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QUANTUM DYNAMICS WITH STRONG FRICTION:THE QUANTUM SMOLUCHOWSKI EQUATIONAND BEYOND�Joa
him AnkerholdPhysikalis
hes Institut, Albert-Ludwigs-Universität Freiburg,Hermann-Herder-Straÿe 3, 79104 Freiburg, Germany(Re
eived November 27, 2002)Re
ently, the strong fri
tion limit for a quantum system 
oupled toa heat bath environment has been explored starting from the exa
t pathintegral formulation. Generalizing the 
lassi
al Smolu
howski limit to lowtemperatures a time evolution equation for the position distribution, thequantum Smolu
howski equation, has been derived. This important re-sult 
an even be extended to a quantum Fokker�Plan
k equation in fullphase spa
e. Here, we review these fundamental �ndings from a physi
alperspe
tive and apply them to the Kramers barrier es
ape problem at lowtemperatures and strong fri
tion.PACS numbers: 03.65.Yz, 05.30.Ch, 73.23.�b, 82.20.�w1. Introdu
tionIn the last de
ade or so the study of systems in strongly 
ondensed phasehas evolved into a fas
inating, interdis
iplinary �eld attra
ting physi
ists and
hemists from both theory and experiment. One reason for that is their om-nipresen
e in nature, e.g. in tunnel diodes in mesos
opi
 physi
s, in ma
ro-mole
ules in biologi
al and soft matter systems, and in 
hemi
al rea
tions.Another reason is the ri
h phenomenology asso
iated with strong fri
tiondynami
s 
omprising prominent e�e
ts su
h as sto
hasti
 resonan
e [1℄, res-onant a
tivation [2℄, transport in rat
hets [3℄, and adiabati
 ele
tron trans-fer [4℄. Most of these studies, however, have fo
used on the 
lassi
al hightemperature domain and mu
h less is known about 
orresponding quantumproperties. While 
lassi
ally the des
ription of Brownian motion is well-established and founded on Langevin or Fokker�Plan
k equations [5℄, the� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.(3569)



3570 J. Ankerholdsituation for quantum dissipative systems is more di�
ult [6℄. In fa
t, ingeneral a simple time evolution equation for the redu
ed density matrix isnot available, even though a formally exa
t expression in terms of path in-tegrals exists. Typi
ally, quantum �u
tuations appear on a time s
ale ~�(� = 1=kBT ) so that at lower temperatures the quantum sto
hasti
 pro-
ess be
omes strongly non-Markovian and intimately depends on the initial
orrelations between system and environment.In the weak fri
tion range progress has been made by invoking the Born�Markov approximation. This way, e.g. for quantum opti
al systems [7℄, so-
alled master equations have been derived. Does the opposite limit of strongfri
tion also allow for su
h simpli�
ations? This question has been exploredre
ently [8�11℄ and by generalizing the 
lassi
al Smolu
howski range to lowertemperatures it has been shown that the diagonal part of the density ma-trix, the probability distribution, obeys a quantum analogue of the 
lassi
alSmolu
howski equation. This result 
an even be extended to a quantumFokker�Plan
k equation in full phase spa
e. In this paper we review thesestudies fo
using on the physi
s behind the mathemati
s. As an appli
ation
lassi
al Kramers rate theory [12℄ is extended to the overdamped quantumrange.In Se
. 2 the path integral approa
h for dissipative quantum systems isintrodu
ed and spe
i�ed to the strong fri
tion range. Then, in Se
. 3 thequantum Smolu
howski equation and in Se
. 4 its phase spa
e generalizationare dis
ussed. The quantum Kramers theory is developed in Se
. 5.2. Quantum dissipationThe des
ription of 
lassi
al Brownian motion in terms of generalizedLangevin equations or, equivalently, in terms of Fokker�Plan
k equationsfor phase spa
e distributions has a long tradition [5℄. In 
ontrast, the in-
lusion of dissipation within quantum me
hani
s has evoked 
ontroversialdis
ussions and has been established only sin
e the mid 80ties. In the stan-dard formulation one starts with a system+heat bath formulation so thatthe dynami
s of the density matrix starting at t = 0 from a general initialstate W (0) reads [6℄W (t) = exp��iHt~ � W (0) exp� iHt~ � ; (2.1)where the Hamiltonian H = HS + HR + HI 
ontains a system, a reservoir(heat bath), and a system-bath intera
tion part, respe
tively. The 
ru
ialpoint is now, that dissipation is not a priori inherent in the system, butarises only if one looks on the e�e
tive impa
t of the bath degrees of free-dom within a redu
ed pi
ture �(t) = TrRfW (t)g. The Gaussian statisti
s



