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COMPLEXITY CHARACTERIZATION OF DYNAMICALSYSTEMS THROUGH PREDICTABILITY�Fabio Ceoni, Massimo Falioni and Angelo VulpianiDipartimento di Fisia Università di Roma �La Sapienza�INFM, Unità di Roma1 and SMC Center,P.le Aldo Moro 2, 00185 Roma, Italy(Reeived November 27, 2002)Some aspets of the preditability problem in dynamial systems arereviewed. The deep relation among Lyapunov exponents, Kolmogorov�Sinai entropy, Shannon entropy and algorithmi omplexity is disussed.In partiular, we emphasize how a haraterization of the unpreditabilityof a system gives a measure of its omplexity. A speial attention is devotedto �nite-resolution e�ets on preditability, whih an be aounted withsuitable generalization of the standard indiators. The problems involvedin systems with intrinsi randomness is disussed, with emphasis on theimportant problems of distinguishing haos from noise and of modeling thesystem.PACS numbers: 45.05.+x, 05.45.�aAll the simple systems are simple in the same way, eah omplexsystem has its own omplexity (freely inspired by Anna Kareninaby Lev N. Tolstoy) 1. IntrodutionThe possibility to predit future states of a system stands at the founda-tions of sienti� knowledge with an obvious relevane both from a onep-tual and appliative point of view. The perfet knowledge of the evolutionlaw of a system may indue the onlusion that this aim ould be attained.This lassial deterministi point of view was laimed by Laplae [1℄: onethe evolution laws of the system are known, the state at a ertain time t0ompletely determines the subsequent states for every time t > t0. Howeverit is well established now that in some systems, full preditability annot� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3581)



3582 F. Ceoni, M. Falioni, A. Vulpianibe aomplished in pratie beause of the unavoidable unertainty in theinitial onditions. Indeed, as already stated by Poinaré, long-time predi-tions are reliable only when the evolution law does not amplify the initialunertainty too rapidly. Therefore, from the point of view of preditability,we need to know how an error on the initial state of the system grows intime. In systems with great sensitive dependene on initial onditions (de-terministi haoti systems) errors grows exponentially fast in time, limitingthe ability to predit the future states.A branh of the theory of dynamial systems has been developed withthe aim of formalizing and haraterizing the sensitivity to initial onditions.The Lyapunov exponent and the Kolmogorov�Sinai entropy are the two mainindiators for measuring the rate of error growth and information produtionduring a deterministi system evolution. A omplementary approah hasbeen developed in the ontext of information theory, data ompression andalgorithmi omplexity theory and it is rather lear that the latter pointof view is losely related to the dynamial systems one. If a system ishaoti, then its preditability is limited up to a time whih is related to the�rst Lyapunov exponent, and the time sequene by whih we enode one ofits haoti trajetories annot be ompressed by an arbitrary fator, i.e. isalgorithmially omplex. On the ontrary, the oding of a regular trajetoryan be easily ompressed (e.g., for a periodi trajetory it is su�ient tohave the sequene for a period) so it is �simple�.In this paper we will disuss how unpreditability and algorithmi om-plexity are losely related and how information and haos theory ompleteeah other in giving a general understanding of omplexity in dynamialproesses. In partiular, we shall onsider the extension of this approah,nowadays well established in the ontext of low dimensional systems and forasymptoti regimes, to high dimensional systems with attention to situationsfar from asymptoti (i.e. �nite time and �nite observational resolution) [2℄.2. Two points of view2.1. Dynamial systems approah: Charateristi Lyapunov exponentsThe harateristi Lyapunov exponents are somehow an extension of thelinear stability analysis to the ase of aperiodi motions. Roughly speaking,they measure the typial rate of exponential divergene of nearby trajetoriesand, thus, ontain information on the growing rate of a very small error onthe initial state of a system.Consider a dynamial system with an evolution law given, e.g., by thedi�erential equation dxdt = F (x) ; (2.1)



Complexity Charaterization of Dynamial Systems Through Preditability 3583we assume that F is smooth enough that the evolution is well-de�nedfor time intervals of arbitrary extension, and that the motion ours in abounded region of the phase spae. We intend to study the separationbetween two trajetories, x(t) and x0(t), starting from two lose initial on-ditions, x(0) and x0(0) = x(0) + Æx(0), respetively.As long as the di�erene between the trajetories, Æx(t) = x0(t)� x(t),remains small (in�nitesimal, stritly speaking), it an be regarded as a ve-tor, z(t), in the tangent spae. The time evolution of z(t) is given by thelinearized di�erential equations:dzi(t)dt = dXj=1 �Fi�xj ����x(t) zj(t) : (2.2)Under rather general hypothesis, Oselede [3℄ proved that for almost allinitial onditions x(0), there exists an orthonormal basis feig in the tangentspae suh that, for large times,z(t) = dXi=1 ieie�i t ; (2.3)where the oe�ients fig depend on z(0). The exponents �1 � �2 � � � � ��d are alled harateristi Lyapunov exponents (LEs). If the dynamialsystem has an ergodi invariant measure, the spetrum of LEs f�ig does notdepend on the initial ondition, exept for a set of measure zero with respetto the natural invariant measure.Equation (2.3) desribes how a d-dimensional spherial region of thephase spae, with radius � entered in x(0), deforms, with time, into anellipsoid of semi-axes �i(t) = � exp(�it), direted along the ei vetors. Fur-thermore, for a generi small perturbation Æx(0), the distane between thereferene and the perturbed trajetory behaves asjÆx(t)j � jÆx(0)j e�1 t [1 +O (exp�(�1 � �2)t)℄ :If �1 > 0 we have a rapid (exponential) ampli�ation of an error on the initialondition. In suh a ase, the system is haoti and, de fato, unpreditableon the long times. Indeed, if the initial error amounts to Æ0 = jÆx(0)j, andwe purpose to predit the states of the system with a ertain tolerane �(not too large), then the predition is reliable just up to a preditability timegiven by Tp � 1�1 ln��Æ0� : (2.4)



