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RANDOM DYNAMICS, ENTROPY PRODUCTIONAND FISHER INFORMATION�Piotr Garba
zewskiInstitute of Physi
s, University of Zielona Góra65-516 Zielona Góra, Poland(Re
eived November 18, 2002)We analyze a spe
i�
 role of probability density gradients in the the-ory of irreversible transport pro
esses. The 
lassi
 Fisher information andinformation entropy produ
tion 
on
epts are found to be intrinsi
ally en-tangled with the very notion of the Markovian di�usion pro
ess and thatof the related (lo
al) momentum 
onservation law.PACS numbers: 05.40.�a, 02.50.Ga1. Motivations and asso
iationsThe main obje
tive of the present paper is to analyze the role � ori-gins, possible physi
al meaning and manifestations � of two analyti
al ex-pressions whi
h are omnipresent, dire
tly or indire
tly, in any theoreti
alframework addressing an issue of transport driven by Markovian di�usionpro
esses. Both derive from the sole properties, and spe
i�
ally the timeevolution, of the probability density asso
iated with the analyzed sto
hasti
pro
ess (like e.g. the dynami
s of tra
er parti
les in a gas or �uid).Let us spe
ify the 
ontext by 
onsidering spatial Markov di�usion pro-
esses with a di�usion parameter (
onstant or time-dependent) D and gen-erally spa
e�time inhomogeneous probability density �.One of the aforementioned expressions reads:Q = 2D2��1=2�1=2 = D2 �1���� 12 1�2 (�!r�)2� = 12�!u 2 +D�!r � �!u ; (1)where �!u = D�!r ln� is sometimes named an osmoti
 velo
ity �eld.� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.(3555)



3556 P. Garba
zewskiDensity gradients are here expli
itly involved and it is useful to invokeat this point a vivid dis
ussion, 
arried out re
ently, about the status ofdensity gradient as a �real� (thermodynami
) for
e performing work on theparti
les and the related issue of the lo
al irreversible entropy produ
tion,see e.g. [1�5℄, see however also [6�9℄.Let us re
all that the standard spatial Brownian motion involves�!v = ��!u , known as the di�usion 
urrent velo
ity and (up to a dimen-sional fa
tor) identi�ed with the �thermodynami
 for
e of di�usion� [5℄ whi
hdrives the irreversible pro
ess of matter ex
hange at the ma
ros
opi
 level.In terms of tra
er parti
les, this irreversible pro
ess o

urs even if they areso dilute that they never meet (nor intera
t with) ea
h other.On the other hand, even while the �thermodynami
 for
e� is a 
on
eptof purely statisti
al origin asso
iated with a 
olle
tion of parti
les, in 
on-trast to mi
ros
opi
 for
es whi
h have a dire
t impa
t on individual parti-
les themselves, it is well known [5�7℄ that this for
e manifests itself as aNewtonian-type entry in lo
al 
onservation laws des
ribing the momentumbalan
e: in fa
t that pertains to the average (lo
al averages) momentumtaken over by the �parti
le 
loud�, a statisti
al ensemble property quanti�edin terms of the probability distribution at hand. It is pre
isely the (negative)gradient of the above potential Q, Eq. (1), whi
h plays the Newtonian for
erole in the momentum balan
e equations, [6, 7℄.To elu
idate the role of the se
ond analyti
al expression of interest inour present 
onsiderations (Q was a
tually the �rst) let us observe that inone spa
e dimension, for probability densities vanishing at spatial in�nities,we have: �Z Q�dx = Z u22 �dx := 12D2 FX ; (2)where FX is the so-
alled Fisher information [10�12℄ of (en
oded in) theprobability density � whi
h quanti�es its �gradient 
ontent� (sharpness pluslo
alization/disorder properties) and reads:FX = Z (r�)2� dx : (3)An important property of the Fisher information (stemming from theCramer�Rao inequality in the statisti
al inferen
e theory, [10�14℄) is thatF�1X sets the lower bound for the varian
e of the random variable X(t) withvalues in R1, distributed a

ording to �(x; t):
X2�� hXi2 � F�1X : (4)On the other hand, in dire
t 
orresponden
