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RANDOM DYNAMICS, ENTROPY PRODUCTIONAND FISHER INFORMATION�Piotr GarbazewskiInstitute of Physis, University of Zielona Góra65-516 Zielona Góra, Poland(Reeived November 18, 2002)We analyze a spei� role of probability density gradients in the the-ory of irreversible transport proesses. The lassi Fisher information andinformation entropy prodution onepts are found to be intrinsially en-tangled with the very notion of the Markovian di�usion proess and thatof the related (loal) momentum onservation law.PACS numbers: 05.40.�a, 02.50.Ga1. Motivations and assoiationsThe main objetive of the present paper is to analyze the role � ori-gins, possible physial meaning and manifestations � of two analytial ex-pressions whih are omnipresent, diretly or indiretly, in any theoretialframework addressing an issue of transport driven by Markovian di�usionproesses. Both derive from the sole properties, and spei�ally the timeevolution, of the probability density assoiated with the analyzed stohastiproess (like e.g. the dynamis of traer partiles in a gas or �uid).Let us speify the ontext by onsidering spatial Markov di�usion pro-esses with a di�usion parameter (onstant or time-dependent) D and gen-erally spae�time inhomogeneous probability density �.One of the aforementioned expressions reads:Q = 2D2��1=2�1=2 = D2 �1���� 12 1�2 (�!r�)2� = 12�!u 2 +D�!r � �!u ; (1)where �!u = D�!r ln� is sometimes named an osmoti veloity �eld.� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3555)



3556 P. GarbazewskiDensity gradients are here expliitly involved and it is useful to invokeat this point a vivid disussion, arried out reently, about the status ofdensity gradient as a �real� (thermodynami) fore performing work on thepartiles and the related issue of the loal irreversible entropy prodution,see e.g. [1�5℄, see however also [6�9℄.Let us reall that the standard spatial Brownian motion involves�!v = ��!u , known as the di�usion urrent veloity and (up to a dimen-sional fator) identi�ed with the �thermodynami fore of di�usion� [5℄ whihdrives the irreversible proess of matter exhange at the marosopi level.In terms of traer partiles, this irreversible proess ours even if they areso dilute that they never meet (nor interat with) eah other.On the other hand, even while the �thermodynami fore� is a oneptof purely statistial origin assoiated with a olletion of partiles, in on-trast to mirosopi fores whih have a diret impat on individual parti-les themselves, it is well known [5�7℄ that this fore manifests itself as aNewtonian-type entry in loal onservation laws desribing the momentumbalane: in fat that pertains to the average (loal averages) momentumtaken over by the �partile loud�, a statistial ensemble property quanti�edin terms of the probability distribution at hand. It is preisely the (negative)gradient of the above potential Q, Eq. (1), whih plays the Newtonian forerole in the momentum balane equations, [6, 7℄.To eluidate the role of the seond analytial expression of interest inour present onsiderations (Q was atually the �rst) let us observe that inone spae dimension, for probability densities vanishing at spatial in�nities,we have: �Z Q�dx = Z u22 �dx := 12D2 FX ; (2)where FX is the so-alled Fisher information [10�12℄ of (enoded in) theprobability density � whih quanti�es its �gradient ontent� (sharpness plusloalization/disorder properties) and reads:FX = Z (r�)2� dx : (3)An important property of the Fisher information (stemming from theCramer�Rao inequality in the statistial inferene theory, [10�14℄) is thatF�1X sets the lower bound for the variane of the random variable X(t) withvalues in R1, distributed aording to �(x; t):
X2�� hXi2 � F�1X : (4)On the other hand, in diret orrespondene with our previous disussionof Q(x; t), let us point out that the integrand in Eq. (3), up to a dimensional



