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SPONTANEOUS FORMATIONOF SPACE�TIME STRUCTURESIN PROBABILISTIC CELLULAR AUTOMATA�D. MakowieInstitute of Theoretial Physis and Astrophysis, Gda«sk University80-952 Gda«sk, Wita Stwosza 57, Polande-mail: fizdm�univ.gda.pl(Reeived Otober 15, 2002)The luster struture of Toom North-East-Center (NEC) voting rule inprobabilisti ellular automata stationary states is analyzed. Suh struturehas its origin in both geometrial onnetivity and Toom interations. Thedi�erene between perolation threshold and ferromagneti phase transitionis determined. The value of this di�erene depends on the way in whihNEC rule is applied: synhronous or asynhronous.PACS numbers: 05.50.+q, 05.70.Jk1. Motivation1.1. PCA versus EMSStohasti ellular automata lead diretly to thermodynamis systems inwhih self-organization of elements to phase transition an be studied. Evenone-dimensional ellular automata an serve examples of omplex behaviorsuh as e.g. the absorbing phase transition [1�3℄. Here we onentrate onhow probabilisti ellular automata (PCA) model equilibrium statistial me-hanis (EMS). Details on this subjet one an �nd in papers of Domany [4℄,Bennet et al., [5℄, Lebowitz et al., [6℄ or Bigelis et al., [7℄.Let��Zd is a �nite ube that ontains points of Zd lattie and has perio-di boundary onditions. At eah site i2� there is a spin variable �i=�1.Hene the on�guration spae ontains � 2 f�1; 1g�. The dynamis isperformed in disrete time steps. All spins are updated synhronously and� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3541)



3542 D. Makowieindependently at every time unit. The onditional probability that a spinat site i takes the value �0i on a given on�guration � isPi(�0ij�) = 12 �1 + tanh "�0ihi(�)� ; (1)where " plays the role of the inverse of temperature and hi is �nite rangefuntion desribing loal ouplings. Thus the time evolution is a Markovhain on the on�guration spae with non-zero transition probabilities:P�(�j�) = �i2�Pi(�ij�) :Notie that if " is large, what means the temperature is lose to zero, then�i = sign hi(�) with high probability.By the general theory of Markov proesses, for any " and � there existsa unique stationary measure �"� for PCA. We say that PCA are reversiblewith respet to a measure � i�P�(�j�)�(�) = P�(�j�)�(�)for any lattie on�gurations �; �. Notie that any measure satisfying thereversibility ondition is stationary for PCA. The opposite statement doesnot need to be true. It is easy to hek that if h(�) satis�es some symmetryonditions, the time evolution is reversible with respet to the followingmeasure: �"� = 1Z�i2� osh "hi(�)and this measure is a Gibbs measure for the Hamiltonian H�(�) = ln�"�.Let us lose with a remark that stationary measures for in�nite volume PCAneed no longer be unique.1.2. Why study Toom PCAToom's North-East-Center (NEC in short) voting model is one of thesimplest ellular automata that are nonergodi and irreversible [5, 6, 8, 9℄.The model onsists of a square lattie of spins, eah of whih an be upor down. A spin's future state is deided by a majority vote of spins froma speial, beause unsymmetri neighborhood. This neighborhood onsistsof the spin itself Ci and its northern Ni and eastern Ei neighbors. The de-terministi vote is perturbed by a stohasti noise ". The stohasti noise ismeasured in suh a way that " an have a physial interpretation of the in-verse of temperature. The dynamis of Toom PCA is driven by the followingonditional probability:P (C 0ij(Ni; Ei; Ci)) = 12 �1 + "C 0isign(Ni +Ei + Ci)� : (2)



Spontaneous Formation of Spae�Time Strutures in . . . 3543The above formula an be seen as the approximation of the low temperatureof the equilibrium dynamis of (1), namelyP (C 0ij(Ni; Ei; Ci)) = 12 �1 + tanh "C 0i(Ni +Ei + Ci)� :If " is lose to 1 but di�erent from 1 then all loal transitions are allowed.Therefore, on the � = L�L torus the model is ergodi � it leads to a uniquestationary distribution. However, Toom showed [8℄ that for " su�ientlylose to 1, the transition rate between the mostly up and mostly down statesof entire system tends to zero with inreasing L. Thus the in�nite systemis nonergodi with two stable phases like in the onventional Ising model offerromagneti interations below its ritial temperature. If " is far from 1,namely the temperature is high, the system is ergodi. Therefore, whenstudying stohasti Toom NEC system we an, similarly to the Ising model,observe the transition between these two limit ases.The important motivation to study Toom PCA is that Toom PCA arenot reversible with respet to their stationary measure. Hene there is nota diret orrespondene desribed in the previous subsetion between thesePCA and ESM. The irreversibility of Toom PCA arises from the unsym-metri neighborhood. If the Toom system was modi�ed by adding an extrasub step to the dynamis: at eah time step after Toom NEC voting, themajority vote of South, West and a Center spins is performed, then suh atwo step PCA dynamis would be reversible with respet to the stationarymeasure [4℄. However, there are hints that not only reversible PCA leadto ESM [9℄. Toom PCA are the simplest stohasti system in whih thishypothesis ould be tested.1.3. Toom PCA versus Ising modelThe set of stable on�gurations makes the key di�erene between theToom PCA and the Ising model. The stable on�gurations set onsists ofon�gurations that are invariant with respet to the deterministi dynamis.In the Ising system �nite size islands of opposite phase are stable. In theToom system only in�nite size objets are stable [10℄. However, if the noiseis present, the �nite islands an persist to live in a Toom stationary state.The Toom system looses its nonergodiity in the way similar to the Isingsystem, i.e. by passing the ontinuous phase transition [5℄. The numerialstudy indiates that stationary state of the �nite size system at the transitionpoint is not Gibbsian [11℄. Hene there is no proper meaning of energy inthe Toom NEC system of the �nite size.Though the Toom PCA do not model any ESM system, the followingquestion an be posed: whether the phase transition belongs to the Ising uni-versality lass. Details of the researh on this subjet are presented in [12℄.



