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Noise-free stochastic resonance is demonstrated numerically in a model
for Rayleigh-Bénard turbulence in a spatially extended system, based on a
one-dimensional array of coupled chaotic Lorenz cells. The system shows
spatiotemporal intermittency as the control parameter — equivalent to the
temperature difference between the upper and lower surface of the liquid
layer — is increased. If the temperature difference is slowly modulated
periodically, the signal-to-noise ratio, obtained from the output signal re-
flecting the occurrence of laminar and turbulent phases in a given point
in space, shows maximum as a function of the mean value of the control
parameter. The results suggest that experimental observation of noise-free
stochastic resonance in spatially extended systems is possible.

PACS numbers: 05.45.—-a, 47.52.+j, 05.40.-a

1. Introduction

Stochastic resonance (SR) is a phenomenon occurring in systems driven
by a combination of a periodic signal and noise, in which the strength of
a periodic component of a suitably defined output signal is maximum for
optimum nonzero noise intensity [1] (for review see [2-4]). For example,
in a generic model for SR, jumps of a particle, subject to a weak periodic
force and optimum noise, between symmetric wells of a bistable potential
can exhibit noticeable periodicity [1,5]. A separate class of systems with SR
is formed by chaotic models in which, instead of external noise, the internal
chaotic dynamics can be tuned to maximize the periodic component of the
output signal. This is achieved by varying a control parameter, and the
corresponding phenomenon is called noise-free (dynamical) SR [6-11]. The
strength of the periodic component of the output signal can be expressed as,
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e.g., the signal-to-noise ratio (SNR) in dB at the frequency of the periodic
signal wy, defined as SNR = 10log Sp (wg) /Sn (wo). Here, S (w) denotes
the power spectral density (PSD) of the output signal, and Sp (wg) is the
height of the peak in the PSD at wg, above the noisy background in the
vicinity of wg, which is denoted as Sy (wp). Then the hallmarks of SR and
noise-free SR are that the SNR has a maximum as a function of the input
noise intensity or the control parameter, respectively. In recent years, an
important topic has been investigation of SR in spatially extended stochastic
systems [12-20]. For example, in arrays of coupled elements exhibiting SR
enhancement of the maximum SNR due to proper coupling in comparison
with that in an uncoupled element, and its increase with the size of the
array were found [12-17]. This effect, known as array-enhanced SR, appears
because the noise and coupling can synchronize the output signals of all
elements with the periodic signal, so that the latter is best reflected in the
dynamics of the elements in the array. In other cases, SR appears since the
system provides space for two stable extended configurations, corresponding
to two wells of the bistable potential in the above-mentioned generic model
for SR [18-20], e.g., two pinning points for a soliton in a one-dimensional
medium [19, 20].

In this paper the study of SR-like phenomena is extended to the case
of noise-free SR in spatially extended chaotic systems. A typical route to
chaos in spatially extended systems is spatiotemporal intermittency (STT)
[21-31]. As the control parameter is increased, isolated turbulent domains
appear on the laminar background; for still higher values of the control pa-
rameter these domains grow in size and can be spontaneously created and
annihilated; eventually, all turbulent domains are connected and the system
becomes mostly turbulent. STI has been predicted theoretically in coupled
map lattices [21] and partial differential equations [22], and observed exper-
imentally, e.g., in Rayleigh-Bénard convection [23,24], turbulent regimes of
lines of electromagnetically forced vortices [28], Taylor-Couette flow [29],
and dynamics of self-excited ionization waves [31]. A strong analogy be-
tween STI and directed percolation has been conjectured, although there
has been a long debate if both phenomena belong to the same universality
class [22,27,30]. In Ref. [7] it was proved that low-dimensional chaotic sys-
tems with intermittency can exhibit noise-free SR: information about the
driving periodic signal can be reflected in the sequence of laminar phases
and bursts, which play a role of the two stable states in the generic bistable
model for SR. This sequence shows maximum periodicity for the optimum
value of the control parameter. This paper is aimed to show that, similarly,
in spatially extended systems with STI information about the periodic sig-
nal can be best encoded in the sequence of laminar and turbulent domains
for the optimum value of the control parameter.
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For this purpose, numerical simulations of a one-dimensional array of
coupled chaotic Lorenz systems [32] are performed, each consisting of three
nonlinear ordinary differential equations. This approximate model [26] was
introduced to describe experiments with Rayleigh—Bénard convection in a
fluid layer between horizontal boundaries, of which the lower one is heated
from below. The model was shown to reproduce, at least qualitatively, cer-
tain experimental results, as the transition to spatiotemporal chaos via STI,
and the statistical distributions of the lengths of laminar domains both be-
low and above the threshold for fully developed turbulence. In this paper, a
small periodic modulation is added to one of the model parameters, equiva-
lent to periodic modulation of the temperature difference between the lower
and upper boundary. It is found that when the mean value of the tempera-
ture difference, playing a role of the control parameter, is optimum, the SNR
measured from the signal reflecting the occurrence of a laminar or turbulent
phase at a certain point in space is maximum. In this way, noise-free SR in
a system with STT is demonstrated. Dependence of this phenomenon on the
system size and possible experimental realizations are briefly discussed.