Random Dynamis, Entropy Prodution and Fisher Information 3557fator, de�nes the so-alled loal entropy prodution inside the system sus-taining an irreversible proess of di�usion, [1, 3℄. Aordingly, [3, 4℄dSdt = D Z (r�)2� dx = DFX � 0 (5)stands for an entropy prodution rate when the Fik law-indued di�usionurrent (standard Brownian motion ase) j = �Dr�, obeying �t�+rj = 0,enters the sene. Here S = � R � ln� dx plays the role of the (time-dependent)information entropy in the nonequilibrium statistial mehanis frameworkfor the thermodynamis of irreversible proesses. It is rather lear that thehigh rate of the entropy inrease orresponds to a rapid spreading (�atteningdown) of the probability density. That expliitly depends on the �sharpness�of density gradients.The potential-type funtion Q(x; t), the Fisher information FX(t), non-equilibrium measure of the entropy prodution dS=dt and the informationentropy S(t) are thus mutually entangled quantities, eah being exlusivelydetermined in terms of the probability density �(x; t) and its spatial deriva-tives. 2. Hydrodynamial (loal) momentum onservationlaws � the zooAs mentioned before, the funtion Q(x; t) notoriously appears in variousloal onservation laws responsible for the momentum balane in suitablephysial systems. Let us make a brief perusal of the respetive partial dif-ferential equations.In the standard statistial mehanis setting, the Euler equation does notrefer to any Q, Eq. (1), but deserves reprodution for the obvious omparisonpurpose as a prototype momentum balane equation in the (loal) mean:(�t +�!v � �!r)�!v = �!Fm � �!rP� ; (6)where we generally assume �!F = ��!rV to represent the �normal� Newtonianfore.With regard to the manifest appearane of Q, we begin from an en-ounter with �!rQ in an out-of-statistial mehanis example provided bythe hydrodynamial formalism of quantum theory, [15℄:(�t +�!v � �!r)�!v = 1m�!F ��!rQq = 1m�!F + ~22m2�!r��1=2�1=2 ; (7)where Qq = � ~22m2 ��1=2�1=2 is the familiar de Broglie�Bohm quantum potential.



3558 P. GarbazewskiAnother spetaular example pertains to the standard free Brownianmotion in the strong frition (Smoluhowski di�usion) regime. Namely, wehave, [6℄: (�t +�!v � �!r)�!v = �2D2�!r��1=2�1=2 := ��!rQ ; (8)where �!v = �D�!r�� ; D is the di�usion onstant (set formally D := ~=2m andnotie the sign hange in omparison with the previous quantum mehaniallaw).The large frition (Smoluhowski again) limit of the driven phase-spaerandom dynamis implies, [7℄:(�t +�!v � �!r)�!v = �!r (
 �Q) ; (9)where �!v := �!v (�!x ; t) = �!Fm� � D�!r�� , the volume fore (notie the positivesign) reads +�!r
 instead of the previous ��!rV . Here Q = 2D2 ��1=2�1=2 and(reall the spetral analysis of Fokker�Plank operators, f. [7℄)
 = 12  �!Fm�!2 +D�!r � �!Fm�! : (10)For a lass of �perverse� di�usion proesses (respeting the so-alled�Brownian reoil priniple�, [7℄), we deal with Markovian di�usion proesseswith the inverted sign of �!r(
 � Q) in the loal momentum onservationlaw, so that the previous Eq. (9) takes the form:(�t +�!v � �!r)�!v = �!r (Q� 
) : (11)By introduing  = �1=2 exp(iS) and �!v = 2D�!rS, we set a link with the�true� (notie an imaginary unit i) Shrödinger-type dynamis:i�t = �D� + 
2mD  :Useful observation: the total energy RR3(�!v 22 � Q + 
)�d3x = RR3(�!v 22 +�!u 22 + 
)�d3x of the system is a onserved �nite quantity. Here �!u (�!x ; t) :=D�!r ln�(�!x ; t). Notie that (D=2)dS=dt of Eq. (5), makes an expliit on-tribution to an overall energy of the system.The onservation of the total energy tells that the entropy produtionand the kineti energy due to di�usion urrents stay in ompetition.



Random Dynamis, Entropy Prodution and Fisher Information 3559For a speial ase of the fritionless random phase-spae dynamis, [9℄,we arrive at: h�t +�!v � �!ri�!v = �!Fm + 2d2(t)�!r "��1=2�1=2 # ; (12)where �!F denotes the external fore ating on the partile, and d(t) is thetime-dependent di�usion parameter. This form of the law has been derivedby expliitly solving the Fokker�Kramers equation with properly adjusted(Gaussian densities) initial data, for the following ases:1. free partile: F � 0, n = 1,2. harged partile in a onstant magneti �eld: �!F = e�!v ��!B , n = 2,3. harmonially bound partile: F = �m!2x, n = 1.Presumably this form is universal (no general proof at the moment). Theoe�ient d2(t) in all those ases an be represented as a produt of varianes(n = 1) evaluated with respet to onditioned phase-spae wx(u; t) = f(x;u;t)�(x;t)and on�guration spae (marginal) � (x; t) = R f (x; u; t) du densities respe-tively: d2 (t) := �
u2�x � hui2x��
x2�� hxi2� : (13)One may prove that d2(t) is bounded from below whih results in theHeisenberg-type inequality for varianes: of U(t) with respet to the ondi-tioned phase-spae density wx(u; t), and X(t) with respet to the marginaldensity �(x; t). 3. Di�usion proesses and di�erentialequations � pedestrian reasoningLet us sketh how the previous observations ome out within the tradi-tional setting of phase-spae stohasti proesses.3.1. Standard Brownian motionLet us onsider the ompetition between deterministi/random drivingand frition in the standard Brownian motion:d�!xdt = �!u ; (14)d�!udt = ���!u + �!Fm +�!A (t) ; (15)where hAi (s)i = 0 and 
Ai (s)Aj �sp�� = 2qÆ �s� sp� Æij ; �!F = ��!rV .