Quantum Dynami
s with Strong Fri
tion: the Quantum . . . 3571of the heat bath is modeled by a quasi-
ontinuum of harmoni
 os
illatorsbilinearly 
oupled with the relevant system degree of freedom. Although theintera
tion between ea
h bath degree of freedom and the system is supposedto be weak, the overall impa
t of the reservoir may 
ause also strong fri
tion.The only non-perturbative way to deal with the elimination of the bathdegrees of freedom is to apply the path integral approa
h. In the ordinaryFeynman Vernon theory [6℄ the initial state is assumed to be a fa
torizingstate W (0) = �S(0) exp(��HR) so that ea
h one, system and equilibratedbath, lives in splendid isolation at t = 0. While this assumption may bejusti�ed in the weak fri
tion/high temperature range, it de�nitely fails formoderate to strong dissipation or lower temperature. Even the Langevinequation is not regained in the 
lassi
al limit, but di�ers by initial boundaryterms that may persist up to long times. A realisti
 initial state re�e
tingthe experimental situation is thus a 
orrelated one des
ribed by [13℄W (0) =Xi OiS e��H ~OiS ; (2.2)where the operators OiS; ~OiS a
t onto the system degree of freedom only andprepare a nonequilibrium state. In the sequel we fo
us on the 
ase wherethe preparation operators depend ex
lusively on position and refer to [13℄for the generalization. As an example think about a position measurementwith a Gaussian slit, in whi
h 
ase the preparation operators are Gaussianweighted proje
tion operators onto position. Then, representing the forwardand ba
kward time evolution operators in (2.1) and the statisti
al operator in(2.2) as path integrals in real and imaginary time, respe
tively, the harmoni
bath degrees of freedom 
an be integrated out exa
tly. For the positionrepresentation of the redu
ed density matrix one ends up with�(qf ; q0f ; t) = Z dqi dq0i J(qf ; q0f ; t; qi; q0i) �(qi; q0i) : (2.3)Here, the propagating fun
tion J(�) is a threefold path integral over thesystem degree of freedom only. The two real time paths q(s) and q0(s)
onne
t in time t the initial points qi and q0i with the �xed end points qfand q0f , while the imaginary time path �q(�) runs from qi to q0i in the interval~�. The 
ontribution of ea
h path is weighted by exp(i�[q; q0; �q℄=~) with ane�e
tive a
tion �[q; q0; �q℄ not spe
i�ed here expli
itly. Basi
ally, it 
omprisesthe a
tions of the bare system in imaginary and real time, respe
tively, andadditional intera
tion 
ontributions (in�uen
e fun
tional), non-lo
al in time,whi
h in the redu
ed pi
ture rule the in�uen
e of the reservoir onto thesystem. While the imaginary time paths des
ribe the initial state, the tworeal time paths govern the dynami
s of the redu
ed system. A