e with our previous dis
ussionof Q(x; t), let us point out that the integrand in Eq. (3), up to a dimensional
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s, Entropy Produ
tion and Fisher Information 3557fa
tor, de�nes the so-
alled lo
al entropy produ
tion inside the system sus-taining an irreversible pro
ess of di�usion, [1, 3℄. A

ordingly, [3, 4℄dSdt = D Z (r�)2� dx = DFX � 0 (5)stands for an entropy produ
tion rate when the Fi
k law-indu
ed di�usion
urrent (standard Brownian motion 
ase) j = �Dr�, obeying �t�+rj = 0,enters the s
ene. Here S = � R � ln� dx plays the role of the (time-dependent)information entropy in the nonequilibrium statisti
al me
hani
s frameworkfor the thermodynami
s of irreversible pro
esses. It is rather 
lear that thehigh rate of the entropy in
rease 
orresponds to a rapid spreading (�atteningdown) of the probability density. That expli
itly depends on the �sharpness�of density gradients.The potential-type fun
tion Q(x; t), the Fisher information FX(t), non-equilibrium measure of the entropy produ
tion dS=dt and the informationentropy S(t) are thus mutually entangled quantities, ea
h being ex
lusivelydetermined in terms of the probability density �(x; t) and its spatial deriva-tives. 2. Hydrodynami
al (lo
al) momentum 
onservationlaws � the zooAs mentioned before, the fun
tion Q(x; t) notoriously appears in variouslo
al 
onservation laws responsible for the momentum balan
e in suitablephysi
al systems. Let us make a brief perusal of the respe
tive partial dif-ferential equations.In the standard statisti
al me
hani
s setting, the Euler equation does notrefer to any Q, Eq. (1), but deserves reprodu
tion for the obvious 
omparisonpurpose as a prototype momentum balan
e equation in the (lo
al) mean:(�t +�!v � �!r)�!v = �!Fm � �!rP� ; (6)where we generally assume �!F = ��!rV to represent the �normal� Newtonianfor
e.With regard to the manifest appearan
e of Q, we begin from an en-
ounter with �!rQ in an out-of-statisti
al me
hani
s example provided bythe hydrodynami
al formalism of quantum theory, [15℄:(�t +�!v � �!r)�!v = 1m�!F ��!rQq = 1m�!F + ~22m2�!r��1=2�1=2 ; (7)where Qq = � ~22m2 ��1=2�1=2 is the familiar de Broglie�Bohm quantum potential.
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zewskiAnother spe
ta
ular example pertains to the standard free Brownianmotion in the strong fri
tion (Smolu
howski di�usion) regime. Namely, wehave, [6℄: (�t +�!v � �!r)�!v = �2D2�!r��1=2�1=2 := ��!rQ ; (8)where �!v = �D�!r�� ; D is the di�usion 
onstant (set formally D := ~=2m andnoti
e the sign 
hange in 
omparison with the previous quantum me
hani
allaw).The large fri
tion (Smolu
howski again) limit of the driven phase-spa
erandom dynami
s implies, [7℄:(�t +�!v � �!r)�!v = �!r (
 �Q) ; (9)where �!v := �!v (�!x ; t) = �!Fm� � D�!r�� , the volume for
e (noti
e the positivesign) reads +�!r
 instead of the previous ��!rV . Here Q = 2D2 ��1=2�1=2 and(re
all the spe
tral analysis of Fokker�Plan
k operators, 
f. [7℄)
 = 12  �!Fm�!2 +D�!r � �!Fm�! : (10)For a 
lass of �perverse� di�usion pro
esses (respe
ting the so-
alled�Brownian re
oil prin
iple�, [7℄), we deal with Markovian di�usion pro
esseswith the inverted sign of �!r(
 � Q) in the lo
al momentum 
onservationlaw, so that the previous Eq. (9) takes the form:(�t +�!v � �!r)�!v = �!r (Q� 
) : (11)By introdu
ing  = �1=2 exp(iS) and �!v = 2D�!rS, we set a link with the�true� (noti
e an imaginary unit i) S
hrödinger-type dynami
s:i�t = �D� + 
2mD  :Useful observation: the total energy RR3(�!v 22 � Q + 
)�d3x = RR3(�!v 22 +�!u 22 + 
)�d3x of the system is a 
onserved �nite quantity. Here �!u (�!x ; t) :=D�!r ln�(�!x ; t). Noti
e that (D=2)dS=dt of Eq. (5), makes an expli
it 
on-tribution to an overall energy of the system.The 
onservation of the total energy tells that the entropy produ
tionand the kineti
 energy due to di�usion 
urrents stay in 
ompetition.



