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Relations between Wigner functions and the source functions used in
models of Bose-Einstein correlations in multiple particle production are
derived and discussed. These relations are model dependent. In particular
it is important whether the particles are emitted simultaneously and if not,
whether the production amplitudes corresponding to different moments of
time can interfere with each other.

PACS numbers: 05.10.—a, 13.85.Hd

1. Introduction

When discussing Bose-Einstein correlations among identical pions! pro-
duced in multiple particle production processes, one often uses the source
function S(X, K) (c¢f. e.g. [1] and references quoted there) related to the
single particle density matrix in the momentum representation by the for-

! Partially supported by the Polish State Committee for Scientific Research (KBN)
grant 2P03B09322.

! Here and in the following we call for definiteness the identical bosons pions the results,
however, are valid for any identical bosons.
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mula?2

o(p.p) = / I XN S(X, K), (1)

where ¢ = p —p’ and K = (p + p’)/2 are four-vectors constructed from the
on-shell single particle four momenta p and p’. The four components of X
are integration variables and, therefore, there is much freedom in their in-
terpretation. It is usual, however, to identify S(X, K) with the space-time
distribution of the sources producing the pions with momentum K and then
X is interpreted as the space—time position of the source. A source functions
combines conveniently the information and/or prejudice about the space—
time (X)) distribution of the sources and about the momentum distribution
of the produced particles. It yields the density matrix, which can be used to
get the (two- as well as more particle) correlation function. Comparing the
predicted correlation functions with experiment one can improve the model
used to find S(X, K), fix its parameters etc. Note that the density matrix
on the left hand side of formula (1) does not depend on time. Since after
freeze-out the particles propagate freely (we do not discuss the final state
interactions here), this means that for times after the freeze-out period the
elements of the density matrix should be interpreted as the matrix elements
of the time dependent (Schrédinger picture) density operator between the
time dependent states |p,t) = e’£(®)|p)  or equivalently as the matrix ele-
ment of the time independent (interaction picture) density operator between
the time independent states |p).

Formula (1) looks similar to the formula relating the Wigner function
W(X, K) (cf. e.g. |2] and references contained there) to the density matrix:

o(p.p',1) = / P Xe TXW (X K 1). )

In fact the building block of the source function was originally a Wigner
function (cf. [3| formula (7)). Because of the similarity between formulae (1)
and (2), the source function is often referred to as a Wigner function, a kind
of Wigner function, a pseudo-Wigner function etc. (cf. e.g. Ref. [4], from
which all these names have been taken). A discussion of the actual relation
between the source function and the Wigner functions, however, seems to
be missing in the literature. Let us begin with some general remarks.
Formula (2) contains the time dependent density matrix, i.e. the time
dependent density operator in the representation of the time independent

2 Often an equivalent formula with the density matrix replaced by the average

(aba,) = p(p’,yp) is used. Also some authors include on the left hand side a factor

VEE'. Since this factor does not affect our argument and is easy to introduce at any
stage, we skip it.
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states |p). Thus .
p(p.p',t) = e p(p.p'). (3)
Relation (1) follows from (2), if we put

S(X,K) =W(X, K, ty)d(Xo —to) - (4)

This choice can be always made and has a simple physical interpretation.
Choose a time tg after freeze-out, when all the pions are already present, but
none have been registered yet. The state at tg yields the initial condition
from which any distribution at registration can be calculated. Assuming
that all the pions appeared simultaneously at ¢y may be poor physics, but
this does not change the fact that the predictions at registration time are
correct. There is an infinite choice of other source functions, which also
satisfy relation (1). Since this relation is the only link between a source
function and physical reality, there can be no objection of principle against
the choice (4). From the practical point of view, however, another source
function, which can be calculated from some model, may be more convenient
and, of course, it is just as good, if it reproduces the density matrix equally
well. Note that the identity of functions in (4) does not mean that their
argument have the same physical interpretation. In fact, on the left hand
side X and K denote the position of the source in space-time and the four-
momentum of the pion, while on the right hand side X = 1(z + ') and
K = %(p + p’) are defined by reference to the arguments of the density
matrices of the pion in the coordinate representation and in the momentum
representation respectively, while ¢y is the time. It is often reasonable to
assume that X and K on both sides are good approximations to the position
at t = tg and momentum for ¢ > #y of the pion, but this is certainly not
always the case.