3544 D. MakowieIt ours that if the NEC rule is applied in an asynhronous way then thetransition belongs to the Ising universality lass. Toom PCA with syn-hronous updating falls into the weak Ising universality lass. Close to thetransition the two-point orrelation funtion deays slower than in the Isingsystem. The ritial exponent desribing this deay is � = 0:87 for Toomwith synhronous updating while � = 1 if the system belongs to the Isinguniversality lass. However, taking orretions whih respet the slower or-relation deay, singularities of other funtions as e.g. the magnetization andsuseptibility are the same as in the Ising model. The similar saling proper-ties are observed in systems of oupled map latties [13,14℄. It is also knownfor PCA that model ESM [7℄ that ritial lusters are larger and more stablewhen a rule is applied synhronously.The main onern of the presentation is the luster struture of ToomPCA stationary states. Suh a struture has its origin in both the geometri-al onnetivity and Toom interations. The aim is to �nd links between theferromagneti transition and the pure geometri problem of perolation. Inase of the Ising model these links are established learly [15�17℄. Sine ourstudy on universality lass of the transition provides distintion between theToom NEC system with the rule performed synhronously and the systemwith asynhronous updating, in the following we will onsider the lusterstruture in these both systems.1.4. Perolation and ritial phenomenaThe perolation problem states are produed by throwing down partilesor bonds in an independent way. The simplest perolation model is the siteperolation in a two-dimensional square lattie. Eah site of a lattie isoupied with probability p. Oupied sites that share edges form a luster.If p is large there is a perolating luster, i.e., a luster that spans thelattie from one edge to the other. The perolation displays a thresholdphenomena. In the limit of in�nite lattie size there is a sharp transitionat some density p, alled ritial density or perolation threshold, with theproperty that: for p < p there is never a perolating luster and for p > pthere is always a perolating luster. This transition is of a ontinuous type.The order parameter for this transition is the perolation probability P1.The perolation probability means the probability that a site belongs toa perolating luster. See [18�20℄ for the desription of the ritial transitionin the site perolation model.The study of the perolation threshold in the Ising model was started byFortuin and Kasteleyn [15℄. In the mathematially rigorous way, the pureonnetivity problem was transferred to the Potts ferromagneti model �a speial ase of whih is the Ising model. The idea was proposed to link



Spontaneous Formation of Spae�Time Strutures in . . . 3545a perolation luster to orrelations in ooperative systems. This leads to aperolation luster of the Ising ferromagnet that is a set of nearest neighborparallel spins but additionally onneted by the interation bonds [16, 17℄.Eah bond is being present with probability p = 1 � e�K where K is theonstant whih desribes interations with respet to the temperature. Theluster de�ned in this way has a remarkable property that the onnetedprobability between two sites of lusters agrees preisely with the two-pointorrelation funtion. This property allowed to prove that the perolationtransition temperature TP is exatly the same as the Curie temperature.2. Results2.1. Computer experiment desriptionWe use the standard importane sampling tehnique to simulate station-ary states of the Toom model. We onsider a square lattie of linear sizeL = 100 imposed in periodi boundary onditions. The omputer experi-ments are started with all spins up. A new on�guration is generated fromthe old one by the following Markov proess: for a given " the evolutionrule (2) is employed to eah spin in ase of synhronous updating, or toa randomly hosen spin when asynhronous updating ase is examined. Theevolving system is given 10 000 time steps to reah the stationary state.Suh time interval is su�ient to �nd systems in ergodi states [23℄.When a system is in a stationary state then at eah time step t (wherea time step means a Monte Carlo step, namely one simulation step whensynhronous updating is performed and L2 single spin �ips in ase of asyn-hronously applied rule) then:� an expetation value of magnetization jmjL is omputed (sine thetransition is observed on the lattie with a �nite size we alulate the mag-nitude of the magnetization):jmjL = 1T Xt=1;:::;T 1L2 ����� Xi=1;:::;L2 �i(t)����� ; (3)� a luster struture of spins being in the state up is identi�ed by usingthe standard algorithm of Hoshen�Kopelman [21℄. The following quantitiesare alulated to haraterize a luster struture of a state, ompare [18,22℄:� ns probability to have a luster of size s, so-alled s_ luster [18℄,normalized by the lattie size:ns = 1T Xt=1;:::;T 1L2 (number of s_ lusters)(t) : (4)



