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COMPLEXITY CHARACTERIZATION OF DYNAMICALSYSTEMS THROUGH PREDICTABILITY�Fabio Ce

oni, Massimo Fal
ioni and Angelo VulpianiDipartimento di Fisi
a Università di Roma �La Sapienza�INFM, Unità di Roma1 and SMC Center,P.le Aldo Moro 2, 00185 Roma, Italy(Re
eived November 27, 2002)Some aspe
ts of the predi
tability problem in dynami
al systems arereviewed. The deep relation among Lyapunov exponents, Kolmogorov�Sinai entropy, Shannon entropy and algorithmi
 
omplexity is dis
ussed.In parti
ular, we emphasize how a 
hara
terization of the unpredi
tabilityof a system gives a measure of its 
omplexity. A spe
ial attention is devotedto �nite-resolution e�e
ts on predi
tability, whi
h 
an be a

ounted withsuitable generalization of the standard indi
ators. The problems involvedin systems with intrinsi
 randomness is dis
ussed, with emphasis on theimportant problems of distinguishing 
haos from noise and of modeling thesystem.PACS numbers: 45.05.+x, 05.45.�aAll the simple systems are simple in the same way, ea
h 
omplexsystem has its own 
omplexity (freely inspired by Anna Kareninaby Lev N. Tolstoy) 1. Introdu
tionThe possibility to predi
t future states of a system stands at the founda-tions of s
ienti�
 knowledge with an obvious relevan
e both from a 
on
ep-tual and appli
ative point of view. The perfe
t knowledge of the evolutionlaw of a system may indu
e the 
on
lusion that this aim 
ould be attained.This 
lassi
al deterministi
 point of view was 
laimed by Lapla
e [1℄: on
ethe evolution laws of the system are known, the state at a 
ertain time t0
ompletely determines the subsequent states for every time t > t0. Howeverit is well established now that in some systems, full predi
tability 
annot� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.(3581)
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omplished in pra
ti
e be
ause of the unavoidable un
ertainty in theinitial 
onditions. Indeed, as already stated by Poin
aré, long-time predi
-tions are reliable only when the evolution law does not amplify the initialun
ertainty too rapidly. Therefore, from the point of view of predi
tability,we need to know how an error on the initial state of the system grows intime. In systems with great sensitive dependen
e on initial 
onditions (de-terministi
 
haoti
 systems) errors grows exponentially fast in time, limitingthe ability to predi
t the future states.A bran
h of the theory of dynami
al systems has been developed withthe aim of formalizing and 
hara
terizing the sensitivity to initial 
onditions.The Lyapunov exponent and the Kolmogorov�Sinai entropy are the two mainindi
ators for measuring the rate of error growth and information produ
tionduring a deterministi
 system evolution. A 
omplementary approa
h hasbeen developed in the 
ontext of information theory, data 
ompression andalgorithmi
 
omplexity theory and it is rather 
lear that the latter pointof view is 
losely related to the dynami
al systems one. If a system is
haoti
, then its predi
tability is limited up to a time whi
h is related to the�rst Lyapunov exponent, and the time sequen
e by whi
h we en
ode one ofits 
haoti
 traje
tories 
annot be 
ompressed by an arbitrary fa
tor, i.e. isalgorithmi
ally 
omplex. On the 
ontrary, the 
oding of a regular traje
tory
an be easily 
ompressed (e.g., for a periodi
 traje
tory it is su�
ient tohave the sequen
e for a period) so it is �simple�.In this paper we will dis
uss how unpredi
tability and algorithmi
 
om-plexity are 
losely related and how information and 
haos theory 
ompleteea
h other in giving a general understanding of 
omplexity in dynami
alpro
esses. In parti
ular, we shall 
onsider the extension of this approa
h,nowadays well established in the 
ontext of low dimensional systems and forasymptoti
 regimes, to high dimensional systems with attention to situationsfar from asymptoti
 (i.e. �nite time and �nite observational resolution) [2℄.2. Two points of view2.1. Dynami
al systems approa
h: Chara
teristi
 Lyapunov exponentsThe 
hara
teristi
 Lyapunov exponents are somehow an extension of thelinear stability analysis to the 
ase of aperiodi
 motions. Roughly speaking,they measure the typi
al rate of exponential divergen
e of nearby traje
toriesand, thus, 
ontain information on the growing rate of a very small error onthe initial state of a system.Consider a dynami
al system with an evolution law given, e.g., by thedi�erential equation dxdt = F (x) ; (2.1)
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al Systems Through Predi
tability 3583we assume that F is smooth enough that the evolution is well-de�nedfor time intervals of arbitrary extension, and that the motion o

urs in abounded region of the phase spa
e. We intend to study the separationbetween two traje
tories, x(t) and x0(t), starting from two 
lose initial 
on-ditions, x(0) and x0(0) = x(0) + Æx(0), respe
tively.As long as the di�eren
e between the traje
tories, Æx(t) = x0(t)� x(t),remains small (in�nitesimal, stri
tly speaking), it 
an be regarded as a ve
-tor, z(t), in the tangent spa
e. The time evolution of z(t) is given by thelinearized di�erential equations:dzi(t)dt = dXj=1 �Fi�xj ����x(t) zj(t) : (2.2)Under rather general hypothesis, Oselede
 [3℄ proved that for almost allinitial 
onditions x(0), there exists an orthonormal basis feig in the tangentspa
e su
h that, for large times,z(t) = dXi=1 
ieie�i t ; (2.3)where the 
oe�
ients f
ig depend on z(0). The exponents �1 � �2 � � � � ��d are 
alled 
hara
teristi
 Lyapunov exponents (LEs). If the dynami
alsystem has an ergodi
 invariant measure, the spe
trum of LEs f�ig does notdepend on the initial 
ondition, ex
ept for a set of measure zero with respe
tto the natural invariant measure.Equation (2.3) des
ribes how a d-dimensional spheri
al region of thephase spa
e, with radius � 
entered in x(0), deforms, with time, into anellipsoid of semi-axes �i(t) = � exp(�it), dire
ted along the ei ve
tors. Fur-thermore, for a generi
 small perturbation Æx(0), the distan
e between thereferen
e and the perturbed traje
tory behaves asjÆx(t)j � jÆx(0)j e�1 t [1 +O (exp�(�1 � �2)t)℄ :If �1 > 0 we have a rapid (exponential) ampli�
ation of an error on the initial
ondition. In su
h a 
ase, the system is 
haoti
 and, de fa
to, unpredi
tableon the long times. Indeed, if the initial error amounts to Æ0 = jÆx(0)j, andwe purpose to predi
t the states of the system with a 
ertain toleran
e �(not too large), then the predi
tion is reliable just up to a predi
tability timegiven by Tp � 1�1 ln��Æ0� : (2.4)
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oni, M. Fal
ioni, A. VulpianiThis equation shows that Tp is basi
ally determined by the largest Lyapunovexponent, sin
e its dependen
e on Æ0 and � is logarithmi
ally weak. Be
auseof its preeminent role, �1 is often referred as �the Lyapunov exponent�, anddenoted by �. 2.2. Information based approa
hIn experimental investigations of physi
al pro
esses, the a