Let us conclude this section with some more remarks. If one assumes
that all the particles were created simultaneously at some common freeze-
out time ¢t = tg, then a “realistic” source function should be proportional
to 0(Xo — to) and the proportionality coefficient is the Wigner function as
in (4). The source function cannot be equal to a Wigner function, because
the dimensions are different. The delta function in formula (4) brings into
the dimension the necessary factor 1/time. What could be equal to the
source function is what we will refer to as the differential Wigner function
defined by the relation

W(X,K,t) = M_ (5)

ditg
Here Wy, is the Wigner function at time ¢ > tp for the particles from
sources created in the time interval dty around time tg. Note that we are
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using the Wigner functions normalized to the numbers of particles and not
to one. When the amplitudes of the pions produced at different times add
incoherently, formula (2) can be rewritten in terms of the differential Wigner
function W as:

p(p.0') = / X (X, K) (6)

where the fourth component of the vector X = (X, Xq) is tp. Comparing
this formula with formula (1) we find a particular solution for the source
function )

S(X,K)=W(X,K). (7)
We stress that this is only one out of the infinity of source functions, which
when substituted into formula (1) yield the correct density matrix and that
for the sources incoherence in the creation time has been assumed.

2. GGLP models

In the seminal paper of the Goldhabers, Lee and Pais [5] the assumption
was made that pion production amplitudes at different space points are
incoherent. In this simple case there is no need to distinguish between the
sources and the pions at ¢ = ¢y. A natural generalization (cf. e.g. [6])
was to assume more generally that pions production amplitudes at different
space—time points are incoherent. Further we refer to such models as GGLP
models.

Let us begin with the simpler case, when all the pions appear simultane-
ously at ¢t = tg. For t > ¢y they are assumed to propagate freely. The time
independent density matrix for ¢ > # is:

o(p,p) = / o (p. 1]z, £ to)p(, to) (. £ to|p't) (8)

Here |z, t;to) = exp[—i(t — to)Ho]|) is the time dependent state, evolving
according to the free particle Hamiltonian Hy from the initial state |z),
which corresponds to a pion localized at a at time 3. One could also say
that in space-time the position of the source is (z, ty). Let us note for further
use the formula .

(b, ]z, 1) = PP (plas), (9)

where E(p) = /p?>+m2. Formula (8) is perfectly acceptable from the
point of view of quantum mechanics, in spite of the fact that according to
the picture described in Ref. [5] a pion with momentum p is produced at
point &, which would contradict the uncertainty principle. Since the density
matrix is diagonal in @ (in the x, which labels the incoherent states, not
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in position at time t) and t = ' = ty , we can identify the components of
the vector & with X7, X9, X3 and the parameter ¢y with X3. The matrix
element (8) can be rewritten as

, d*X ,
o2 = [ gy expliaX)p(X). (10)
Using (3) and comparing with (2) this yields
_ pX)
WX K) = G5 (11)

The source function is given by formula (4), because by assumption all the
particle production happens at ¢t = tg. The components of X are the three
components of the position vector of the point where the particle was pro-
duced and its time of production (freeze-out time). Since after freeze-out
the momentum vector of each particle is conserved separately, the momenta
entering K can be taken at any time not earlier than #y. The actual time of
observation does not occur in the formula at all.

Note that for this class of models the Wigner function does not depend on
momenta. With the present interpretation this would lead to disaster when
comparing with experiment. The Goldhabers, Lee and Pais [5] proceeded
differently. They were interested in n-pion exclusive states for n = 4,5,6
with no more than two pions of a given charge. Using matrix (8) they con-
structed the probability distributions P(p1,...,p,). These were interpreted
as momentum distributions only after the sets of momenta contradicting
energy and/or momentum conservation were projected out. In practice they
interpreted the P-s as integrands of the corresponding phase space inte-
grals. This could not be generalized to inclusive processes, led to rather
complicated integrations and gave results, which at that time were consid-
ered acceptable, but which soon were shown to be in violent disagreement
with experiment [7]. Most of these difficulties were overcome by Kopylov,
Podgoretsky and coworkers as described in the next section.

Let us consider now the more general case, when the pions are produced
at different moments of time, but there is no interference between the am-
plitudes corresponding to production at different moments. Then at times
larger than the largest freeze-out time the density matrix is given by an in-
tegral over the freeze-out time o of the (differential version of the) density
matrix (10) corresponding to particles produced at given time #,:

4
(0, 7) = / éTX)gexpqu)ﬁ(X). (12)

Note that in order to keep the dimensions right p(X), which is a density
in space, has been replaced by p(X) which is a density in space time. In
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fact, p(X) are diagonal elements of the time independent single pion density
matrix in the |z, t; ¢y) representation, while p(X) are the diagonal elements
of the corresponding differential density matrix related to p(X) by a formula
analogous to (5). Comparing with (1) it is seen that one solution for S(X, K)
is

5(X)

S(K) = G

(13)

Since there is incoherence in time, the relation between the source function

and Wigner’s function is S(X, K) = W(X, K) (7).

