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Using the PCAC relation, we derive a compact formula for the pion de-
cay constant F}. in the nonlocal chiral quark model. For practical calcula-
tions this formula may be used both in the Minkowski and in the Euclidean
space. For the pion momentum P, — 0 it reduces to the well known expres-
sion derived earlier by other authors. Using a generalized dipole Ansatz for
the momentum dependence of the constituent quark mass in the Minkowski
space, we express F? in terms of a single integral over the quark momen-
tum fraction u. We interpret the integrand as a pion distribution amplitude
¢(u). We discuss its properties and compare with the 7DA’s obtained in
other models.

PACS numbers: 11.40.Ha, 11.30.Rd, 14.40.Aq

1. Introduction

Recent data from CLEO [1] and E791 [2]| experiments triggered a new
wave of theoretical studies of the leading twist pion distribution amplitude
(7DA). On one side the data have been reanalyzed taking into account NLO
perturbative QCD effects, as well as nonperturbative effects parameterized
within the QCD light-cone sum rules [3,4]. On the other hand nonperturba-
tive models [5-13] and lattice QCD [14-17] have been employed to calculate
the 7DA from the relatively nonrestrictive physical assumptions. Here the
dual nature of the pion, being the quark—antiquark bound state and the
Goldstone boson of the broken chiral symmetry at the same time, makes
such calculations interesting by itself, even if the data is not yet decisive
enough to distinguish between different models.
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Pion distribution amplitude is usually defined by means of the following
matrix element (see e.g. [18]):

o

1 dr _;
_ @l —ir(2u—1)(nP)
br () i2F. / . e

—00

x (0 ‘(Z(nT)ﬁ’)’E)U (—’H,T)‘ ™ (P)) (1)

in the light cone kinematics where two quarks separated by the light cone
distance z = 27 along the direction n = (1,0,0,—1) are moving along the
light cone direction n = (1,0,0, 1) parallel to the total momentum P. Here
F =93 MeV. In this kinematical frame any four vector v can be decomposed
as:

ot

. v
0“27 “+7n“+vﬁ (2)
with o7 =n-v, v = f-v, and the scalar product of two four vectors
reads: 1 1
v-w:§v+w7+§v7w+—ﬁl-u_ﬁ. (3)

In Eq. (1) the path ordered exponential of the gluon field, required by the
gauge invariance, has been omitted since we shall be working in the effective
quark model where the gluon fields have been integrated out.

In the local limit matrix element (1) reduces to

<o 4% ()| 7rb(P)> = —iP, Fp0®%emiPT (4)

where
a

A5 (@) = @)’ S k() (5)

is the properly normalized axial vector current.
In Refs. [13] ¢, (u) has been calculated in the effective chiral quark model
in which quarks interact nonlocally with an external meson field

U (z) = s T (7)/ Frx (6)
and acquire a momentum dependent constituent mass
M (k) = My, = MF (k)% (7)

M is a constituent quark mass of the order of 350 MeV and F'(k) is a momen-
tum dependent function such that F(0) = 1 and F(k? — oo) — 0. Function
F (k) embodies nonperturbative effects due to the nontrivial structure of the
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QCD vacuum. Indeed, F(k) has been explicitly derived within the instan-
ton model [19]. In Refs. [13] where the calculations were performed in the
Minkowski space (instanton model is inevitably formulated in the Euclidean
metric) a convenient Ansatz for F(k) was used:

F(k) = <ﬁ/122+%)” : (8)

With this Ansatz ¢,(u) as well as higher twist 7DA’s were calculated in
Refs. [13] and [20], respectively.

The problem is, however, that in the model with the nonlocal interaction
(and momentum dependent quark mass Mj) the axial current (5) does not
exhibit PCAC [21-24]. More drastically, a naive vector current

a

Vi) = Pla)y g h(a) (9)

is not conserved. In order to restore these properties extra currents have
to be added to Af and V? [22,23]. These new pieces modify both model
expressions for Fy; and for ¢, (u). While the formula for F is well known in
terms of the Euclidean integral [23,25]:

4 2 2 / 4 /2
(kg + M, k) ,
(here M; = dMjy/dk?) the form of the wave function has been a subject
of different studies with, however, contradictory results. For example the
distribution amplitude obtained in Ref. [8] is very close to the asymptotic
form
¢ (u) = 6u(l —u), (11)
where v = kT /PT is the momentum fraction carried by the quark, whereas
in Refs. [9-11] ¢ (u) = 1.