Random Dynami
s, Entropy Produ
tion and Fisher Information 3559For a spe
ial 
ase of the fri
tionless random phase-spa
e dynami
s, [9℄,we arrive at: h�t +�!v � �!ri�!v = �!Fm + 2d2(t)�!r "��1=2�1=2 # ; (12)where �!F denotes the external for
e a
ting on the parti
le, and d(t) is thetime-dependent di�usion parameter. This form of the law has been derivedby expli
itly solving the Fokker�Kramers equation with properly adjusted(Gaussian densities) initial data, for the following 
ases:1. free parti
le: F � 0, n = 1,2. 
harged parti
le in a 
onstant magneti
 �eld: �!F = e�!v ��!B , n = 2,3. harmoni
ally bound parti
le: F = �m!2x, n = 1.Presumably this form is universal (no general proof at the moment). The
oe�
ient d2(t) in all those 
ases 
an be represented as a produ
t of varian
es(n = 1) evaluated with respe
t to 
onditioned phase-spa
e wx(u; t) = f(x;u;t)�(x;t)and 
on�guration spa
e (marginal) � (x; t) = R f (x; u; t) du densities respe
-tively: d2 (t) := �
u2�x � hui2x��
x2�� hxi2� : (13)One may prove that d2(t) is bounded from below whi
h results in theHeisenberg-type inequality for varian
es: of U(t) with respe
t to the 
ondi-tioned phase-spa
e density wx(u; t), and X(t) with respe
t to the marginaldensity �(x; t). 3. Di�usion pro
esses and di�erentialequations � pedestrian reasoningLet us sket
h how the previous observations 
ome out within the tradi-tional setting of phase-spa
e sto
hasti
 pro
esses.3.1. Standard Brownian motionLet us 
onsider the 
ompetition between deterministi
/random drivingand fri
tion in the standard Brownian motion:d�!xdt = �!u ; (14)d�!udt = ���!u + �!Fm +�!A (t) ; (15)where hAi (s)i = 0 and 
Ai (s)Aj �sp�� = 2qÆ �s� sp� Æij ; �!F = ��!rV .
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zewskiFor the 
ase of the standard Brownian motion, we know a priori, in viewof the �u
tuation�dissipation theorem, that q = D�2 where D = kTm� , while� is given by the Stokes formula m� = 6��a.The resulting (Markov) phase-spa
e di�usion pro
ess is determined bysolutions of the Kramers equation: an initially given f(�!x 0;�!u 0; t0) is prop-agated a

ording to: �t +�!u � �!r�!x + �!Fm � �!r�!u! f = C(f) = �qr2�!u + ��!u � �!r�!u � f : (16)Here we adopt the kineti
 theory notation for a substitute of 
ollisionterm, where R C(f)d3u = 0, while 1� R �!u C(f)d3u = ���!v (�!x ; t).A

ordingly, the 
ontinuity equation holds true for the marginal (spatial)probability density � = R fd3u and �!v := 1� R �!u fd3u. That has a devastatinge�e
t on the form of the 
orresponding momentum 
onservation law in thelarge fri
tion regime.The asso
iated Smolu
howski pro
ess with a forward drift �!b (�!x ) = �!Fm�is analyzed in terms of the normalized Wiener pro
ess �!W (t): the in�nitesi-mal in
rement of the 
on�guration (position) random variable �!X (t) reads:d�!X (t) = �!Fm�dt+p2Dd�!W (t) �! �t� = D4���!r � (��!b ).In the hydrodynami
al pi
ture, we infer the 
losed system of two (spe
ial toMarkovian di�usions!) lo
