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Noise-free aperiodic stochastic multiresonance in a chaotic map — a
classical kicked spin model with damping — close to the attractor merging
crisis is investigated. The input aperiodic signal, in a form of Gaussian
correlated noise, is superimposed on the control parameter (the strength
of the magnetic field pulses), and the output signal reflects jumps between
two symmetric parts of the attractor above the crisis point. As the inter-
nal chaotic dynamics is varied by increasing the mean value of the control
parameter, multiple maxima of the input-output correlation function are
observed. This is due to the fractal structure of the precritical attractors
and their basins of attraction colliding at the crisis point. The numerical re-
sults are confirmed by analytic evaluation of the correlation function, based
on simple models of the colliding fractal sets. The observed phenomenon
bears much resemblance to noise-free stochastic multiresonance with peri-
odic signal observed in the same model, but the multiple maxima of the
correlation function are less distinct due to the long tails in the probability
distribution of the aperiodic signal.

PACS numbers: 05.40.+j, 05.45.+b

1. Introduction

Stochastic resonance (SR) [1] is a phenomenon occurring in certain pe-
riodically modulated, often multistable, nonlinear stochastic systems. The
essence of this phenomenon is that the response of a system to a weak peri-
odic signal can be improved by the presence of noise of optimum intensity
(see reviews [2,3]). A similar phenomenon, called noise-free SR, occurs in
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chaotic periodically driven systems in the absence of external noise [4], when
its role is played by the chaotic dynamics. The best response to the peri-
odic signal can be defined as the maximization of the output signal-to-noise
ratio (SNR) as a function of the noise intensity or the control parameter,
respectively.

In real world most external signals are not periodic. In such a situation
the SNR cannot be used as a measure of SR and the best synchronization of
the system to the aperiodic signal can be defined as the maximization of the
correlation function C' between input and output signals. In fact, the corre-
lation function can be used as a measure of SR also in the case of periodic
input signal, instead of the SNR. For the former kind of phenomena the term
aperiodic stochastic resonance (ASR) has been coined [5,6]. Because of its
possible relevance in biology ASR was mostly studied in stochastic models
of neurons, e.g., in the FitzHugh—-Nagumo model with noise [7] or in a pop-
ulation of noisy neurons acting in parallel and subject to the same aperiodic
input signal [8]. Besides, noise-free ASR was also studied in Ref. [9]. Usu-
ally only one maximum of the SNR or the correlation function C'is observed
as the input noise intensity or the control parameter in a chaotic system is
varied. However, recently it has been found that in certain systems many
or even an infinite number of maxima of the SNR or C' can appear [10-14].
This phenomenon is called stochastic multiresonance [10,11]. In particular,
noise-free stochastic multiresonance with periodic signals, characterized by
multiple maxima of the SNR was observed in [12-14].

In this paper we study noise-free SR in systems driven by aperiodic
input signals. In particular, we show that in large class of systems noise-free
aperiodic stochastic multiresonance (ASM) appears as a natural consequence
of their dynamical properties.

The first studies on SR [15-16] and noise-free SR [4,17-19] were per-
formed in dynamical systems with bistable potentials, but now SR is equally
well investigated in dynamical and non-dynamical threshold-crossing (TC)
systems. The TC systems are defined as systems with output signal in the
form of pulses which appear if the input signal crosses a certain threshold
[20-22]. When the input signal changes the height of the potential barrier
in a symmetric manner, the dynamical systems with symmetric bistable po-
tential can be also described as TC systems and the particle jumps over
the barrier — as TC events. The aim of the present paper is to investigate
noise-free ASM in chaotic maps which can be described as TC systems. For
this purpose we study a model chaotic map, describing the dynamics of a
damped classical magnetic moment (spin) driven by pulses of magnetic field
in the presence of anisotropy [23]. In such a system, for a certain value of
the amplitude of pulses the attractor merging crisis [24] occurs and jumps of
the spin between two parts of the postcritical chaotic attractor correspond-



Noise-Free Aperiodic Stochastic Multiresonance 3513

ing to two equivalent spin orientations along the anisotropy axis become
possible [23,25]. When the amplitude of pulses is modulated by additional
aperiodic signal the map can be described as a bistable dynamical TC sys-
tem of the above-mentioned kind, and the spin jumps can be interpreted as
TC events. SR with periodic signal and noise in such a model was studied
in Ref. [26] and noise-free stochastic multiresonance in Ref. [12-14]|. Here
we are interested in the case without noise and with the aperiodic input
signal. As in other systems with noise-free SR the role of noise is played by
deterministic chaos. Instead of varying the noise intensity the system con-
trol parameter, i.e., the mean value of the amplitude of pulses is changed.
Taking advantage of numerical simulations we show that C' (defined as the
correlation function between the aperiodic signal and the spin jumps events)
depends on the control parameter in a very complicated way and multiple
strong maxima of C (noise-free ASM) are observed. In theoretical investi-
gation, we show that this phenomenon is a direct consequence of the fractal
structure of the precritical attractors and their basins of attraction colliding
at the crisis point, and of the influence of the aperiodic input signal.