3584 F. Ceoni, M. Falioni, A. VulpianiThis equation shows that Tp is basially determined by the largest Lyapunovexponent, sine its dependene on Æ0 and � is logarithmially weak. Beauseof its preeminent role, �1 is often referred as �the Lyapunov exponent�, anddenoted by �. 2.2. Information based approahIn experimental investigations of physial proesses, the aess to a sys-tem ours only through a measuring devie whih produes a time reord ofa ertain observable, i.e. a sequene of data. In this regard a system, whetheror not haoti, generates messages and may be regarded as a soure of infor-mation whose properties an be analyzed through the tools of informationtheory.The haraterization of the information ontained in a sequene an beapproahed in two very di�erent frameworks. The �rst onsiders a spei�message (sequene) as belonging to the ensemble of all the messages thatan be emitted by a soure, and de�nes an average information ontent bymeans of the average ompressibility properties of the ensemble [4℄. Theseond onsiders the problem of haraterizing the universal ompressibility(i.e. ensemble independent) of a spei� sequene and onerns the theoryof algorithmi omplexity and algorithmi information theory [5,6℄. For thesake of self-onsisteny we brie�y reall the onepts and ideas about theShannon entropy [4℄, that is the basis of whole information theory.2.2.1. Shannon entropyConsider a soure that an output m di�erent symbols; denote with stthe symbol emitted by the soure at time t and with P (CN ) the probabilitythat a given word CN = (s1; s2; : : : ; sN ), of length N , is emitted P (CN ) =P (s1; s2; : : : ; sN ). We assume that the soure is stationary, so that, forthe sequenes fstg, the time translation invariane holds: P (s1; : : : ; sN ) =P (st+1; : : : ; st+N ). We introdue the N -blok entropiesHN = � XfCN gP (CN ) lnP (CN ) ; (2.5)for stationary soures the limitlimN!1 HNN = hSh (2.6)exists and de�nes the Shannon entropy hSh whih quanti�es the rihness(or �omplexity�) of the soure emitting the sequene. This an be preiselyexpressed by the �rst theorem of Shannon�MMillan [7℄ that applies to sta-tionary ergodi soures: The ensemble of N -long subsequenes, when N is



Complexity Charaterization of Dynamial Systems Through Preditability 3585large enough, an be partitioned in two lasses, 
1(N) and 
0(N) suh thatall the words CN 2 
1(N) have the same probability P (CN ) � exp(�NhSh)andXCN2
1(N)P (CN )! 1 ; while XCN2
0(N)P (CN )! 0 ; for N !1 :(2.7)The meaning of this theorem is the following. An m-states proess admits,in priniple, mN possible sequenes of length N . However the number oftypial sequenes, Ne�(N), e�etively observable (i.e. those belonging to
1(N)) is Ne�(N) � exp(NhSh) : (2.8)Note that Ne� � mN if hSh < lnm. The entropy per symbol, hSh, isa property of the soure. However, beause of the ergodiity hSh an beobtained by analyzing just one single sequene in the ensemble of the typialones, and it an also be viewed as a property of eah typial sequene.In information theory, expression (2.8) is somehow the equivalent of theBoltzmann equation in statistial thermodynamis: S / lnW , being W thenumber of possible mirosopi on�gurations and S the thermodynamientropy, this justi�es the name �entropy� for hSh.The relevane of the Shannon entropy in information theory is givenby the fat that hSh sets the maximum ompression rate of a sequenefs1; s2; s3; : : :g. Indeed a theorem of Shannon states that, if the length Tof a sequene is large enough, there exists no other sequene (always usingm symbols), from whih it is possible to reonstrut the original one, whoselength is smaller than (hSh= lnm)T [4℄. In other words, hSh= lnm representsthe maximum allowed ompression rate. The relation between Shannon en-tropy and data ompression problems is well illustrated by onsidering theoptimal oding (Shannon�Fano) to map N objets (e.g. the N -words CN )into sequenes of binary digits (0; 1) [8℄. Denoting with `N the binary lengthof the sequene speifying CN , we havelimN!1 h`N iN = hShln 2 ; (2.9)i.e., in a good oding, the mean length of a N -word is equal to N times theShannon entropy, apart from a multipliative fator, sine in the de�nition(2.6) of hSh we used the natural logarithm and here we want to work witha two symbol ode.2.2.2. The Kolmogorov�Sinai entropyAfter the introdution of the Shannon entropy we an easily de�ne theKolmogorov�Sinai entropy whih is the analogous measure of omplexity



3586 F. Ceoni, M. Falioni, A. Vulpianiapplied to dynamial systems. Consider a trajetory, x(t), generated by adeterministi system, sampled at the times tj = j � , with j = 1; 2; 3; : : :.Perform a �nite partition A of the phase spae with the �nite number ofsymbols fsgA enumerating the ells of the partition. The time-disretizedtrajetory x(tj) determines a sequene fs(1); s(2); s(3); : : :g, whose meaningis lear: at the time tj the trajetory is in the ell labeled by s(j). Toeah subsequene of length N � � one an assoiate a word of length N :WNj (A) = (s(j); s(j + 1); : : : ; s(j + (N � 1))). If the system is ergodi, aswe suppose, from the frequenies of the words one obtains the probabilitiesby whih the blok entropies HN (A) are alulated:HN (A) = � XfWN (A)gP (WN (A)) lnP (WN (A)): (2.10)The probabilities P (WN (A)), omputed by the frequenies ofWN (A) alonga trajetory, are essentially dependent on the stationary measure seleted bythe trajetory. The entropy per unit time of the trajetory with respet tothe partition A, h(A), is de�ned as follows:hN (A) = 1� limN!1 1NHN (A) : (2.11)Notie that, for the deterministi systems we are onsidering, the entropy perunit time does not depend on the sampling time � [9℄. The KS-entropy (hKS),by de�nition, is the supremum of h(A) over all possible �nite partitions [9,10℄hKS = supA h(A) : (2.12)The extremal harater of hKS makes every omputation based on the de�-nition (2.12), impossible in the majority of pratial ases. In this respet,a useful tool would be the Kolmogorov�Sinai theorem, through whih one isgranted that hKS = h(G) if G is a generating partition. A partition is said tobe generating if every in�nite sequene fsngn=1;:::;1 orresponds to a singleinitial point. However the di�ulty now is that, with the exeption of verysimple ases, we do not know how to onstrut a generating partition. Weonly know that, aording to the Krieger theorem [11℄, there exists a gen-erating partition with k elements suh that ehKS < k � ehKS + 1. Then, amore tratable way to de�ne hKS is based upon onsidering the partition A�made up by a grid of ubi ells of edge �, from whih one hashKS = lim�!0h(A�) : (2.13)We expet that h(A�) beomes independent of � when A� is so �ne to be�ontained� in a generating partition.



