigner fun
tion as givenby formula (24) and explained below this formula. In this 
ase, however, theuse of wave pa
kets (or sour
es, or 
urrents) may be a more natural way toanalyze the phase spa
e distribution of pions.If, as is often done, a model is de�ned by postulating the sour
e fun
tion(
f. [1℄ for examples), the question about the relation of this sour
e fun
tionto a Wigner fun
tion 
annot be answered without making an assumptionabout the 
oheren
e or in
oheren
e of the amplitudes for pion produ
tion atdi�erent times. When the sour
e fun
tion is proportional to a delta fun
tionin time, one 
an relate it to a Wigner fun
tion by relation (4). When it doesnot depend on K0, one 
an use formula (7). In the later 
ase there is noguarantee that the produ
tion pro
ess was su
h as the di�erential Wignerfun
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