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QUANTUM DYNAMICS WITH STRONG FRICTION:THE QUANTUM SMOLUCHOWSKI EQUATIONAND BEYOND�Joahim AnkerholdPhysikalishes Institut, Albert-Ludwigs-Universität Freiburg,Hermann-Herder-Straÿe 3, 79104 Freiburg, Germany(Reeived November 27, 2002)Reently, the strong frition limit for a quantum system oupled toa heat bath environment has been explored starting from the exat pathintegral formulation. Generalizing the lassial Smoluhowski limit to lowtemperatures a time evolution equation for the position distribution, thequantum Smoluhowski equation, has been derived. This important re-sult an even be extended to a quantum Fokker�Plank equation in fullphase spae. Here, we review these fundamental �ndings from a physialperspetive and apply them to the Kramers barrier esape problem at lowtemperatures and strong frition.PACS numbers: 03.65.Yz, 05.30.Ch, 73.23.�b, 82.20.�w1. IntrodutionIn the last deade or so the study of systems in strongly ondensed phasehas evolved into a fasinating, interdisiplinary �eld attrating physiists andhemists from both theory and experiment. One reason for that is their om-nipresene in nature, e.g. in tunnel diodes in mesosopi physis, in maro-moleules in biologial and soft matter systems, and in hemial reations.Another reason is the rih phenomenology assoiated with strong fritiondynamis omprising prominent e�ets suh as stohasti resonane [1℄, res-onant ativation [2℄, transport in rathets [3℄, and adiabati eletron trans-fer [4℄. Most of these studies, however, have foused on the lassial hightemperature domain and muh less is known about orresponding quantumproperties. While lassially the desription of Brownian motion is well-established and founded on Langevin or Fokker�Plank equations [5℄, the� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3569)



3570 J. Ankerholdsituation for quantum dissipative systems is more di�ult [6℄. In fat, ingeneral a simple time evolution equation for the redued density matrix isnot available, even though a formally exat expression in terms of path in-tegrals exists. Typially, quantum �utuations appear on a time sale ~�(� = 1=kBT ) so that at lower temperatures the quantum stohasti pro-ess beomes strongly non-Markovian and intimately depends on the initialorrelations between system and environment.In the weak frition range progress has been made by invoking the Born�Markov approximation. This way, e.g. for quantum optial systems [7℄, so-alled master equations have been derived. Does the opposite limit of strongfrition also allow for suh simpli�ations? This question has been exploredreently [8�11℄ and by generalizing the lassial Smoluhowski range to lowertemperatures it has been shown that the diagonal part of the density ma-trix, the probability distribution, obeys a quantum analogue of the lassialSmoluhowski equation. This result an even be extended to a quantumFokker�Plank equation in full phase spae. In this paper we review thesestudies fousing on the physis behind the mathematis. As an appliationlassial Kramers rate theory [12℄ is extended to the overdamped quantumrange.In Se. 2 the path integral approah for dissipative quantum systems isintrodued and spei�ed to the strong frition range. Then, in Se. 3 thequantum Smoluhowski equation and in Se. 4 its phase spae generalizationare disussed. The quantum Kramers theory is developed in Se. 5.2. Quantum dissipationThe desription of lassial Brownian motion in terms of generalizedLangevin equations or, equivalently, in terms of Fokker�Plank equationsfor phase spae distributions has a long tradition [5℄. In ontrast, the in-lusion of dissipation within quantum mehanis has evoked ontroversialdisussions and has been established only sine the mid 80ties. In the stan-dard formulation one starts with a system+heat bath formulation so thatthe dynamis of the density matrix starting at t = 0 from a general initialstate W (0) reads [6℄W (t) = exp��iHt~ � W (0) exp� iHt~ � ; (2.1)where the Hamiltonian H = HS + HR + HI ontains a system, a reservoir(heat bath), and a system-bath interation part, respetively. The ruialpoint is now, that dissipation is not a priori inherent in the system, butarises only if one looks on the e�etive impat of the bath degrees of free-dom within a redued piture �(t) = TrRfW (t)g. The Gaussian statistis



