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RELATION BETWEEN WIGNER FUNCTIONSAND THE SOURCE FUNCTIONS USED IN THEDESCRIPTION OF BOSE�EINSTEIN CORRELATIONSIN MULTIPLE PARTICLE PRODUCTIONK. ZalewskiyM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandandH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Polande-mail: zalewski�th.if.uj.edu.pl(Reeived May 26, 2003)Dediated to Jan Kwiei«ski in honour of his 65th birthdayRelations between Wigner funtions and the soure funtions used inmodels of Bose�Einstein orrelations in multiple partile prodution arederived and disussed. These relations are model dependent. In partiularit is important whether the partiles are emitted simultaneously and if not,whether the prodution amplitudes orresponding to di�erent moments oftime an interfere with eah other.PACS numbers: 05.10.�a, 13.85.Hd1. IntrodutionWhen disussing Bose�Einstein orrelations among idential pions1 pro-dued in multiple partile prodution proesses, one often uses the sourefuntion S(X;K) (f. e.g. [1℄ and referenes quoted there) related to thesingle partile density matrix in the momentum representation by the for-y Partially supported by the Polish State Committee for Sienti� Researh (KBN)grant 2P03B09322.1 Here and in the following we all for de�niteness the idential bosons pions the results,however, are valid for any idential bosons.(3379)



3380 K. Zalewskimula2 �(p;p0) = Z d4XeiqXS(X;K) ; (1)where q = p� p0 and K = (p+ p0)=2 are four-vetors onstruted from theon-shell single partile four momenta p and p0. The four omponents of Xare integration variables and, therefore, there is muh freedom in their in-terpretation. It is usual, however, to identify S(X;K) with the spae�timedistribution of the soures produing the pions with momentum K and thenX is interpreted as the spae�time position of the soure. A soure funtionsombines onveniently the information and/or prejudie about the spae�time (X) distribution of the soures and about the momentum distributionof the produed partiles. It yields the density matrix, whih an be used toget the (two- as well as more partile) orrelation funtion. Comparing thepredited orrelation funtions with experiment one an improve the modelused to �nd S(X;K), �x its parameters et. Note that the density matrixon the left hand side of formula (1) does not depend on time. Sine afterfreeze-out the partiles propagate freely (we do not disuss the �nal stateinterations here), this means that for times after the freeze-out period theelements of the density matrix should be interpreted as the matrix elementsof the time dependent (Shrödinger piture) density operator between thetime dependent states jp; ti = eiE(p)tjpi, or equivalently as the matrix ele-ment of the time independent (interation piture) density operator betweenthe time independent states jpi.Formula (1) looks similar to the formula relating the Wigner funtionW (X;K) (f. e.g. [2℄ and referenes ontained there) to the density matrix:�(p;p0; t) = Z d3Xe�iq�XW (X;K; t) : (2)In fat the building blok of the soure funtion was originally a Wignerfuntion (f. [3℄ formula (7)). Beause of the similarity between formulae (1)and (2), the soure funtion is often referred to as a Wigner funtion, a kindof Wigner funtion, a pseudo-Wigner funtion et. (f. e.g. Ref. [4℄, fromwhih all these names have been taken). A disussion of the atual relationbetween the soure funtion and the Wigner funtions, however, seems tobe missing in the literature. Let us begin with some general remarks.Formula (2) ontains the time dependent density matrix, i.e. the timedependent density operator in the representation of the time independent2 Often an equivalent formula with the density matrix replaed by the averagehâypâp0i = �(p0; p) is used. Also some authors inlude on the left hand side a fatorpEE0. Sine this fator does not a�et our argument and is easy to introdue at anystage, we skip it.