ordingly,



3572 J. Ankerholdthe distribution of end-points of the former and starting points of the latterqi; q0i are weighted in (2.3) also by the preparation fun
tion �(�) being theposition representation of the preparation operators in (2.2). In the limitt! 0 one has J(qf ; q0f ; t; qi; q0i)! ��(qi; q0i) Æ(qf � qi) Æ(q0f � q0i) so that�(qf ; q0f ; 0) = ��(qi; q0i) �(qi; q0i) (2.4)with the redu
ed equilibriumdensitymatrix ��(q; q0)= hqjTrR exp(��H)jq0i.In fa
t, this formulation reprodu
es in the 
lassi
al limit the generalizedLangevin equation.The nonequilibrium time evolution of a dissipative quantum system isgoverned by (2.3) together with (2.4). The good news is that this path in-tegral expression is exa
t, also in the system-bath 
oupling. The bad newsis that its evaluation for spe
i�
 situations is extremely 
ompli
ated andeven numeri
ally (e.g. via Monte Carlo simulations) feasible only in 
ertain
ases. The reason for that is twofold: First the propagating fun
tion is 
om-plex and, therefore, highly os
illatory whi
h renders numeri
al algorithmsunstable for su�
iently long times. Se
ond and more severe, however, is thenon-lo
ality, in time, of the in�uen
e fun
tional; the redu
ed time evolutionin the time interval s 2 [t0; t℄ is a�e
ted by the history of the dynami
s fors < t0 and parti
ularly by the initial 
orrelations between system and bath.As a dire
t 
onsequen
e, this means that in general a simple time evolutionequation _� = L � of the redu
ed density with a time independent genera-tor L does not exist. It is well-known that progress 
an be made in theweak fri
tion limit where a variety of so-
alled master equations have beenderived. For example in quantum opti
al system this is often an a

urateand powerful approa
h. For strong fri
tion and low temperatures, however,these known master equations are not appli
able.3. Strong fri
tion limit and the quantum Smolu
howski equationThe e�e
tive impa
t of the bath des
ribed by the in�uen
e fun
tional is
ontrolled by the damping kernelK(�) = 1Z0 d!� I(!) 
osh h! �~�2 � i��isinh�!~�2 � ; (3.1)where � = s� i� , 0 � s � t, 0 � � � ~� and I(!) is the spe
tral density ofthe heat bath. For real times the imaginary part of K(s) = K 0(s) + iK 00(s)is related to the ma
ros
opi
 damping kernel
(s) = 2M 1Z0 d!� I(!)! 
os(!s) ; (3.2)



Quantum Dynami
s with Strong Fri
tion: the Quantum . . . 3573via K 00(s) = (M=2)d
(s)=ds, while K 0(s)!M
(s)=~� in the 
lassi
al limit!
~� ! 0 where M is the mass of the Brownian parti
le and !
 the bath
ut-o� frequen
y.Let us now 
onsider the strong fri
tion range. For this purpose we de�nea typi
al damping strength
 � 
̂(0) = lim!!0 I(!)M! (3.3)with 
̂(!) the Lapla
e transform of 
(t). For instan
e, in the ohmi
 
aseI(!)=M�
! and for the more realisti
 Drude model I(!)=M�
!!2
=(!2+!2
 )one �nds 
 = �
. Given a typi
al frequen
y !0 of the bare system, e.g. theground state frequen
y, by strong damping we then mean
!20 � ~�; 1!
 ; 1
 : (3.4)In other words, we assume the time s
ale separation well-known from the
lassi
al overdamped regime [5℄ and extend it to the quantum range byin
orporating the time s
ale for quantum �u
tuations ~�. Correspond-ingly, we examine the dynami
s Eq. (2.3) on the 
oarse grained time s
ales � ~�; 1!
 ; 1
 and � � 1!
 ; 1
 . The 
onsequen
es are substantial: (i) thestrong fri
tion suppresses non-diagonal elements of the redu
ed density ma-trix during the time evolution. This simply re�e
ts the fa
t that a quantumsystem behaves more 
lassi
ally, the stronger 
oheren
es are destroyed bythe presen
e of a heat bath. (ii) The real-time part K(s) of the dampingkernel be
omes lo
al on the 
oarse grained time s
ale so that a time evolu-tion equation of the form _�(t) = L �(t) with a time independent operatorL may exist. While these simpli�
ations apply to a wide range of spe
tralbath densities, we 
onsider in the sequel the quasi-ohmi
 
ase with a verylarge 
ut-o� frequen
y !
 � 
. The 
orresponding range in parameter spa
e
overed by (3.4) is shown in Fig. 1. It is well separated from the weak fri
-
0 h

/ 0

1

1
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Fig. 1. Smolu
howski range 
=!20�~�; 1=
 (shaded). The 
lassi
al range (
~��1)is simple shaded, the quantum range (
~��1) double shaded.