Quantum Dynamis with Strong Frition: the Quantum . . . 3571of the heat bath is modeled by a quasi-ontinuum of harmoni osillatorsbilinearly oupled with the relevant system degree of freedom. Although theinteration between eah bath degree of freedom and the system is supposedto be weak, the overall impat of the reservoir may ause also strong frition.The only non-perturbative way to deal with the elimination of the bathdegrees of freedom is to apply the path integral approah. In the ordinaryFeynman Vernon theory [6℄ the initial state is assumed to be a fatorizingstate W (0) = �S(0) exp(��HR) so that eah one, system and equilibratedbath, lives in splendid isolation at t = 0. While this assumption may bejusti�ed in the weak frition/high temperature range, it de�nitely fails formoderate to strong dissipation or lower temperature. Even the Langevinequation is not regained in the lassial limit, but di�ers by initial boundaryterms that may persist up to long times. A realisti initial state re�etingthe experimental situation is thus a orrelated one desribed by [13℄W (0) =Xi OiS e��H ~OiS ; (2.2)where the operators OiS; ~OiS at onto the system degree of freedom only andprepare a nonequilibrium state. In the sequel we fous on the ase wherethe preparation operators depend exlusively on position and refer to [13℄for the generalization. As an example think about a position measurementwith a Gaussian slit, in whih ase the preparation operators are Gaussianweighted projetion operators onto position. Then, representing the forwardand bakward time evolution operators in (2.1) and the statistial operator in(2.2) as path integrals in real and imaginary time, respetively, the harmonibath degrees of freedom an be integrated out exatly. For the positionrepresentation of the redued density matrix one ends up with�(qf ; q0f ; t) = Z dqi dq0i J(qf ; q0f ; t; qi; q0i) �(qi; q0i) : (2.3)Here, the propagating funtion J(�) is a threefold path integral over thesystem degree of freedom only. The two real time paths q(s) and q0(s)onnet in time t the initial points qi and q0i with the �xed end points qfand q0f , while the imaginary time path �q(�) runs from qi to q0i in the interval~�. The ontribution of eah path is weighted by exp(i�[q; q0; �q℄=~) with ane�etive ation �[q; q0; �q℄ not spei�ed here expliitly. Basially, it omprisesthe ations of the bare system in imaginary and real time, respetively, andadditional interation ontributions (in�uene funtional), non-loal in time,whih in the redued piture rule the in�uene of the reservoir onto thesystem. While the imaginary time paths desribe the initial state, the tworeal time paths govern the dynamis of the redued system. Aordingly,



3572 J. Ankerholdthe distribution of end-points of the former and starting points of the latterqi; q0i are weighted in (2.3) also by the preparation funtion �(�) being theposition representation of the preparation operators in (2.2). In the limitt! 0 one has J(qf ; q0f ; t; qi; q0i)! ��(qi; q0i) Æ(qf � qi) Æ(q0f � q0i) so that�(qf ; q0f ; 0) = ��(qi; q0i) �(qi; q0i) (2.4)with the redued equilibriumdensitymatrix ��(q; q0)= hqjTrR exp(��H)jq0i.In fat, this formulation reprodues in the lassial limit the generalizedLangevin equation.The nonequilibrium time evolution of a dissipative quantum system isgoverned by (2.3) together with (2.4). The good news is that this path in-tegral expression is exat, also in the system-bath oupling. The bad newsis that its evaluation for spei� situations is extremely ompliated andeven numerially (e.g. via Monte Carlo simulations) feasible only in ertainases. The reason for that is twofold: First the propagating funtion is om-plex and, therefore, highly osillatory whih renders numerial algorithmsunstable for su�iently long times. Seond and more severe, however, is thenon-loality, in time, of the in�uene funtional; the redued time evolutionin the time interval s 2 [t0; t℄ is a�eted by the history of the dynamis fors < t0 and partiularly by the initial orrelations between system and bath.As a diret onsequene, this means that in general a simple time evolutionequation _� = L � of the redued density with a time independent genera-tor L does not exist. It is well-known that progress an be made in theweak frition limit where a variety of so-alled master equations have beenderived. For example in quantum optial system this is often an aurateand powerful approah. For strong frition and low temperatures, however,these known master equations are not appliable.3. Strong frition limit and the quantum Smoluhowski equationThe e�etive impat of the bath desribed by the in�uene funtional isontrolled by the damping kernelK(�) = 1Z0 d!� I(!) osh h! �~�2 � i��isinh�!~�2 � ; (3.1)where � = s� i� , 0 � s � t, 0 � � � ~� and I(!) is the spetral density ofthe heat bath. For real times the imaginary part of K(s) = K 0(s) + iK 00(s)is related to the marosopi damping kernel(s) = 2M 1Z0 d!� I(!)! os(!s) ; (3.2)