Relation Between Wigner Funtions and the Soure Funtions . . . 3381states jpi. Thus �(p;p0; t) = e�iq0t�(p;p0) : (3)Relation (1) follows from (2), if we putS(X;K) =W (X;K; t0)Æ(X0 � t0) : (4)This hoie an be always made and has a simple physial interpretation.Choose a time t0 after freeze-out, when all the pions are already present, butnone have been registered yet. The state at t0 yields the initial onditionfrom whih any distribution at registration an be alulated. Assumingthat all the pions appeared simultaneously at t0 may be poor physis, butthis does not hange the fat that the preditions at registration time areorret. There is an in�nite hoie of other soure funtions, whih alsosatisfy relation (1). Sine this relation is the only link between a sourefuntion and physial reality, there an be no objetion of priniple againstthe hoie (4). From the pratial point of view, however, another sourefuntion, whih an be alulated from some model, may be more onvenientand, of ourse, it is just as good, if it reprodues the density matrix equallywell. Note that the identity of funtions in (4) does not mean that theirargument have the same physial interpretation. In fat, on the left handside X and K denote the position of the soure in spae�time and the four-momentum of the pion, while on the right hand side X = 12 (x + x0) andK = 12(p + p0) are de�ned by referene to the arguments of the densitymatries of the pion in the oordinate representation and in the momentumrepresentation respetively, while t0 is the time. It is often reasonable toassume thatX andK on both sides are good approximations to the positionat t = t0 and momentum for t � t0 of the pion, but this is ertainly notalways the ase.Let us onlude this setion with some more remarks. If one assumesthat all the partiles were reated simultaneously at some ommon freeze-out time t = t0, then a �realisti� soure funtion should be proportionalto Æ(X0 � t0) and the proportionality oe�ient is the Wigner funtion asin (4). The soure funtion annot be equal to a Wigner funtion, beausethe dimensions are di�erent. The delta funtion in formula (4) brings intothe dimension the neessary fator 1/time. What ould be equal to thesoure funtion is what we will refer to as the di�erential Wigner funtionde�ned by the relation~W (X ;K; t0) = Wdt0(X ;K; t0)dt0 : (5)Here Wdt0 is the Wigner funtion at time t > t0 for the partiles fromsoures reated in the time interval dt0 around time t0. Note that we are



3382 K. Zalewskiusing the Wigner funtions normalized to the numbers of partiles and notto one. When the amplitudes of the pions produed at di�erent times addinoherently, formula (2) an be rewritten in terms of the di�erential Wignerfuntion ~W as: �(p; p0) = Z d4XeiqX ~W (X;K) ; (6)where the fourth omponent of the vetor X = (X ;X0) is t0. Comparingthis formula with formula (1) we �nd a partiular solution for the sourefuntion S(X;K) = ~W (X;K) : (7)We stress that this is only one out of the in�nity of soure funtions, whihwhen substituted into formula (1) yield the orret density matrix and thatfor the soures inoherene in the reation time has been assumed.2. GGLP modelsIn the seminal paper of the Goldhabers, Lee and Pais [5℄ the assumptionwas made that pion prodution amplitudes at di�erent spae points areinoherent. In this simple ase there is no need to distinguish between thesoures and the pions at t = t0. A natural generalization (f. e.g. [6℄)was to assume more generally that pions prodution amplitudes at di�erentspae�time points are inoherent. Further we refer to suh models as GGLPmodels.Let us begin with the simpler ase, when all the pions appear simultane-ously at t = t0. For t > t0 they are assumed to propagate freely. The timeindependent density matrix for t > t0 is:�(p;p0) = Z d3xhp; tjx; t; t0i�(x; t0)hx; t; t0jp0ti : (8)Here jx; t; t0i = exp[�i(t � t0)Ĥ0℄jxi is the time dependent state, evolvingaording to the free partile Hamiltonian Ĥ0 from the initial state jxi,whih orresponds to a pion loalized at x at time t0. One ould also saythat in spae�time the position of the soure is (x; t0). Let us note for furtheruse the formula hp; tjx; t; t0i = eiE(p)t0hpjxi ; (9)where E(p) = pp2 +m2�. Formula (8) is perfetly aeptable from thepoint of view of quantum mehanis, in spite of the fat that aording tothe piture desribed in Ref. [5℄ a pion with momentum p is produed atpoint x, whih would ontradit the unertainty priniple. Sine the densitymatrix is diagonal in x (in the x, whih labels the inoherent states, not