ess to a sys-tem o

urs only through a measuring devi
e whi
h produ
es a time re
ord ofa 
ertain observable, i.e. a sequen
e of data. In this regard a system, whetheror not 
haoti
, generates messages and may be regarded as a sour
e of infor-mation whose properties 
an be analyzed through the tools of informationtheory.The 
hara
terization of the information 
ontained in a sequen
e 
an beapproa
hed in two very di�erent frameworks. The �rst 
onsiders a spe
i�
message (sequen
e) as belonging to the ensemble of all the messages that
an be emitted by a sour
e, and de�nes an average information 
ontent bymeans of the average 
ompressibility properties of the ensemble [4℄. These
ond 
onsiders the problem of 
hara
terizing the universal 
ompressibility(i.e. ensemble independent) of a spe
i�
 sequen
e and 
on
erns the theoryof algorithmi
 
omplexity and algorithmi
 information theory [5,6℄. For thesake of self-
onsisten
y we brie�y re
all the 
on
epts and ideas about theShannon entropy [4℄, that is the basis of whole information theory.2.2.1. Shannon entropyConsider a sour
e that 
an output m di�erent symbols; denote with stthe symbol emitted by the sour
e at time t and with P (CN ) the probabilitythat a given word CN = (s1; s2; : : : ; sN ), of length N , is emitted P (CN ) =P (s1; s2; : : : ; sN ). We assume that the sour
e is stationary, so that, forthe sequen
es fstg, the time translation invarian
e holds: P (s1; : : : ; sN ) =P (st+1; : : : ; st+N ). We introdu
e the N -blo
k entropiesHN = � XfCN gP (CN ) lnP (CN ) ; (2.5)for stationary sour
es the limitlimN!1 HNN = hSh (2.6)exists and de�nes the Shannon entropy hSh whi
h quanti�es the ri
hness(or �
omplexity�) of the sour
e emitting the sequen
e. This 
an be pre
iselyexpressed by the �rst theorem of Shannon�M
Millan [7℄ that applies to sta-tionary ergodi
 sour
es: The ensemble of N -long subsequen
es, when N is
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tability 3585large enough, 
an be partitioned in two 
lasses, 
1(N) and 
0(N) su
h thatall the words CN 2 
1(N) have the same probability P (CN ) � exp(�NhSh)andXCN2
1(N)P (CN )! 1 ; while XCN2
0(N)P (CN )! 0 ; for N !1 :(2.7)The meaning of this theorem is the following. An m-states pro
ess admits,in prin
iple, mN possible sequen
es of length N . However the number oftypi
al sequen
es, Ne�(N), e�e
tively observable (i.e. those belonging to
1(N)) is Ne�(N) � exp(NhSh) : (2.8)Note that Ne� � mN if hSh < lnm. The entropy per symbol, hSh, isa property of the sour
e. However, be
ause of the ergodi
ity hSh 
an beobtained by analyzing just one single sequen
e in the ensemble of the typi
alones, and it 
an also be viewed as a property of ea
h typi
al sequen
e.In information theory, expression (2.8) is somehow the equivalent of theBoltzmann equation in statisti
al thermodynami
s: S / lnW , being W thenumber of possible mi
ros
opi
 
on�gurations and S the thermodynami
entropy, this justi�es the name �entropy� for hSh.The relevan
e of the Shannon entropy in information theory is givenby the fa
t that hSh sets the maximum 
ompression rate of a sequen
efs1; s2; s3; : : :g. Indeed a theorem of Shannon states that, if the length Tof a sequen
e is large enough, there exists no other sequen
e (always usingm symbols), from whi
h it is possible to re
onstru
t the original one, whoselength is smaller than (hSh= lnm)T [4℄. In other words, hSh= lnm representsthe maximum allowed 
ompression rate. The relation between Shannon en-tropy and data 
ompression problems is well illustrated by 
onsidering theoptimal 
oding (Shannon�Fano) to map N obje
ts (e.g. the N -words CN )into sequen
es of binary digits (0; 1) [8℄. Denoting with `N the binary lengthof the sequen
e spe
ifying CN , we havelimN!1 h`N iN = hShln 2 ; (2.9)i.e., in a good 
oding, the mean length of a N -word is equal to N times theShannon entropy, apart from a multipli
ative fa
tor, sin
e in the de�nition(2.6) of hSh we used the natural logarithm and here we want to work witha two symbol 
ode.2.2.2. The Kolmogorov�Sinai entropyAfter the introdu
tion of the Shannon entropy we 
an easily de�ne theKolmogorov�Sinai entropy whi
h is the analogous measure of 
omplexity
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al systems. Consider a traje
tory, x(t), generated by adeterministi
 system, sampled at the times tj = j � , with j = 1; 2; 3; : : :.Perform a �nite partition A of the phase spa
e with the �nite number ofsymbols fsgA enumerating the 
ells of the partition. The time-dis
retizedtraje
tory x(tj) determines a sequen
e fs(1); s(2); s(3); : : :g, whose meaningis 
lear: at the time tj the traje
tory is in the 
ell labeled by s(j). Toea
h subsequen
e of length N � � one 
an asso
iate a word of length N :WNj (A) = (s(j); s(j + 1); : : : ; s(j + (N � 1))). If the system is ergodi
, aswe suppose, from the frequen
ies of the words one obtains the probabilitiesby whi
h the blo
k entropies HN (A) are 
al
ulated:HN (A) = � XfWN (A)gP (WN (A)) lnP (WN (A)): (2.10)The probabilities P (WN (A)), 
omputed by the frequen
ies ofWN (A) alonga traje
tory, are essentially dependent on the stationary measure sele
ted bythe traje
tory. The entropy per unit time of the traje
tory with respe
t tothe partition A, h(A), is de�ned as follows:hN (A) = 1� limN!1 1NHN (A) : (2.11)Noti
e that, for the deterministi
 systems we are 
onsidering, the entropy perunit time does not depend on the sampling time � [9℄. The KS-entropy (hKS),by de�nition, is the supremum of h(A) over all possible �nite partitions [9,10℄hKS = supA h(A) : (2.12)The extremal 
hara
ter of hKS makes every 
omputation based on the de�-nition (2.12), impossible in the majority of pra
ti
al 
ases. In this respe
t,a useful tool would be the Kolmogorov�Sinai theorem, through whi
h one isgranted that hKS = h(G) if G is a generating partition. A partition is said tobe generating if every in�nite sequen
e fsngn=1;:::;1 
orresponds to a singleinitial point. However the di�
ulty now is that, with the ex
eption of verysimple 
ases, we do not know how to 
onstru
t a generating partition. Weonly know that, a