3560 P. GarbazewskiFor the ase of the standard Brownian motion, we know a priori, in viewof the �utuation�dissipation theorem, that q = D�2 where D = kTm� , while� is given by the Stokes formula m� = 6��a.The resulting (Markov) phase-spae di�usion proess is determined bysolutions of the Kramers equation: an initially given f(�!x 0;�!u 0; t0) is prop-agated aording to: �t +�!u � �!r�!x + �!Fm � �!r�!u! f = C(f) = �qr2�!u + ��!u � �!r�!u � f : (16)Here we adopt the kineti theory notation for a substitute of ollisionterm, where R C(f)d3u = 0, while 1� R �!u C(f)d3u = ���!v (�!x ; t).Aordingly, the ontinuity equation holds true for the marginal (spatial)probability density � = R fd3u and �!v := 1� R �!u fd3u. That has a devastatinge�et on the form of the orresponding momentum onservation law in thelarge frition regime.The assoiated Smoluhowski proess with a forward drift �!b (�!x ) = �!Fm�is analyzed in terms of the normalized Wiener proess �!W (t): the in�nitesi-mal inrement of the on�guration (position) random variable �!X (t) reads:d�!X (t) = �!Fm�dt+p2Dd�!W (t) �! �t� = D4���!r � (��!b ).In the hydrodynamial piture, we infer the losed system of two (speial toMarkovian di�usions!) loal onservation laws in the form appropriate forthe Smoluhowski proess, (remember about spei� funtional forms of 
and Q): �t�+�!r � (�!v �) = 0 ; (17)(�t +�!v � �!r)�!v = �!r (
 �Q) : (18)3.2. Free random dynamis with no fritionNow, dxdt = u and dudt = A (t), hene:�f�t + u�f�x = C(f) = q�2f�u2 : (19)We know [9℄ the transition density:p (x; u; tj x0; u0; t0 = 0) = 12� p122qt2 exp"�(u� u0)24qt � 3 �x� x0 � u+u02 t�2qt3 #:(20)



Random Dynamis, Entropy Prodution and Fisher Information 3561By hoosing an initial phase spae density:f0 (x; u) = � 12�a2� 12 exp �(x� xini)22a2 !� 12�b2� 12 exp �(u� uini)22b2 ! ;(21)so that f (x; u; t) = R p (x; u; tj x0; u0; t0 = 0) f0 (x0; u0) dx0du0 and passingto the hydrodynamial piture (unpleasant steps), we observe thatR C(f)du = 0 and R uC(f)du = 0 whih yields the following outomes, [9℄:� (x; t) =  12� �a2 + b2t2 + 23qt3�! 12 exp � (x� xini � uinit)22 �a2 + b2t2 + 23qt3�! ; (22)� (u; t) = � 12� (b2 + 2qt)� 12 exp � (u� uini)22 (b2 + 2qt)! ; (23)huix = uini + b2t+ qt2a2 + b2t2 + 23qt3 [x� xini � uinit℄ := v ; (24)
u2�x � hui2x = q t3 �2 b2 + q t�+ 3 a2 �b2 + 2 q t�3 a2 + t2 (3 b2 + 2 q t) := Pkin� ; (25)This implies the loal momentum onservation law:� ��t + v � r� v = �rPkin� = +2 �d2�r"��1=2�1=2 # := +rQ (26)with d2(t) = a2b2 + 2a2qt+ 23b2qt3 + 13q2t4 := D2(t) : (27)Remember about: d2 (t) := �
u2�x � hui2x��
x2�� hxi2� and notie thatd2(t) � a2b2. 3.3. Noiseless limit, C(f) = 0 for all fUpon disregarding random foring (set q ! 0 in Eq. (19)), we arrive at:�f�t + u�f�x + Fm �f�u = 0 ; (28)where learly R C(f)du = 0 = R uC(f)du = R u2C(f)du.Things now look lassial and there is good reason for that, sine Eq. (28)is the familiar Liouville equation. However this �lassial look� appearsslightly deeiving.