In the present work we derive the Minkowski space formula for F2 for the
modified axial current replacing the naive current in Eq. (4). Our formula,
when continued to the Euclidean space, reduces to Eq. (10). However, when
evaluated in the Minkowski space by methods developed in Refs. [13], it can
be represented as an integral over du from an integrand which we interpret
as ¢ (u). This function does not resemble (11) and is compatible rather with
the constant wave function of Refs. [9-11] than with the result obtained in
the same model [13], however, with the naive current (5).

There are several comments which are due at this point. First of all
it is not clear how the modified current can be generalized to the bilocal
operator entering formula (1). That is why it was argued in Refs. [8-11] that



3404 A. BzZDAK, M. PRASZALOWICZ

rather than considering matrix elements of the form (1) or (4), one should
calculate the whole physical process in the effective model, impose Bjorken
limit to make contact with the expressions known from QCD and extract the
distribution amplitude. One has to note however, that the effective models
are not valid at large momenta which are needed to impose Bjorken limit.
Moreover it is not clear whether the distribution amplitudes defined that way
are universal. Secondly, arguments may be given that it is not necessary to
insist that the bilocals defining the distribution amplitudes must reduce to
the proper currents in the local limit'. Indeed, as we shall show below the
naive bilocal (1) reproduces the Pagels—Stokar formula [26] for F2:

4 M2 1k2MMI
—4N/dkE Bk (12)

4 k2 —i—M,?)?

which was obtained from the Ward-Takahashi identities.

2. Currents in the nonlocal models

Let us consider the model defined by an action [12,13]:
5= [amyoe) (- - M [y FOUT @~ DFR).

Here, following [24] (dk) = d*k/(2m)* etc., and (dz) = d*z. Equations of
motion for the quark fields read

kp(k) = M / (d) P (E)U ( — P (L) 1) + mp(E).

DR = M/ () () Q)T (1 = k) (k) + map(k) (13)
To get the equation of motion for the U7 field let us expand (6)

U —k) = (2n)*6W (1 - k) + F—y%cwca — k) +... (14)

™

and the equation of motion gives a constraint

/ (dl) P+ KV F (I + k)Y F()(D) = 0. (15)

! By local limit we understand the limit in which the fields in Eq.(1) are taken in the
same point x. There are still corrections due to the momentum dependent constituent
mass and nonlocal interactions.
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It is easy to verify that the naive vector current (9) is not conserved [23],
[24]. In order to restore current conservation, the following two currents
have to be added to V¢ (in momentum space)

V(P) = V(P)+ R;(P) + L}(P) (16)

with left and right currents defined as

z

L8(P) =iM / (dz dy d) / ds,'P* §(@) F(a — 2)T"U™ (2)F (2 — y)(y)
Yy

R(P) = iM / (dz dy ) / ds,iP* (2) F(z — 2)U (2)TF (2 — y)ib(y)

(17)
where T = 7%/2. Accordingly the modified axial current reads:
AL (P) = AJ(P) + R, (P) — L,(P) (18)

with 7% = ~457%/2. The integral ds, should be understood as an integral
over the path connecting points z and y or . This prescription makes the
L{, and Ry}, currents path dependent [23] (strictly speaking the transverse
part is not fixed).

The divergence of the modified vector current is, however, path indepen-
dent and takes the following form:

PRVA(P M/ (dk dI) (k) F (k) [g—a,U%(k—lnLP) F)p(). (19)

This is immediately zero for the baryon current (7¢ = 1). For the isospin
current we can expand U7 (14)

a
1
[% U™ (k-1 + P)] = - T n(k — 14+ P) + (20)
and (19) vanishes due to the constraint (15). For the axial current we get

P“Aa = —m/ (dk)Y(k)ysT(k + P)

M /(dk ) (k) F (k) {757, U (k-1 + P)}+F(1)¢(z).
(21)
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By expanding U7 (14) we arrive at
P“A“ = —m/ (dk)Y(k)ysT(k + P)
-M /(dk)Q/J(k)F(k)fyg)TaF(k + P)yY(k + P)

—i% /(dk A (k) F(R)F (1)) 7 (k — 1+ P) + ... (22)

which is the proper PCAC formula (note that the second term vanishes due
o (15)).

In order to calculate Fy we can either use Eq.(4) with Af, — flz [27] or
use the PCAC relation

<0 ‘iam;‘;(m)‘ wb(P)> — _iP2F, §abeiPe (23)

which is what we are going to do in this work. Notice, that we have to
calculate the matrix element in Eq. (23) off-shell, extract the leading power
in P? and take the limit P? — 0.

