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Recently, the strong friction limit for a quantum system coupled to
aheat bath environment has been explored starting from the exact path
integral formulation. Generalizing the classical Smoluchowski limit to low
temperatures a time evolution equation for the position distribution, the
quantum Smoluchowski equation, has been derived. This important re-
sult can even be extended to a quantum Fokker—Planck equation in full
phase space. Here, we review these fundamental findings from a physical
perspective and apply them to the Kramers barrier escape problem at low
temperatures and strong friction.

PACS numbers: 03.65.Yz, 05.30.Ch, 73.23.-b, 82.20.-w

1. Introduction

In the last decade or so the study of systems in strongly condensed phase
has evolved into a fascinating, interdisciplinary field attracting physicists and
chemists from both theory and experiment. One reason for that is their om-
nipresence in nature, e.g. in tunnel diodes in mesoscopic physics, in macro-
molecules in biological and soft matter systems, and in chemical reactions.
Another reason is the rich phenomenology associated with strong friction
dynamics comprising prominent effects such as stochastic resonance [1], res-
onant activation [2], transport in ratchets [3], and adiabatic electron trans-
fer [4]. Most of these studies, however, have focused on the classical high
temperature domain and much less is known about corresponding quantum
properties. While classically the description of Brownian motion is well-
established and founded on Langevin or Fokker-Planck equations [5], the
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situation for quantum dissipative systems is more difficult [6]. In fact, in
general a simple time evolution equation for the reduced density matrix is
not available, even though a formally exact expression in terms of path in-
tegrals exists. Typically, quantum fluctuations appear on a time scale hf3
(8 = 1/kpT) so that at lower temperatures the quantum stochastic pro-
cess becomes strongly non-Markovian and intimately depends on the initial
correlations between system and environment.

In the weak friction range progress has been made by invoking the Born—
Markov approximation. This way, e.g. for quantum optical systems [7], so-
called master equations have been derived. Does the opposite limit of strong
friction also allow for such simplifications? This question has been explored
recently [8-11] and by generalizing the classical Smoluchowski range to lower
temperatures it has been shown that the diagonal part of the density ma-
trix, the probability distribution, obeys a quantum analogue of the classical
Smoluchowski equation. This result can even be extended to a quantum
Fokker—Planck equation in full phase space. In this paper we review these
studies focusing on the physics behind the mathematics. As an application
classical Kramers rate theory [12] is extended to the overdamped quantum
range.

In Sec. 2 the path integral approach for dissipative quantum systems is
introduced and specified to the strong friction range. Then, in Sec. 3 the
quantum Smoluchowski equation and in Sec. 4 its phase space generalization
are discussed. The quantum Kramers theory is developed in Sec. 5.

2. Quantum dissipation

The description of classical Brownian motion in terms of generalized
Langevin equations or, equivalently, in terms of Fokker—Planck equations
for phase space distributions has a long tradition [5]. In contrast, the in-
clusion of dissipation within quantum mechanics has evoked controversial
discussions and has been established only since the mid 80%¢. In the stan-
dard formulation one starts with a system-+heat bath formulation so that
the dynamics of the density matrix starting at ¢ = 0 from a general initial
state W (0) reads [6]

W(t) = exp (‘“ft) W(0) exp (ﬁ) , 2.1)

h

where the Hamiltonian H = Hg 4+ Hy + Hi contains a system, a reservoir
(heat bath), and a system-bath interaction part, respectively. The crucial
point is now, that dissipation is not a prior: inherent in the system, but
arises only if one looks on the effective impact of the bath degrees of free-
dom within a reduced picture p(t) = Trr{W (¢)}. The Gaussian statistics
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of the heat bath is modeled by a quasi-continuum of harmonic oscillators
bilinearly coupled with the relevant system degree of freedom. Although the
interaction between each bath degree of freedom and the system is supposed
to be weak, the overall impact of the reservoir may cause also strong friction.