This paper is organized as follows. In Sec. 2 we describe the spin map.
In Sec. 3 we present numerical results for noise-free ASM in the spin model.
In Sec. 4 we propose general theoretical description of noise-free ASM in
systems with attractor merging crises. In Sec. 5 we compare numerical and
theoretical results. Finally, Sec. 6 provides summary and conclusions.

2. The system under study

We consider a classical magnetic moment S, |S| = S (spin) in the uni-
axial anisotropy field and external transverse magnetic field B (¢) parallel to
the z-axis. The Hamiltonian has the form

H=—-A(S.)" = B(t)S;, (1)

where A > 0 is the anisotropy constant. This model is related to experi-
mentally investigated magnetic systems if one considers properties of isolated
spins of large magnetic molecules or the nanometric-size single domain fer-
romagnetic particles (superparamagnets) [27,28]. The motion of the spin is
determined by the Landau-Lifschitz equation

ds A
E:SXBQH_ESX(SXBeﬂ')a (2)

where Beg = —dH/dS is the effective magnetic field and A > 0 is the
damping parameter. Introducing the spherical coordinate system we can
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transform (2) to the form

. 1 0H oOH

0= doas oo (3)
.- OH AN OH
ol = =~ G99

Taking the transverse field in the form of periodic d-pulses with ampli-
tude B and period 7

B(t)=BY 4(t-n7), (4)
n=1

Eq. (3) can be integrated to yield a superposition of two two-dimensional
maps [23]. In the time between pulses of the magnetic field the spin performs
damped precession and approaches the anisotropy axis (map T'4). During
the action of the magnetic field, the influence of anisotropy can be neglected
and the spin performs precession around the z-axis, simultaneously tilting
toward it (map Tg),

Sn+1 =TB [TA [Sn]] ) (5)

where S, = 8 (t =n7T") is a spin vector just after the action of the n-th
magnetic field pulse. The map T4 can be written as

o | _| ¢+Ad
Ta [ s. || ws. | (6)
where ¢ is the angle between the z-axis and the projection of the spin on
the z-y plane, A¢ = (1/A\)In[(14+ S/S,) /(1 + S/ (WS,))] — 2AS7, and

~1/2
W = [02 +(8./8)? (1- 02)] , ¢ = exp (—2MAS7). The map T can be

written as

TB[ H ] = [ S—QS(QSS_—BSI) DU ] 0

where @ is the angle between the y-axis and the projection of the spin on
the z-z plane.

Let us take B as the control parameter and consider the map (5) with
parameters S = 1, 7. = 2w, A\, = 0.1054942 and A. = 1. For B slightly
below B, =1 two symmetric chaotic precritical attractors corresponding to
two spin orientations (S, > 0 and S, < 0) exist. For B > B, these two
attractors merge as a result of the attractor merging crisis and a new post-
critical attractor consisting of two symmetric parts is born [23,25] (Fig. 1).
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Fig.1. The attractor of the spin map (5) after the attractor merging crisis for
parameters 7. = 27, A. = 0.1054942, A. = 1 and B = 1.001.

The system switches chaotically between these two parts and the mean time
between switches as a function of the control parameter obeys a typical power
scaling law [24] (1) = C'|B — B.|™”7, where 4 > 0 is a critical exponent.
However, there are also considerable oscillations superimposed on this trend.
They are connected with the fractal structure of precritical attractors and
their basins of attraction colliding at the crisis point (Fig. 2). When the

B-B,

Fig.2. The mean time between switches; solid line — numerical results, doted line
— trend for C' = 0.695, 4 = 0.77; dashed line — theoretical results for model
parameters (Eq. (10)-(11)) a = 0.0108, v = 0.294, § = 0.125, by = 1.46793,
a=4.5009,b=2.7,(=1.66 and K = L = 10.
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basins of attraction are fractal sets anomalous oscillations appear, including
sections where (7) increases against the general trend [29]; such oscillations
can be easily recognized in Fig. 2.