3. Decay constant and the distribution amplitude

3.1. Matriz elements

(b) 7P (©

a a
P __________
R nb( ) Grent current
current 1
1

BG)

Fig.1. Diagrams contributing to the matrix element of Eq. (21). Black squares
denote 7%0~s.

There are three contributions to the matrix element of Eq.(21) depicted
in Fig. 1: one from the first term of expansion (14) and two (which by the
anticommutation rule reduce to one term, see Eq. (22)) from the term in
(14) involving one pion field. Adding all of them we get

- N, p
<0 ‘z’B“Aﬁ(z)‘ wb(F)> = 8F,r §abe—ilz
E(P — k) + MyM_p M?

< f @ [M’“M’“‘P 07— (kP - M) W —azg) Y
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Symmetrizing the last term with respect to the change of variables k — k— P,
adding all terms and comparing with Eq. (23) we arrive at

| [My,(k — P),, — My_pk,]?
ﬁ;”Nw/WW—-mwzm—ﬁpr (25)

By expanding Eq. (25) in powers of P? we recover the Minkowski version of
Eq. (10). Indeed, by changing the variables: k — k + P/2 we get

(M i pja(k — £, = My_ppolk + £),]?

F = —14N, dk .
@y 7 (S 3 ER V- 2 R

In fact an expression identical to Eq. (26) appears in the axial and pseu-
doscalar corellators derived within the instanton model of the QCD vac-
uum [25].
Noting that
P2
My1p)o :Mkj:(kP)M,'c—FTM,'C—F... , (27)

where ' denotes d/dk? we have

(28)

1 P2M? — 4(Pk)> MM, + 4k*(kP)*>M;?
F2 = —i4N, 2/(dk) 4 2) kM + 4k )2 :
P ((k + ) Mk+P/2)((k - ) Mk p/2)
Since under the integral k,k, — %g,“,k2 (plus a term proportional to P,P,
which we may safely neglect) equation (28) transforms into
— KM M| + k* M?
F2 — _i4N, / (dk) Ll B -
((k + ) Mk+P/2)((k - ) Mk p/2)
M2 _ k2M MI k4M12
= —i4N, / dk) —* el e
(k2 — M)?

(29)

On the other hand, matrix element of the naive current (5), gives [13]

F2P, = —idN, / (dk) /M M), Pl =

My, _pk, + My (P, — k)
M) ((k = P)2 = M? )

(30)

which by the same steps which led from Eq. (25) to (29) reduces equation
(30) to the Minkowski version of the Pagels—Stokar formula (12).
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3.2. Calculation of the loop integral

In order to calculate the loop integral in Eq. (25) with M} given by
Egs. (7), (8) we shall introduce the light-cone parameterization of the mo-
menta (2) with

4 ‘P+’ — 27
d'h = —-dudk=dky (31)

where k™ = uP". The method of evaluating dk~ integral, taking the full
care of the momentum mass dependence, has been given in [13]. To evaluate
dk~ integral we have to find the poles in the complex k£~ plane. It is im-
portant to note that the poles come only from the momentum dependence
in the denominators of Egs. (25), (30). This means that the position of the
poles is given by the zeros of denominator, that is by the solutions of the
equation

/12 in
E—-M? | ——— e=0. 32
<k2—/12+ie> e (32)
This equation is equivalent to
an+1
G(z) = 2T 4 24 2 = H (z — 2z), (33)
i=1

with z = k2/A% — 1 +ie and r2 = M2/ A% For r? # 0 (or finite A) equation
(33) has 4n + 1 nondegenerate solutions which we denote z;. Equation (32)
should be understood as an equation for k; = k7 (z;). In general case 4n of
z;’s can be complex and the care must be taken about the integration contour
in the complex k£~ plane. Because of the imaginary part of the z;’s, the poles
in the complex k£~ plane can drift across Re k™ axis. In this case the contour
has to be modified in such a way that the poles are not allowed to cross it.
This follows from the analyticity of the integrals in the A parameter and
ensures the vanishing of 7DA’s in the kinematically forbidden regions. The
results are expressed as sums over z;’s which have to be found numerically.