3562 P. GarbazewskiIndeed, the q ! 0 limit of the fritionless free dynamis gives rise to:f (x; u; t) = 12�pa2b2 exp �(u� uini)22b2 � (x� xini � tu)22a2 ! (29)with marginals: � (u; t) = � 12�b2� 12 exp �(u� uini)22b2 ! (30)and � (x; t) = � 12� (a2 + b2t2)� 12 exp �(x� xini � uinit)22 (a2 + b2t2) ! : (31)The loal moments read:huix = uini + b2ta2 + b2t2 (x� xini � uinit) (32)and 
u2�x � hui2x = a2b2a2 + b2t2 (33)whih yields the (loal) momentum onservation law in the fairly nonlassialform: � ��t + huixr� huix = 2a2b2r"�� (x; t)1=2� (x; t)1=2 # := rQ : (34)By setting a b = ~2m we reover the standard quantum mehanial �hydro-dynamis�, Eq. (7), to be ompared with the Brownian variant of the law,Eq. (8). Notie that hx2i � hxi2 = a2 + b2t2 and:a2b2 = �
u2�x � hui2x��
x2�� hxi2� = ~24m2 (35)for all times. That is another expression for the standard quantum mehan-ial Heisenberg indeterminay relation, see e.g. [16�19℄.We reall that Qq = � ~22m2 ��1=2�1=2 is the de Broglie�Bohm quantum po-tential. Is there anything spei� or mysterious in its origin and physialmeaning?



Random Dynamis, Entropy Prodution and Fisher Information 35634. Misellaneous ontexts: Hamilton�Jaobi, Liouville,Kramers equations, alulus of variationsLet us reall so-alled wave equations of lassial mehanis:�t� = �r � ��rSm � (36)with �tS + (rS)22m + V = 0 : (37)Rename: Sm ! S, set v = rS, eventually take a gradient of the aboveHamilton�Jaobi equation. Then, we have:�t� = �r � (v�) (38)and �tv + (v � r)v = �rV : (39)Clearly, in the above there is nothing alike the rQ ontribution, so har-ateristi to our previous dynamial examples, f. Eqs. (7)�(9), (11), (12),(18), (26). What is the primary reason of so onspiuous absene of thatterm in Eq. (39)?To set a onnetion with the Liouville equation we follow a standardassumption, [15℄: assign a unique momentum value at eah spae point andonsider phase-spae densities as generalized funtionsf0(x; p) = �0(x)Æ(p�rS0(x)) �! f(x; p:t) = �(x; t)Æ(p�rS(x; t)) (40)whih (weakly) solve �f�t + u�f�x + Fm �f�u = 0 : (41)In view of the fat that the Liouville equation preserves in time thepreise knowledge of initial data, we have:f0(x; p) = Æ(x�x0)Æ(p�p0)! f(x; p; t) = Æ(x�x(t; x0; p0))Æ(p�p(t; x0; p0))(42)to be ompared with the density funtion, Eq. (29).As a side remark, let us notie that the Hamilton�Jaobi equation an bederived via the least ation priniple by employing the Lagrangian densityL = � ��tS + 12(rS)2 + Vm� (43)with � and S onsidered as anonially onjugate variables, [15℄.



3564 P. GarbazewskiWhere has gone our rQ (and Q itself)?Let us ome bak to the previous q ! 0 free motion ase, Eqs. (21) and(29). For all times t � 0 both spatial and veloity parts of the phase-spaedensity are well behaved funtions (not Dira deltas). Hene, and indis-pensable, ruial step has been there to admit from the beginning both thespatial and momentum (veloity) indeterminay (spreading, unsharpness).At time t = 0, we assign to eah point x a �bunh� of possible (to be pikedup at random from a given probability law) momenta � a Gaussian distri-bution of momenta at eah spatial point and in addition we adopt a de�niteprobability law for the position variable. As an immediate outome, we getEq. (34) i.e.: � ��t + v � r� v = rQ ; (44)where: +2a2b2 h��(x;t)1=2�(x;t)1=2 i := Q. This is the gradient form of:�tS + 12(rS)2 �Q = 0 (45)whih derives (via the standard variational alulus) from the Lagrangiandensity: L = � ��tS + 12(rS)2 + u22 � (46)to be ompared with the previous �preise� (sharp) momentum variant inthe absene of onservative fores:L = � ��tS + 12(rS)2� : (47)Now we need to ome bak to Eqs. (1)�(5), where entangled relationshipsamong Q, Fisher information and loal (information) entropy produtionwere established for the Brownian motion.In diret a�nity with Eq. (46), we an develop the Hamiltonian formal-ism (� and S are anonially onjugate, D = ab), [20℄ whih employs:H = Z Hdx = Z dx � �12(rS)2 + u22 � = Z dx � �12(rS)2 + 2D2 FX� :(48)We an now devise onvining arguments whih relate the emergeneof FX and Q in the above with the a priori introdued and simultaneouslyvalid spatial and momentum indeterminay. To this end we shall disussthe position and veloity unsharpness issue from the two, looking diverse,perspetives.



