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AN ATTEMPT TO CONSTRUCT PION DISTRIBUTIONAMPLITUDE FROM THE PCAC RELATIONIN THE NONLOCAL CHIRAL QUARK MODELAdam Bzdak and Mi
haª Praszaªowi
zM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived May 9, 2003)Dedi
ated to Jan Kwie
i«ski in honour of his 65th birthdayUsing the PCAC relation, we derive a 
ompa
t formula for the pion de-
ay 
onstant F� in the nonlo
al 
hiral quark model. For pra
ti
al 
al
ula-tions this formula may be used both in the Minkowski and in the Eu
lideanspa
e. For the pion momentum P� ! 0 it redu
es to the well known expres-sion derived earlier by other authors. Using a generalized dipole Ansatz forthe momentum dependen
e of the 
onstituent quark mass in the Minkowskispa
e, we express F 2� in terms of a single integral over the quark momen-tum fra
tion u. We interpret the integrand as a pion distribution amplitude�(u). We dis
uss its properties and 
ompare with the �DA's obtained inother models.PACS numbers: 11.40.Ha, 11.30.Rd, 14.40.Aq1. Introdu
tionRe
ent data from CLEO [1℄ and E791 [2℄ experiments triggered a newwave of theoreti
al studies of the leading twist pion distribution amplitude(�DA). On one side the data have been reanalyzed taking into a