In order to avoid spurious divergences coming from £~ in the numerator
of Eq. (29) we shall make use of the Lorentz invariance, writing

1
F? = —idNe 5 g’ (34)

Since I, vanishes for P, — 0 (see (25) and (29)) we have that
2 1 2\ p2
Iy = APY)ELPy + 3 B(P?) P (35)

with
A(P?) - A, B(P*)— B for P?—0. (36)
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Then
F?= _i4N.(A+ B). (37)

Hence we have to calculate 2 integrals:
1 4 .,
A= m’ﬂ n Il“/’ B:_ﬁnglIl‘V' (38)

The result reads

1

4n+1

4= /du Z fifr anﬂ + zf"u)2 x In (1 + 22 + zpu) ,
i,k=1
1

i 2M2A? ol , 7 .
B = 1672 P2 /du Z;1 fifk(z" = ) <(1 + zju + zpu) — Fuu>
P2
o <(1 e ) - F“u) | (39)

Here u =1 — uw and

dn+1 1 dn+1 1
fi:Hk:l 7:Hk 1 (40)

ki 21 T Rk ki Rk T 24

for which the following identities hold [13]

4n+1 0 m < 4n
o figh = . (41)
i=1 1 m = 4n

As seen from Eq. (39) the first term in B is singular as P? — 0 in apparent
contradiction with the finiteness of F2. However, the function

dn+1
S fifu(zt =2 (14 2+ zpu) In(1+ 250+ z5u) (42)
i,k=1

N M2
¢1nf(

vanishes when integrated over du. Hence the finite formula for F? reads

R = / du S fofe [0+ 202 = 2 — 2
i,k=1

xIn (1 + zu+ zxu). (43)
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This allows us to define the distribution amplitude

9 4n+1

brlu) = 4772 72 S fife (@M 2 0)? = 25" — 2" ual
zk 1

x In (1 + z;u + zpuw) . (44)

Let us recall that the distribution amplitude defined by means of the naive
axial current (5) reads [13]

¢r(u) =

47r2F2 Z fife (Zl2p"a + 22" 20u) In (1 + 2 + zpu) . (45)

3.3. Numerical results

Condition (10), or equivalently (43) provide a relation between parame-
ter A, constituent mass M and power n from Eq. (8). Throughout this paper
we shall use M = 350 MeV. The value of parameter 4 = A(n) obtained from
Eq. (43), or from Eq. (10) after continuation of the cutoff formula (8) to the
Euclidean metric, is depicted in Fig. 2(a). It is interesting to note, that our
formula (43) for F2, unlike equation (30), does allow for half integer n’s. An
approximate relation, depicted by a dashed line in Fig. 2(a) holds

AMeV] = 432.82 + 444.61n — 28.02n>.

The local current (5) contributes, through Eq. (12), approximately 70% to
the total normalization.

2000{  (a) .
e -

1800 =
— 1600 e
> e
2 1400 - =
2 S =
< 12004 /y' hSe

w00

8004*

10 15 20 25 3,; 35 40 45 50 00 A VR e o

Fig.2. (a) dots: cutoff parameter A for different n (Eq. (8)) and for M = 350 MeV,
dashed line: fit described in the text; (b) function @ine(u) for n = 3/2, 3 and 5.

Having fixed A for given m, we can calculate the distribution amplitude
as defined by Eq. (44). However, before doing this we have to check whether
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the formally divergent part, given as an integral over u from the function
¢int (1), vanishes. We have checked numerically that this is indeed the case.
Function ¢iu¢(u) is plotted in Fig. 2(b) for n = 3/2, 3 and 5.

Next, in Fig. 3 we plot the distribution amplitude gz~57r(u) for n = 3/2
and n = 5 (solid lines) together with the contributions from integrals A
and B (37). We see that the contribution from A is relatively flat and does
not vanish at the end points. The contribution from B vanishes at the end
points and is even negative in their vicinity. There is not much difference
between the two cases n = 3/2 and n = 5, although one may say that the
smaller n the flatter ¢y

1 M=350MeV, n=3/2 e A 1 M=350MeV,n=5 N

- -

4 \
0.2+ / \
0.0 x4
.. ’ -
02] "~ ST
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
u u

Fig. 3. Function ¢, for n = 3/2 and n = 5 with two contributions A and B given
by Egs. (39).

In Fig. 4(a) we plot for comparison function ¢y (u) (44), ¢ (u) (45) cor-
responding to the naive axial current (5) for M = 350 MeV and n = 3,
together with the asymptotic distribution amplitude (11). One should note
that while model distributions are defined as some low normalization scale
Q% = p?, $*(u) corresponds to the limit Q2 — oo. Indeed, the leading
twist distribution amplitude can be expanded in terms of the Gegenbauer
polynomials

br(u; Q%) = 6u(l —u) |1+ f: an(QHC3?(2u—1)| , (46)

n=2,4...

where a,,(Q?) — 0 in the large Q? limit [28]. It is important no notice that
an(Q?) tend to zero monotonically, so that they cannot change the sign.