This seems to be the perfect situation: the source function reproduces
exactly the distribution of (incoherent) sources in space-time and coincides
with the differential Wigner function. However, (13) is only one of the infin-
ity of source functions, which yield the same density matrix. A quite different
one can be obtained e.g. by calculating the Wigner function corresponding
to the density matrix p(p;,ps,t) and substituting it into formula (4). We
can conclude only that for this class of (unrealistic) models there is an ac-
ceptable source function, which can be interpreted as a differential Wigner
function. Therefore, it can be argued that this particular source function is
easier to find than others.

3. Including coherence in space

An important extension of the GGLP approach is to assume that at
any given creation time there may be coherence between the amplitudes of
the pions produced at different points in space, though pions produced at
different times ¢y do not interfere. Models of this type, also in the more
general version with coherence in time, have been introduced by Kopylov
and Podgoretsky [8]. In terms of sources this may be quite complicated.
For instance, in the model described by Kopylov and Podgoretsky [8] all the
sources are produced simultaneously and live for some time. The averaging
over the energy of each source (not of the pion!), however, kills the inter-
ference between the amplitudes for the production of the pion by the same
source at different moments of time. Therefore one can replace each origi-
nal source by a set of sources distributed in time and producing the pions
instantly. These are not quite satisfactory models, because it is difficult to
explain why the creation amplitudes from neighboring time moments should
not interfere, while those from neighboring space points do. Moreover, rela-
tivistically the creation processes which are at different times in one Lorentz
frame may be simultaneous in another Lorentz frame. As seen from formula
(4), however, even in the simplest case of simultaneous production, such
models can reproduce correctly any single particle density matrix and con-
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sequently any single particle momentum distribution without doing phase
space integrations. Thus they can be applied to describe inclusive processes.

Including interference in space and summing without interference over
time corresponds to the following generalization of formula (8)

o(p,p) = / dty / a / B! (p, t, s to) (@, @ to) (@ t: tolpl, 1) . (14)

There are many equivalent ways of rewriting this relation. For instance,
one may use a representation |a), where the (differential) density matrix
plz, ' ty) is diagonal. Then (14) gets replaced by

o(p.p) = / dto / doi 010 (p|s) 5(x; o) ') (15)

It is instructive to compare this model, to the GGLP models. At ty the
localized states |z) = |x,to;t0) have been replaced by the states |a) =
|, to;to). The plane waves (p|x) have been replaced by the functions (p|a),
which are known under a variety of names: as waved packets, as sources,
or as currents. The source function for such models was introduced by
Pratt [3]. His statement that3 “S(X, K) can be identified as the probability
of emitting a pion of momentum K from space-time point X” is, however,
only an approximation.

Kopylov and Podgoretsky [8] assumed that («,to) is a point in space—
time, so that formula (15) can be rewritten as

o(p.p) = / 020 (DIt )5(20) (thag )90 (16)

This approach yields an alternative method of describing the distribution of
pions in phase space. In the integrand, (p|t¢s,) is the probability amplitude
for finding a pion with momentum p produced by a source labelled zy. When
the states |1,,) correspond to particles well localized in space, p and x( give
a reasonably good description of the position of the pion in phase space. One
could object that this is only a rough description, but the same is true for
the Wigner function: K and X give only approximately the momentum and
position of the pion. An exact determination of the pion position in phase
space is possible only in classical physics.