Complexity Charaterization of Dynamial Systems Through Preditability 3587For disrete time maps what has been exposed above is still valid, with� = 1 (however, Krieger's theorem only applies to invertible maps).The important point to note is that, for a truly stohasti (i.e. non-deterministi) system, with ontinuous states, h(A�) is not bounded andhKS =1.2.2.3. Algorithmi omplexityThe Shannon entropy establishes a limit on how e�iently the ensembleof messages emitted by a soure an be oded. However, we may wonderabout the ompressibility properties of a single sequene with no referene toits belonging to an ensemble. That is to say, we are looking for an universalharaterization of its ompressibility or, it is the same, an universal de�ni-tion of its information ontent. This problem an be addressed through thenotion of algorithmi omplexity, that onerns the di�ulty in reproduinga given string of symbols.Everybody agrees that the binary digits sequene0111010001011001011010 : : : (2.14)is, in some sense, more random than1010101010101010101010 : : : (2.15)The notion of algorithmi omplexity, independently introdued by Kol-mogorov [5℄, Chaitin [12℄ and Solomonov [6℄, is a way to formalize the intu-itive idea of randomness of a sequene.Consider, for instane, a binary digit sequene (this does not onsti-tute a limitation) of length N , qN = (i1; i2; : : : ; iN ), generated by a ertainomputer ode on a given mahineM. The algorithmi omplexity (or algo-rithmi information ontent) KM(N) of qN is the bit-length of the shortestomputer program able to give qN and to stop afterward. Of ourse, suha length depends not only on the sequene but also on the mahine. How-ever, Kolmogorov [5℄ proved the existene of a universal omputer, U , ableto perform the same omputation that a program p makes on M, with amodi�ation of p that depends only on M. This implies that for all �nitestrings: KU (N) � KM(N) + CM ; (2.16)where KU (N) is the omplexity with respet to the universal omputer andCM depends only on the mahineM. We an onsider the algorithmi om-plexity with respet to a universal omputer dropping the M-dependenein the symbol for the algorithmi omplexity, K(N). The reason is that we



3588 F. Ceoni, M. Falioni, A. Vulpianiare interested in the limit of very long sequenes, N ! 1, for whih onede�nes the algorithmi omplexity per unit symbol:C = limN!1 K(N)N ; (2.17)that, beause of (2.16), is an intrinsi quantity, i.e. independent of the ma-hine.Now oming bak to the N -sequenes (2.14) and (2.15), it is obvious thatthe latter an be obtained with a minimal program of length O(lnN) andtherefore when taking the limit N ! 1 in (2.17), one obtains C = 0. Ofourse K(N) annot exeed N , sine the sequene an always be generatedby a trivial program (of bit length N)\PRINT i1; i2; : : : ; iN" : (2.18)Therefore, in the ase of a very irregular sequene, e.g., (2.14), one expetsK(N) / N (i.e. C 6= 0), and the sequene is named omplex (i.e. of nonzero algorithmi omplexity) or random.Algorithmi omplexity annot be omputed, and the un-omputabilityofK(N)may be understood in terms of Gödel's inompleteness theorem [12℄.Beyond the problem of whether or notK(N) is omputable in a spei� ase,the onept of algorithmi omplexity brings an important improvement tolarify the vague and intuitive notion of randomness.Between the Shannon entropy, hSh, and the algorithmi omplexity, thereexists the straightforward relationshiplimN!1 hK(N)iHN = 1ln 2 ; (2.19)where hK(N)i =PCN P (CN )KCN (N), beingKCN (N) the algorithmi om-plexity of the N -words, in the ensemble of sequenes, CN , with a givendistribution of probabilities, P (CN ). Therefore the expeted omplexityhK(N)=Ni is asymptotially equal to the Shannon entropy (modulo the ln 2fator). It is important to stress again that, apart from the numerial o-inidene of the values of C and hSh= ln 2, there is a oneptual di�erenebetween the information theory and the algorithmi omplexity theory. TheShannon entropy essentially refers to the information ontent in a statistialsense, i.e. it refers to an ensemble of sequenes generated by a ertain soure.The algorithmi omplexity de�nes the information ontent of an individualsequene [13℄.The notion of algorithmi omplexity an be also applied to the traje-tories of a dynamial system. This requires the introdution of �nite openoverings of the phase spae, the orresponding enoding of trajetories into



Complexity Charaterization of Dynamial Systems Through Preditability 3589symboli sequenes, and the searhing of the supremum of the algorithmiomplexity per symbol at varying the overings [14℄. Brudno's and White'stheorems [15, 16℄ state that the omplexity C(x) for a trajetory startingfrom the point x, is C(x) = hKSln 2 ; (2.20)for almost all x with respet to the natural invariant measure. The fatorln 2 stems again from the onversion between natural logarithms and bits.This result indiates that the KS-entropy quanti�es not only the rih-ness of a dynamial system but also the di�ulty of desribing its typialsequenes. 2.3. Algorithmi omplexity and Lyapunov exponentLet us onsider a 1d haoti mapx(t+ 1) = f(x(t)) : (2.21)The transmission of the sequene fx(t); t = 1; 2; : : : ; Tg, aepting onlyerrors smaller than a tolerane �, is arried out by using the followingstrategy [18℄:1. Transmit the rule (2.21): for this task one has to use a number of bitsindependent of the sequene length T .2. Speify the initial ondition x(0) with a preision Æ0 using a �nitenumber of bits whih is independent of T .3. Let the system evolve till the �rst time �1 suh that the distane be-tween two trajetories, that was initially Æx(0) = Æ0, equals � andthen speify again the new initial ondition x(�1) with preision Æ0.4. Let the system evolve and repeat the proedure (2�3), i.e. eah timethe error aeptane tolerane is reahed speify the initial onditions,x(�1 + �2); x(�1 + �2 + �3) : : :, with preision Æ0. The times �1; �2; : : :are de�ned as follows: putting x0(�1) = x(�1) + Æ0, �2 is given by theminimum time suh that jx0(�1 + �2)� x(�1 + �2)j � � and so on.Following the steps 1�4, the reeiver an reonstrut, with a preision �, thesequene fx(t)g, by simply iterating on a omputer the evolution law (2.21)between 1 and �1 � 1, �1 and �1 + �2 � 1, and so on. The amount of bitsneessary to implement the above transmission (1�4) an be easily omputed.For simpliity of notation we introdue the quantitiesi = 1�i ln �Æ0 (2.22)