ording to the Krieger theorem [11℄, there exists a gen-erating partition with k elements su
h that ehKS < k � ehKS + 1. Then, amore tra
table way to de�ne hKS is based upon 
onsidering the partition A�made up by a grid of 
ubi
 
ells of edge �, from whi
h one hashKS = lim�!0h(A�) : (2.13)We expe
t that h(A�) be
omes independent of � when A� is so �ne to be�
ontained� in a generating partition.
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tability 3587For dis
rete time maps what has been exposed above is still valid, with� = 1 (however, Krieger's theorem only applies to invertible maps).The important point to note is that, for a truly sto
hasti
 (i.e. non-deterministi
) system, with 
ontinuous states, h(A�) is not bounded andhKS =1.2.2.3. Algorithmi
 
omplexityThe Shannon entropy establishes a limit on how e�
iently the ensembleof messages emitted by a sour
e 
an be 
oded. However, we may wonderabout the 
ompressibility properties of a single sequen
e with no referen
e toits belonging to an ensemble. That is to say, we are looking for an universal
hara
terization of its 
ompressibility or, it is the same, an universal de�ni-tion of its information 
ontent. This problem 
an be addressed through thenotion of algorithmi
 
omplexity, that 
on
erns the di�
ulty in reprodu
inga given string of symbols.Everybody agrees that the binary digits sequen
e0111010001011001011010 : : : (2.14)is, in some sense, more random than1010101010101010101010 : : : (2.15)The notion of algorithmi
 
omplexity, independently introdu
ed by Kol-mogorov [5℄, Chaitin [12℄ and Solomonov [6℄, is a way to formalize the intu-itive idea of randomness of a sequen
e.Consider, for instan
e, a binary digit sequen
e (this does not 
onsti-tute a limitation) of length N , qN = (i1; i2; : : : ; iN ), generated by a 
ertain
omputer 
ode on a given ma
hineM. The algorithmi
 
omplexity (or algo-rithmi
 information 
ontent) KM(N) of qN is the bit-length of the shortest
omputer program able to give qN and to stop afterward. Of 
ourse, su
ha length depends not only on the sequen
e but also on the ma
hine. How-ever, Kolmogorov [5℄ proved the existen
e of a universal 
omputer, U , ableto perform the same 
omputation that a program p makes on M, with amodi�
ation of p that depends only on M. This implies that for all �nitestrings: KU (N) � KM(N) + CM ; (2.16)where KU (N) is the 
omplexity with respe
t to the universal 
omputer andCM depends only on the ma
hineM. We 
an 
onsider the algorithmi
 
om-plexity with respe
t to a universal 
omputer dropping the M-dependen
ein the symbol for the algorithmi
 
omplexity, K(N). The reason is that we
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ioni, A. Vulpianiare interested in the limit of very long sequen
es, N ! 1, for whi
h onede�nes the algorithmi
 
omplexity per unit symbol:C = limN!1 K(N)N ; (2.17)that, be
ause of (2.16), is an intrinsi
 quantity, i.e. independent of the ma-
hine.Now 
oming ba
k to the N -sequen
es (2.14) and (2.15), it is obvious thatthe latter 
an be obtained with a minimal program of length O(lnN) andtherefore when taking the limit N ! 1 in (2.17), one obtains C = 0. Of
ourse K(N) 
annot ex
eed N , sin
e the sequen
e 
an always be generatedby a trivial program (of bit length N)\PRINT i1; i2; : : : ; iN" : (2.18)Therefore, in the 
ase of a very irregular sequen
e, e.g., (2.14), one expe
tsK(N) / N (i.e. C 6= 0), and the sequen
e is named 
omplex (i.e. of nonzero algorithmi
 
omplexity) or random.Algorithmi
 
omplexity 
annot be 
omputed, and the un-
omputabilityofK(N)may be understood in terms of Gödel's in
ompleteness theorem [12℄.Beyond the problem of whether or notK(N) is 
omputable in a spe
i�
 
ase,the 
on
ept of algorithmi
 
omplexity brings an important improvement to
larify the vague and intuitive notion of randomness.Between the Shannon entropy, hSh, and the algorithmi
 
omplexity, thereexists the straightforward relationshiplimN!1 hK(N)iHN = 1ln 2 ; (2.19)where hK(N)i =PCN P (CN )KCN (N), beingKCN (N) the algorithmi
 
om-plexity of the N -words, in the ensemble of sequen
es, CN , with a givendistribution of probabilities, P (CN ). Therefore the expe
ted 
omplexityhK(N)=Ni is asymptoti
ally equal to the Shannon entropy (modulo the ln 2fa
tor). It is important to stress again that, apart from the numeri
al 
o-in
iden
e of the values of C and hSh= ln 2, there is a 
on
eptual di�eren
ebetween the information theory and the algorithmi
 
omplexity theory. TheShannon entropy essentially refers to the information 
ontent in a statisti
alsense, i.e. it refers to an ensemble of sequen
es generated by a 
ertain sour
e.The algorithmi
 
omplexity de�nes the information 
ontent of an individualsequen
e [13℄.The notion of algorithmi
 