ount NLOperturbative QCD e�e
ts, as well as nonperturbative e�e
ts parameterizedwithin the QCD light-
one sum rules [3,4℄. On the other hand nonperturba-tive models [5�13℄ and latti
e QCD [14�17℄ have been employed to 
al
ulatethe �DA from the relatively nonrestri
tive physi
al assumptions. Here thedual nature of the pion, being the quark�antiquark bound state and theGoldstone boson of the broken 
hiral symmetry at the same time, makessu
h 
al
ulations interesting by itself, even if the data is not yet de
isiveenough to distinguish between di�erent models.(3401)
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zPion distribution amplitude is usually de�ned by means of the followingmatrix element (see e.g. [18℄):��(u) = 1ip2F� 1Z�1 d�� e�i�(2u�1)(nP )� 
0 �� �d(n�)/n
5u (�n�)���+(P )� (1)in the light 
one kinemati
s where two quarks separated by the light 
onedistan
e z = 2� along the dire
tion n = (1; 0; 0;�1) are moving along thelight 
one dire
tion ~n = (1; 0; 0; 1) parallel to the total momentum P . HereF� = 93MeV. In this kinemati
al frame any four ve
tor v 
an be de
omposedas: v� = v+2 ~n� + v�2 n� + v�? (2)with v+ = n � v; v� = ~n � v, and the s
alar produ
t of two four ve
torsreads: v � w = 12v+w� + 12v�w+ � ~v? � ~w? : (3)In Eq. (1) the path ordered exponential of the gluon �eld, required by thegauge invarian
e, has been omitted sin
e we shall be working in the e�e
tivequark model where the gluon �elds have been integrated out.In the lo
al limit matrix element (1) redu
es toD0 ��Aa�(x)�� �b(P )E = �iP�F�Æabe�iPx ; (4)where Aa�(x) = � (x)
�
5 �a2  (x) (5)is the properly normalized axial ve
tor 
urrent.In Refs. [13℄ ��(u) has been 
al
ulated in the e�e
tive 
hiral quark modelin whi
h quarks intera
t nonlo
ally with an external meson �eldU
5(x) = ei
5�a�a(x)=F� (6)and a
quire a momentum dependent 
onstituent massM(k) =Mk =MF (k)2: (7)M is a 
onstituent quark mass of the order of 350 MeV and F (k) is a momen-tum dependent fun
tion su
h that F (0) = 1 and F (k2 !1)! 0. Fun
tionF (k) embodies nonperturbative e�e
ts due to the nontrivial stru
ture of the
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t Pion Distribution Amplitude : : : 3403QCD va
uum. Indeed, F (k) has been expli
itly derived within the instan-ton model [19℄. In Refs. [13℄ where the 
al
ulations were performed in theMinkowski spa
e (instanton model is inevitably formulated in the Eu
lideanmetri
) a 
onvenient Ansatz for F (k) was used:F (k) = � ��2k2 � �2 + i��n : (8)With this Ansatz ��(u) as well as higher twist �DA's were 
al
ulated inRefs. [13℄ and [20℄, respe
tively.The problem is, however, that in the model with the nonlo
al intera
tion(and momentum dependent quark mass Mk) the axial 
urrent (5) does notexhibit PCAC [21�24℄. More drasti
ally, a naive ve
tor 
urrentV a� (x) = � (x)
� �a2  (x) (9)is not 
onserved. In order to restore these properties extra 
urrents haveto be added to Aa� and V a� [22, 23℄. These new pie
es modify both modelexpressions for F� and for ��(u). While the formula for F� is well known interms of the Eu
lidean integral [23, 25℄:F 2� = 4N
 Z d4kE(2�)4 M2k � k2EMkM 0k + k4EM 02k(k2E +M2k )2 ; (10)(here M 0k = dMk=dk2) the form of the wave fun
tion has been a subje
tof di�erent studies with, however, 
ontradi
tory results. For example thedistribution amplitude obtained in Ref. [8℄ is very 
lose to the asymptoti
form �as� (u) = 6u(1 � u) ; (11)where u = k+=P+ is the momentum fra
tion 
arried by the quark, whereasin Refs. [9�11℄ ��(u) = 1.In the present work we derive the Minkowski spa
e formula for F 2� for themodi�ed axial 
urrent repla
ing the naive 
urrent in Eq. (4). Our formula,when 
ontinued to the Eu
lidean spa
e, redu
es to Eq. (10). However, whenevaluated in the Minkowski spa
e by methods developed in Refs. [13℄, it 
anbe represented as an integral over du from an integrand whi
h we interpretas ��(u). This fun
tion does not resemble (11) and is 
ompatible rather withthe 
onstant wave fun
tion of Refs. [9�11℄ than with the result obtained inthe same model [13℄, however, with the naive 
urrent (5).There are several 
omments whi
h are due at this point. First of allit is not 
lear how the modi�ed 
urrent 
an be generalized to the bilo
aloperator entering formula (1). That is why it was argued in Refs. [8�11℄ that
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zrather than 
onsidering matrix elements of the form (1) or (4), one should
al
ulate the whole physi
al pro
ess in the e�e
tive model, impose Bjorkenlimit to make 
onta
t with the expressions known from QCD and extra
t thedistribution amplitude. One has to note however, that the e�e
tive modelsare not valid at large momenta whi
h are needed to impose Bjorken limit.Moreover it is not 
lear whether the distribution amplitudes de�ned that wayare universal. Se
ondly, arguments may be given that it is not ne
essary toinsist that the bilo
als de�ning the distribution amplitudes must redu
e tothe proper 
urrents in the lo
al limit1. Indeed, as we shall show below thenaive bilo
al (1) reprodu
es the Pagels�Stokar formula [26℄ for F 2� :F 2� = 4N
 Z d4kE(2�)4 M2k � 12k2EMkM 0k(k2E +M2k )2 (12)whi
h was obtained from the Ward�Takahashi identities.2. Currents in the nonlo
al modelsLet us 
onsider the model de�ned by an a
tion [12, 13℄:S = Z (dk) � (k) ( 6 k �m) (k)�M Z (dk dl) � (l)F (l)U
5 (l � k)F (k) (k) :Here, following [24℄ (dk) = d4k=(2�)4 et
., and (dx) = d4x. Equations ofmotion for the quark �elds read/k (k) = M Z (dl)F (k)U
5 (k � l)F (l) (l) +m (k);� (k)/k = M Z (dl) � (l)F (l)U
5(l � k)F (k) +m � (k) : (13)To get the equation of motion for the U
5 �eld let us expand (6)U
5(l � k) = (2�)4Æ(4)(l � k) + iF� 
5� 
�
(l � k) + : : : (14)and the equation of motion gives a 
onstraintZ (dl) � (l + k)F (l + k)
5�aF (l) (l) = 0: (15)1 By lo
al limit we understand the limit in whi
h the �elds in Eq.(1) are taken in thesame point x. There are still 
orre
tions due to the momentum dependent 
onstituentmass and nonlo
al intera
tions.
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t Pion Distribution Amplitude : : : 3405It is easy to verify that the naive ve
tor 
urrent (9) is not 
onserved [23℄,[24℄. In order to restore 
urrent 
onservation, the following two 
urrentshave to be added to V a� (in momentum spa
e)~V a� (P ) = V a� (P ) +Ra�(P ) + La�(P ) (16)with left and right 
urrents de�ned asLa�(P ) = iM Z (dx dy dz) zZx ds�eiPs � (x)F (x� z)T aU
5(z)F (z � y) (y) ;Ra�(P ) = iM Z (dx dy dz) yZz ds�eiPs � (x)F (x� z)U
5(z)T aF (z � y) (y) ;(17)where T a = �a=2. A