al 
onservation laws in the form appropriate forthe Smolu
howski pro
ess, (remember about spe
i�
 fun
tional forms of 
and Q): �t�+�!r � (�!v �) = 0 ; (17)(�t +�!v � �!r)�!v = �!r (
 �Q) : (18)3.2. Free random dynami
s with no fri
tionNow, dxdt = u and dudt = A (t), hen
e:�f�t + u�f�x = C(f) = q�2f�u2 : (19)We know [9℄ the transition density:p (x; u; tj x0; u0; t0 = 0) = 12� p122qt2 exp"�(u� u0)24qt � 3 �x� x0 � u+u02 t�2qt3 #:(20)
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s, Entropy Produ
tion and Fisher Information 3561By 
hoosing an initial phase spa
e density:f0 (x; u) = � 12�a2� 12 exp �(x� xini)22a2 !� 12�b2� 12 exp �(u� uini)22b2 ! ;(21)so that f (x; u; t) = R p (x; u; tj x0; u0; t0 = 0) f0 (x0; u0) dx0du0 and passingto the hydrodynami
al pi
ture (unpleasant steps), we observe thatR C(f)du = 0 and R uC(f)du = 0 whi
h yields the following out
omes, [9℄:� (x; t) =  12� �a2 + b2t2 + 23qt3�! 12 exp � (x� xini � uinit)22 �a2 + b2t2 + 23qt3�! ; (22)� (u; t) = � 12� (b2 + 2qt)� 12 exp � (u� uini)22 (b2 + 2qt)! ; (23)huix = uini + b2t+ qt2a2 + b2t2 + 23qt3 [x� xini � uinit℄ := v ; (24)
u2�x � hui2x = q t3 �2 b2 + q t�+ 3 a2 �b2 + 2 q t�3 a2 + t2 (3 b2 + 2 q t) := Pkin� ; (25)This implies the lo
al momentum 
onservation law:� ��t + v � r� v = �rPkin� = +2 �d2�r"��1=2�1=2 # := +rQ (26)with d2(t) = a2b2 + 2a2qt+ 23b2qt3 + 13q2t4 := D2(t) : (27)Remember about: d2 (t) := �
u2�x � hui2x��
x2�� hxi2� and noti
e thatd2(t) � a2b2. 3.3. Noiseless limit, C(f) = 0 for all fUpon disregarding random for
ing (set q ! 0 in Eq. (19)), we arrive at:�f�t + u�f�x + Fm �f�u = 0 ; (28)where 
learly R C(f)du = 0 = R uC(f)du = R u2C(f)du.Things now look 
lassi
al and there is good reason for that, sin
e Eq. (28)is the familiar Liouville equation. However this �
lassi
al look� appearsslightly de
eiving.
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zewskiIndeed, the q ! 0 limit of the fri
tionless free dynami
s gives rise to:f (x; u; t) = 12�pa2b2 exp �(u� uini)22b2 � (x� xini � tu)22a2 ! (29)with marginals: � (u; t) = � 12�b2� 12 exp �(u� uini)22b2 ! (30)and � (x; t) = � 12� (a2 + b2t2)� 12 exp �(x� xini � uinit)22 (a2 + b2t2) ! : (31)The lo
al moments read:huix = uini + b2ta2 + b2t2 (x� xini � uinit) (32)and 
u2�x � hui2x = a2b2a2 + b2t2 (33)whi
h yields the (lo
al) momentum 
onservation law in the fairly non
lassi
alform: � ��t + huixr� huix = 2a2b2r"�� (x; t)1=2� (x; t)1=2 # := rQ : (34)By setting a b = ~2m we re
over the standard quantum me
hani
al �hydro-dynami
s�, Eq. (7), to be 
ompared with the Brownian variant of the law,Eq. (8). Noti
e that hx2i � hxi2 = a2 + b2t2 and:a2b2 = �
u2�x � hui2x��
x2�� hxi2� = ~24m2 (35)for all times. That is another expression for the standard quantum me
han-i
al Heisenberg indetermina
y relation, see e.g. [16�19℄.We re
all that Qq = � ~22m2 ��1=2�1=2 is the de Broglie�Bohm quantum po-tential. Is there anything spe
i�
 or mysterious in its origin and physi
almeaning?