_ As soon as we switch on the QCD evolution, distribution amplitude
ér(u, Q%) changes the shape and it goes to zero at the end points. This
evolution is plotted in Fig. 4(b) for n = 1, assuming 2 light flavors, Aqcp =
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1.64 M=350MeV,n=3 (a) 1.69 M=350MeV,n=1 (b)
1.4
1.2
1.0 —
S 084 3
< =
1 " he - 0=0425GeV (i
v nonlocal current N ; 0=0. eV (input)
04 / —=-~--local current \ 44( /) —— 0=24GeV
024 7 —-=-=-asymptotic W\ - --= 0=10"Gev
7 \ il --=-- asymptotic
0.0 T T T T n . T T T T 1
00 02 04 06 08 1.0 0.0 02 04, 06 08 1.0

Fig.4. (a): Functions ¢, (Eq. (44), solid), ¢, (Eq. (45), dashed) for n = 3 and
asymptotic distribution amplitude (Eq. (11), dash-dotted); (b): Evolution of br
from the initial scale @) = 425 MeV (dotted line) to the CLEO point Q) = 2.4 GeV
(solid) and for @ = 10'? GeV (dashed) for n = 1.

175 MeV, and initial scale u = 425 MeV. This initial scale has been adjusted
in such a way, that the second Gegenbauer coefficient ay, when evolved to
the CLEO point Q = 2.4 GeV, gives ay(2.4) = 0.15 as indicated by the
analysis of Ref. [3]. For the normalization scale as large as 10'? GeV the
evolved distribution is slowly approaching the asymptotic one.

4. Summary and discussion

In the present paper we have derived a compact formula (25) for the pion
decay constant in the nonlocal chiral quark model. In order to define F; we
have used the full nonlocal axial current (18) and the PCAC relation (23).
Equation (25), when expanded in the pion momentum P,, reduces to the
well known [23,25] formula (29). The advantage of Eq. (25) consists in the
fact that it can be evaluated in the Minkowski space with a suitable Ansatz
for the momentum dependence of the constituent mass (8). By integrating
(25) over dk~ and d2k | we are left with a du integral over the function ¢y (u)
which we interpret as a pion distribution amplitude (44).

As mentioned at the end of Sect. 1 it is not clear how to extend the
local current (18) to the bilocal operator like the one entering formula (1).
Therefore our definition of the pion distribution amplitude may be incorrect.
However, it is worth to note that the shape of our distribution amplitude
resembles a constant DA obtained by a consistent use of the Ward—Takahashi
identities [9-11], rather than the DA calculated in the instanton model of the
QCD vacuum in Ref. [8], although in both approaches full nonlocal currents
have been used.
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Unfortunately, the 7DA derived here and in Refs. [9-11] is probably
phenomenologically unacceptable. That is because the detailed analysis of
the CLEO data indicates that the coefficient a4(2.4 GeV) is negative [3,4]
and possibly as large as a2(2.4 GeV) [4]. In our case, however, a4 is always
positive. The same concerns the constant wDA. In this respect 7DA derived
in by the same methods in Refs. [13] using the bilocal operator (1) with no
extra pieces corresponding to the nonlocal currents (17) fits the data much
better. That is because, similarly to the results of Refs. [5], it exhibits a
shallow minimum around u = 1/2 which generates negative ay.

As already mentioned above, there is a problem how to define the dis-
tribution amplitudes in the effective models of QCD. This is due to the fact
that the QCD currents and the model currents are not the same. One way
would be to perform factorization and large Q? expansion in QCD and then
parameterize the nonperturbative matrix elements by a set of unknown dis-
tribution amplitudes. To calculate these matrix elements an effective model,
like the one discussed here, is used. Considering operators as obtained from
QCD leads to the violation of PCAC and, in the worse case, to the vio-
lation of the gauge invariance at the level of the effective model. Another
method consists in performing factorization and large Q? expansion directly
in the effective model. This is possible, since the degrees of freedom of the
effective models discussed here are, at least as the quantum numbers are
concerned, identical to the degrees of freedom of QCD (except for gluons,
which are not present in the former case). This means, however, that the
low energy model has to be applied to the processes with large momentum
transfer. Since the currents of the effective models are not the same as in
QCD, extra pieces contributing to the DA’s, as compared to the previous
method, are present. Although in this work we have not calculated the phys-
ical process and have not implemented the Bjorken limit, our approach is
in our opinion equivalent, since we have considered the matrix element (4)
of the full current (18). Our results indicate that these two methods lead
to completely different DA’s . The first method gives the 7DA resembling
the asymptotic distribution, whereas the second approach generates the DA
which is compatible with a constant.

It is a pleasure to dedicate this work to Jan Kwiecinski.
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