The only non-perturbative way to deal with the elimination of the bath
degrees of freedom is to apply the path integral approach. In the ordinary
Feynman Vernon theory [6] the initial state is assumed to be a factorizing
state W (0) = ps(0) exp(—FHR) so that each one, system and equilibrated
bath, lives in splendid isolation at ¢ = 0. While this assumption may be
justified in the weak friction/high temperature range, it definitely fails for
moderate to strong dissipation or lower temperature. Even the Langevin
equation is not regained in the classical limit, but differs by initial boundary
terms that may persist up to long times. A realistic initial state reflecting
the experimental situation is thus a correlated one described by [13]

W(0)=>" 0ie PP OL, (2.2)

where the operators Oé, O~é act onto the system degree of freedom only and
prepare a nonequilibrium state. In the sequel we focus on the case where
the preparation operators depend exclusively on position and refer to [13]
for the generalization. As an example think about a position measurement
with a Gaussian slit, in which case the preparation operators are Gaussian
weighted projection operators onto position. Then, representing the forward
and backward time evolution operators in (2.1) and the statistical operator in
(2.2) as path integrals in real and imaginary time, respectively, the harmonic
bath degrees of freedom can be integrated out exactly. For the position
representation of the reduced density matrix one ends up with

plar g t) = / dai da! T (ass st 462 42) Mais ) (2.3)

Here, the propagating function J(-) is a threefold path integral over the
system degree of freedom only. The two real time paths ¢(s) and ¢'(s)
connect in time ¢ the initial points ¢; and ¢} with the fixed end points g
and ¢f, while the imaginary time path (o) runs from ¢; to ¢ in the interval
hB. The contribution of each path is weighted by exp(iX|q, ¢, q]/h) with an
effective action X[q, ¢, q] not specified here explicitly. Basically, it comprises
the actions of the bare system in imaginary and real time, respectively, and
additional interaction contributions (influence functional), non-local in time,
which in the reduced picture rule the influence of the reservoir onto the
system. While the imaginary time paths describe the initial state, the two
real time paths govern the dynamics of the reduced system. Accordingly,
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the distribution of end-points of the former and starting points of the latter
4, q, are weighted in (2.3) also by the preparation function A(-) being the
position representation of the preparation operators in (2.2). In the limit

t — 0 one has J(qr, g5, G q;) = pp(ai, q;) 0(gr — q;) 9(q; — ;) so that
p(gr, a5, 0) = pp(ai, 4;) Mai, q;) (2.4)

with the reduced equilibrium density matrix pg(q, ¢') = (q| Trr exp(—6H)|¢).
In fact, this formulation reproduces in the classical limit the generalized
Langevin equation.

The nonequilibrium time evolution of a dissipative quantum system is
governed by (2.3) together with (2.4). The good news is that this path in-
tegral expression is exact, also in the system-bath coupling. The bad news
is that its evaluation for specific situations is extremely complicated and
even numerically (e.g. via Monte Carlo simulations) feasible only in certain
cases. The reason for that is twofold: First the propagating function is com-
plex and, therefore, highly oscillatory which renders numerical algorithms
unstable for sufficiently long times. Second and more severe, however, is the
non-locality, in time, of the influence functional; the reduced time evolution
in the time interval s € [t',¢] is affected by the history of the dynamics for
s < t' and particularly by the initial correlations between system and bath.
As a direct consequence, this means that in general a simple time evolution
equation p = Lp of the reduced density with a time independent genera-
tor £ does not exist. It is well-known that progress can be made in the
weak friction limit where a variety of so-called master equations have been
derived. For example in quantum optical system this is often an accurate
and powerful approach. For strong friction and low temperatures, however,
these known master equations are not applicable.

3. Strong friction limit and the quantum Smoluchowski equation

The effective impact of the bath described by the influence functional is
controlled by the damping kernel

i cosh [w (ﬁ — 10)]
K6) = [ 1) SN

) sinh (432)
where 0 = s —i7,0 < s <t, 0 <7 <hf and I(w) is the spectral density of

the heat bath. For real times the imaginary part of K(s) = K'(s) +iK"(s)
is related to the macroscopic damping kernel

U

(3.1)

y@zﬁ/wummW% (3.2)
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Let us now consider the strong friction range. For this purpose we define
M#w and for the more realistic Drude model I(w)

a typical damping strength

In other words, we assume the time scale separation well-known from the
classical overdamped regime [5] and extend it to the quantum range by
incorporating the time scale for quantum fluctuations AfS. Correspond-
ingly, we examine the dynamics Eq. (2.3) on the coarse grained time scale
trix during the time evolution. This simply reflects the fact that a quantum
system behaves more classically, the stronger coherences are destroyed by
the presence of a heat bath. (ii) The real-time part K(s) of the damping

kernel becomes local on the coarse grained time scale so that a time evolu-

tion equation of the form p(t)
covered by (3.4) is shown in Fig. 1. It is well separated from the weak fric-

bath densities, we consider in the sequel the quasi-ohmic case with a very
large cut-off frequency we > 7. The corresponding range in parameter space

wehfB — 0 where M is the mass of the Brownian particle and w. the bath
L may exist. While these simplifications apply to a wide range of spectral

via K" (s) = (M/2)dvy(s)/ds, while K'(s) — M~(s)/hS in the classical limit
cut-off frequency.

ground state frequency, by strong damping we then mean

with 4(w) the Laplace transform of v(t).