Quantum Dynamis with Strong Frition: the Quantum . . . 3573via K 00(s) = (M=2)d(s)=ds, while K 0(s)!M(s)=~� in the lassial limit!~� ! 0 where M is the mass of the Brownian partile and ! the bathut-o� frequeny.Let us now onsider the strong frition range. For this purpose we de�nea typial damping strength � ̂(0) = lim!!0 I(!)M! (3.3)with ̂(!) the Laplae transform of (t). For instane, in the ohmi aseI(!)=M�! and for the more realisti Drude model I(!)=M�!!2=(!2+!2 )one �nds  = �. Given a typial frequeny !0 of the bare system, e.g. theground state frequeny, by strong damping we then mean!20 � ~�; 1! ; 1 : (3.4)In other words, we assume the time sale separation well-known from thelassial overdamped regime [5℄ and extend it to the quantum range byinorporating the time sale for quantum �utuations ~�. Correspond-ingly, we examine the dynamis Eq. (2.3) on the oarse grained time sales � ~�; 1! ; 1 and � � 1! ; 1 . The onsequenes are substantial: (i) thestrong frition suppresses non-diagonal elements of the redued density ma-trix during the time evolution. This simply re�ets the fat that a quantumsystem behaves more lassially, the stronger oherenes are destroyed bythe presene of a heat bath. (ii) The real-time part K(s) of the dampingkernel beomes loal on the oarse grained time sale so that a time evolu-tion equation of the form _�(t) = L �(t) with a time independent operatorL may exist. While these simpli�ations apply to a wide range of spetralbath densities, we onsider in the sequel the quasi-ohmi ase with a verylarge ut-o� frequeny ! � . The orresponding range in parameter spaeovered by (3.4) is shown in Fig. 1. It is well separated from the weak fri-
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Fig. 1. Smoluhowski range =!20�~�; 1= (shaded). The lassial range (~��1)is simple shaded, the quantum range (~��1) double shaded.



3574 J. Ankerholdtion region and omprises temperatures from the lassial (~� � 1) to thedeep quantum domain (~� � 1).Following the above simpli�ations the path integral formulation nowallows for a perturbative treatment in the strong damping limit. The idea isto evaluate the path integrals in the sense of a semilassial approximation byassuming self-onsistently that non-diagonal elements remain small duringthe time evolution (for details see [8℄). Hene the e�etive ation �[q; q0; �q℄is expanded up to seond order in the di�erene �q � �q0 oordinate of theimaginary time path and in the exursions q(s)� q0(s) of the real-time pathintegrals. Doing so we take su�iently smooth potentials for granted.This way it has been shown in [8℄ that the diagonal part of the densitymatrix P (q; t) = �(q; q; t) obeys the equation of motion�P (q; t)�t = 1M ��q �V 0e�(q) + ��q � 1� + �V 00(q)��P (q; t) ; (3.5)where V denotes the potential �eld, 0 abbreviates d=dq, and Ve� =V+�V 00=2.Here � = 2M� 1Xn=1 1�2n + �n̂(�n) ; (3.6)with the Matsubara frequenies �n = 2�n=~� measures typial quantum�utuations in position spae. In the partiular ase of a harmoni poten-tial this means hq2i � hq2il + � with the lassial variane hq2il. WithinaDrude model for the damping, � an be expressed in terms of 	 funtions.Then, for high temperatures ~� � 1 one �nds � � ~2�=12M . The fritiondependene appears as a genuine quantum e�et for lower temperatures andfor ~� � 1 one has � � (~=M�) log(~�=2�). Thus, the strong squeezingdue to frition leads to small quantum �utuations in position. E�etively,the quantum dynamis desribed by (3.5) follows a lassial Smoluhowskiequation within an e�etive fore �eld and with position dependent di�u-sion, and has thus been oined Quantum Smoluhowski Equation (QSE).In leading order it is idential to the lassial Smoluhowski equation, butpartiularly in the deep quantum range ~� � 1 the in�uene of quantum�utuations, i.e. the in�uene of � terms, on typial observables like e.g.rate onstants is signi�ant [9℄.4. Overdamped quantum dynamis in phase spaeIn the previous setion we have foused on the diagonal part of the re-dued density. One may wonder: What about non-diagonal elements? Toanswer this question we have reently extended the proedure of evaluatingpath integrals for strong frition from �(qf ; qf ; t) to the full density �(qf ; q0f ; t)