2. The model

In the Rayleigh-Bénard experiment a layer of fluid is confined between
two horizontal plates and heated from below [23,24]. As the temperature
difference AT between the plates increases, a steady convective flow is ob-
served, which for small system size has a form of a one-dimensional chain of
vertical vortices, with neighboring vortices rotating in opposite directions.
For higher AT this structure is destroyed by the appearance of small, local-
ized in space turbulent domains in which the spatial periodicity is violated,
surrounded by large laminar domains in which the chain of vortices is still
periodic. With increasing temperature difference the turbulent regions mi-
grate and invade the laminar ones, and the portion of the system occupied
by the turbulent domains grows. This route to turbulence is typical of STI
and shows some evidence for a second-order phase transition, though in the
case of annular system geometry (periodic boundary conditions for the flow)
this transition need not be perfect [24].

The Lorenz model [32] is a drastic simplification of the Navier—Stokes
equations for the problem of Rayleigh-Bénard convection, obtained by re-
taining only three spatial Fourier coefficients of the fluid velocity and tem-
perature. In order to model a spatially extended fluid layer, in Ref. [26] it
was assumed that the basic structure of the fluid motion in the Rayleigh—
Bénard experiment consists of vortices which persist for a range of AT that
includes turbulent behavior. Each vortex, or cell, was then modeled by a sin-
gle Lorenz system, and the cells were coupled by viscous effects and thermal
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coupling. This led to the following system of coupled ordinary differential
equations

2, = o(yi —x3) — p(zim1 + 23 + 2441)
Ui = —yi+(r—2z)zi— 6 Y1 + 2y + yit1) ,
zZi = Ty, — bz, 1)

where 7 = 1,2,... N is the cell index, the significant variables z; and y; are
related to the fluid velocity and temperature in each cell, p is the strength
of viscous force at the interface between adjacent cells, assumed in the form
plzi (t) + iy (t)], & is the strength of thermal coupling by heat exchange
between adjacent cells, and the significant parameter r is proportional to
the temperature difference between the lower and upper boundary AT. The
meaning of the remaining variables and parameters is given in Ref. [26].
Note that the viscous force is minimum when z; and x;41 have opposite
signs, which amounts to the opposite direction of fluid rotation in neigh-
boring vortices. In experiments the latter situation is typical of laminar
domains, while in turbulent domains the vortices rotate in the same direc-
tion. Thus in the model (1) a given cell i is classified as belonging at time ¢
to a turbulent domain if z;_1(¢)z;(¢) > 0 or z;(t)z;4+1(t) > 0; otherwise it is
classified as belonging to a laminar domain. Following Ref. [26], henceforth
the thermal coupling between adjacent cells is neglected by setting x = 0. If
the parameters o, b are assumed such that the uncoupled Lorenz system can
show deterministic chaos for a certain range of r, then with p > 0 and in-
creasing r transition to turbulence via the appearance of turbulent domains
and STI is observed in the model (1).