I(w)
one finds v

5 > hp,
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Fig. 1. Smoluchowski range /w2 > hf3,1/~ (shaded). The classical range (yh3 < 1)

is simple shaded, the quantum range (yh3>>1) double shaded.
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tion region and comprises temperatures from the classical (yA8 < 1) to the
deep quantum domain (yAS > 1).

Following the above simplifications the path integral formulation now
allows for a perturbative treatment in the strong damping limit. The idea is
to evaluate the path integrals in the sense of a semiclassical approximation by
assuming self-consistently that non-diagonal elements remain small during
the time evolution (for details see [8]). Hence the effective action X[q, ¢, q]
is expanded up to second order in the difference ¢ — ¢’ coordinate of the
imaginary time path and in the excursions ¢(s) — ¢'(s) of the real-time path
integrals. Doing so we take sufficiently smooth potentials for granted.

This way it has been shown in [8] that the diagonal part of the density
matrix P(q,t) = p(q,q,t) obeys the equation of motion

where V denotes the potential field,  abbreviates d/dq, and Vg =V+AV" /2.
Here

71221 V% + vnY(vn) ’ (3.6)
with the Matsubara frequencies v, = 27n/hf measures typical quantum
fluctuations in position space. In the particular case of a harmonic poten-
tial this means (¢?) ~ (¢?)a + A with the classical variance (¢?);. Within
a Drude model for the damping, A can be expressed in terms of ¥ functions.
Then, for high temperatures yh3 < 1 one finds A ~ h23/12M. The friction
dependence appears as a genuine quantum effect for lower temperatures and
for yhp > 1 one has A = (h/M~m)log(yhB/2m). Thus, the strong squeezing
due to friction leads to small quantum fluctuations in position. Effectively,
the quantum dynamics described by (3.5) follows a classical Smoluchowski
equation within an effective force field and with position dependent diffu-
sion, and has thus been coined Quantum Smoluchowski Equation (QSE).
In leading order it is identical to the classical Smoluchowski equation, but
particularly in the deep quantum range vhf3 > 1 the influence of quantum
fluctuations, 4.e. the influence of A terms, on typical observables like e.g.
rate constants is significant [9].

4. Overdamped quantum dynamics in phase space

In the previous section we have focused on the diagonal part of the re-
duced density. One may wonder: What about non-diagonal elements? To
answer this question we have recently extended the procedure of evaluating
path integrals for strong friction from p(gr, gr, ) to the full density p(gr, ¢f,t)
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[10]. In essence, since deviations from diagonality z(s) = ¢(s) — ¢'(s)
remain small during the time evolution, they run effectively at each in-
stantaneous mean position 7(s) = [¢(s) + ¢'(s)]/2 in a harmonic force field
V" (r)z. Exploiting also the sluggish motion of 7(s), this allows for an an-
alytical solution which eventually leads to a time evolution equation for
p(gr, qf, t). After switching to classical phase space {zf,ri} — {p,q}, i.e.
p(ze,re,t) — Wi(p, q,t), one arrives at

2
%W(p’q’t) = {% [Ve(a) + ] _%%—i—’y(p?)g—pg
2 2
+628p [%—FAV//(Q)_%]} Wi(p,q,t). (4.1)

Here, Vg is given in (3.5) and in the strong friction range the equilibrium
variance in momentum reads

o M 2M N A
W=t St v+ A () (4.2)

The first line on the r.h.s of (4.1) coincides with a classical Fokker—Planck
operator in an effective force field [5], the second line describes quantum
mechanical coupled p—¢q diffusion. In the high temperature regime yhf < 1
with (p?) ~ M/ the classical Kramers equation is recovered. For low tem-
peratures v/ > 1 it is (for Drude damping) (p?) ~ (MFy/7) log(we/7) so
that the strong friction induces, in contrast to position space, large quantum
fluctuations in momentum and the coupled p—q diffusion becomes important.