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ellaneous 
ontexts: Hamilton�Ja
obi, Liouville,Kramers equations, 
al
ulus of variationsLet us re
all so-
alled wave equations of 
lassi
al me
hani
s:�t� = �r � ��rSm � (36)with �tS + (rS)22m + V = 0 : (37)Rename: Sm ! S, set v = rS, eventually take a gradient of the aboveHamilton�Ja
obi equation. Then, we have:�t� = �r � (v�) (38)and �tv + (v � r)v = �rV : (39)Clearly, in the above there is nothing alike the rQ 
ontribution, so 
har-a
teristi
 to our previous dynami
al examples, 
f. Eqs. (7)�(9), (11), (12),(18), (26). What is the primary reason of so 
onspi
uous absen
e of thatterm in Eq. (39)?To set a 
onne
tion with the Liouville equation we follow a standardassumption, [15℄: assign a unique momentum value at ea
h spa
e point and
onsider phase-spa
e densities as generalized fun
tionsf0(x; p) = �0(x)Æ(p�rS0(x)) �! f(x; p:t) = �(x; t)Æ(p�rS(x; t)) (40)whi
h (weakly) solve �f�t + u�f�x + Fm �f�u = 0 : (41)In view of the fa
t that the Liouville equation preserves in time thepre
ise knowledge of initial data, we have:f0(x; p) = Æ(x�x0)Æ(p�p0)! f(x; p; t) = Æ(x�x(t; x0; p0))Æ(p�p(t; x0; p0))(42)to be 
ompared with the density fun
tion, Eq. (29).As a side remark, let us noti
e that the Hamilton�Ja
obi equation 
an bederived via the least a
tion prin
iple by employing the Lagrangian densityL = � ��tS + 12(rS)2 + Vm� (43)with � and S 
onsidered as 
anoni
ally 
onjugate variables, [15℄.
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zewskiWhere has gone our rQ (and Q itself)?Let us 
ome ba
k to the previous q ! 0 free motion 
ase, Eqs. (21) and(29). For all times t � 0 both spatial and velo
ity parts of the phase-spa
edensity are well behaved fun
tions (not Dira
 deltas). Hen
e, and indis-pensable, 
ru
ial step has been there to admit from the beginning both thespatial and momentum (velo
ity) indetermina
y (spreading, unsharpness).At time t = 0, we assign to ea
h point x a �bun
h� of possible (to be pi
kedup at random from a given probability law) momenta � a Gaussian distri-bution of momenta at ea
h spatial point and in addition we adopt a de�niteprobability law for the position variable. As an immediate out
ome, we getEq. (34) i.e.: � ��t + v � r� v = rQ ; (44)where: +2a2b2 h��(x;t)1=2�(x;t)1=2 i := Q. This is the gradient form of:�tS + 12(rS)2 �Q = 0 (45)whi
h derives (via the standard variational 
al
ulus) from the Lagrangiandensity: L = � ��tS + 12(rS)2 + u22 � (46)to be 
ompared with the previous �pre
ise� (sharp) momentum variant inthe absen
e of 
onservative for
es:L = � ��tS + 12(rS)2� : (47)Now we need to 
ome ba
k to Eqs. (1)�(5), where entangled relationshipsamong Q, Fisher information and lo
al (information) entropy produ
tionwere established for the Brownian motion.In dire
t a�nity with Eq. (46), we 
an develop the Hamiltonian formal-ism (� and S are 
anoni
ally 
onjugate, D = ab), [20℄ whi
h employs:H = Z Hdx = Z dx � �12(rS)2 + u22 � = Z dx � �12(rS)2 + 2D2 FX� :(48)We 
an now devise 
onvin
ing arguments whi
h relate the emergen
eof FX and Q in the above with the a priori introdu
ed and simultaneouslyvalid spatial and momentum indetermina
y. To this end we shall dis
ussthe position and velo
ity unsharpness issue from the two, looking diverse,perspe
tives.
