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The cluster structure of Toom North-East-Center (NEC) voting rule in
probabilistic cellular automata stationary states is analyzed. Such structure
has its origin in both geometrical connectivity and Toom interactions. The
difference between percolation threshold and ferromagnetic phase transition
is determined. The value of this difference depends on the way in which
NEC rule is applied: synchronous or asynchronous.
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1. Motivation
1.1. PCA versus EMS

Stochastic cellular automata lead directly to thermodynamics systems in
which self-organization of elements to phase transition can be studied. Even
one-dimensional cellular automata can serve examples of complex behavior
such as e.g. the absorbing phase transition [1-3|. Here we concentrate on
how probabilistic cellular automata (PCA) model equilibrium statistical me-
chanics (EMS). Details on this subject one can find in papers of Domany [4],
Bennet et al., [5], Lebowitz et al., |6] or Bigelis et al., |7].

Let AC Z%isafinite cube that contains points of Z¢ lattice and has perio-
dic boundary conditions. At each site i € A there is a spin variable o; ==+1.
Hence the configuration space contains o € {—1,1}. The dynamics is
performed in discrete time steps. All spins are updated synchronously and
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independently at every time unit. The conditional probability that a spin
at site 7 takes the value o} on a given configuration o is

Py(ol|o) = % [1+ tanheajh;(o)] , (1)

where ¢ plays the role of the inverse of temperature and h; is finite range
function describing local couplings. Thus the time evolution is a Markov
chain on the configuration space with non-zero transition probabilities:

Py(n|o) = HicaP;i(nilo) .

Notice that if ¢ is large, what means the temperature is close to zero, then
o; = sign h;(o) with high probability.

By the general theory of Markov processes, for any € and A there exists
a unique stationary measure v§ for PCA. We say that PCA are reversible
with respect to a measure p iff

Pa(nlo)p(a) = Pa(a|n)p(n)

for any lattice configurations 7, 0. Notice that any measure satisfying the
reversibility condition is stationary for PCA. The opposite statement does
not need to be true. It is easy to check that if h(o) satisfies some symmetry
conditions, the time evolution is reversible with respect to the following
measure:

1
vy = iﬂieA cosheh;(o)

and this measure is a Gibbs measure for the Hamiltonian H,(o) = Invj.
Let us close with a remark that stationary measures for infinite volume PCA
need no longer be unique.

1.2. Why study Toom PCA

Toom’s North-East-Center (NEC in short) voting model is one of the
simplest cellular automata that are nonergodic and irreversible [5,6,8,9].
The model consists of a square lattice of spins, each of which can be up
or down. A spin’s future state is decided by a majority vote of spins from
a special, because unsymmetric neighborhood. This neighborhood consists
of the spin itself C; and its northern NV; and eastern E; neighbors. The de-
terministic vote is perturbed by a stochastic noise €. The stochastic noise is
measured in such a way that € can have a physical interpretation of the in-
verse of temperature. The dynamics of Toom PCA is driven by the following
conditional probability:

1
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The above formula can be seen as the approximation of the low temperature
of the equilibrium dynamics of (1), namely

1
P(CZI|(NZ,EZ, ;) = 3 [1 + tanheCZ{(Ni + E; + Cz)] .

If € is close to 1 but different from 1 then all local transitions are allowed.
Therefore, on the A = L x L torus the model is ergodic — it leads to a unique
stationary distribution. However, Toom showed [8] that for e sufficiently
close to 1, the transition rate between the mostly up and mostly down states
of entire system tends to zero with increasing L. Thus the infinite system
is nonergodic with two stable phases like in the conventional Ising model of
ferromagnetic interactions below its critical temperature. If € is far from 1,
namely the temperature is high, the system is ergodic. Therefore, when
studying stochastic Toom NEC system we can, similarly to the Ising model,
observe the transition between these two limit cases.

The important motivation to study Toom PCA is that Toom PCA are
not reversible with respect to their stationary measure. Hence there is not
a direct correspondence described in the previous subsection between these
PCA and ESM. The irreversibility of Toom PCA arises from the unsym-
metric neighborhood. If the Toom system was modified by adding an extra
sub step to the dynamics: at each time step after Toom NEC voting, the
majority vote of South, West and a Center spins is performed, then such a
two step PCA dynamics would be reversible with respect to the stationary
measure [4]. However, there are hints that not only reversible PCA lead
to ESM [9]. Toom PCA are the simplest stochastic system in which this
hypothesis could be tested.

1.8. Toom PCA versus Ising model

The set of stable configurations makes the key difference between the
Toom PCA and the Ising model. The stable configurations set consists of
configurations that are invariant with respect to the deterministic dynamics.
In the Ising system finite size islands of opposite phase are stable. In the
Toom system only infinite size objects are stable [10]. However, if the noise
is present, the finite islands can persist to live in a Toom stationary state.

The Toom system looses its nonergodicity in the way similar to the Ising
system, i.e. by passing the continuous phase transition [5]. The numerical
study indicates that stationary state of the finite size system at the transition
point is not Gibbsian [11]. Hence there is no proper meaning of energy in
the Toom NEC system of the finite size.