In order to investigate noise-free SR a small, slowly varying input peri-
odic signal with frequency wy < 1 and amplitude 71 was added in Eq. (1)
to the constant in time part of the control parameter rg,

r — r(t) = ro + 1 cos (wot) , (2)

which amounts to a small periodic modulation of the temperature difference
between the upper and lower layer AT. The system of Eq. (1) and (2) was
simulated numerically with periodic boundary conditions, equivalent to the
annular geometry in experiments, and with various even N which allows the
period-2 laminar phase. The output signal Y (¢) was obtained from the time
series of the middle cell, i.e., that with « = N/2, and defined so that to
distinguish if the cell was turbulent (Y'(¢) = 1) or laminar (Y (¢) = 0); such
a two-state reduction of the output signal is typical of SR [5]. Note that the
output signal reflected the local dynamics at a given site, in analogy with
the numerical simulations of SR in arrays of coupled stochastic systems [12],
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rather than the average or complete dynamics of the whole system. As a
measure of the noise-free SR the output SNR ws the control parameter rg
was investigated.

3. Numerical results and discussion

The system (1) was solved numerically using a fourth-and-fifth order
Runge-Kutta method with continuous control of the integration step size,
with parameters o = 10, b= 8/3, u = 3, 71 = 4, wp = 27 x 213, and varying
rg, for 4 < N < 128. The SNR obtained numerically was normalized to

(a) (b)
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Fig.1. Spatiotemporal diagrams for the system (1) with N = 64 and r = const,
for r =23 (a), r =29 (b), r = 35 (c), r = 39 (d), r = 43 (e), r = 51 (f). Black
points denote turbulent cells, white points denote laminar cells.
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the frequency bandwidth [5] Af = wg/ (2n M), where M is the number of
periods of the input signal during which the data were stored (in the present
simulations, M = 32 was used). The results were then averaged over several
hundreds of the stored time series.

Without periodic modulation, for r; = 0, the system (1) shows transition
to spatiotemporal chaos via the STT as r is increased for a whole range of N
studied (Fig. 1 and Fig. 2). In Fig. 1 (where N = 64) the transition to fully
developed turbulence, when all turbulent domains are connected, occurs
between r = 39 (Fig. 1(d)) and r = 43 (Fig. 1(e)). The exact threshold
for turbulence is hard to establish; the transition is confirmed by different
scaling behavior of the distribution of lengths of laminar domains far below
and above the threshold [26]. The simulations reveal that the thresholds
for the spontaneous creation of turbulent domains and for the transition
to turbulence slightly increase for small N. For example, for » = 29 and
N = 16 the turbulent domains are still localized (Fig. 2(b)), while for N = 64
they already start invading the laminar domains (Fig. 1(b)). Nevertheless,
qualitative changes of the system dynamics with increasing r and the overall
picture of the STI are independent of N (¢f. Fig. 1 and Fig. 2).

(a) (b)
16
i 1_ =
(c) (d)
16 ‘H - I ﬁ -
i h EE'E.- I
| | | 'l | 1
e (e) ()
ST - =m
g
64 128 152 256 0 64 128 192 256
t(x 0.1s) t(x0.1s)

Fig.2. Spatiotemporal diagrams for the system (1) with N = 16 and r = const,
for r =23 (a), r =29 (b), r = 35 (c), r = 39 (d), r = 43 (e), r = 51 (f). Black
points denote turbulent cells, white points denote laminar cells.