ordingly the modi�ed axial 
urrent reads:~Aa�(P ) = Aa�(P ) +Ra�(P )� La�(P ) (18)with T a = 
5�a=2. The integral ds� should be understood as an integralover the path 
onne
ting points z and y or x. This pres
ription makes theLa� and Ra� 
urrents path dependent [23℄ (stri
tly speaking the transversepart is not �xed).The divergen
e of the modi�ed ve
tor 
urrent is, however, path indepen-dent and takes the following form:P � ~V a� (P ) =M Z (dk dl) � (k)F (k) ��a2 ; U
5(k � l + P )�F (l) (l) : (19)This is immediately zero for the baryon 
urrent (�a = 1). For the isospin
urrent we 
an expand U
5 (14)��a2 ; U
5(k � l + P )� = 1F� 
5�a�ab
�
(k � l + P ) + : : : (20)and (19) vanishes due to the 
onstraint (15). For the axial 
urrent we getP � ~Aa�(P ) = �mZ (dk) � (k)
5�a (k + P )�M Z (dk dl) � (k)F (k)�
5 �a2 ; U
5(k � l + P )�+F (l) (l):(21)
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zBy expanding U
5 (14) we arrive atP � ~Aa�(P ) = �mZ (dk) � (k)
5�a (k + P )�M Z (dk) � (k)F (k)
5�aF (k + P ) (k + P )�iMF� Z (dk dl) � (k)F (k)F (l) (l)�a(k � l + P ) + : : : (22)whi
h is the proper PCAC formula (note that the se
ond term vanishes dueto (15)).In order to 
al
ulate F� we 
an either use Eq.(4) with Aa� ! ~Aa� [27℄ oruse the PCAC relationD0 ���i�� ~Aa�(x)��� �b(P )E = �iP 2F�Æabe�iPx (23)whi
h is what we are going to do in this work. Noti
e, that we have to
al
ulate the matrix element in Eq. (23) o�-shell, extra
t the leading powerin P 2 and take the limit P 2 ! 0.3. De
ay 
onstant and the distribution amplitude3.1. Matrix elements
k
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Fig. 1. Diagrams 
ontributing to the matrix element of Eq. (21). Bla
k squaresdenote �a;b
5.There are three 
ontributions to the matrix element of Eq.(21) depi
tedin Fig. 1: one from the �rst term of expansion (14) and two (whi
h by theanti
ommutation rule redu
e to one term, see Eq. (22)) from the term in(14) involving one pion �eld. Adding all of them we getD0 ���i�� ~Aa�(z)��� �b(P )E = �8N
F� Æabe�iPz�Z (dk)"MkMk�P k(P � k) +MkMk�P(k2 �M2k )((k � P )2 �M2k�P ) + M2kk2 �M2k # :(24)
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t Pion Distribution Amplitude : : : 3407Symmetrizing the last term with respe
t to the 
hange of variables k ! k�P ,adding all terms and 
omparing with Eq. (23) we arrive atF 2� = �i4N
 1P 2 Z (dk) [Mk(k � P )� �Mk�Pk�℄2(k2 �M2k )((k � P )2 �M2k�P ) : (25)By expanding Eq. (25) in powers of P 2 we re
over the Minkowski version ofEq. (10). Indeed, by 
hanging the variables: k ! k + P=2 we getF 2� = �i4N
 1P 2 Z (dk)12 �Mk+P=2(k � P2 )� �Mk�P=2(k + P2 )��2((k + P2 )2 �M2k+P=2)((k � P2 )2 �M2k�P=2) : (26)In fa
t an expression identi
al to Eq. (26) appears in the axial and pseu-dos
alar 
orellators derived within the instanton model of the QCD va
-uum [25℄.Noting that Mk�P=2 =Mk � (kP )M 0k + P 24 M 0k + : : : ; (27)where 0 denotes d=dk2 we haveF 2� = �i4N
 1P 2 Z (dk) P 2M2k � 4(Pk)2MkM 0k + 4k2(kP )2M 02k((k + P2 )2 �M2k+P=2)((k � P2 )2 �M2k�P=2) : (28)Sin
e under the integral k�k� ! 14g��k2 (plus a term proportional to P�P�whi
h we may safely negle
t) equation (28) transforms intoF 2� = �i4N
 Z (dk) M2k � k2MkM 0k + k4M 02k((k + P2 )2 �M2k+P=2)((k � P2 )2 �M2k�P=2)= �i4N
 Z (dk)M2k � k2MkM 0k + k4M 02k(k2 �M2k )2 : (29)On the other hand, matrix element of the naive 
urrent (5), gives [13℄F 2�P� = �i4N
 Z (dk)pMkMk�P Mk�Pk� +Mk(P� � k�)�k2 �M2k� �(k � P )2 �M2k�P � (30)whi
h by the same steps whi
h led from Eq. (25) to (29) redu
es equation(30) to the Minkowski version of the Pagels�Stokar formula (12).
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z3.2. Cal
ulation of the loop integralIn order to 
al
ulate the loop integral in Eq. (25) with Mk given byEqs. (7), (8) we shall introdu