Though the Toom PCA do not model any ESM system, the following
question can be posed: whether the phase transition belongs to the Ising uni-
versality class. Details of the research on this subject are presented in [12].
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It occurs that if the NEC rule is applied in an asynchronous way then the
transition belongs to the Ising universality class. Toom PCA with syn-
chronous updating falls into the weak Ising universality class. Close to the
transition the two-point correlation function decays slower than in the Ising
system. The critical exponent describing this decay is v = 0.87 for Toom
with synchronous updating while v = 1 if the system belongs to the Ising
universality class. However, taking corrections which respect the slower cor-
relation decay, singularities of other functions as e.g. the magnetization and
susceptibility are the same as in the Ising model. The similar scaling proper-
ties are observed in systems of coupled map lattices [13,14]. It is also known
for PCA that model ESM [7] that critical clusters are larger and more stable
when a rule is applied synchronously.

The main concern of the presentation is the cluster structure of Toom
PCA stationary states. Such a structure has its origin in both the geometri-
cal connectivity and Toom interactions. The aim is to find links between the
ferromagnetic transition and the pure geometric problem of percolation. In
case of the Ising model these links are established clearly [15-17]. Since our
study on universality class of the transition provides distinction between the
Toom NEC system with the rule performed synchronously and the system
with asynchronous updating, in the following we will consider the cluster
structure in these both systems.

1.4. Percolation and critical phenomena

The percolation problem states are produced by throwing down particles
or bonds in an independent way. The simplest percolation model is the site
percolation in a two-dimensional square lattice. Each site of a lattice is
occupied with probability p. Occupied sites that share edges form a cluster.
If p is large there is a percolating cluster, i.e., a cluster that spans the
lattice from one edge to the other. The percolation displays a threshold
phenomena. In the limit of infinite lattice size there is a sharp transition
at some density pc, called critical density or percolation threshold, with the
property that: for p < p. there is never a percolating cluster and for p > p.
there is always a percolating cluster. This transition is of a continuous type.
The order parameter for this transition is the percolation probability Pa.
The percolation probability means the probability that a site belongs to
apercolating cluster. See [18-20] for the description of the critical transition
in the site percolation model.

The study of the percolation threshold in the Ising model was started by
Fortuin and Kasteleyn [15]. In the mathematically rigorous way, the pure
connectivity problem was transferred to the Potts ferromagnetic model —
a special case of which is the Ising model. The idea was proposed to link
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a percolation cluster to correlations in cooperative systems. This leads to a
percolation cluster of the Ising ferromagnet that is a set of nearest neighbor
parallel spins but additionally connected by the interaction bonds [16,17].
Each bond is being present with probability p = 1 — e X where K is the
constant which describes interactions with respect to the temperature. The
cluster defined in this way has a remarkable property that the connected
probability between two sites of clusters agrees precisely with the two-point
correlation function. This property allowed to prove that the percolation
transition temperature Tp is exactly the same as the Curie temperature.

2. Results

2.1. Computer experiment description

We use the standard importance sampling technique to simulate station-
ary states of the Toom model. We consider a square lattice of linear size
L = 100 imposed in periodic boundary conditions. The computer experi-
ments are started with all spins up. A new configuration is generated from
the old one by the following Markov process: for a given e the evolution
rule (2) is employed to each spin in case of synchronous updating, or to
arandomly chosen spin when asynchronous updating case is examined. The
evolving system is given 10 000 time steps to reach the stationary state.
Such time interval is sufficient to find systems in ergodic states [23].

When a system is in a stationary state then at each time step ¢ (where
a time step means a Monte Carlo step, namely one simulation step when
synchronous updating is performed and L? single spin flips in case of asyn-
chronously applied rule) then:

— an expectation value of magnetization |m|r is computed (since the
transition is observed on the lattice with a finite size we calculate the mag-
nitude of the magnetization):

; (3)

i=1,...,L2

— a cluster structure of spins being in the state up is identified by using
the standard algorithm of Hoshen—Kopelman [21]. The following quantities
are calculated to characterize a cluster structure of a state, compare [18,22]:

e ng probability to have a cluster of size s, so-called s_ cluster [18§],
normalized by the lattice size:

1 1
ns = o Z ﬁ(number of s clusters)(t). (4)
=1,...,T

=1,...,
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Thus sns; means the probability of any lattice site belongs to an s cluster.
e N (s) probability that an s cluster normalized is the maximal one
on a given configuration:
11

Noo(8) = fﬁ(number of configurations : s _ cluster is maximal). (5)

Hence the expectation value of the size of the maximal cluster normalized

IS Smax = D4 S Moo ().
e Py probability for a percolating cluster:

1
Pperc = T(number of configurations with a percolating cluster).  (6)

A configuration has a percolating cluster if there is a cluster spanning ver-
tically or horizontally.

In all experiments T' = 10000. To avoid the possibility that a state is
attracted by some metastable state, we perform N independent experiments,
with N in the range 50, ..., 150.