omplexity 
an be also applied to the traje
-tories of a dynami
al system. This requires the introdu
tion of �nite open
overings of the phase spa
e, the 
orresponding en
oding of traje
tories into
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 sequen
es, and the sear
hing of the supremum of the algorithmi

omplexity per symbol at varying the 
overings [14℄. Brudno's and White'stheorems [15, 16℄ state that the 
omplexity C(x) for a traje
tory startingfrom the point x, is C(x) = hKSln 2 ; (2.20)for almost all x with respe
t to the natural invariant measure. The fa
torln 2 stems again from the 
onversion between natural logarithms and bits.This result indi
ates that the KS-entropy quanti�es not only the ri
h-ness of a dynami
al system but also the di�
ulty of des
ribing its typi
alsequen
es. 2.3. Algorithmi
 
omplexity and Lyapunov exponentLet us 
onsider a 1d 
haoti
 mapx(t+ 1) = f(x(t)) : (2.21)The transmission of the sequen
e fx(t); t = 1; 2; : : : ; Tg, a

epting onlyerrors smaller than a toleran
e �, is 
arried out by using the followingstrategy [18℄:1. Transmit the rule (2.21): for this task one has to use a number of bitsindependent of the sequen
e length T .2. Spe
ify the initial 
ondition x(0) with a pre
ision Æ0 using a �nitenumber of bits whi
h is independent of T .3. Let the system evolve till the �rst time �1 su
h that the distan
e be-tween two traje
tories, that was initially Æx(0) = Æ0, equals � andthen spe
ify again the new initial 
ondition x(�1) with pre
ision Æ0.4. Let the system evolve and repeat the pro
edure (2�3), i.e. ea
h timethe error a

eptan
e toleran
e is rea
hed spe
ify the initial 
onditions,x(�1 + �2); x(�1 + �2 + �3) : : :, with pre
ision Æ0. The times �1; �2; : : :are de�ned as follows: putting x0(�1) = x(�1) + Æ0, �2 is given by theminimum time su
h that jx0(�1 + �2)� x(�1 + �2)j � � and so on.Following the steps 1�4, the re
eiver 
an re
onstru
t, with a pre
ision �, thesequen
e fx(t)g, by simply iterating on a 
omputer the evolution law (2.21)between 1 and �1 � 1, �1 and �1 + �2 � 1, and so on. The amount of bitsne
essary to implement the above transmission (1�4) 
an be easily 
omputed.For simpli
ity of notation we introdu
e the quantities
i = 1�i ln �Æ0 (2.22)
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oni, M. Fal
ioni, A. Vulpianiwhi
h 
an be regarded as a sort of e�e
tive Lyapunov exponents [19, 20℄.The LE � 
an be written in terms of f
ig as follows� = h
ii = Pi �i
iPi �i = 1� ln �Æ0 ; (2.23)where � = 1N X �i ;is the average time after whi
h we have to transmit the new initial 
ondition.Note that to obtain � from the 
i's requires the average (2.23), be
ause thetransmission time, �i, is not 
onstant. If T is large enough the number oftransmissions, N , is T=� ' �T= ln(�=Æ0). Therefore, noting that in ea
htransmission, a redu
tion of the error from � to Æ0 requires the employ ofln2(�=Æ0) bits, the total amount of bits used in the transmission isT� ln2 �Æ0 = �ln 2T : (2.24)In other words the number of bits for unit time is proportional to �.In more than one dimension, we have simply to repla
e � with hKS in(2.24), be
ause the above transmission pro
edure has to be repeated for ea
hof the expanding dire
tions.3. Limitation of the Lyapunov exponentand Kolmogorov�Sinai entropyLyapunov exponents and KS-entropy are properly de�ned only in spe-
i�
 asymptoti
 limits: very long times and arbitrary a

ura
y. However,predi
tability problem in realisti
 situations entails 
onsidering �nite timeintervals and limited a

ura
y. The �rst obvious way for quantifying thepredi
tability of a physi
al system is in terms of the predi
tability time Tp,i.e. the time interval on whi
h one 
an typi
ally fore
ast the system. Asimple argument suggests Tp � 1� ln��Æ0� : (3.1)However, the above relation is too naive to be of pra
ti
al relevan
e, in anyrealisti
 system. Indeed, it does not take into a

ount some basi
 featuresof dynami
al systems. The Lyapunov exponent is a global quantity, be-
ause it measures the average rate of divergen
e of nearby traje
tories. Ingeneral there exist �nite-time �u
tuations and their probability distributionfun
tions (pdf) is important for the 
hara
terization of predi
tability. The
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tability 3591generalized Lyapunov exponents have been introdu
ed with the purpose totake into a

ount su
h �u
tuations [19, 20℄. Moreover, the Lyapunov expo-nent is de�ned for the linearized dynami
s, i.e., by 
omputing the rate ofseparation of two in�nitesimally 
lose traje
tories. On the other hand, inmeasuring the predi
tability time (3.1) one is interested in a �nite toleran
e�, be
ause the initial error Æ0 is �nite. A re
ent generalization of the Lya-punov exponent to �nite size errors extends the study of the perturbationgrowth to the nonlinear regime, i.e. both Æ0 and � are not in�nitesimal [21℄.3.1. Growth of non in�nitesimal perturbationsWe dis
uss now an example where the Lyapunov exponent is of little rel-evan
e for 
hara
terizing the predi
tability. This problem 
an be illustratedby 
onsidering the following 
oupled map model:� x(t+ 1) = Rx(t) + "h(y(t)) ;y(t+ 1) = G(y(t)) ; (3.2)where x 2 IR2, y 2 IR1, R is a rotation matrix of arbitrary angle �, h is ave
tor fun
tion and G is a 
haoti
 map. For simpli
ity we 
onsider a linear
oupling h(y) = (y; y) and the logisti
 map G(y) = 4y(1� y).For " = 0 we have two independent systems: a regular and a 
haoti
 one.Thus the Lyapunov exponent of the x subsystem is �x(" = 0) = 0, i.e., itis 
ompletely predi
table. On the 
ontrary, the y subsystem is 
haoti
 with�y = �1 = ln2. The swit
hing on of a small 
oupling (" > 0) yields a singlethree-dimensional 
haoti
 system with a positive global Lyapunov exponent� = �y +O(") : (3.3)A dire
t appli
ation of (3.1) would giveT (x)p � Tp � 1�y ; (3.4)but this result is 
learly una