3590 F. Ceoni, M. Falioni, A. Vulpianiwhih an be regarded as a sort of e�etive Lyapunov exponents [19, 20℄.The LE � an be written in terms of fig as follows� = hii = Pi �iiPi �i = 1� ln �Æ0 ; (2.23)where � = 1N X �i ;is the average time after whih we have to transmit the new initial ondition.Note that to obtain � from the i's requires the average (2.23), beause thetransmission time, �i, is not onstant. If T is large enough the number oftransmissions, N , is T=� ' �T= ln(�=Æ0). Therefore, noting that in eahtransmission, a redution of the error from � to Æ0 requires the employ ofln2(�=Æ0) bits, the total amount of bits used in the transmission isT� ln2 �Æ0 = �ln 2T : (2.24)In other words the number of bits for unit time is proportional to �.In more than one dimension, we have simply to replae � with hKS in(2.24), beause the above transmission proedure has to be repeated for eahof the expanding diretions.3. Limitation of the Lyapunov exponentand Kolmogorov�Sinai entropyLyapunov exponents and KS-entropy are properly de�ned only in spe-i� asymptoti limits: very long times and arbitrary auray. However,preditability problem in realisti situations entails onsidering �nite timeintervals and limited auray. The �rst obvious way for quantifying thepreditability of a physial system is in terms of the preditability time Tp,i.e. the time interval on whih one an typially foreast the system. Asimple argument suggests Tp � 1� ln��Æ0� : (3.1)However, the above relation is too naive to be of pratial relevane, in anyrealisti system. Indeed, it does not take into aount some basi featuresof dynamial systems. The Lyapunov exponent is a global quantity, be-ause it measures the average rate of divergene of nearby trajetories. Ingeneral there exist �nite-time �utuations and their probability distributionfuntions (pdf) is important for the haraterization of preditability. The



Complexity Charaterization of Dynamial Systems Through Preditability 3591generalized Lyapunov exponents have been introdued with the purpose totake into aount suh �utuations [19, 20℄. Moreover, the Lyapunov expo-nent is de�ned for the linearized dynamis, i.e., by omputing the rate ofseparation of two in�nitesimally lose trajetories. On the other hand, inmeasuring the preditability time (3.1) one is interested in a �nite tolerane�, beause the initial error Æ0 is �nite. A reent generalization of the Lya-punov exponent to �nite size errors extends the study of the perturbationgrowth to the nonlinear regime, i.e. both Æ0 and � are not in�nitesimal [21℄.3.1. Growth of non in�nitesimal perturbationsWe disuss now an example where the Lyapunov exponent is of little rel-evane for haraterizing the preditability. This problem an be illustratedby onsidering the following oupled map model:� x(t+ 1) = Rx(t) + "h(y(t)) ;y(t+ 1) = G(y(t)) ; (3.2)where x 2 IR2, y 2 IR1, R is a rotation matrix of arbitrary angle �, h is avetor funtion and G is a haoti map. For simpliity we onsider a linearoupling h(y) = (y; y) and the logisti map G(y) = 4y(1� y).For " = 0 we have two independent systems: a regular and a haoti one.Thus the Lyapunov exponent of the x subsystem is �x(" = 0) = 0, i.e., itis ompletely preditable. On the ontrary, the y subsystem is haoti with�y = �1 = ln2. The swithing on of a small oupling (" > 0) yields a singlethree-dimensional haoti system with a positive global Lyapunov exponent� = �y +O(") : (3.3)A diret appliation of (3.1) would giveT (x)p � Tp � 1�y ; (3.4)but this result is learly unaeptable: the preditability time for x seemsto be independent of the value of the oupling ". This is not due to anartifat of the hosen example, indeed, the same argument applies to manyphysial situations [22℄. A well known example is the gravitational threebody problem, with one body (asteroid) muh smaller than the other two(planets). When the gravitational feedbak of the asteroid on the two planetsis negleted (restrited problem), one has a haoti asteroid in the regular�eld of the planets. As soon as the feedbak is taken into aount (i.e. " > 0in the example) one has a non-separable three body system with a positiveLE. Of ourse, intuition orretly suggests that, in the limit of small asteroid



3592 F. Ceoni, M. Falioni, A. Vulpianimass ("! 0), a foreast of the planet motion should be possible even for verylong times. The apparent paradox arises from the misuse of formula (3.1),stritly valid for tangent vetors, to the ase of non in�nitesimal regimes. Assoon as the errors beome large, the full nonlinear evolution of the three bodysystem has to be taken into aount. This situation is learly illustrated bythe model (3.2) in �gure 1. The evolution of Æx is given byÆx(t+ 1) = RÆx(t) + "Æh(y) ; (3.5)where, with our hoie, Æh = (Æy; Æy). At the beginning, both jÆxj and Æygrow exponentially. However, the available phase spae for y is �nite and theunertainty reahes the saturation value Æy � O(1) in a time t � 1=�1. Atlarger times the two realizations of the y variable are ompletely unorrelatedand their di�erene Æy in (3.5) ats as a noisy term. As a onsequene, thegrowth of the unertainty on x beomes di�usive with a di�usion oe�ientproportional to "2 [22℄ jÆx(t)j � "t1=2 (3.6)so that: T (x)p � "�2 : (3.7)
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tFig. 1. Growth of error jÆx(t)j for the oupled map (3.2). The rotation angle is� = 0:82099, the oupling strength " = 10�5 and the initial error only on the yvariable is Æy = Æ0 = 10�10. Dashed line jÆx(t)j � e�1t where �1 = ln 2, solid linejÆx(t)j � t1=2.This example shows that, even in simple systems, the Lyapunov exponentan be of little relevane for the haraterization of the preditability.In more omplex systems, in whih di�erent sales are present, one istypially interested in foreasting the large sale motion, while the LE is