Relation Between Wigner Funtions and the Soure Funtions . . . 3383in position at time t) and t = t0 = t0 , we an identify the omponents ofthe vetor x with X1;X2;X3 and the parameter t0 with X0. The matrixelement (8) an be rewritten as�(p;p0) = Z d3X(2�)3 exp(iqX)�(X) : (10)Using (3) and omparing with (2) this yieldsW (X;K) = �(X)(2�)3 : (11)The soure funtion is given by formula (4), beause by assumption all thepartile prodution happens at t = t0. The omponents of X are the threeomponents of the position vetor of the point where the partile was pro-dued and its time of prodution (freeze-out time). Sine after freeze-outthe momentum vetor of eah partile is onserved separately, the momentaentering K an be taken at any time not earlier than t0. The atual time ofobservation does not our in the formula at all.Note that for this lass of models the Wigner funtion does not depend onmomenta. With the present interpretation this would lead to disaster whenomparing with experiment. The Goldhabers, Lee and Pais [5℄ proeededdi�erently. They were interested in n-pion exlusive states for n = 4; 5; 6with no more than two pions of a given harge. Using matrix (8) they on-struted the probability distributions P (p1; : : : ; pn). These were interpretedas momentum distributions only after the sets of momenta ontraditingenergy and/or momentum onservation were projeted out. In pratie theyinterpreted the P -s as integrands of the orresponding phase spae inte-grals. This ould not be generalized to inlusive proesses, led to ratherompliated integrations and gave results, whih at that time were onsid-ered aeptable, but whih soon were shown to be in violent disagreementwith experiment [7℄. Most of these di�ulties were overome by Kopylov,Podgoretsky and oworkers as desribed in the next setion.Let us onsider now the more general ase, when the pions are produedat di�erent moments of time, but there is no interferene between the am-plitudes orresponding to prodution at di�erent moments. Then at timeslarger than the largest freeze-out time the density matrix is given by an in-tegral over the freeze-out time t0 of the (di�erential version of the) densitymatrix (10) orresponding to partiles produed at given time t0:�(p; p0) = Z d4X(2�)3 exp(iqX)~�(X) : (12)Note that in order to keep the dimensions right �(X), whih is a densityin spae, has been replaed by ~�(X) whih is a density in spae time. In



3384 K. Zalewskifat, �(X) are diagonal elements of the time independent single pion densitymatrix in the jx; t; t0i representation, while ~�(X) are the diagonal elementsof the orresponding di�erential density matrix related to �(X) by a formulaanalogous to (5). Comparing with (1) it is seen that one solution for S(X;K)is S(X;K) = ~�(X)(2�)3 : (13)Sine there is inoherene in time, the relation between the soure funtionand Wigner's funtion is S(X;K) = ~W (X;K) (7).This seems to be the perfet situation: the soure funtion reproduesexatly the distribution of (inoherent) soures in spae�time and oinideswith the di�erential Wigner funtion. However, (13) is only one of the in�n-ity of soure funtions, whih yield the same density matrix. A quite di�erentone an be obtained e.g. by alulating the Wigner funtion orrespondingto the density matrix �(p1;p2; t) and substituting it into formula (4). Wean onlude only that for this lass of (unrealisti) models there is an a-eptable soure funtion, whih an be interpreted as a di�erential Wignerfuntion. Therefore, it an be argued that this partiular soure funtion iseasier to �nd than others.3. Inluding oherene in spaeAn important extension of the GGLP approah is to assume that atany given reation time there may be oherene between the amplitudes ofthe pions produed at di�erent points in spae, though pions produed atdi�erent times t0 do not interfere. Models of this type, also in the moregeneral version with oherene in time, have been introdued by Kopylovand Podgoretsky [8℄. In terms of soures this may be quite ompliated.For instane, in the model desribed by Kopylov and Podgoretsky [8℄ all thesoures are produed simultaneously and live for some time. The averagingover the energy of eah soure (not of the pion!), however, kills the inter-ferene between the amplitudes for the prodution of the pion by the samesoure at di�erent moments of time. Therefore one an replae eah origi-nal soure by a set of soures distributed in time and produing the pionsinstantly. These are not quite satisfatory models, beause it is di�ult toexplain why the reation amplitudes from neighboring time moments shouldnot interfere, while those from neighboring spae points do. Moreover, rela-tivistially the reation proesses whih are at di�erent times in one Lorentzframe may be simultaneous in another Lorentz frame. As seen from formula(4), however, even in the simplest ase of simultaneous prodution, suhmodels an reprodue orretly any single partile density matrix and on-