eptable: the predi
tability time for x seemsto be independent of the value of the 
oupling ". This is not due to anartifa
t of the 
hosen example, indeed, the same argument applies to manyphysi
al situations [22℄. A well known example is the gravitational threebody problem, with one body (asteroid) mu
h smaller than the other two(planets). When the gravitational feedba
k of the asteroid on the two planetsis negle
ted (restri
ted problem), one has a 
haoti
 asteroid in the regular�eld of the planets. As soon as the feedba
k is taken into a

ount (i.e. " > 0in the example) one has a non-separable three body system with a positiveLE. Of 
ourse, intuition 
orre
tly suggests that, in the limit of small asteroid
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ioni, A. Vulpianimass ("! 0), a fore
ast of the planet motion should be possible even for verylong times. The apparent paradox arises from the misuse of formula (3.1),stri
tly valid for tangent ve
tors, to the 
ase of non in�nitesimal regimes. Assoon as the errors be
ome large, the full nonlinear evolution of the three bodysystem has to be taken into a

ount. This situation is 
learly illustrated bythe model (3.2) in �gure 1. The evolution of Æx is given byÆx(t+ 1) = RÆx(t) + "Æh(y) ; (3.5)where, with our 
hoi
e, Æh = (Æy; Æy). At the beginning, both jÆxj and Æygrow exponentially. However, the available phase spa
e for y is �nite and theun
ertainty rea
hes the saturation value Æy � O(1) in a time t � 1=�1. Atlarger times the two realizations of the y variable are 
ompletely un
orrelatedand their di�eren
e Æy in (3.5) a
ts as a noisy term. As a 
onsequen
e, thegrowth of the un
ertainty on x be
omes di�usive with a di�usion 
oe�
ientproportional to "2 [22℄ jÆx(t)j � "t1=2 (3.6)so that: T (x)p � "�2 : (3.7)
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1 10 100 1000 10000
tFig. 1. Growth of error jÆx(t)j for the 
oupled map (3.2). The rotation angle is� = 0:82099, the 
oupling strength " = 10�5 and the initial error only on the yvariable is Æy = Æ0 = 10�10. Dashed line jÆx(t)j � e�1t where �1 = ln 2, solid linejÆx(t)j � t1=2.This example shows that, even in simple systems, the Lyapunov exponent
an be of little relevan
e for the 
hara
terization of the predi
tability.In more 
omplex systems, in whi
h di�erent s
ales are present, one istypi
ally interested in fore
asting the large s
ale motion, while the LE is
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tability 3593related to the small s
ale dynami
s. A familiar example of that is weatherfore
ast: despite the LE of the atmosphere is indeed rather large, due to thesmall s
ale 
onve
tive motion, large-s
ale weather predi
tions are possiblefor about 10 days [23, 24℄. It is thus natural to seek for a generalization ofthe LE to �nite perturbations from whi
h one 
an obtain a more realisti
estimation for the predi
tability time. It is worth underlining the importantfa
t that �nite errors are not 
on�ned in the tangent spa
e but are governedby the 
omplete nonlinear dynami
s. In this sense the extension of the LEto �nite errors will give more information on the system.Aiming to generalize the LE to non in�nitesimal perturbations let usnow de�ne the Finite Size Lyapunov Exponent (FSLE) [21℄. Consider areferen
e x(t) and a perturbed traje
tory x0(t), su
h that jx0(0)�x(0)j � Æ.One integrates the two traje
tories and 
omputes the time �1(Æ; r) ne
essaryfor the separation jx0(t) � x(t)j to grow from Æ to rÆ. At time t= �1(Æ; r)the distan
e between the traje
tories is res
aled to Æ and the pro
edure isrepeated in order to 
ompute �2(Æ; r); �3(Æ; r) : : :.The threshold ratio r must be r > 1, but not too large in order to avoid
ontributions from di�erent s
ales in �(Æ; r). A typi
al 
hoi
e is r = 2 (forwhi
h �(Æ; r) is properly a �doubling� time) or r = p2. In the same spiritof the dis
ussion leading to Eqs (2.22) and (2.23), we may introdu
e ane�e
tive �nite size growth rate:
i(Æ; r) = 1�i(Æ; r) ln r : (3.8)After having performed N error-doubling experiments, we 
an de�ne theFSLE as �(Æ) = h
(Æ; r)it = � 1�(Æ; r)�t ln r = 1h�(Æ; r)ie ln r ; (3.9)where h�(Æ; r)ie is h�(Æ; r)ie = 1N NXn=1 �n(Æ; r) ; (3.10)see [25℄ for details. In the in�nitesimal limit, the FSLE redu
es to thestandard Lyapunov exponent limÆ!0 �(Æ) = �1 : (3.11)In pra
ti
e this limit means that �(Æ) displays a 
onstant plateau at �1 forsu�
iently small Æ (Fig. 2). For �nite value of Æ the behavior of �(Æ) dependson the details of the non linear dynami
s. For example, in the model (3.2)
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δFig. 2. �(Æ) as a fun
tion of Æ for the 
oupled map (3.2) with " = 10�5. Theperturbation has been initialized as in Fig. 1. For Æ ! 0, �(Æ) ' �1 (horizontalline). The dashed line shows the behavior �(Æ) � Æ�2.the di�usive behavior (3.6), by simple dimensional arguments, 
orrespondsto �(Æ) � Æ�2. Sin
e the FSLE measures the rate of divergen
e of traje
toriesat �nite errors, one might wonder whether it is just another way to look atthe average response hln(jx0(t) � x(t)j)i as a fun
tion of time. The answeris negative, be
ause taking the average at �xed time is not the same as
omputing the average doubling time at �xed s
ale, as in (3.9). This isparti
ularly 
lear in the 
ase of strongly intermittent system, in whi
h jÆx(t)j
an be very di�erent in ea
h realization. In the presen
e of intermitten
y,averaging over di�erent realizations at �xed times 
an produ
e a spuriousregime due to the superposition of exponential and di�usive 
ontributionsby di�erent samples at the same time [25℄. The FSLE method 
an be easilyapplied to data analysis [26℄. For other approa
hes addressing the problemof non-in�nitesimal perturbations see [27, 28℄.3.2. The �-entropyFor most systems, the 
omputation of Kolmogorov�Sinai entropy (2.12)is pra
ti
ally impossible, be
ause it involves the limit on arbitrary �ne res-olution and in�nite times. However, in the same philosophy of the FSLE,by relaxing the requirement of arbitrary a