What about the time scale separation between relaxation of momen-
tum and relaxation of position which is characteristic for the strong friction
range? From the evaluation of the path integrals and also upon closer inspec-
tion of the above Quantum Fokker-Planck equation (QFP) we observe that
W (p, q,t) — exp[—p?/(2(p?))] P(q,t) on the time scale 1/ with corrections
depending on Af, w2/v, and v/w.

Now, based on the QFP (4.1) or its reduction to position space in form
of the QSE (3.5) [14], quantum Brownian motion can be studied in detail in
the overdamped limit (3.4) and for high and low temperatures as well.

5. Quantum Kramers rate theory at strong friction

The role of quantum fluctuations in the overdamped range has already
been elucidated for several phenomena elsewhere. In the remaining part
of this paper we consider thermally activated decay over a high potential
barrier, and with the QFP at hand, will give the extension of Kramers
classical phase space theory [12]| to the overdamped quantum domain.



3576 J. ANKERHOLD

The situation is the following: A high potential barrier (barrier height
Vp, much larger than kgT) separates two well regions. Initially particles
stay in local thermal equilibrium, say, in the well left to barrier. In the
future, particles surmounting the barrier and reaching the right well are
immediately removed and re-injected into the left well. Accordingly, after
a transient period of time a stationary flux jg across the barrier appears
corresponding to a time independent decay rate I' = jg. If friction is suffi-
ciently strong the changeover from quasi-thermal equilibrium in the left well
to nonequilibrium in the right well is restricted to the vicinity of the bar-
rier top located at gp. Hence, the stationary nonequilibrium state Wy (p, q)
takes the form Wi (p, q¢) = Ws(p, q) 9(p, q) with a “form factor” g(p, q) obey-
ing g(p,q) — 1 in the vicinity to the left of ¢, and g(p,q) — 0 in the vicinity
to theright of ¢,. This way, (assuming smooth potentials, of course) g(p, q)
is calculated in the parabolic range around ¢, and W (p, ¢) is then matched
onto the thermal equilibrium in the left well. The unnormalized thermal
equilibrium Wjs(p, q) for strong friction and anharmonic potentials has al-
ready been derived in [10]. Near the minimum of the left well at ¢, and
near the barrier top at ¢y, respectively, it takes the form

Ws(p,q) = o P2 ~BMR(a-Q)[(1+AMBR) ~BASRR/2 (5 1)

Thwell

where Q= q, and 22 =w? near the harmonic well minimum with frequency
Wy, and Q=gp, and 2°= —w% near the parabolic barrier top with frequency
wp. The distribution is normalized with respect to the well population Ne.

Now, with (5.1) the QFP (4.1) reads for g(p, q)

([t 2o (1+228)

+’Y<p2>a§ + quaqap} g(p,q) = 0. (5.2)

In the above, we have defined Dyy=—(1 — AM fw?)/(MBw?) and D=
1/8—AMw? — (p*)/M. Further, 9, denotes partial derivation with respect
to x. The crucial point is that g(p,q) does actually not depend on p and ¢
separately, but is a function of the linear combination v = ¢ + ap/M with
aproper constant a. This is fixed by the condition that after transforming to
the new coordinate u, (5.2) must become an ordinary differential equation
for u (functions in front of derivatives must depend only onu). The resultis

Mw% _ MQw%qu
D - 2 )
vy (Mw% + D—ZZ) 7{p?)

(5.3)

a=—
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What remains to do is straightforward. The ordinary differential equa-
tion for g(u) can easily be solved. One obtains after re-expressing u as
afunction of ¢ and p

9(p.q) =

Si-

(o¢]
/ dre ™ (5.4)
P,

&(p,q)

with
1 - M}
£, 9) = ——=5— Do [(q ) + Dqq poly p]

Let us briefly discuss this interesting result in detail. Obviously, for large
lg — gbl, ¢ < gp the form factor approaches 1, while for large |q — qb|, ¢ > @b
it tends to 0, as expected. Near the barrier top there is a boundary layer in
phase space around the line £(p,q) = 0 (cf. Fig. 2).