3. Numerical results

In order to observe the noise-free ASR we investigate Eq. (5) with the
time-dependent control parameter (the amplitude of the magnetic field pulses)

B (n) = Bo + D¢(n), (8)

where D¢(n) is the aperiodic signal in the form of correlated Gaussian noise
with amplitude D, normalized density p(¢) = (2r)~"/2 exp (—52/2) and the
autocorrelation function (£(n)é(m)) = exp(—|m — n| /7). With the input
signal added to the control parameter the system given by Eqs. (4), (5), (8)
can be described as a dynamical TC system and the spin jumps between the
two parts of the postcritical attractor can be treated as TC events. Due to
the symmetry of the system with respect to the plane S, = 0 we can define
the spin jump as crossing this plane by the phase trajectory, and to assume
the output signal as y, = 1 if at iteration n the jump occurred, i.e., S, p—1
and if S, , have opposite signs, and y,, = 0 otherwise. As a measure of
noise-free ASR we take the correlation function between input and output
signal vs By

VD22 m) — (Dem) ) — (wa)? V) = )

where the angular brackets denote the time average. The curve C(By) shown
in Fig. 3(b) exhibits multiple strong maxima, so the noise-free ASM is found.
It is also interesting to note that there is plenty of strong negative minima of
C in Fig. 3(b), which means that the input and output signal are strongly
anticorrelated. This is also a form of maximization of the signal transmission
thorough our system via noise-free ASR. A closer inspection of Fig. 3(a) and
Fig. 3(b) reveals that certain segments in the two curves can be related to
each other. The relationship between the curves C vs By and p vs B proves
that the occurrence of multiresonance and complicated dependence of C
on the control parameter is a result of the fractal structure of precritical
attractors and their basins of attraction. Exhaustive discussion of the origin
of SMR in maps with fractal precritical sets can be found in [12-14]| for the
case of periodic input signal.
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Fig.3. Numerical results, spin jump (TC) probability p = (r)~! vs B (a) and
C ws By for aperiodic input signal with 75 = 1000 and D = 1 x 10~ % (b). The
rising (labeled with the same letters) and falling (labeled with the same numbers)
segments of both curves correspond to each other.

4. Model of precritical attractor and basin of attraction

We assume the model of precritical attractor A as a family of K + 2
parabolic segments Ay (Fig. 4) [25,29] with position determined by a time-
dependent control parameter g (n) = gy + D&(n),

K+1 K+1
A= A= U {@y)y=-2— (1= dxn) e + g+ DE(m) | |
k=0 k=0
(10)

where a and « are model parameters and ¢y = By — B.. The invariant mea-
sure is uniformly distributed along the parabolic segments and its relative
density on the segment Ay, is assumed as jip = (1 —y)y* for 0 < k < K, and
fici1 = 5t where 0 < v < 1 is another model parameter. The precriti-
cal basin of attraction is in turn approximated as a family of L 4 2 stripes
B; accumulating at the line y = 0 which touches the top of the uppermost
parabola Ag 1 for go = D = 0 (Fig. 4) [29],

L+1 L+1

B=UB=U{@w: 0 -azm)(8-pee) <y<po}, (1)
=0

=0
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Fig. 4. The model of chaotic saddle for a =1 and ¢ = 0.

where (3, b and bg are again model parameters. Above the crisis point the
precritical attractors and basins of attraction are turned into chaotic sad-
dles and pseudobasins (basins of escape), respectively, but it is assumed
that their topological structure given by Eq. (10), (11) remains unchanged.
All model parameters can be assessed from magnified plots of the collision
region between the chaotic saddles and pseudobasins and from the eigen-
values of the periodic orbit mediating in crisis [25,29]. With increasing gy
the parabolic noisy segments are shifted up and enter the pseudobasin. The
time-dependent probability of a jump between the symmetric parts of the
posteritical attractor p (n) = (u (n) is proportional to the time-dependent
measure of the saddle contained inside the pseudobasin of the other sad-
dle [12,14]
K+1L+1
P, () = ¢ Y p(n), (12)
k=0 =0

where ( is a proportionality constant. Here p is the sum of inputs ug; to
the time-dependent measure from the segments Ay overlapping the stripes
B;. Denoting by ug(c, qo, &) the measure (length multiplied by the relative
measure density fi) of the segment Ay inside the half-plane y > ¢ for a
given go and an instant value of £ = £(n) we can write

ot =t (00, ) = o [ (1= 1) (B0 = B0 )  a0,€] — o[B8, a0,€]
(13)
For small values of the distance between the top of the parabolic segment
and the border of the half-plane, go+ D& — (1 — 0, x11) ac® —c < 1, lengths
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of segments of parabolas inside the half-planes can be approximated by cor-
responding square roots and the measure p; can be written as

L

HE (Ca QOaf) ~ 2/716 <q0 + Df — (1 — (Sk7K+1) aozk — C) ?