Complexity Charaterization of Dynamial Systems Through Preditability 3593related to the small sale dynamis. A familiar example of that is weatherforeast: despite the LE of the atmosphere is indeed rather large, due to thesmall sale onvetive motion, large-sale weather preditions are possiblefor about 10 days [23, 24℄. It is thus natural to seek for a generalization ofthe LE to �nite perturbations from whih one an obtain a more realistiestimation for the preditability time. It is worth underlining the importantfat that �nite errors are not on�ned in the tangent spae but are governedby the omplete nonlinear dynamis. In this sense the extension of the LEto �nite errors will give more information on the system.Aiming to generalize the LE to non in�nitesimal perturbations let usnow de�ne the Finite Size Lyapunov Exponent (FSLE) [21℄. Consider areferene x(t) and a perturbed trajetory x0(t), suh that jx0(0)�x(0)j � Æ.One integrates the two trajetories and omputes the time �1(Æ; r) neessaryfor the separation jx0(t) � x(t)j to grow from Æ to rÆ. At time t= �1(Æ; r)the distane between the trajetories is resaled to Æ and the proedure isrepeated in order to ompute �2(Æ; r); �3(Æ; r) : : :.The threshold ratio r must be r > 1, but not too large in order to avoidontributions from di�erent sales in �(Æ; r). A typial hoie is r = 2 (forwhih �(Æ; r) is properly a �doubling� time) or r = p2. In the same spiritof the disussion leading to Eqs (2.22) and (2.23), we may introdue ane�etive �nite size growth rate:i(Æ; r) = 1�i(Æ; r) ln r : (3.8)After having performed N error-doubling experiments, we an de�ne theFSLE as �(Æ) = h(Æ; r)it = � 1�(Æ; r)�t ln r = 1h�(Æ; r)ie ln r ; (3.9)where h�(Æ; r)ie is h�(Æ; r)ie = 1N NXn=1 �n(Æ; r) ; (3.10)see [25℄ for details. In the in�nitesimal limit, the FSLE redues to thestandard Lyapunov exponent limÆ!0 �(Æ) = �1 : (3.11)In pratie this limit means that �(Æ) displays a onstant plateau at �1 forsu�iently small Æ (Fig. 2). For �nite value of Æ the behavior of �(Æ) dependson the details of the non linear dynamis. For example, in the model (3.2)
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δFig. 2. �(Æ) as a funtion of Æ for the oupled map (3.2) with " = 10�5. Theperturbation has been initialized as in Fig. 1. For Æ ! 0, �(Æ) ' �1 (horizontalline). The dashed line shows the behavior �(Æ) � Æ�2.the di�usive behavior (3.6), by simple dimensional arguments, orrespondsto �(Æ) � Æ�2. Sine the FSLE measures the rate of divergene of trajetoriesat �nite errors, one might wonder whether it is just another way to look atthe average response hln(jx0(t) � x(t)j)i as a funtion of time. The answeris negative, beause taking the average at �xed time is not the same asomputing the average doubling time at �xed sale, as in (3.9). This ispartiularly lear in the ase of strongly intermittent system, in whih jÆx(t)jan be very di�erent in eah realization. In the presene of intermitteny,averaging over di�erent realizations at �xed times an produe a spuriousregime due to the superposition of exponential and di�usive ontributionsby di�erent samples at the same time [25℄. The FSLE method an be easilyapplied to data analysis [26℄. For other approahes addressing the problemof non-in�nitesimal perturbations see [27, 28℄.3.2. The �-entropyFor most systems, the omputation of Kolmogorov�Sinai entropy (2.12)is pratially impossible, beause it involves the limit on arbitrary �ne res-olution and in�nite times. However, in the same philosophy of the FSLE,by relaxing the requirement of arbitrary auray, one an introdue the�-entropy whih measures the amount of information for reproduing a tra-jetory with �nite auray � in phase-spae. Roughly speaking the �-entropyan be onsidered the ounterpart, in information theory, of the FSLE. Suha quantity was originally introdued by Shannon [4℄, and by Kolmogorov [29℄.Reently Gaspard and Wang [30℄ made use of this onept to haraterize alarge variety of proesses.



Complexity Charaterization of Dynamial Systems Through Preditability 3595We start with a ontinuous-time variable x(t) 2 IRd, whih representsthe state of a d-dimensional system, we disretize the time by introduingan interval � and we onsider the new variableX(m)(t) = (x(t);x(t+ �); : : : ;x(t+ (m� 1)�)) : (3.12)Of ourse X(m)(t) 2 IRmd and it orresponds to the trajetory whih lastsfor a time T = m� .In data analysis, the spae where the state of the system lives is unknownand usually only a salar variable u(t) an be measured. Then, one onsid-ers vetors (u(t); u(t+ �); : : : ; u(t+m� � �)), that live in IRm and allow areonstrution of the original phase spae, known as delay embedding in theliterature [31�33℄, and it is a speial ase of (3.12). Introdue now a parti-tion of the phase spae IRd, using ells of edge � in eah of the d diretions.Sine the region where a bounded motion evolves ontains a �nite numberof ells, eah X(m)(t) an be oded into a word of length m, out of a �nitealphabet:X(m)(t) �!Wm(�; t) = (i(�; t); i(�; t + �); : : : ; i(�; t+m� � �)) ; (3.13)where i(�; t+ j�) labels the ell in IRd ontaining x(t+ j�). From the timeevolution one obtains, under the hypothesis of ergodiity, the probabilitiesP (Wm(�)) of the admissible words fWm(�)g. We an now introdue the(�; �)-entropy per unit time, h(�; �) [4℄:h(�; �) = 1� limm!1 1mHm(�; �) ; (3.14)where Hm is the blok entropy of bloks (words) with length m:Hm(�; �) = � XfWm(�)gP (Wm(�)) lnP (Wm(�)) : (3.15)For the sake of simpliity, we ignored the dependene on details of the par-tition. To make h(�; �) partition-independent one has to onsider a generipartition of the phase spae fAg and to evaluate the Shannon entropy onthis partition: hSh(A; �). The "-entropy is thus de�ned as the in�mum overall partitions for whih the diameter of eah ell is less than " [30℄:h("; �) = infA:diam(A)�" hSh(A; �) : (3.16)Note that the time dependene in (3.16) is trivial for deterministi systems,and that in the limit �! 0 one reovers the Kolmogorov�Sinai entropyhKS = lim�!0h(�; �) :