3574 J. Ankerholdtion region and 
omprises temperatures from the 
lassi
al (
~� � 1) to thedeep quantum domain (
~� � 1).Following the above simpli�
ations the path integral formulation nowallows for a perturbative treatment in the strong damping limit. The idea isto evaluate the path integrals in the sense of a semi
lassi
al approximation byassuming self-
onsistently that non-diagonal elements remain small duringthe time evolution (for details see [8℄). Hen
e the e�e
tive a
tion �[q; q0; �q℄is expanded up to se
ond order in the di�eren
e �q � �q0 
oordinate of theimaginary time path and in the ex
ursions q(s)� q0(s) of the real-time pathintegrals. Doing so we take su�
iently smooth potentials for granted.This way it has been shown in [8℄ that the diagonal part of the densitymatrix P (q; t) = �(q; q; t) obeys the equation of motion�P (q; t)�t = 1
M ��q �V 0e�(q) + ��q � 1� + �V 00(q)��P (q; t) ; (3.5)where V denotes the potential �eld, 0 abbreviates d=dq, and Ve� =V+�V 00=2.Here � = 2M� 1Xn=1 1�2n + �n
̂(�n) ; (3.6)with the Matsubara frequen
ies �n = 2�n=~� measures typi
al quantum�u
tuations in position spa
e. In the parti
ular 
ase of a harmoni
 poten-tial this means hq2i � hq2i
l + � with the 
lassi
al varian
e hq2i
l. WithinaDrude model for the damping, � 
an be expressed in terms of 	 fun
tions.Then, for high temperatures 
~� � 1 one �nds � � ~2�=12M . The fri
tiondependen
e appears as a genuine quantum e�e
t for lower temperatures andfor 
~� � 1 one has � � (~=M
�) log(
~�=2�). Thus, the strong squeezingdue to fri
tion leads to small quantum �u
tuations in position. E�e
tively,the quantum dynami
s des
ribed by (3.5) follows a 
lassi
al Smolu
howskiequation within an e�e
tive for
e �eld and with position dependent di�u-sion, and has thus been 
oined Quantum Smolu
howski Equation (QSE).In leading order it is identi
al to the 
lassi
al Smolu
howski equation, butparti
ularly in the deep quantum range 
~� � 1 the in�uen
e of quantum�u
tuations, i.e. the in�uen
e of � terms, on typi
al observables like e.g.rate 
onstants is signi�
ant [9℄.4. Overdamped quantum dynami
s in phase spa
eIn the previous se
tion we have fo
used on the diagonal part of the re-du
ed density. One may wonder: What about non-diagonal elements? Toanswer this question we have re
ently extended the pro
edure of evaluatingpath integrals for strong fri
tion from �(qf ; qf ; t) to the full density �(qf ; q0f ; t)
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tion: the Quantum . . . 3575[10℄. In essen
e, sin
e deviations from diagonality x(s) = q(s) � q0(s)remain small during the time evolution, they run e�e
tively at ea
h in-stantaneous mean position r(s) = [q(s) + q0(s)℄=2 in a harmoni
 for
e �eldV 00(r)x. Exploiting also the sluggish motion of r(s), this allows for an an-alyti
al solution whi
h eventually leads to a time evolution equation for�(qf ; q0f ; t). After swit
hing to 
lassi
al phase spa
e fxf ; rfg ! fp; qg, i.e.�(xf ; rf ; t)!W (p; q; t), one arrives at��t W (p; q; t) = � ��p �V 0e�(q) + 
 p�� pM ��q + 
 hp2i �2�p2+ �2�q�p � 1�+�V 00(q)�hp2iM �� W (p; q; t) : (4.1)Here, Ve� is given in (3.5) and in the strong fri
tion range the equilibriumvarian
e in momentum readshp2i = M� + 2M� 1Xn=1 
̂(�n)�n + 
̂(�n) : (4.2)The �rst line on the r.h.s of (4.1) 
oin
ides with a 
lassi
al Fokker�Plan
koperator in an e�e
tive for
e �eld [5℄, the se
ond line des
ribes quantumme
hani
al 
oupled p�q di�usion. In the high temperature regime 
~� � 1with hp2i �M=� the 
lassi
al Kramers equation is re
overed. For low tem-peratures 
~� � 1 it is (for Drude damping) hp2i � (M~
=�) log(!
=
) sothat the strong fri
tion indu
es, in 
ontrast to position spa
e, large quantum�u
tuations in momentum and the 
oupled p�q di�usion be
omes important.What about the time s
ale separation between relaxation of momen-tum and relaxation of position whi
h is 
hara
teristi
 for the strong fri
tionrange? From the evaluation of the path integrals and also upon 
loser inspe
-tion of the above Quantum Fokker�Plan
k equation (QFP) we observe thatW (p; q; t)! exp[�p2=(2hp2i)℄P (q; t) on the time s
ale 1=
 with 
orre
tionsdepending on ~�, !20=
, and 
=!
.Now, based on the QFP (4.1) or its redu
tion to position spa
e in formof the QSE (3.5) [14℄, quantum Brownian motion 
an be studied in detail inthe overdamped limit (3.4) and for high and low temperatures as well.5. Quantum Kramers rate theory at strong fri
tionThe role of quantum �u
tuations in the overdamped range has alreadybeen elu
idated for several phenomena elsewhere. In the remaining partof this paper we 
onsider thermally a
tivated de
ay over a high potentialbarrier, and with the QFP at hand, will give the extension of Kramers
lassi
al phase spa
e theory [12℄ to the overdamped quantum domain.