6 (qo +DE— (1= Gpxes1) ack — c) : (14)

where @ is the Heaviside function. Henceforth, we limit our attention to
the adiabatic limit of long correlation time 7y [6]. Then the time averages
in Eq. (9) can be replaced with averages over the probability distribution of
the signal,

() = / ()P0 ). (€ (m) ) = / Pl E)ede. (15)

This yields

<£m(n)yn)zr<g_m)%%Lilﬁk{exp [_% <WZ_TQ%)2]

k=0 =0

2
D (Wl ;ch) exp -4 (W —DQM) ]ng (W = QOk)} 1)

where m = 0 or m = 1, W; = (1 = 8,41)(8' — B'br), Vi = B0, Qor =
qgo—(1 — Ok k+1) aa®, T'is the Euler gamma function and D, is the parabolic
cylinder function of order a. Using Eq. (16) we can evaluate the correlation
function C (9).

5. Comparison between the numerical and theoretical results

As can be seen in Fig. 5(b)—(d) noise-free ASM occurs in our system for
a wide range of the input signal amplitude D. The observed phenomenon
bears much resemblance to noise-free stochastic multiresonance with peri-
odic signal [12-14], but the multiple maxima of the correlation function are
less distinct due to the long tails in the probability distribution of the aperi-
odic signal. In all cases the agreement between the theoretical and numerical
results is good. Particularly good agreement is obtained for the first maxi-
mum of C for D =1 x 1074, whose position and height is predicted by our
theory very well (Fig. 5(b)). In Fig. 5(c) and Fig. 5(d) at least the position
and the order of magnitude of the height of local maxima are well predicted.
The theory predicts also quite well the location and order of magnitude of
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the negative minima of C. As By is increased deviations between the nu-
merical and theoretical curves in Fig. 5(b)—(d) become significant. This is
because the model given by Egs. (10),(11) is valid only close to the crisis
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point, and for small noise amplitude D.
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Fig.5. Noise-free ASM. The numerical (solid line) and theoretical (dashed line)
curves for the aperiodic signal with correlation time 79 = 1000 and intensity (b)
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D=1x10"% (c) D=3x10"% (d) D=6 x 10~*.
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6. Summary and conclusions

The occurrence of noise-free stochastic multiresonance in TC systems is a
natural consequence of the non-monotonic dependence of the TC probability
p = 1/(7) on the control parameter [14]. This conclusion can be also easily
extended to the case of aperiodic signals. In this paper we used the kicked
spin map as a model for such a class of systems in which noise-free ASM
appears. In particular, we considered the neighborhood of attractor merging
crisis where the oscillations of TC probability are the result of the fractal
structure of chaotic saddles and pseudobasins. This fractal structure is well
reflected in the dependence of C on the control parameter. It was shown both
numerically and theoretically that the noise-free ASM appears as an effect of
a penetration of the fractal pseudobasin by the fractal saddle above the crisis
point. The theory based on topological models of these sets close to crisis,
combined with the adiabatic theory of SR, yields qualitative agreement with
numerical results. The best fit has been obtained for small amplitudes of
aperiodic signal and just above the threshold for crisis.

In comparison with the case of noise-free stochastic multiresonance with
periodic signals with comparable amplitudes [13], the C' vs By curves show
less complicated structure and the maxima are in general broader and more
smooth. This difference results from a distinct character of the periodic and
aperiodic input signals. The periodic signal is deterministic and constrained
to a finite interval. The aperiodic one shows small fluctuations at a time scale
much smaller than the correlation time 7y and its values are not constrained.
The small signal fluctuations smooth out the fine fractal structure, and thus
also the related maxima of C, at a scale of the control parameter By much
smaller than D. On the other hand, for large values of the signal, &, > D,
many branches and stripes of the chaotic saddle and pseudobasin overlap at a
given moment, independently of the value of By, which results in broadening
of the maxima of C.

The oscillations of the TC (escape) probability were observed in many
systems with crises [24,30]. Thus we can suppose that the noise-free ASM
occurs also in other chaotic systems close to crises, including experimental
ones with continuous time.
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