Quantum Dynamis with Strong Frition: the Quantum . . . 3575[10℄. In essene, sine deviations from diagonality x(s) = q(s) � q0(s)remain small during the time evolution, they run e�etively at eah in-stantaneous mean position r(s) = [q(s) + q0(s)℄=2 in a harmoni fore �eldV 00(r)x. Exploiting also the sluggish motion of r(s), this allows for an an-alytial solution whih eventually leads to a time evolution equation for�(qf ; q0f ; t). After swithing to lassial phase spae fxf ; rfg ! fp; qg, i.e.�(xf ; rf ; t)!W (p; q; t), one arrives at��t W (p; q; t) = � ��p �V 0e�(q) +  p�� pM ��q +  hp2i �2�p2+ �2�q�p � 1�+�V 00(q)�hp2iM �� W (p; q; t) : (4.1)Here, Ve� is given in (3.5) and in the strong frition range the equilibriumvariane in momentum readshp2i = M� + 2M� 1Xn=1 ̂(�n)�n + ̂(�n) : (4.2)The �rst line on the r.h.s of (4.1) oinides with a lassial Fokker�Plankoperator in an e�etive fore �eld [5℄, the seond line desribes quantummehanial oupled p�q di�usion. In the high temperature regime ~� � 1with hp2i �M=� the lassial Kramers equation is reovered. For low tem-peratures ~� � 1 it is (for Drude damping) hp2i � (M~=�) log(!=) sothat the strong frition indues, in ontrast to position spae, large quantum�utuations in momentum and the oupled p�q di�usion beomes important.What about the time sale separation between relaxation of momen-tum and relaxation of position whih is harateristi for the strong fritionrange? From the evaluation of the path integrals and also upon loser inspe-tion of the above Quantum Fokker�Plank equation (QFP) we observe thatW (p; q; t)! exp[�p2=(2hp2i)℄P (q; t) on the time sale 1= with orretionsdepending on ~�, !20=, and =!.Now, based on the QFP (4.1) or its redution to position spae in formof the QSE (3.5) [14℄, quantum Brownian motion an be studied in detail inthe overdamped limit (3.4) and for high and low temperatures as well.5. Quantum Kramers rate theory at strong fritionThe role of quantum �utuations in the overdamped range has alreadybeen eluidated for several phenomena elsewhere. In the remaining partof this paper we onsider thermally ativated deay over a high potentialbarrier, and with the QFP at hand, will give the extension of Kramerslassial phase spae theory [12℄ to the overdamped quantum domain.