e the light-
one parameterization of the mo-menta (2) with d4k = P+2 du dk�d2~k? ; (31)where k+ = uP+. The method of evaluating dk� integral, taking the full
are of the momentum mass dependen
e, has been given in [13℄. To evaluatedk� integral we have to �nd the poles in the 
omplex k� plane. It is im-portant to note that the poles 
ome only from the momentum dependen
ein the denominators of Eqs. (25), (30). This means that the position of thepoles is given by the zeros of denominator, that is by the solutions of theequation k2 �M2� �2k2 � �2 + i��4n + i� = 0 : (32)This equation is equivalent toG(z) = z4n+1 + z4n � r2 = 4n+1Yi=1 (z � zi) ; (33)with z = k2=�2 � 1 + i� and r2 =M2=�2. For r2 6= 0 (or �nite �) equation(33) has 4n+ 1 nondegenerate solutions whi
h we denote zi. Equation (32)should be understood as an equation for k�i = k�(zi). In general 
ase 4n ofzi's 
an be 
omplex and the 
are must be taken about the integration 
ontourin the 
omplex k� plane. Be
ause of the imaginary part of the zi's, the polesin the 
omplex k� plane 
an drift a
ross Re k� axis. In this 
ase the 
ontourhas to be modi�ed in su
h a way that the poles are not allowed to 
ross it.This follows from the analyti
ity of the integrals in the � parameter andensures the vanishing of �DA's in the kinemati
ally forbidden regions. Theresults are expressed as sums over zi's whi
h have to be found numeri
ally.In order to avoid spurious divergen
es 
oming from k� in the numeratorof Eq. (29) we shall make use of the Lorentz invarian
e, writingF 2� = �i4N
 1P 2 I��g�� : (34)Sin
e I�� vanishes for P� ! 0 (see (25) and (29)) we have thatI�� = A(P 2)P�P� + 14B(P 2)P 2g�� (35)with A(P 2)! A ; B(P 2)! B for P 2 ! 0 : (36)
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(A+B) : (37)Hen
e we have to 
al
ulate 2 integrals:A = 1P+2n�n�I�� ; B = � 4P 2 "�?"�?I�� : (38)The result readsA = � i16�2M2 1Z0 du 4n+1Xi;k=1 fifk(z2nk �u+ z2ni u)2 � ln (1 + zi�u+ zku) ;B = � i16�2 2M2�2P 2 1Z0 du 4n+1Xi;k=1 fifk(z2nk � z2ni )2�(1 + zi�u+ zku)� P 2�2 u�u�� ln�(1 + zi�u+ zku)� P 2�2 u�u� : (39)Here �u = 1� u andfi =Y4n+1k=1k 6=i 1zi � zk =Y4n+1k=1k 6=i 1zk � zi (40)for whi
h the following identities hold [13℄4n+1Xi=1 fizmi = 8<: 0 m < 4n1 m = 4n : (41)As seen from Eq. (39) the �rst term in B is singular as P 2 ! 0 in apparent
ontradi
tion with the �niteness of F 2� . However, the fun
tion�inf(u) = �N
M22�2 4n+1Xi;k=1 fifk(z2nk �z2ni )2(1+zi�u+zku) ln(1+zi�u+zku) (42)vanishes when integrated over du. Hen
e the �nite formula for F 2� readsF 2� = �N
M24�2 1Z0 du 4n+1Xi;k=1 fifk �(z2nk �u+ z2ni u)2 � 2(z2nk � z2ni )2u�u�� ln (1 + zi�u+ zku) : (43)
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zThis allows us to de�ne the distribution amplitude~��(u) = �N
M24�2F 2� 4n+1Xi;k=1 fifk �(z2nk �u+ z2ni u)2 � 2(z2nk � z2ni )2u�u�� ln (1 + zi�u+ zku) : (44)Let us re
all that the distribution amplitude de�ned by means of the naiveaxial 
urrent (5) reads [13℄��(u) = �N
M24�2F 2� Xi;k fifk (zni z3nk �u+ z3ni znku) ln (1 + zi�u+ zku) : (45)3.3. Numeri
al resultsCondition (10), or equivalently (43) provide a relation between parame-ter �, 
onstituent massM and power n from Eq. (8). Throughout this paperwe shall useM = 350 MeV. The value of parameter � = �(n) obtained fromEq. (43), or from Eq. (10) after 
ontinuation of the 
uto� formula (8) to theEu
lidean metri
, is depi
ted in Fig. 2(a). It is interesting to note, that ourformula (43) for F 2� , unlike equation (30), does allow for half integer n's. Anapproximate relation, depi
ted by a dashed line in Fig. 2(a) holds�[MeV℄ = 432:82 + 444:61n � 28:02n2:The lo
al 
urrent (5) 
ontributes, through Eq. (12), approximately 70% tothe total normalization.
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