3546 D. MakowieThus sns means the probability of any lattie site belongs to an s_ luster.� n1(s) probability that an s_ luster normalized is the maximal oneon a given on�guration:n1(s) = 1T 1L2 (number of on�gurations : s_ luster is maximal) : (5)Hene the expetation value of the size of the maximal luster normalizedis smax =Ps s n1(s).� Pper probability for a perolating luster:Pper = 1T (number of on�gurations with a perolating luster) : (6)A on�guration has a perolating luster if there is a luster spanning ver-tially or horizontally.In all experiments T = 10 000. To avoid the possibility that a state isattrated by some metastable state, we perform N independent experiments,with N in the range 50; : : : ; 150.2.2. Order parameter studyFig. 1 shows the probability distribution funtion (pdf) of lusters ns,Fig. 2 presents the probability n1(s) for a wide range of " if NEC rulewas applied synhronously and asynhronously. The data is presented inlog-sale. The rapid hange in the shape of both distributions is evident.A dominant phase luster explodes into the plenty of lusters of all possiblesizes.Fig. 3 ompares deay of magnetization jmjL to the perolation probabil-ity P1 � the order parameters of the two transitions that take plae, whenthe temperature inreases. The perolation probability P1 is estimated bythe relation P1 = smaxPper. Notie that jmjL < P1. Similarly to theIsing model, the geometri lusters are too large to desribe magnetizationdependenies in both Toom PCA.To learn about the ritial points in the systems studied we searh forthe maximum of the variane of the order parameters. Fig. 4 ollets resultsof the study. The data does not point learly at the shape of the variane.However, by smoothing the data the following results an be read:"L=1rit "L=100rit "L=100per �"L=100ritAToom 0:866[12℄ 0:862 0:864 0:002SToom 0:822[12℄ 0:8208 0:8192 0:0018



Spontaneous Formation of Spae�Time Strutures in . . . 3547

Fig. 1. The log-plot of probability distribution of lusters ns, see (4), for a di�erentvalues of stohasti noise " when (top) synhronous (bottom) asynhronous Toomrule is applied. One an observe how the Gaussian distribution of ferromagnetiphase transfers into the exponential distribution of paramagneti phase.
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Fig. 2. The log-plot of the probability that a luster of a given size is the maximalone, see (5) for a di�erent values of stohasti noise " when (top) synhronous(bottom) asynhronous Toom rule is applied.
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Fig. 3. Magnetization jmLj blak plots, and perolation probability of 1s P1- greyplots for Toom PCA with synhronous and asynhronous dynamis.The two transitions: ferromagneti and perolation do not oinide inboth systems. Moreover a small di�erene in �"L=100rit between asynhronousToom and synhronous Toom PCA is observed. In Fig. 5 we present ns andn1 in the ritial ranges. If the noise is low, " > 0:90, then ns and n1 areof gaussian type and almost idential sine there is a single luster of 1's ona on�guration. If the noise is high, " < 0:70, then ns deays exponentiallyand the distribution of maximal size beomes the right wing of the ns distri-bution. In the ritial regime both ns and n1 ontinuously transfer betweenthese two limit distributions. At the magneti ritial point the peak of thedominant phase is still present, while at the perolation threshold we ob-serve unusually large �at wing of the exponential deay. �"L=100rit = 0:002in temperature-like-measure of a noise denotes that the deterministi rule ofNEC voting in ase of perolating threshold needs a perturbation stronger by0:001 than the ferromagneti transition. This property hints how stronglythe geometrial lusters should be destroyed to obtain both transitions atthe same temperature.
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Fig. 4. Critiality of (top) synhronous and (bottom) asynhronous Toom PCA byvariane of the order parameters.3. ConlusionPresented results are only preliminary. Our further investigations shouldinvolve latties with di�erent sizes to determine �"1rit between the ferromag-neti ritial point and the perolation threshold if the in�nite lattie systemof both Toom dynamis is onsidered. Moreover, there is a need to inludeproperties of lusters formed by the opposite phase to have a omplete de-sription to the proess that takes plae at the transition point.
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Fig. 5. Properties of probability distributions of luster size ns � blak plots,and maximal luster size n1 � grey plots, for (top) synhronous and (bottom)asynhronous Toom PCA near ritial points.
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