ura
y, one 
an introdu
e the�-entropy whi
h measures the amount of information for reprodu
ing a tra-je
tory with �nite a

ura
y � in phase-spa
e. Roughly speaking the �-entropy
an be 
onsidered the 
ounterpart, in information theory, of the FSLE. Su
ha quantity was originally introdu
ed by Shannon [4℄, and by Kolmogorov [29℄.Re
ently Gaspard and Wang [30℄ made use of this 
on
ept to 
hara
terize alarge variety of pro
esses.
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tability 3595We start with a 
ontinuous-time variable x(t) 2 IRd, whi
h representsthe state of a d-dimensional system, we dis
retize the time by introdu
ingan interval � and we 
onsider the new variableX(m)(t) = (x(t);x(t+ �); : : : ;x(t+ (m� 1)�)) : (3.12)Of 
ourse X(m)(t) 2 IRmd and it 
orresponds to the traje
tory whi
h lastsfor a time T = m� .In data analysis, the spa
e where the state of the system lives is unknownand usually only a s
alar variable u(t) 
an be measured. Then, one 
onsid-ers ve
tors (u(t); u(t+ �); : : : ; u(t+m� � �)), that live in IRm and allow are
onstru
tion of the original phase spa
e, known as delay embedding in theliterature [31�33℄, and it is a spe
ial 
ase of (3.12). Introdu
e now a parti-tion of the phase spa
e IRd, using 
ells of edge � in ea
h of the d dire
tions.Sin
e the region where a bounded motion evolves 
ontains a �nite numberof 
ells, ea
h X(m)(t) 
an be 
oded into a word of length m, out of a �nitealphabet:X(m)(t) �!Wm(�; t) = (i(�; t); i(�; t + �); : : : ; i(�; t+m� � �)) ; (3.13)where i(�; t+ j�) labels the 
ell in IRd 
ontaining x(t+ j�). From the timeevolution one obtains, under the hypothesis of ergodi
ity, the probabilitiesP (Wm(�)) of the admissible words fWm(�)g. We 
an now introdu
e the(�; �)-entropy per unit time, h(�; �) [4℄:h(�; �) = 1� limm!1 1mHm(�; �) ; (3.14)where Hm is the blo
k entropy of blo
ks (words) with length m:Hm(�; �) = � XfWm(�)gP (Wm(�)) lnP (Wm(�)) : (3.15)For the sake of simpli
ity, we ignored the dependen
e on details of the par-tition. To make h(�; �) partition-independent one has to 
onsider a generi
partition of the phase spa
e fAg and to evaluate the Shannon entropy onthis partition: hSh(A; �). The "-entropy is thus de�ned as the in�mum overall partitions for whi
h the diameter of ea
h 
ell is less than " [30℄:h("; �) = infA:diam(A)�" hSh(A; �) : (3.16)Note that the time dependen
e in (3.16) is trivial for deterministi
 systems,and that in the limit �! 0 one re
overs the Kolmogorov�Sinai entropyhKS = lim�!0h(�; �) :
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ioni, A. Vulpiani4. Chara
terization of 
omplexity and system modelingIn the previous Se
tions, we dis
ussed the 
hara
terization of dynami
albehaviors when the evolution laws are known either exa
tly or with somedegree of un
ertainty. In experimental investigations, however, only timere
ords of some observable are available, while the equation of motion forthe observable are generally unknown. The predi
tability problem of thislatter 
ase, at least from a 
on
eptual point of view, 
an be treated as if theevolution laws were known. Indeed, in prin
iple, the embedding te
hniqueallows for a re
onstru
tion of the phase spa
e [31�33℄. Nevertheless there arerather severe limitations for high dimensional systems [34℄ and even in lowdimensional ones non trivial features appear in the presen
e of noise [32℄.In this Se
tion we show that an entropi
 analysis at di�erent resolutions
ales provides a pragmati
 
lassi�
ation of a signal and gives suggestions formodeling of systems. In parti
ular we illustrate, using some examples, howquantities su
h as the �-entropy or the FSLE 
an display a subtle transitionfrom the large to the small s
ales. A negative 
onsequen
e of this is thedi�
ulty in distinguishing, only from data analysis, a genuine deterministi

haoti
 system from one with intrinsi
 randomness [35℄. On the other hand,the way the �-entropy or FSLE depends on the (resolution) s
ale, allows fora 
lassi�
ation of the sto
hasti
 or 
haoti
 
hara
ter of a signal, and thisgives some freedom in modeling the system.4.1. How random is a random number generator?The �true 
hara
ter� of the number sequen
e (x1; x2; : : :) obtained by a(pseudo) random number generator (PRNG) on a 
omputer is an issue ofparamount importan
e in 
omputer simulations and modeling. One wouldlike to have a sequen
e with a random 
hara
ter as mu
h as possible, but isfor
ed to use deterministi
 algorithms to generate (x1; x2; : : :). This subse
-tion is mainly based on the paper [36℄. A simple and popular PRNG is themultipli
ative 
ongruent one:zn+1 = N1zn mod N2 ;xn+1 = zn+1N2 ; (4.1)with an integer multiplier N1 and modulus N2. The fzng are integer num-bers from whi
h one hopes to generate sequen
e of random variables fxng,whi
h are un
orrelated and uniformly distributed in the unit interval. A �rstproblem arises from the periodi
 nature of the rule (4.1) as a 
onsequen
eof its dis
rete nature. Note that the rule (4.1) 
an be interpreted also as adeterministi
 dynami
al system, i.e.xn+1 = N1xn mod 1 ; (4.2)
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h has a uniform invariant measure and a KS entropy hKS = � = lnN1.When imposing the integer arithmeti
s of Eq. (4.1) onto this system, weare, in the language of dynami
al systems, 
onsidering an unstable periodi
orbit of Eq. (4.2), with the parti
ular 
onstraint that, to a
hieve the periodN2 � 1 (i.e. all integers < N2 should belong to the orbit of Eq. (4.1)),it has to 
ontain all values k=N2, with k = 1; 2; � � � ; N2 � 1. Sin
e thenatural invariant measure of Eq. (4.2) is uniform, su
h an orbit representsthe measure of a 
haoti
 solution in an optimal way. Every sequen
e ofa PRNG is 
hara
terized by two quantities: its period T and its positiveLyapunov exponent �, whi
h is identi
al to the entropy of a 
haoti
 orbitof the equivalent dynami
al system. Of 
ourse, a good random numbergenerator must have a very large period, and as large as possible entropy.It is natural to ask how this apparent randomness 
an be re
on
iled withthe fa
ts that (a) the PRNG is a deterministi
 dynami
al systems (b) it isa dis
rete state system. If the period is long enough, on shorter times onlypoint (a) matters and it 
an be dis
ussed in terms of the behavior of the�-entropy, h(�). At high resolutions (� � 1=N1), it seems rather reasonable tothink that the true deterministi
 