In Ref. [8] the states |a) = |1)5,) were supposed to be related by space
time translations so that

o (z) = (@|heo) = Y(z — 30), (17)
(PlYz,) = eP™d(p),  #(p) = (Pl?o) - (18)

3 This has been changed to our notation. Pratt has written g, 7, where we have
written S, K, X.
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The second formula is, of course, equivalent to the first. Another choice has
been made in the “covariant current ensemble formalism” [10-13]. There
each source is labelled by a position in space-time xg and a four-momentum
po. Usually ¢y and p, denote the centers of the wave packet in ordinary
space and in momentum space, respectively. The time component of zg is
tg — the freeze-out time of the wave packet. The time component of pq is
calculated from the condition p3 = m?, where m can [13], but does not have
to [4] be the pion mass. The nice feature of this parametrization of the wave
packets is that one can substitute a classical trajectory @xo(t), po(t) for the
source and remain in agreement with the Heisenberg uncertainty principle
for the pions. The choice for the scalar products is

@) . (19)

m

(PlYzo.po) = eipmoj (

Thus, the sources are related by space—time translations and when each of
the currents j is considered in its rest frame where py = (m,0), they are
identical. Formulae (17) and (19) have been applied also to relativistically
covariant models cf. e.g. 8], [12].

Another way of rewriting relation (14) is

3
plo:9') = [ a'X explioX) [ G expl—iK - wip(e,a). (20

where X = (z + 2')/2, y = ¢ — 2’ and Xy = ;. According to formula (1)
a possible choice of the source function is

3

S(X,K) = / (%3 exp(—iK - y)p(z, ', 1) . (21)

The differential Wigner function is the Wigner transform of the differential
density matrix as it should. The relation of this particular source function
to the Wigner function is again given by formula (7). We conclude that
among the infinitely many source functions which give the same density
matrix in the momentum representation there is one, which can be related
to the Wigner function as described. Note that this source function depends
on K, but does not depend on Kj.

4. Including coherence in space and time

Finally let us consider the case, when neither coherence in space, nor
coherence in time is assumed. Then the density matrix is

o(p.p) = / d'z / 4 (p, @, to) plw, ) (@' 8|9 1), (22)
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where 2 = (z,ty) and 2’ = (2, ). For an application of a formula of this
type see e.g. Ref. [9], where )" » Mp(z)Mp(z') stand for our p(z,z’).
Formula (22) can be rewritten as

o(p,p) = / a'x / dhyexpligX +iKylp(z, ) /@), (23)

where X = (z +2') and y = z — 2/. Comparison with formula (1) gives as
one of the solutions for the source function

4
S(X,K) = / (;Z;;S expliKylp(z, o) . (24)

The right hand side is rather remote from what one usually calls a Wigner
function. The differential Wigner function was at least proportional to a
Wigner function, though only for the particles from sources produced in the
time interval dty around the time ¢ = t3. Function (24) is proportional to
the contribution to the Wigner function from the interference of the produc-
tion amplitude in the time interval dty around ¢ = ¢y with the production
amplitude in the time interval dt{ around ¢ = ), integrated over t; — ¢o at
fixed t{ + to.
Formula (22) rewritten in terms of wave packets reads

o(p.p') = / dty / dt / dodp, tle, £ to) pla, to, ) v 19! 1) . (25)

Note that the state |, t; %) may, but does not have to, be connected to the
state |a, t;t;) by a smooth Hamiltonian evolution. The source at time %
can be, as well, something quite different from the source at time #;. On
the other hand, the evolution of |a,t;t9) in the time ¢ for ¢ later than the
freeze-out of the particle is the ordinary free particle evolution. The various
models are defined by the choice of «, of the states |«, t; tp) and of the weight
function p(«, tg,t;). Examples can be found in Refs. [4,8,12].

5. Conclusions

A source function cannot be equal to a Wigner function, because they
have different dimensions. Moreover, for a given state of the system its
Wigner function is well defined, while its source function is not. The prob-
lem is, therefore, to chose some special source function and try to relate it
somehow to a Wigner function.

When all the particles are produced simultaneously and when this is as-
sumed to mean that the source function is proportional to a delta function in
time, the proportionality coefficient is unambiguously defined as the Wigner
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function of the pions at the time of freeze-out (4). When it is assumed
that the production amplitudes at different times add incoherently, one can
use the source function proportional to the differential Wigner function as
given in (13). When the production amplitudes at different times interfere,
a source function can be related to a piece of the Wigner function as given
by formula (24) and explained below this formula. In this case, however, the
use of wave packets (or sources, or currents) may be a more natural way to
analyze the phase space distribution of pions.

If, as is often done, a model is defined by postulating the source function
(cf. [1] for examples), the question about the relation of this source function
to a Wigner function cannot be answered without making an assumption
about the coherence or incoherence of the amplitudes for pion production at
different times. When the source function is proportional to a delta function
in time, one can relate it to a Wigner function by relation (4). When it does
not depend on Kj, one can use formula (7). In the later case there is no
guarantee that the production process was such as the differential Wigner
functions suggest.
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