3576 J. AnkerholdThe situation is the following: A high potential barrier (barrier heightVb mu
h larger than kBT ) separates two well regions. Initially parti
lesstay in lo
al thermal equilibrium, say, in the well left to barrier. In thefuture, parti
les surmounting the barrier and rea
hing the right well areimmediately removed and re-inje
ted into the left well. A

ordingly, aftera transient period of time a stationary �ux jst a
ross the barrier appears
orresponding to a time independent de
ay rate � = jst. If fri
tion is su�-
iently strong the 
hangeover from quasi-thermal equilibrium in the left wellto nonequilibrium in the right well is restri
ted to the vi
inity of the bar-rier top lo
ated at qb. Hen
e, the stationary nonequilibrium state Wst(p; q)takes the form Wst(p; q) = W�(p; q) g(p; q) with a �form fa
tor� g(p; q) obey-ing g(p; q)! 1 in the vi
inity to the left of qb and g(p; q) ! 0 in the vi
inityto the right of qb. This way, (assuming smooth potentials, of 
ourse) g(p; q)is 
al
ulated in the paraboli
 range around qb and Wst(p; q) is then mat
hedonto the thermal equilibrium in the left well. The unnormalized thermalequilibrium W�(p; q) for strong fri
tion and anharmoni
 potentials has al-ready been derived in [10℄. Near the minimum of the left well at qw andnear the barrier top at qb, respe
tively, it takes the formW�(p; q) = 1nwell e�p2=2hp2i e��M
2(q�Q)2=(1+�M�
2) e���3
2=2 ; (5.1)where Q=qw and 
2=!2w near the harmoni
 well minimum with frequen
y!w, and Q=qb and 
2=�!2b near the paraboli
 barrier top with frequen
y!b. The distribution is normalized with respe
t to the well population nwell.Now, with (5.1) the QFP (4.1) reads for g(p; q)(���M!2b�DqpDqq� (q�qb)�
p� �p� pM �1 + MDqphp2i � �q+
hp2i�2p + Dqp�q�p) g(p; q) = 0 : (5.2)In the above, we have de�ned Dqq=�(1��M�!2b)=(M�!2b) and Dqp=1=���M!2b � hp2i=M . Further, �x denotes partial derivation with respe
tto x. The 
ru
ial point is that g(p; q) does a
tually not depend on p and qseparately, but is a fun
tion of the linear 
ombination u = q + a p=M witha proper 
onstant a. This is �xed by the 
ondition that after transforming tothe new 
oordinate u, (5.2) must be
ome an ordinary di�erential equationforu (fun
tions in front of derivatives must depend only onu). The result isa = � M!2b
 �M!2b + DqpDqq � = M2!2bDqq
hp2i : (5.3)