haoti
 nature of the 
ongruent rule showsup, and, therefore, h(�) ' hKS = lnN1. On the other hand, for � � 1=N1,one expe
ts to observe the �apparent random� behavior of the system, i.e.h(�) � ln(1=�), see Fig 3.
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Fig. 3. The �-entropies, hm(�), at varying the embedding dimension m for themultipli
ative 
ongruential random number generator Eq. 4.1 for di�erent 
hoi
esof N1 and N2.
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ioni, A. Vulpiani4.2. High dimensional systemsWe dis
uss an example of high-dimensional system with a non-trivialbehavior at varying the resolution s
ales, namely the emergen
e of nontrivial
olle
tive behavior.Let us 
onsider a globally 
oupled map (GCM) de�ned as followsxn(t+ 1) = (1� ")fa(xn(t)) + "N NXi=1 fa(xi(t)) ; (4.3)where N is the total number of elements, and fa(u) is a 
haoti
 map on theinterval [0; 1℄, depending on the 
ontrol parameter a.The evolution of a ma
ros
opi
 variable, e.g., the 
enter of massm(t) = 1N NXi=1 xi(t) ; (4.4)upon varying " and a in Eq. (4.3), displays di�erent behaviors [38℄:(a) Standard Chaos: m(t) obeys a Gaussian statisti
s with a standarddeviation �N =phm(t)2i � hm(t)i2 � N�1=2;(b) Ma
ros
opi
 Periodi
ity: m(t) is a superposition of a periodi
 fun
tionand small �u
tuations O(N�1=2);(
) Ma
ros
opi
 Chaos: m(t) exhibits an irregular motion, as seen by plot-ting m(t) vs m(t � 1). The plot sket
hes a stru
tured fun
tion (withthi
kness � N�1=2), and suggests a 
haoti
 motion for m(t).In the 
ase of ma
ros
opi
 
haos, the 
enter of mass is expe
ted to evolvewith typi
al times longer than the 
hara
teristi
 time 1=�1 of the full dy-nami
s (mi
ros
opi
 dynami
s); �1 being the Lyapunov exponent of theGCM. Indeed, 
on
eptually, ma
ros
opi
 
haos for GCM 
an be thought ofas the analogous of the hydro-dynami
al 
haos for mole
ular motion. Inspite of a huge mi
ros
opi
 Lyapunov exponent (�1 � 1=�
 � 1011s�1, �
is the 
ollision time), one 
an have rather di�erent behaviors at a hydro-dynami
al (
oarse grained) level: regular motion (�hydro � 0) or 
haoti
motion (0 < �hydro � �1). In prin
iple, if the hydrodynami
 equations wereknown, a 
hara
terization of the ma
ros
opi
 behavior would be possible bymeans of standard dynami
al system te
hniques. However, in generi
 CMLthere are no general systemati
 methods to build up the ma
ros
opi
 equa-tions, apart from parti
ular 
ases [37℄. We re
all that for 
haoti
 systems,in the limit of in�nitesimal perturbations Æ ! 0, one has �(Æ) ! �1, i.e.
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tability 3599�(Æ) displays a plateau at the value �1 for su�
iently small Æ. However,for non in�nitesimal Æ, one 
an expe
t that the Æ-dependen
e of �(Æ) maygive information on the 
hara
teristi
 time-s
ales governing the system, and,hen
e, it 
ould be able to 
hara
terize the ma
ros
opi
 motion. In parti
u-lar, at large s
ales (Æ � 1=pN), the fast mi
ros
opi
 
omponents saturateand �(Æ) � �M , where �M 
an be fairly 
alled the �ma
ros
opi
� Lyapunovexponent.The FSLE has been determined by looking at the evolution of jÆm(t)j,whi
h has been initialized at the value Æm(t) = Æmin by shifting all theelements of the unperturbed system by the quantity Æmin (i.e. x0i(0) = xi(0)+Æmin), for ea
h realization. The 
omputation has been performed by 
hoosingthe tent map as lo
al map, but similar results 
an be obtained for othermaps [38, 39℄.The main result 
an be summarized as follows:� at small Æ (� 1=pN), where N is the number of elements, the �mi-
ros
opi
� Lyapunov exponent is re
overed, i.e. �(Æ) � �mi
ro ,� at large Æ (� 1=pN), another plateau �(Æ) � �ma
ro appears, whi
h
an be mu
h smaller than the mi
ros
opi
 one.The emerging s
enario is that, at a 
oarse-grained level, i.e. Æ � 1=pN , thesystem 
an be des
ribed by an �e�e
tive� hydro-dynami
al equation (whi
hin some 
ases 
an be low-dimensional), while the �true� high-dimensional
hara
ter appears only at very high resolution, i.e.Æ � Æ
 = O� 1pN� :4.3. Di�usion in deterministi
 systems and Brownian motionConsider the following map whi
h generates a di�usive behavior on thelarge s
ales [40℄: xt+1 = [xt℄ + F (xt � [xt℄) ; (4.5)where [xt℄ indi
ates the integer part of xt and F (y) is given by:F (y) = � (2 + �)y if y 2 [0; 1=2℄(2 + �)y � (1 + �) if y 2 [1=2; 1℄ : (4.6)The largest Lyapunov exponent � 
an be obtained immediately: � = ln jF 0j,with F 0 = dF=dy =2+�. One expe
ts the following s
enario for h(�):h(�) � � for � < 1 ; (4.7)
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ioni, A. Vulpianih(�) / D�2 for � > 1; (4.8)where D is the di�usion 
oe�
ient, h(xt � x0)2i � 2D t for large t. Considernow a sto
hasti
 system, namely a noisy mapxt+1 = [xt℄ +G (xt � [xt℄) + ��t ; (4.9)where G(y), as shown in Fig. 4, is a pie
e wise linear map whi
h approximatesthe map F (y), and �t is a sto
hasti
 pro
ess uniformly distributed in theinterval [�1; 1℄, and no 
orrelation in time. When jdG=dyj < 1, as is the
ase we 
onsider, the map (4.9), in the absen
e of noise, gives a non-
haoti
time evolution.
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xFig. 4. The map F (x) (4.6) for � = 0:4 is shown with superimposed the approxi-mating (regular) map G(x) (4.9) obtained by using 40 intervals of slope 0.Now we 
ompare the �nite size Lyapunov exponent for the 
haoti
 map(4.5) and for the noisy one (4.9). In the latter the FSLE has been 
omputedusing two di�erent realizations of the noise. In Fig. 5 we show �(�) versus �for the two 
ases. The two 
urves are pra
ti
ally indistinguishable in theregion � > �. The di�eren
es appear only at very small s
ales � < � whereone has a �(�) whi
h grows with � for the noisy 
ase, remaining at the samevalue for the 
haoti
 deterministi
 