2.2. Order parameter study

Fig. 1 shows the probability distribution function (pdf) of clusters ng,
Fig. 2 presents the probability ns(s) for a wide range of ¢ if NEC rule
was applied synchronously and asynchronously. The data is presented in
log-scale. The rapid change in the shape of both distributions is evident.
A dominant phase cluster explodes into the plenty of clusters of all possible
sizes.

Fig. 3 compares decay of magnetization |m|r, to the percolation probabil-
ity Py — the order parameters of the two transitions that take place, when
the temperature increases. The percolation probability P, is estimated by
the relation Psy = SmaxPperc. Notice that |m|;, < Ps. Similarly to the
Ising model, the geometric clusters are too large to describe magnetization
dependencies in both Toom PCA.

To learn about the critical points in the systems studied we search for
the maximum of the variance of the order parameters. Fig. 4 collects results
of the study. The data does not point clearly at the shape of the variance.
However, by smoothing the data the following results can be read:

Ean”  Ean "l e Aely!®
AToom 0.866[12]  0.862 0.864 0.002

SToom 0.822[12]  0.8208 0.8192 0.0018
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Fig. 1. The log-plot of probability distribution of clusters ng, see (4), for a different
values of stochastic noise ¢ when (top) synchronous (bottom) asynchronous Toom
rule is applied. One can observe how the Gaussian distribution of ferromagnetic
phase transfers into the exponential distribution of paramagnetic phase.
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Fig.2. The log-plot of the probability that a cluster of a given size is the maximal
one, see (5) for a different values of stochastic noise € when (top) synchronous

(bottom) asynchronous Toom rule is applied.
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Fig. 3. Magnetization |my | black plots, and percolation probability of 1s Py~ grey
plots for Toom PCA with synchronous and asynchronous dynamics.

The two transitions: ferromagnetic and percolation do not coincide in
L=100 hetween asynchronous

both systems. Moreover a small difference in Ae; 5
Toom and synchronous Toom PCA is observed. In Fig. 5 we present ng and

N in the critical ranges. If the noise is low, € > 0.90, then ns and ns are
of gaussian type and almost identical since there is a single cluster of 1’s on
a configuration. If the noise is high, ¢ < 0.70, then n, decays exponentially
and the distribution of maximal size becomes the right wing of the ng distri-
bution. In the critical regime both ng and ns continuously transfer between
these two limit distributions. At the magnetic critical point the peak of the
dominant phase is still present, while at the percolation threshold we ob-

L=100 _ = 0.002

serve unusually large flat wing of the exponential decay. Aegj;
in temperature-like-measure of a noise denotes that the deterministic rule of

NEC voting in case of percolating threshold needs a perturbation stronger by
0.001 than the ferromagnetic transition. This property hints how strongly
the geometrical clusters should be destroyed to obtain both transitions at

the same temperature.
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Fig.4. Criticality of (top) synchronous and (bottom) asynchronous Toom PCA by
variance of the order parameters.

3. Conclusion

Presented results are only preliminary. Our further investigations should
involve lattices with different sizes to determine A&, between the ferromag-
netic critical point and the percolation threshold if the infinite lattice system
of both Toom dynamics is considered. Moreover, there is a need to include
properties of clusters formed by the opposite phase to have a complete de-

scription to the process that takes place at the transition point.



Spontaneous Formation of Space—Time Structures in ...

107 4

probability
(log scale)

104 4

104 4

3551

105

108

[
|

10000

)
i
Y
|
.
2000

4000 8000 10000 0

£=0.8208

10000

magnetization criticallty

10° -
107 |

10

10000 o 2000 4000 6000

dluster size

10000

probability (log scale)}

100 4N

107 4

10 10°
e J\. E=0.864 . magnetization criticality | ., |
AW
107 S . \‘,, 107 e
\ = Y h
10° I"‘F A 10 h ."f u \ \1‘ -
10 !’ T T T r \ \‘ 4 10* ! ‘ T T v T 1' v
° 2000 4000 8000 8000 10000 ° 2000 4000 8000 8000 10000
cluster size dluster size
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asynchronous Toom PCA near critical points.



3552 D. MAKOWIEC

As it was said in Sec. 1, in the ferromagnetic Ising model the thermo-
dynamic transition can be described in terms of clusters made of parallel
spins connected by “fictitious” bonds [17]. In other thermodynamic systems
such as e.g. in the Ising spin glasses where the percolation cluster can be
defined in the a similar way as that of ferromagnet [24,25], the research on
the relation between geometrical clusters and physical clusters is still ex-
amined to elucidate the mechanism underlying a thermodynamic transition.
However, the geometrical interpretation of thermal phenomena is still not
fully understood [26]. Study critical phenomena with probabilistic cellular
automata offers a new possibility to get an insight into the problem. At
first the search should be undertaken to define a cluster structure which
will lead to the coincidence of the stochastic dynamics critical point and the
percolation threshold.

This work is supported by Gdarsk University grant number BW 5400-
5-0235-2. Simulations were done on computers of TASK — Academic Com-
puter Center in Gdansk, Poland.
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