Random Dynamis, Entropy Prodution and Fisher Information 3565Conerning the spatial (position) indeterminay, we need the existeneof the FX term in Eq. (48). From the properties of the Fisher informa-tion, [10, 19℄, there follows that FX goes to in�nity when the spatial proba-bility density approahes the delta funtion (sharp loalization) limit. (Thesame happens when the probability density is disontinuous or vanishes overertain interval.) Hene, the Hamiltonian (48) is properly de�ned only inase of the nonsingular, unsharp spatial loalization.With regard to the veloity (momentum) unsharpness, let us invoke las-si observations in the so-alled quantum theory of motion (Bohm theory,Holland (1993)), where one argues as follows (notie a �subtle� di�erene ifompared to our probabilisti arguments).Equations: �t� = �r(v�) where v = 1mrS and��t + 1mv � r� v = �r(V +Qq) ; (49)where Qq ' �Q imply that the distribution funtion:f(x; p; t) = �(x; t)Æ [p�rS(x; t)℄ (50)obeys the law of evolution:�tf + pm � rxf +rx(V +Qq) � rpf = 0 : (51)This equation redues to the lassial Liouville one only when Qq = 0,while the whole body of our previous disussion has expliitly referred to theLiouville equation as a primary building blok of the theory. Consequently,in this ontext, a possibility that p (respetively u) an be sharply de�nedat eah spatial point is de�nitely exluded, even if the spatial ontributionis a priori assumed to be unsharp.Comment: For omparison with the previous random motion disus-sion, one should realize that the ontinuity (and thus Fokker�Plank) equa-tion plus the Hamilton�Jaobi type equation of the general form (we formallyuse V=m instead of more orret 
):�tS + 12(rS)2 � (
 �Q) = 0 (52)referring to the loal onservation law:� ��t + v � r� v = �r(
 �Q) (53)both derive via the alulus of variations from, [21, 22℄:L = Z Ldx = Z � ��tS + 12(rS)2 ��u22 + 
�� dx : (54)



3566 P. GarbazewskiThe related Hamiltonian reads:H = Z Hdx = Z dx � �12(rS)2 ��u22 + 
�� : (55)All that refers exlusively to the general phase-spae equation:�f�t + u�f�x + Fm �f�u = C (f) (56)and not to any equation of the form (51).5. Supplement: variational arguments in the theoryof the Brownian motionIn onnetion with formulas (1)�(5) it is instrutive to reall that in theLagrangian formulation of the theory of random motion [23℄ the maximumrate of the information entropy inrease has been found to maximize theFisher information. After suitable notation adjustments, we realize thatin Ref. [23℄ it is exatly �FX that is minimized to yield the free spatialBrownian motion.In the very same ase, [24℄, the relationship (f. Eq. (4) for omparison):hX2ihu(X; t)2i = D (57)was established for the heat kernel solution of �t� = D��, provided thereholds hXi = 0 = hu(X; t)i. For more general solutions of the heat equationfor whih the mean values of X(t) and u(X(t); t) do vanish, one arrives at ageneral indeterminay relationship with an obvious a�nity to the previouslymentioned Cramer�Rao inequality:hX2ihu(X; t)2i = �D2 Z dx 1� � (r�)2�1=2 �Z dxx2 ��1=2 � D : (58)Quite in parallel, a bit more general ase was addressed in Ref. [18℄, wherea general (nonvanishing forward drift) one dimensional di�usion proess with(time-dependent) di�usion oe�ient D(t) was onsidered, under slightlyweaker restritions: hu(X; t)i = 0 while hXi 6= 0. The problem addressed,has been an issue of when the produt of varianes [hX2i�hXi2℄ [hu(X; t)2i℄is minimized.The outome is that a minimum is reahed for a onrete produt valueequal D2(t) and that a neessary and su�ient ondition for the probabilitydensity �(x; t) to yield that minimum, is that it has a Gaussian form:�(x; t) = 1(2�)1=2[hX2i � hXi2℄1=2 exp �� (x� hXi)22[hX2i � hXi2℄� (59)
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