(5.5)

1.0 | T T T 1.0 T T 7T T

— quantum — quantum
| - — classica - — classica

0.5

9(0,9)

0.0 L

0-Qbo p

Fig.2. Form factor g(p,q) of the stationary flux state for fixed position ¢ = gp
(left) and fixed momentum p=0 (right) at temperature wpi3 =1 and for aDrude

model with v/wp = 5,we/wp = 50. ¢ is scaled by \/h/Mwy, and p by v/AMwp.

For vhif3 < 1 this line is given by p=(¢—q,,) My and becomes much steeper
for low temperatures yA8 > 1, where p = (¢— qv) fY*AM log(w./v)/m. The
reason for that is the reduction of fluctuations in position near the barrier
top (|Dgq| decreases) compared to the classical case, but the enhancement
of fluctuations in momentum. The width of the boundary layer \/2|Dg,|
shrinks accordingly.
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To obtain the decay rate the well population is calculated in the harmonic
approximation using (5.1)

(p?) (1 + AMBw2)]"

M,

(5.6)

Nyell = 27

Eventually, the stationary flux js, = [ dpp Wi (p,qn)/M gives us the rate
constant

I'=jg= YbWw BV, BAM (WE+wl) (5.7)

21y

Apparently, (5.7) is identical to the classical overdamped Kramers result up
to an exponential containing the contributions of quantum fluctuations. The
latter one leads to an enhancement of the quantum rate compared to the
classical one. The accuracy of the strong damping result (5.7) is shown in
Fig. 3 where the ratios of the exact asymptotic quantum rate in the limit
BVp > 1, [15] with the quantum and the classical Smoluchowski rates, re-
spectively, are depicted. The overdamped quantum rate is accurate already
for moderate damping strengths and the influence of quantum fluctuations
becomes quite important for lower temperatures.

15 T T \‘|
i “ — I/ FQSR! woh[)’ZZ
V| e o, wehs=2
1.4 ‘\ e F/ FQSR! th/B:E)
No| === DIy, wehs=5

' Igsrg

Fig. 3. Ratio of the exact rate (I") with the classical (dashed, I;) and the Smolu-

In(~/wo)

chowski (solid, I'gsr) rate vs friction for |V"(gn)| = V" (0) = Mw3.
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6. Conclusions

We have analyzed the time evolution of strongly damped quantum sys-
tems based on the exact path integral expression for the reduced density
matrix in position space. In addition to the characteristic time scale sep-
aration known already from the classical Smoluchowski limit, a separation
of quantum fluctuations occurs at lower temperatures: Fluctuations in posi-
tion are suppressed so that an overdamped system behaves more classically
in position space, while for fluctuations in momentum strong quantum ef-
fects prevail. This allows to derive a quantum Smoluchowski equation and
its phase space extension, a quantum Fokker—Planck equation, for high and
low temperatures as well. The door is now open to study the dynamics of
overdamped systems also in the quantum domain. While we here presented
the quantum Kramers theory, there is a wide range of further applications
including soft matter systems, transport in macromolecules, and adiabatic
electron transfer.

Fruitful discussions with P. Pechukas, H. Grabert and P. Hinggi are
gratefully acknowledged. I thank the organizers of the XV Marin Smolu-
chowski Symposium for the warm hospitality in Zakopane where part of
this work was presented. Financial support was also provided by the DFG
through SFB276.

REFERENCES

[1] L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223
(1998).

[2] C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 251 (1990).
[3] P. Reimann, Phys. Rep. 361, 57 (2002).
[4] A. Garg, J.N. Onuchic, V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985).
[5] H. Risken, The Fokker Planck Equation, Springer, Berlin 1984.
[6] U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore 1999.
[7] F. Haake, R. Reibold, Phys. Rev. A32, 2462 (1985).
[8] J. Ankerhold, P. Pechukas, H. Grabert, Phys. Rev. Lett. 87, 086802 (2001).
[9] J. Ankerhold, Phys. Rev. E64, 060102(R) (2001).

[10] J. Ankerhold, Furo. Phys. Lett. in press, cond-mat/0211367.

[11] See also M. Thorwart, M. Grifoni, P. Hanggi, Phys. Rev. Lett. 85, 860 (2000);
D. Banerjee, B.C. Bag, S.K. Banik, D.S. Ray, cond-mat/0205508 v1.

[12] P. Hanggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
[13] H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988).

[14] Applying projection operator techniques the QSE can be derived directly from
the QFP.

[15] P.G. Wolynes, Phys. Rev. Lett. 47, 968 (1981).