Relation Between Wigner Funtions and the Soure Funtions . . . 3385sequently any single partile momentum distribution without doing phasespae integrations. Thus they an be applied to desribe inlusive proesses.Inluding interferene in spae and summing without interferene overtime orresponds to the following generalization of formula (8)�(p;p0) = Z dt0 Z d3xZ d3x0hp; tjx; t; t0i~�(x;x0; t0)hx0; t; t0jp0; ti : (14)There are many equivalent ways of rewriting this relation. For instane,one may use a representation j�i, where the (di�erential) density matrix~�(x;x0; t0) is diagonal. Then (14) gets replaed by�(p;p0) = Z dt0 Z d�eiq0t0hpj�i~�(�; t0)h�jp0i : (15)It is instrutive to ompare this model, to the GGLP models. At t0 theloalized states jxi = jx; t0; t0i have been replaed by the states j�i =j�; t0; t0i. The plane waves hpjxi have been replaed by the funtions hpj�i,whih are known under a variety of names: as waved pakets, as soures,or as urrents. The soure funtion for suh models was introdued byPratt [3℄. His statement that3 �S(X;K) an be identi�ed as the probabilityof emitting a pion of momentum K from spae�time point X� is, however,only an approximation.Kopylov and Podgoretsky [8℄ assumed that (�; t0) is a point in spae�time, so that formula (15) an be rewritten as�(p;p0) = Z d4x0hpj x0i~�(x0)h x0 jp0ieiq0t0 : (16)This approah yields an alternative method of desribing the distribution ofpions in phase spae. In the integrand, hpj x0i is the probability amplitudefor �nding a pion with momentum p produed by a soure labelled x0. Whenthe states j x0i orrespond to partiles well loalized in spae, p and x0 givea reasonably good desription of the position of the pion in phase spae. Oneould objet that this is only a rough desription, but the same is true forthe Wigner funtion: K andX give only approximately the momentum andposition of the pion. An exat determination of the pion position in phasespae is possible only in lassial physis.In Ref. [8℄ the states j�i = j x0i were supposed to be related by spaetime translations so that x0(x) � hxj x0i =  (x� x0) ; (17)hpj x0i = eipx0�(p); �(p) = hpj 0i : (18)3 This has been hanged to our notation. Pratt has written g; ~p; x where we havewritten S;K; X.



3386 K. ZalewskiThe seond formula is, of ourse, equivalent to the �rst. Another hoie hasbeen made in the �ovariant urrent ensemble formalism� [10�13℄. Thereeah soure is labelled by a position in spae�time x0 and a four-momentump0. Usually x0 and p0 denote the enters of the wave paket in ordinaryspae and in momentum spae, respetively. The time omponent of x0 ist0 � the freeze-out time of the wave paket. The time omponent of p0 isalulated from the ondition p20 = m2, where m an [13℄, but does not haveto [4℄ be the pion mass. The nie feature of this parametrization of the wavepakets is that one an substitute a lassial trajetory x0(t);p0(t) for thesoure and remain in agreement with the Heisenberg unertainty priniplefor the pions. The hoie for the salar produts ishpj x0;p0i = eipx0j �pp0m � : (19)Thus, the soures are related by spae�time translations and when eah ofthe urrents j is onsidered in its rest frame where p0 = (m; 0), they areidential. Formulae (17) and (19) have been applied also to relativistiallyovariant models f. e.g. [8℄, [12℄.Another way of rewriting relation (14) is�(p; p0) = Z d4X exp(iqX)Z d3y(2�)3 exp(�iK � y)~�(x; x0; t0) ; (20)where X = (x+ x0)=2, y = x� x0 and X0 = t0. Aording to formula (1)a possible hoie of the soure funtion isS(X;K) = Z d3y(2�)3 exp(�iK � y)~�(x;x0; t0) : (21)The di�erential Wigner funtion is the Wigner transform of the di�erentialdensity matrix as it should. The relation of this partiular soure funtionto the Wigner funtion is again given by formula (7). We onlude thatamong the in�nitely many soure funtions whih give the same densitymatrix in the momentum representation there is one, whih an be relatedto the Wigner funtion as desribed. Note that this soure funtion dependson K, but does not depend on K0.4. Inluding oherene in spae and timeFinally let us onsider the ase, when neither oherene in spae, noroherene in time is assumed. Then the density matrix is�(p;p0) = Z d4xZ d4x0hp; tjx; t; t0i~�(x; x0)hx0; t; t00jp0; ti ; (22)