In the case of the time-dependent control parameter (2), the portion of
the system occupied by the turbulent regions can change significantly as
r(t) varies between its maximum and minimum value. This happens when
ro = 71 is, approximately, between the threshold for the spontaneous cre-
ation and annihilation of turbulent domains and that for the fully developed
turbulence. Then the periodicity of r(t) is well reflected in the sequence of
turbulent and laminar domains in the spatiotemporal diagrams in Fig. 3,
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which play a role analogous to that of the two stable states in models for
SR with bistable potentials. For example, the overall laminar behavior can
be periodically interrupted by time intervals during which the turbulent
domains prevail (Fig. 3(b), (c¢)). Another possibility is that the system is
mostly turbulent, and intervals during which the system is more laminar
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Fig. 3. Spatiotemporal diagrams for the system (1) with the time-dependent control
parameter (2), N = 64, and ro = 23 (a), ro = 29 (b), 70 = 35 (c), ro = 39 (d),
ro = 43 (e), ro = 51 (f). Black points denote turbulent cells, white points denote
laminar cells. Diagrams (c)—(e) correspond to the range of rg in which the maximum
of the SNR in Fig. 4 appears. Note different time scales on the horizontal axes in
comparison with Fig. 1 and 2.
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appear periodically on this background (Fig. 3(d)). For optimum 7y the
periodicity of r(t) is also best reflected in the output signal Y (¢) from a
single Lorenz cell. For any system size, the SNR measured from Y (¢) has
a maximum as a function of 7y (Fig. 4(a)). The maximum appears in the
range of ¢ for which the transition to fully developed turbulence takes place.
This shows that information about the input signal can be encoded in the
sequence of laminar and turbulent phases at a single site, and that for the
optimum value of rg this encoding is also optimum, i.e., that noise-free SR
in the spatially extended system with STI appears.
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Fig.4. (a) The signal-to-noise ratio SNR ws 7o for the system (1,2) with wo =
1/8192, r1 = 4, and N = 4 (empty circles), N = 16 (filled circles), N = 64
(empty squares), N = 128 (filled squares); (b) maximum SNR wvs N for the system
as in (a).

While the location of the maximum SNR slightly depends on the system
size, in particular for small N (Fig. 4(a)), its height is almost independent
of N within the measurement accuracy (Fig. 4(b)). In arrays of coupled
stochastic bistable oscillators the maximum SNR, measured for both opti-
mum coupling strength and noise intensity, increases with the system size
up to saturation [12]. The effect of coupling is to synchronize all oscillators,
which strengthens the effect of the external periodic signal; since if one oscil-
lator follows this signal, this increases the probability that its neighbors will
also do. In contrast, in the model given by Eq. (1), (2) the spatial extension
of the system provides only space for the development and spreading of the
laminar and turbulent domains. As mentioned above, the overall picture of
the STI, and thus the overall behavior of a single cell, do not depend signif-
icantly on the chain length. Thus, the increase of the maximum SNR with
N is not observed. Moreover, in the present study the coupling strength is
fixed and not necessarily optimum, which can also influence the observed
independence of the maximum SNR on the chain length.
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4. Summary and conclusions

In this paper the concept of noise-free SR was extended to the case
of spatially extended chaotic systems exhibiting generic transition to spa-
tiotemporal chaos via STI. It was shown that the periodic component in the
output signal, reflecting the occurrence of the laminar and turbulent phases
at a given point in space, can be maximized as a function of the control
parameter. The maximum SNR turned out to be rather independent of the
system size, because the qualitative picture of the STI, and thus the local
dynamics at a single point, did not change much with the spatial extent
of the system. Since the model under study is related to the transition to
Rayleigh—Bénard turbulence via STI, this suggests a possibility of experi-
mental observation of noise-free SR in experiments analogous to those in
Ref. [23,24], with the periodic signal modulating the temperature difference
between the two horizontal boundaries.

The Lorenz cells of the model (1) were low-dimensional chaotic systems,
hence the spatially extended array exhibited sustained STI. Sustained STT is
also observed in most experiments. The sustained character of intermittency
is necessary to observe SR, since turbulent domains have to be continuously
created and annihilated following the time variation of the control param-
eter. In contrast, in many theoretical models for STI the laminar state is
absorbing, i.e., only transient STI occurs [21,22]. This excludes SR in the
form discussed in this paper, though it is possible that if the intermittent
transient is long enough the input periodic signal will be reflected in the
output signal of finite duration.

The phenomenon of SR in one-dimensional stochastic systems is related
to the creation of coherent structures (solitons) which, by spreading in the
bistable medium, invert its orientation [14]. This bears some resemblance to
spontaneous creation of turbulent domains which then invade the laminar
ones. It should be also noted that in certain spatially extended systems
transition to spatiotemporal chaos occurs via creation and annihilation of
solitary waves [33]. If it is possible to observe noise-free SR in such systems,
its origin could be more directly related to that of SR with noise in one-
dimensional systems.
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