800

1000

1200

1400

1600

1800

2000 (a)

L
 [M

eV
]

n 0.0 0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15 (b)

f in
f(u

)

u

  n =  1
  n = 3/2
  n =  5

Fig. 2. (a) dots: 
uto� parameter � for di�erent n (Eq. (8)) and forM = 350 MeV,dashed line: �t des
ribed in the text; (b) fun
tion �inf(u) for n = 3=2; 3 and 5.Having �xed � for given n, we 
an 
al
ulate the distribution amplitudeas de�ned by Eq. (44). However, before doing this we have to 
he
k whether
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t Pion Distribution Amplitude : : : 3411the formally divergent part, given as an integral over u from the fun
tion�inf(u); vanishes. We have 
he
ked numeri
ally that this is indeed the 
ase.Fun
tion �inf(u) is plotted in Fig. 2(b) for n = 3=2; 3 and 5.Next, in Fig. 3 we plot the distribution amplitude ~��(u) for n = 3=2and n = 5 (solid lines) together with the 
ontributions from integrals Aand B (37). We see that the 
ontribution from A is relatively �at and doesnot vanish at the end points. The 
ontribution from B vanishes at the endpoints and is even negative in their vi
inity. There is not mu
h di�eren
ebetween the two 
ases n = 3=2 and n = 5, although one may say that thesmaller n the �atter ~��.
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Fig. 3. Fun
tion ~�� for n = 3=2 and n = 5 with two 
ontributions A and B givenby Eqs. (39).In Fig. 4(a) we plot for 
omparison fun
tion ~��(u) (44), ��(u) (45) 
or-responding to the naive axial 
urrent (5) for M = 350 MeV and n = 3,together with the asymptoti
 distribution amplitude (11). One should notethat while model distributions are de�ned as some low normalization s
aleQ2 = �2, �as� (u) 
orresponds to the limit Q2 ! 1. Indeed, the leadingtwist distribution amplitude 
an be expanded in terms of the Gegenbauerpolynomials��(u;Q2) = 6u(1 � u)241 + 1Xn=2;4:::an(Q2)C3=2n (2u� 1)35 ; (46)where an(Q2)! 0 in the large Q2 limit [28℄. It is important no noti
e thatan(Q2) tend to zero monotoni
ally, so that they 
annot 
hange the sign.As soon as we swit
h on the QCD evolution, distribution amplitude~��(u;Q2) 
hanges the shape and it goes to zero at the end points. Thisevolution is plotted in Fig. 4(b) for n = 1, assuming 2 light �avors, �QCD =
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tions ~�� (Eq. (44), solid), �� (Eq. (45), dashed) for n = 3 andasymptoti
 distribution amplitude (Eq. (11), dash-dotted); (b): Evolution of ~��from the initial s
ale Q = 425 MeV (dotted line) to the CLEO point Q = 2:4 GeV(solid) and for Q = 1012 GeV (dashed) for n = 1.175 MeV, and initial s
ale � = 425 MeV. This initial s
ale has been adjustedin su
h a way, that the se
ond Gegenbauer 
oe�
ient a2, when evolved tothe CLEO point Q = 2:4 GeV, gives a2(2:4) = 0:15 as indi
ated by theanalysis of Ref. [3℄. For the normalization s
ale as large as 1012 GeV theevolved distribution is slowly approa
hing the asymptoti
 one.4. Summary and dis
ussionIn the present paper we have derived a 
ompa
t formula (25) for the pionde
ay 
onstant in the nonlo
al 
hiral quark model. In order to de�ne F� wehave used the full nonlo
al axial 
urrent (18) and the PCAC relation (23).Equation (25), when expanded in the pion momentum P�, redu
es to thewell known [23, 25℄ formula (29). The advantage of Eq. (25) 
onsists in thefa
t that it 
an be evaluated in the Minkowski spa
e with a suitable Ansatzfor the momentum dependen
e of the 
onstituent mass (8). By integrating(25) over dk� and d2~k? we are left with a du integral over the fun
tion ~��(u)whi
h we interpret as a pion distribution amplitude (44).As mentioned at the end of Se
t. 1 it is not 
lear how to extend thelo
al 
urrent (18) to the bilo
al operator like the one entering formula (1).Therefore our de�nition of the pion distribution amplitude may be in
orre
t.However, it is worth to note that the shape of our distribution amplituderesembles a 
onstant DA obtained by a 
onsistent use of the Ward�Takahashiidentities [9�11℄, rather than the DA 
al
ulated in the instanton model of theQCD va
uum in Ref. [8℄, although in both approa
hes full nonlo
al 
urrentshave been used.
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t Pion Distribution Amplitude : : : 3413Unfortunately, the �DA derived here and in Refs. [9�11℄ is probablyphenomenologi
ally una