3596 F. Ceoni, M. Falioni, A. Vulpiani4. Charaterization of omplexity and system modelingIn the previous Setions, we disussed the haraterization of dynamialbehaviors when the evolution laws are known either exatly or with somedegree of unertainty. In experimental investigations, however, only timereords of some observable are available, while the equation of motion forthe observable are generally unknown. The preditability problem of thislatter ase, at least from a oneptual point of view, an be treated as if theevolution laws were known. Indeed, in priniple, the embedding tehniqueallows for a reonstrution of the phase spae [31�33℄. Nevertheless there arerather severe limitations for high dimensional systems [34℄ and even in lowdimensional ones non trivial features appear in the presene of noise [32℄.In this Setion we show that an entropi analysis at di�erent resolutionsales provides a pragmati lassi�ation of a signal and gives suggestions formodeling of systems. In partiular we illustrate, using some examples, howquantities suh as the �-entropy or the FSLE an display a subtle transitionfrom the large to the small sales. A negative onsequene of this is thedi�ulty in distinguishing, only from data analysis, a genuine deterministihaoti system from one with intrinsi randomness [35℄. On the other hand,the way the �-entropy or FSLE depends on the (resolution) sale, allows fora lassi�ation of the stohasti or haoti harater of a signal, and thisgives some freedom in modeling the system.4.1. How random is a random number generator?The �true harater� of the number sequene (x1; x2; : : :) obtained by a(pseudo) random number generator (PRNG) on a omputer is an issue ofparamount importane in omputer simulations and modeling. One wouldlike to have a sequene with a random harater as muh as possible, but isfored to use deterministi algorithms to generate (x1; x2; : : :). This subse-tion is mainly based on the paper [36℄. A simple and popular PRNG is themultipliative ongruent one:zn+1 = N1zn mod N2 ;xn+1 = zn+1N2 ; (4.1)with an integer multiplier N1 and modulus N2. The fzng are integer num-bers from whih one hopes to generate sequene of random variables fxng,whih are unorrelated and uniformly distributed in the unit interval. A �rstproblem arises from the periodi nature of the rule (4.1) as a onsequeneof its disrete nature. Note that the rule (4.1) an be interpreted also as adeterministi dynamial system, i.e.xn+1 = N1xn mod 1 ; (4.2)



Complexity Charaterization of Dynamial Systems Through Preditability 3597whih has a uniform invariant measure and a KS entropy hKS = � = lnN1.When imposing the integer arithmetis of Eq. (4.1) onto this system, weare, in the language of dynamial systems, onsidering an unstable periodiorbit of Eq. (4.2), with the partiular onstraint that, to ahieve the periodN2 � 1 (i.e. all integers < N2 should belong to the orbit of Eq. (4.1)),it has to ontain all values k=N2, with k = 1; 2; � � � ; N2 � 1. Sine thenatural invariant measure of Eq. (4.2) is uniform, suh an orbit representsthe measure of a haoti solution in an optimal way. Every sequene ofa PRNG is haraterized by two quantities: its period T and its positiveLyapunov exponent �, whih is idential to the entropy of a haoti orbitof the equivalent dynamial system. Of ourse, a good random numbergenerator must have a very large period, and as large as possible entropy.It is natural to ask how this apparent randomness an be reoniled withthe fats that (a) the PRNG is a deterministi dynamial systems (b) it isa disrete state system. If the period is long enough, on shorter times onlypoint (a) matters and it an be disussed in terms of the behavior of the�-entropy, h(�). At high resolutions (� � 1=N1), it seems rather reasonable tothink that the true deterministi haoti nature of the ongruent rule showsup, and, therefore, h(�) ' hKS = lnN1. On the other hand, for � � 1=N1,one expets to observe the �apparent random� behavior of the system, i.e.h(�) � ln(1=�), see Fig 3.
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3598 F. Ceoni, M. Falioni, A. Vulpiani4.2. High dimensional systemsWe disuss an example of high-dimensional system with a non-trivialbehavior at varying the resolution sales, namely the emergene of nontrivialolletive behavior.Let us onsider a globally oupled map (GCM) de�ned as followsxn(t+ 1) = (1� ")fa(xn(t)) + "N NXi=1 fa(xi(t)) ; (4.3)where N is the total number of elements, and fa(u) is a haoti map on theinterval [0; 1℄, depending on the ontrol parameter a.The evolution of a marosopi variable, e.g., the enter of massm(t) = 1N NXi=1 xi(t) ; (4.4)upon varying " and a in Eq. (4.3), displays di�erent behaviors [38℄:(a) Standard Chaos: m(t) obeys a Gaussian statistis with a standarddeviation �N =phm(t)2i � hm(t)i2 � N�1=2;(b) Marosopi Periodiity: m(t) is a superposition of a periodi funtionand small �utuations O(N�1=2);() Marosopi Chaos: m(t) exhibits an irregular motion, as seen by plot-ting m(t) vs m(t � 1). The plot skethes a strutured funtion (withthikness � N�1=2), and suggests a haoti motion for m(t).In the ase of marosopi haos, the enter of mass is expeted to evolvewith typial times longer than the harateristi time 1=�1 of the full dy-namis (mirosopi dynamis); �1 being the Lyapunov exponent of theGCM. Indeed, oneptually, marosopi haos for GCM an be thought ofas the analogous of the hydro-dynamial haos for moleular motion. Inspite of a huge mirosopi Lyapunov exponent (�1 � 1=� � 1011s�1, �is the ollision time), one an have rather di�erent behaviors at a hydro-dynamial (oarse grained) level: regular motion (�hydro � 0) or haotimotion (0 < �hydro � �1). In priniple, if the hydrodynami equations wereknown, a haraterization of the marosopi behavior would be possible bymeans of standard dynamial system tehniques. However, in generi CMLthere are no general systemati methods to build up the marosopi equa-tions, apart from partiular ases [37℄. We reall that for haoti systems,in the limit of in�nitesimal perturbations Æ ! 0, one has �(Æ) ! �1, i.e.