3576 J. AnkerholdThe situation is the following: A high potential barrier (barrier heightVb muh larger than kBT ) separates two well regions. Initially partilesstay in loal thermal equilibrium, say, in the well left to barrier. In thefuture, partiles surmounting the barrier and reahing the right well areimmediately removed and re-injeted into the left well. Aordingly, aftera transient period of time a stationary �ux jst aross the barrier appearsorresponding to a time independent deay rate � = jst. If frition is su�-iently strong the hangeover from quasi-thermal equilibrium in the left wellto nonequilibrium in the right well is restrited to the viinity of the bar-rier top loated at qb. Hene, the stationary nonequilibrium state Wst(p; q)takes the form Wst(p; q) = W�(p; q) g(p; q) with a �form fator� g(p; q) obey-ing g(p; q)! 1 in the viinity to the left of qb and g(p; q) ! 0 in the viinityto the right of qb. This way, (assuming smooth potentials, of ourse) g(p; q)is alulated in the paraboli range around qb and Wst(p; q) is then mathedonto the thermal equilibrium in the left well. The unnormalized thermalequilibrium W�(p; q) for strong frition and anharmoni potentials has al-ready been derived in [10℄. Near the minimum of the left well at qw andnear the barrier top at qb, respetively, it takes the formW�(p; q) = 1nwell e�p2=2hp2i e��M
2(q�Q)2=(1+�M�
2) e���3
2=2 ; (5.1)where Q=qw and 
2=!2w near the harmoni well minimum with frequeny!w, and Q=qb and 
2=�!2b near the paraboli barrier top with frequeny!b. The distribution is normalized with respet to the well population nwell.Now, with (5.1) the QFP (4.1) reads for g(p; q)(���M!2b�DqpDqq� (q�qb)�p� �p� pM �1 + MDqphp2i � �q+hp2i�2p + Dqp�q�p) g(p; q) = 0 : (5.2)In the above, we have de�ned Dqq=�(1��M�!2b)=(M�!2b) and Dqp=1=���M!2b � hp2i=M . Further, �x denotes partial derivation with respetto x. The ruial point is that g(p; q) does atually not depend on p and qseparately, but is a funtion of the linear ombination u = q + a p=M witha proper onstant a. This is �xed by the ondition that after transforming tothe new oordinate u, (5.2) must beome an ordinary di�erential equationforu (funtions in front of derivatives must depend only onu). The result isa = � M!2b �M!2b + DqpDqq � = M2!2bDqqhp2i : (5.3)



Quantum Dynamis with Strong Frition: the Quantum . . . 3577What remains to do is straightforward. The ordinary di�erential equa-tion for g(u) an easily be solved. One obtains after re-expressing u asa funtion of q and p g(p; q) = 1p� 1Z�(p;q) dx e�x2 ; (5.4)with �(p; q) = 1p�2Dqq � (q � qb) +Dqq M!2bhp2i p� : (5.5)Let us brie�y disuss this interesting result in detail. Obviously, for largejq� qbj, q < qb the form fator approahes 1, while for large jq� qbj, q > qbit tends to 0, as expeted. Near the barrier top there is a boundary layer inphase spae around the line �(p; q) = 0 (f. Fig. 2).
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Fig. 2. Form fator g(p; q) of the stationary �ux state for �xed position q = qb(left) and �xed momentum p=0 (right) at temperature !b~�=1 and for aDrudemodel with =!b = 5; !=!b = 50. q is saled by p~=M!b and p by p~M!b.For ~��1 this line is given by p=(q�qb)M and beomes muh steeperfor low temperatures ~� � 1, where p = (q�qb)�2~M log(!=)=�. Thereason for that is the redution of �utuations in position near the barriertop (jDqqj dereases) ompared to the lassial ase, but the enhanementof �utuations in momentum. The width of the boundary layer p2jDqqjshrinks aordingly.



3578 J. AnkerholdTo obtain the deay rate the well population is alulated in the harmoniapproximation using (5.1)nwell = 2� �hp2i (1 + �M�!2w)M!2w� �1=2 : (5.6)Eventually, the stationary �ux jst = R dp pWst(p; qb)=M gives us the rateonstant � � jst = !b !w2�  e�� Vb e��M (!2b+!2w) : (5.7)Apparently, (5.7) is idential to the lassial overdamped Kramers result upto an exponential ontaining the ontributions of quantum �utuations. Thelatter one leads to an enhanement of the quantum rate ompared to thelassial one. The auray of the strong damping result (5.7) is shown inFig. 3 where the ratios of the exat asymptoti quantum rate in the limit�Vb � 1, [15℄ with the quantum and the lassial Smoluhowski rates, re-spetively, are depited. The overdamped quantum rate is aurate alreadyfor moderate damping strengths and the in�uene of quantum �utuationsbeomes quite important for lower temperatures.
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Fig. 3. Ratio of the exat rate (� ) with the lassial (dashed, �l) and the Smolu-howski (solid, �QSR) rate vs frition for jV 00(qb)j = V 00(0) = M!20.
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