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s, Entropy Produ
tion and Fisher Information 3565Con
erning the spatial (position) indetermina
y, we need the existen
eof the FX term in Eq. (48). From the properties of the Fisher informa-tion, [10, 19℄, there follows that FX goes to in�nity when the spatial proba-bility density approa
hes the delta fun
tion (sharp lo
alization) limit. (Thesame happens when the probability density is dis
ontinuous or vanishes over
ertain interval.) Hen
e, the Hamiltonian (48) is properly de�ned only in
ase of the nonsingular, unsharp spatial lo
alization.With regard to the velo
ity (momentum) unsharpness, let us invoke 
las-si
 observations in the so-
alled quantum theory of motion (Bohm theory,Holland (1993)), where one argues as follows (noti
e a �subtle� di�eren
e if
ompared to our probabilisti
 arguments).Equations: �t� = �r(v�) where v = 1mrS and��t + 1mv � r� v = �r(V +Qq) ; (49)where Qq ' �Q imply that the distribution fun
tion:f(x; p; t) = �(x; t)Æ [p�rS(x; t)℄ (50)obeys the law of evolution:�tf + pm � rxf +rx(V +Qq) � rpf = 0 : (51)This equation redu
es to the 
lassi
al Liouville one only when Qq = 0,while the whole body of our previous dis
ussion has expli
itly referred to theLiouville equation as a primary building blo
k of the theory. Consequently,in this 
ontext, a possibility that p (respe
tively u) 
an be sharply de�nedat ea
h spatial point is de�nitely ex
luded, even if the spatial 
ontributionis a priori assumed to be unsharp.Comment: For 
omparison with the previous random motion dis
us-sion, one should realize that the 
ontinuity (and thus Fokker�Plan
k) equa-tion plus the Hamilton�Ja
obi type equation of the general form (we formallyuse V=m instead of more 
orre
t 
):�tS + 12(rS)2 � (
 �Q) = 0 (52)referring to the lo
al 
onservation law:� ��t + v � r� v = �r(
 �Q) (53)both derive via the 
al
ulus of variations from, [21, 22℄:L = Z Ldx = Z � ��tS + 12(rS)2 ��u22 + 
�� dx : (54)
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zewskiThe related Hamiltonian reads:H = Z Hdx = Z dx � �12(rS)2 ��u22 + 
�� : (55)All that refers ex
lusively to the general phase-spa
e equation:�f�t + u�f�x + Fm �f�u = C (f) (56)and not to any equation of the form (51).5. Supplement: variational arguments in the theoryof the Brownian motionIn 
onne
tion with formulas (1)�(5) it is instru
tive to re
all that in theLagrangian formulation of the theory of random motion [23℄ the maximumrate of the information entropy in
rease has been found to maximize theFisher information. After suitable notation adjustments, we realize thatin Ref. [23℄ it is exa
tly �FX that is minimized to yield the free spatialBrownian motion.In the very same 
ase, [24℄, the relationship (
f. Eq. (4) for 
omparison):hX2ihu(X; t)2i = D (57)was established for the heat kernel solution of �t� = D��, provided thereholds hXi = 0 = hu(X; t)i. For more general solutions of the heat equationfor whi
h the mean values of X(t) and u(X(t); t) do vanish, one arrives at ageneral indetermina
y relationship with an obvious a�nity to the previouslymentioned Cramer�Rao inequality:hX2ihu(X; t)2i = �D2 Z dx 1� � (r�)2�1=2 �Z dxx2 ��1=2 � D : (58)Quite in parallel, a bit more general 
ase was addressed in Ref. [18℄, wherea general (nonvanishing forward drift) one dimensional di�usion pro
ess with(time-dependent) di�usion 
oe�
ient D(t) was 
onsidered, under slightlyweaker restri
tions: hu(X; t)i = 0 while hXi 6= 0. The problem addressed,has been an issue of when the produ
t of varian
es [hX2i�hXi2℄ [hu(X; t)2i℄is minimized.The out
ome is that a minimum is rea
hed for a 
on
rete produ
t valueequal D2(t) and that a ne
essary and su�
ient 
ondition for the probabilitydensity �(x; t) to yield that minimum, is that it has a Gaussian form:�(x; t) = 1(2�)1=2[hX2i � hXi2℄1=2 exp �� (x� hXi)22[hX2i � hXi2℄� (59)
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s, Entropy Produ
tion and Fisher Information 3567in agreement with our previous dis
ussion. For non-Gaussian probabilitydensities, an inequality of the type (58) holds true.Indeed, it is a 
lassi
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