Complexity Charaterization of Dynamial Systems Through Preditability 3599�(Æ) displays a plateau at the value �1 for su�iently small Æ. However,for non in�nitesimal Æ, one an expet that the Æ-dependene of �(Æ) maygive information on the harateristi time-sales governing the system, and,hene, it ould be able to haraterize the marosopi motion. In partiu-lar, at large sales (Æ � 1=pN), the fast mirosopi omponents saturateand �(Æ) � �M , where �M an be fairly alled the �marosopi� Lyapunovexponent.The FSLE has been determined by looking at the evolution of jÆm(t)j,whih has been initialized at the value Æm(t) = Æmin by shifting all theelements of the unperturbed system by the quantity Æmin (i.e. x0i(0) = xi(0)+Æmin), for eah realization. The omputation has been performed by hoosingthe tent map as loal map, but similar results an be obtained for othermaps [38, 39℄.The main result an be summarized as follows:� at small Æ (� 1=pN), where N is the number of elements, the �mi-rosopi� Lyapunov exponent is reovered, i.e. �(Æ) � �miro ,� at large Æ (� 1=pN), another plateau �(Æ) � �maro appears, whihan be muh smaller than the mirosopi one.The emerging senario is that, at a oarse-grained level, i.e. Æ � 1=pN , thesystem an be desribed by an �e�etive� hydro-dynamial equation (whihin some ases an be low-dimensional), while the �true� high-dimensionalharater appears only at very high resolution, i.e.Æ � Æ = O� 1pN� :4.3. Di�usion in deterministi systems and Brownian motionConsider the following map whih generates a di�usive behavior on thelarge sales [40℄: xt+1 = [xt℄ + F (xt � [xt℄) ; (4.5)where [xt℄ indiates the integer part of xt and F (y) is given by:F (y) = � (2 + �)y if y 2 [0; 1=2℄(2 + �)y � (1 + �) if y 2 [1=2; 1℄ : (4.6)The largest Lyapunov exponent � an be obtained immediately: � = ln jF 0j,with F 0 = dF=dy =2+�. One expets the following senario for h(�):h(�) � � for � < 1 ; (4.7)



3600 F. Ceoni, M. Falioni, A. Vulpianih(�) / D�2 for � > 1; (4.8)where D is the di�usion oe�ient, h(xt � x0)2i � 2D t for large t. Considernow a stohasti system, namely a noisy mapxt+1 = [xt℄ +G (xt � [xt℄) + ��t ; (4.9)where G(y), as shown in Fig. 4, is a piee wise linear map whih approximatesthe map F (y), and �t is a stohasti proess uniformly distributed in theinterval [�1; 1℄, and no orrelation in time. When jdG=dyj < 1, as is thease we onsider, the map (4.9), in the absene of noise, gives a non-haotitime evolution.
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3602 F. Ceoni, M. Falioni, A. Vulpianiompute the �-entropy with the Cohen�Proaia method [44℄ from whihthey obtain: h(�) � D�2 ; (4.10)where D is the di�usion oe�ient. Then, assuming that the system is de-terministi, and making use of the inequality h(� > 0) � hKS, they onludethat the system is haoti. However, their result does not give a diret ev-idene that the system is deterministi and haoti. Indeed, the power law(4.10) an be produed with di�erent mehanisms:1 a genuine haoti system with di�usive behavior, as the map (4.6);2 a non haoti system with some noise, as the map (4.9), or a genuineBrownian system;3 a deterministi linear non haoti system with many degrees of freedom(see for instane [45℄);4 a �ompliated� non haoti system as the Ehrenfest wind-tree modelwhere a partile di�uses in a plane due to ollisions with randomlyplaed, �xed oriented square satters, as disussed by Cohen et al. [42℄in their omment to Ref. [41℄.It seems to us that the weak points of the analysis in Ref. [41℄ are:(a) the expliit assumption that the system is deterministi;(b) the limited number of data points and therefore limitations in bothresolution and blok length.The point (a) is ruial, without this assumption (even with an enormousdata set) it is not possible to distinguish between 1 and 2. One has to saythat in the ases 3 and 4 at least in priniple it is possible to understandthat the systems are �trivial� (i.e. not haoti) but for this one has to use ahuge number of data. For example Cohen et al. [42℄ estimated that in orderto distinguish between 1 and 4 using realisti parameters of a typial liquid,the number of data points required has to be at least � 1034.Conluding, we have the apparently paradoxial result that �omplexity�helps in the onstrution of models. Basially, in the ase in whih onehas a variety of behaviors at varying the sale resolution, there is a ertainfreedom on the hoie of the model to adopt. For some systems the behaviorat large sales an be realized both with haoti deterministi models orsuitable stohasti proesses. From a pragmati point of view, the fat thatin ertain stohasti proesses h(�) � ��� an be indeed extremely usefulfor modeling suh high-dimensional systems. Perhaps, the most relevant



Complexity Charaterization of Dynamial Systems Through Preditability 3603ase in whih one an use this freedom in modeling is the fully developedturbulene whose non in�nitesimal (the so-alled inertial range) propertiesan be suessfully mimiked in terms of multi-a�ne stohasti proess (seeRef. [46℄). 5. Conluding remarksThe guideline of this paper has been the interpretation of di�erent aspetsof the preditability of a system as a way to haraterize its omplexity.We have disussed the relation between haotiity, the Kolmogorov�Sinaientropy and algorithmi omplexity. As learly exposed in the seminal worksof Alekseev and Yakobson [14℄ and Ford [17℄, the time sequenes generatedby a system with sensitive dependene on initial onditions have non-zero al-gorithmi omplexity. A relation exists between the maximal ompression ofa sequene and its KS-entropy. Therefore, one an give a de�nition of om-plexity, without referring to a spei� desription, as an intrinsi propertyof the system.The study of these di�erent aspets of preditability onstitutes a usefulmethod for a quantitative haraterization of �omplexity�, suggesting thefollowing equivalenes:Complex = Unompressible = Unpreditable (5.1)The above point of view, based on dynamial systems and information the-ory, quanti�es the omplexity of a sequene onsidering eah symbol relevantbut it does not apture the strutural level. Let us larify this point withthe following example. A binary sequene obtained with a oin tossing is,from the point of view adopted in this review, omplex sine it annot beompressed (i.e. it is unpreditable). On the other hand suh a sequeneis somehow trivial, i.e. with low �organizational� omplexity. It would beimportant to introdue a quantitative measure of this intuitive idea. Theprogresses of the researh on this intriguing and di�ult issue are still ratherslow. We just mention some of the most promising proposals as the logialdepth and the sophistiation [47℄.We thank G. Bo�etta, A. Celani, D. Vergni and M. Cenini for the longollaboration and many fruitful disussions on the subjet of the paper.REFERENCES[1℄ S. Laplae, Essai philosophique sur les probabilités, Courier, Paris 1814.[2℄ G. Bo�etta, M. Cenini, M. Falioni, A. Vulpiani, Phys. Rep. 356, 367 (2002).