eptable. That is be
ause the detailed analysis ofthe CLEO data indi
ates that the 
oe�
ient a4(2:4 GeV) is negative [3, 4℄and possibly as large as a2(2:4 GeV) [4℄. In our 
ase, however, a4 is alwayspositive. The same 
on
erns the 
onstant �DA. In this respe
t �DA derivedin by the same methods in Refs. [13℄ using the bilo
al operator (1) with noextra pie
es 
orresponding to the nonlo
al 
urrents (17) �ts the data mu
hbetter. That is be
ause, similarly to the results of Refs. [5℄, it exhibits ashallow minimum around u = 1=2 whi
h generates negative a4:As already mentioned above, there is a problem how to de�ne the dis-tribution amplitudes in the e�e
tive models of QCD. This is due to the fa
tthat the QCD 
urrents and the model 
urrents are not the same. One waywould be to perform fa
torization and large Q2 expansion in QCD and thenparameterize the nonperturbative matrix elements by a set of unknown dis-tribution amplitudes. To 
al
ulate these matrix elements an e�e
tive model,like the one dis
ussed here, is used. Considering operators as obtained fromQCD leads to the violation of PCAC and, in the worse 
ase, to the vio-lation of the gauge invarian
e at the level of the e�e
tive model. Anothermethod 
onsists in performing fa
torization and large Q2 expansion dire
tlyin the e�e
tive model. This is possible, sin
e the degrees of freedom of thee�e
tive models dis
ussed here are, at least as the quantum numbers are
on
erned, identi
al to the degrees of freedom of QCD (ex
ept for gluons,whi
h are not present in the former 
ase). This means, however, that thelow energy model has to be applied to the pro
esses with large momentumtransfer. Sin
e the 
urrents of the e�e
tive models are not the same as inQCD, extra pie
es 
ontributing to the DA's, as 
ompared to the previousmethod, are present. Although in this work we have not 
al
ulated the phys-i
al pro
ess and have not implemented the Bjorken limit, our approa
h isin our opinion equivalent, sin
e we have 
onsidered the matrix element (4)of the full 
urrent (18). Our results indi
ate that these two methods leadto 
ompletely di�erent DA's . The �rst method gives the �DA resemblingthe asymptoti
 distribution, whereas the se
ond approa
h generates the DAwhi
h is 
ompatible with a 
onstant.It is a pleasure to dedi
ate this work to Jan Kwie
i«ski.We would like to thank A. Rostworowski for 
omments and for readingthe notes. M.P. would like to thank W. Broniowski and E. Ruiz-Arriolafor 
omments and dis
ussion. Spe
ial thanks are due to K. Goeke and allmembers of Inst. of Theor. Phys. II at Ruhr-University where part ofthis work was 
ompleted. M.P. a
knowledges support of the Polish StateCommittee for S
ienti�
 Resear
h (KBN) under grant 2 P03B 043 24.
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