Relation Between Wigner Funtions and the Soure Funtions . . . 3387where x = (x; t0) and x0 = (x0; t00). For an appliation of a formula of thistype see e.g. Ref. [9℄, where PF MF (x)MF (x0) stand for our ~�(x; x0).Formula (22) an be rewritten as�(p;p0) = Z d4X Z d4y exp[iqX + iKy℄~�(x; x0)=(2�)3 ; (23)where X = 12(x+ x0) and y = x� x0. Comparison with formula (1) gives asone of the solutions for the soure funtionS(X;K) = Z d4y(2�)3 exp[iKy℄~�(x; x0) : (24)The right hand side is rather remote from what one usually alls a Wignerfuntion. The di�erential Wigner funtion was at least proportional to aWigner funtion, though only for the partiles from soures produed in thetime interval dt0 around the time t = t0. Funtion (24) is proportional tothe ontribution to the Wigner funtion from the interferene of the produ-tion amplitude in the time interval dt0 around t = t0 with the produtionamplitude in the time interval dt00 around t = t00, integrated over t00 � t0 at�xed t00 + t0.Formula (22) rewritten in terms of wave pakets reads�(p;p0) = Z dt0 Z dt00 Z d�hp; tj�; t; t0i~�(�; t0; t00)h�; t; t00jp0; ti : (25)Note that the state j�; t; t0i may, but does not have to, be onneted to thestate j�; t; t00i by a smooth Hamiltonian evolution. The soure at time t0an be, as well, something quite di�erent from the soure at time t00. Onthe other hand, the evolution of j�; t; t0i in the time t for t later than thefreeze-out of the partile is the ordinary free partile evolution. The variousmodels are de�ned by the hoie of �, of the states j�; t; t0i and of the weightfuntion ~�(�; t0; t00). Examples an be found in Refs. [4, 8, 12℄.5. ConlusionsA soure funtion annot be equal to a Wigner funtion, beause theyhave di�erent dimensions. Moreover, for a given state of the system itsWigner funtion is well de�ned, while its soure funtion is not. The prob-lem is, therefore, to hose some speial soure funtion and try to relate itsomehow to a Wigner funtion.When all the partiles are produed simultaneously and when this is as-sumed to mean that the soure funtion is proportional to a delta funtion intime, the proportionality oe�ient is unambiguously de�ned as the Wigner



3388 K. Zalewskifuntion of the pions at the time of freeze-out (4). When it is assumedthat the prodution amplitudes at di�erent times add inoherently, one anuse the soure funtion proportional to the di�erential Wigner funtion asgiven in (13). When the prodution amplitudes at di�erent times interfere,a soure funtion an be related to a piee of the Wigner funtion as givenby formula (24) and explained below this formula. In this ase, however, theuse of wave pakets (or soures, or urrents) may be a more natural way toanalyze the phase spae distribution of pions.If, as is often done, a model is de�ned by postulating the soure funtion(f. [1℄ for examples), the question about the relation of this soure funtionto a Wigner funtion annot be answered without making an assumptionabout the oherene or inoherene of the amplitudes for pion prodution atdi�erent times. When the soure funtion is proportional to a delta funtionin time, one an relate it to a Wigner funtion by relation (4). When it doesnot depend on K0, one an use formula (7). In the later ase there is noguarantee that the prodution proess was suh as the di�erential Wignerfuntions suggest. REFERENCES[1℄ U.A. Wiedemann, U. Heinz, Phys. Rep. 319, 145 (1999).[2℄ M. Hillery, R.F. O'Connel, M. Sully, E.P. Wigner, Phys. Rep. 106, 121 (1984).[3℄ S. Pratt, Phys. Rev. Lett. 53,1219 (1984).[4℄ S. Champan, U. Heinz, Phys. Lett. B340, 250 (1994).[5℄ G. Goldhaber, S. Goldhaber, W. Lee, A. Pais, Phys. Rev. 120, 300 (1960).[6℄ G.I. Kopylov, M.I. Podgoretsky, Yad. Phys. 15, 103 (1972).[7℄ O. Czy»ewski, M. Szeptyka, Phys. Lett. 25B, 482 (1967).[8℄ G.I. Kopylov, M.I. Podgoretsky, Yad. Phys. 19, 434 (1974).[9℄ S. Pratt, T. Csörgö, J. Zimányi, Phys. Rev. C42, 2646 (1990).[10℄ K. Kolehmeinen, M. Gyulassy, Phys. Lett. B180, 203 (1986).[11℄ M. Gyulassy, S.S. Padula, Phys. Lett. B217, 181 (1988).[12℄ S.S. Padula, M. Gyulassy, S. Gavin, Nul. Phys. B329, 357 (1990).[13℄ S.S. Padula, M. Gyulassy, Nul. Phys. B339, 378 (1990).