3604 F. Ceoni, M. Falioni, A. Vulpiani[3℄ V.I. Oselede, Trans. Mos. Math. So. 19, 197 (1968).[4℄ C.E. Shannon, The Bell System Tehnial J. 27, 623 (1948); 27, 379 (1948).[5℄ A.N. Kolmogorov, Prob. Info. Trans. 1, 1 (1965).[6℄ R.J. Solomono�, Inform. Contr. 7, 1 (1964); 7, 224 (1964).[7℄ A.I. Khinhin, Mathematial Foundations of Information Theory, Dover, NewYork 1957.[8℄ D. Welsh, Codes and Cryptography, Clarendon Press, Oxford 1989.[9℄ P. Billingsley, Ergodi Theory and Information, Wiley, New York 1965.[10℄ J.P. Ekmann, D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).[11℄ W. Krieger, Trans. Am. Math. So. 149, 453 (1970).[12℄ G.J. Chaitin, Information, Randomness and Inompleteness, 2nd edition,World Sienti�, Singapore 1990.[13℄ P. Grassberger, Int. J. Theor. Phys. 25, 907 (1986).[14℄ V.M. Alekseev, M.V. Yakobson, Phys. Rep. 75, 287 (1981).[15℄ A.A. Brudno, Trans. Mosow Math. So. 44, 127 (1983).[16℄ H. White, Erg. Theory Dyn. Syst. 13, 807 (1993).[17℄ J. Ford, Physis Today, 36, 40 (1983).[18℄ G. Paladin, M. Serva, A. Vulpiani, Phys. Rev. Lett. 74, 66 (1995).[19℄ H. Fujisaka, Prog. Theor. Phys. 70, 1264 (1983).[20℄ R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, J. Phys. A18, 2157 (1985).[21℄ E. Aurell, G. Bo�etta, A. Crisanti, G. Paladin, A. Vulpiani, Phys. Rev. Lett.77, 1262 (1996).[22℄ G. Bo�etta, G. Paladin, A. Vulpiani, J. Phys. A29, 2291 (1996).[23℄ E.N. Lorenz, Tellus 21, 3 (1969).[24℄ A. Monin, Weather Predition as a Problem in Physis, MIT Press, Mosow1973.[25℄ V. Artale, G. Bo�etta, A. Celani, M. Cenini, A. Vulpiani, Phys. Fluids A9,3162 (1997).[26℄ G. Bo�etta, A. Crisanti, F. Paparella, A. Provenzale, A. Vulpiani, Physia D116, 301 (1998).[27℄ H. Kantz, T. Letz, Phys. Rev. E61, 2533 (2000).[28℄ A. Torini, P. Grassberger, A. Politi, J. Phys. A27, 4533 (1995).[29℄ A.N. Kolmogorov, IRE Trans. Inf. Theory, 1, 102 (1956).[30℄ P. Gaspard, X.J. Wang, Phys. Rep. 235, 291 (1993).[31℄ F. Takens, �Deteting strange attrators in turbulene� in Dynamial Systemsand Turbulene (Warwik 1980), Vol. 898 of Leture Notes in Mathematis,D.A. Rand and L.-S. Young (eds.), pg. 366, Springer-Verlag, Berlin 1980.[32℄ H. Kantz, T. Shreiber, Nonlinear Time Series Analysis, Cambridge Univer-sity Press, Cambridge 1997.



Complexity Charaterization of Dynamial Systems Through Preditability 3605[33℄ H.D.I. Abarbanel, Analysis of Observed Chaoti Data, Springer-Verlag, NewYork 1996.[34℄ P. Grassberger, Phys. Sr. 40, 346 (1989).[35℄ M. Cenini, M. Falioni, H. Kantz, E. Olbrih, A. Vulpiani, Phys. Rev. E62,427 (2000).[36℄ H. Kantz, E. Olbrih, Physia A 280, 34 (2000).[37℄ A.S. Pikovsky, J. Kurths, Physia D 76, 411 (1994).[38℄ M. Cenini, M. Falioni, D. Vergni, A. Vulpiani, Physia D 130, 58 (1999).[39℄ T. Shibata, K. Kaneko, Phys. Rev. Lett. 81, 4116 (1998).[40℄ M. Shell, S. Fraser, R. Kapral, Phys. Rev. A26, 504 (1982).[41℄ P. Gaspard, M.E. Briggs, M.K. Franis, J.V. Sengers, R.W. Gammon,J.R. Dorfman, R.V. Calabrese, Nature 394, 865 (1998).[42℄ C. Dettman, E. Cohen, H. van Beijeren, Nature 401, 875 (1999).[43℄ P. Grassbeger, T. Shreiber, Nature 401, 875 (1999).[44℄ A. Cohen, I. Proaia, Phys. Rev. A31, 1872 (1985).[45℄ P. Mazur, E. Montroll, J. Math. Phys. 1, 70 (1960).[46℄ L. Biferale, G. Bo�etta, A. Celani, A. Crisanti, A. Vulpiani, Phys. Rev. E57,R6261 (1998).[47℄ R. Badii, A. Politi, Complexity. Hierarhial Strutures and Saling in Physis,Cambridge University Press, Cambridge, UK, 1997.