Quantum Dynami
s with Strong Fri
tion: the Quantum . . . 3577What remains to do is straightforward. The ordinary di�erential equa-tion for g(u) 
an easily be solved. One obtains after re-expressing u asa fun
tion of q and p g(p; q) = 1p� 1Z�(p;q) dx e�x2 ; (5.4)with �(p; q) = 1p�2Dqq � (q � qb) +Dqq M!2b
hp2i p� : (5.5)Let us brie�y dis
uss this interesting result in detail. Obviously, for largejq� qbj, q < qb the form fa
tor approa
hes 1, while for large jq� qbj, q > qbit tends to 0, as expe
ted. Near the barrier top there is a boundary layer inphase spa
e around the line �(p; q) = 0 (
f. Fig. 2).
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Fig. 2. Form fa
tor g(p; q) of the stationary �ux state for �xed position q = qb(left) and �xed momentum p=0 (right) at temperature !b~�=1 and for aDrudemodel with 
=!b = 5; !
=!b = 50. q is s
aled by p~=M!b and p by p~M!b.For 
~��1 this line is given by p=(q�qb)M
 and be
omes mu
h steeperfor low temperatures 
~� � 1, where p = (q�qb)�
2~M log(!
=
)=�. Thereason for that is the redu
tion of �u
tuations in position near the barriertop (jDqqj de
reases) 
ompared to the 
lassi
al 
ase, but the enhan
ementof �u
tuations in momentum. The width of the boundary layer p2jDqqjshrinks a

ordingly.



3578 J. AnkerholdTo obtain the de
ay rate the well population is 
al
ulated in the harmoni
approximation using (5.1)nwell = 2� �hp2i (1 + �M�!2w)M!2w� �1=2 : (5.6)Eventually, the stationary �ux jst = R dp pWst(p; qb)=M gives us the rate
onstant � � jst = !b !w2� 
 e�� Vb e��M (!2b+!2w) : (5.7)Apparently, (5.7) is identi
al to the 
lassi
al overdamped Kramers result upto an exponential 
ontaining the 
ontributions of quantum �u
tuations. Thelatter one leads to an enhan
ement of the quantum rate 
ompared to the
lassi
al one. The a

ura
y of the strong damping result (5.7) is shown inFig. 3 where the ratios of the exa
t asymptoti
 quantum rate in the limit�Vb � 1, [15℄ with the quantum and the 
lassi
al Smolu
howski rates, re-spe
tively, are depi
ted. The overdamped quantum rate is a

urate alreadyfor moderate damping strengths and the in�uen
e of quantum �u
tuationsbe
omes quite important for lower temperatures.
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Fig. 3. Ratio of the exa
t rate (� ) with the 
lassi
al (dashed, �
l) and the Smolu-
howski (solid, �QSR) rate vs fri
tion for jV 00(qb)j = V 00(0) = M!20.
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s with Strong Fri
tion: the Quantum . . . 35796. Con
lusionsWe have analyzed the time evolution of strongly damped quantum sys-tems based on the exa
t path integral expression for the redu
ed densitymatrix in position spa
e. In addition to the 
hara
teristi
 time s
ale sep-aration known already from the 
lassi
al Smolu
howski limit, a separationof quantum �u
tuations o

urs at lower temperatures: Flu
tuations in posi-tion are suppressed so that an overdamped system behaves more 
lassi
allyin position spa
e, while for �u
tuations in momentum strong quantum ef-fe
ts prevail. This allows to derive a quantum Smolu
howski equation andits phase spa
e extension, a quantum Fokker�Plan
k equation, for high andlow temperatures as well. The door is now open to study the dynami
s ofoverdamped systems also in the quantum domain. While we here presentedthe quantum Kramers theory, there is a wide range of further appli
ationsin
luding soft matter systems, transport in ma
romole
ules, and adiabati
ele
tron transfer.Fruitful dis
ussions with P. Pe
hukas, H. Grabert and P. Hänggi aregratefully a
knowledged. I thank the organizers of the XV Marin Smolu-
howski Symposium for the warm hospitality in Zakopane where part ofthis work was presented. Finan
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