ase.Both the FSLE and the (�; �)-entropy analysis show that we 
an distin-guish three di�erent regimes observing the dynami
s of (4.9) on di�erentlength s
ales. On the large length s
ales � > 1 we observe di�usive behaviorin both models. On length s
ales � < � < 1 both models show 
haoti
deterministi
 behavior, be
ause the entropy and the FSLE are independentof � and larger than zero. Finally on the smallest length s
ales � < � wesee sto
hasti
 behavior for the system (4.9), i.e. h(") � � ln("), while thesystem (4.5) still shows 
haoti
 behavior.
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ate the Lyapunov exponent � = ln 2:4 andthe di�usive behavior �(�) � ��2.4.4. On the distin
tion between 
haos and noiseThe above examples show that the distin
tion between 
haos and noise
an be a highly non trivial task, whi
h makes sense only in very pe
uliar
ases, e.g., very low dimensional systems. Nevertheless, even in this 
ase,the entropi
 analysis 
an be unable to re
ognize the �true� 
hara
ter of thesystem due to the la
k of resolution. Again, the 
omparison between thedi�usive map (4.5) and the noisy map (4.9) is an example of these di�
ulties.For � � � � 1 both the system (4.5) and (4.9), in spite of their �true�
hara
ter, will be 
lassi�ed as 
haoti
, while for � � 1 both 
an be 
onsideredas sto
hasti
.In high-dimensional 
haoti
 systems, with N degrees of freedom, one hastypi
ally h(�) = hKS � O(N) for � � �
 (where �
 ! 0 as N ! 1) whilefor � � �
, h(�) de
reases, often with a power law [30℄. Sin
e also in somesto
hasti
 pro
esses the �-entropy obeys a power law, this 
an be a sour
eof 
onfusion.These kind of problems are not abstra
t ones, as a re
ent debate on �mi-
ros
opi
 
haos� demonstrates [41�43℄. The dete
tion of mi
ros
opi
 
haosby data analysis has been re
ently addressed in a work of Gaspard et al.[41℄. These authors, from an entropi
 analysis of an ingenious experimenton the position of a Brownian parti
le in a liquid, 
laim to give an empiri
aleviden
e for mi
ros
opi
 
haos. In other words, they state that the di�usivebehavior observed for a Brownian parti
le is the 
onsequen
e of 
haos at amole
ular level. Their work 
an be brie�y summarized as follows: from along (� 1:5 � 105 data) re
ord of the position of a Brownian parti
le they
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ompute the �-entropy with the Cohen�Pro
a

ia method [44℄ from whi
hthey obtain: h(�) � D�2 ; (4.10)where D is the di�usion 
oe�
ient. Then, assuming that the system is de-terministi
, and making use of the inequality h(� > 0) � hKS, they 
on
ludethat the system is 
haoti
. However, their result does not give a dire
t ev-iden
e that the system is deterministi
 and 
haoti
. Indeed, the power law(4.10) 
an be produ
ed with di�erent me
hanisms:1 a genuine 
haoti
 system with di�usive behavior, as the map (4.6);2 a non 
haoti
 system with some noise, as the map (4.9), or a genuineBrownian system;3 a deterministi
 linear non 
haoti
 system with many degrees of freedom(see for instan
e [45℄);4 a �
ompli
ated� non 
haoti
 system as the Ehrenfest wind-tree modelwhere a parti
le di�uses in a plane due to 
ollisions with randomlypla
ed, �xed oriented square s
atters, as dis
ussed by Cohen et al. [42℄in their 
omment to Ref. [41℄.It seems to us that the weak points of the analysis in Ref. [41℄ are:(a) the expli
it assumption that the system is deterministi
;(b) the limited number of data points and therefore limitations in bothresolution and blo
k length.The point (a) is 
ru
ial, without this assumption (even with an enormousdata set) it is not possible to distinguish between 1 and 2. One has to saythat in the 
ases 3 and 4 at least in prin
iple it is possible to understandthat the systems are �trivial� (i.e. not 
haoti
) but for this one has to use ahuge number of data. For example Cohen et al. [42℄ estimated that in orderto distinguish between 1 and 4 using realisti
 parameters of a typi
al liquid,the number of data points required has to be at least � 1034.Con
luding, we have the apparently paradoxi
al result that �
omplexity�helps in the 
onstru
tion of models. Basi
ally, in the 
ase in whi
h onehas a variety of behaviors at varying the s
ale resolution, there is a 
ertainfreedom on the 
hoi
e of the model to adopt. For some systems the behaviorat large s
ales 
an be realized both with 
haoti
 deterministi
 models orsuitable sto
hasti
 pro
esses. From a pragmati
 point of view, the fa
t thatin 
ertain sto
hasti
 pro
esses h(�) � ��� 
an be indeed extremely usefulfor modeling su
h high-dimensional systems. Perhaps, the most relevant
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ase in whi
h one 
an use this freedom in modeling is the fully developedturbulen
e whose non in�nitesimal (the so-
alled inertial range) properties
an be su

essfully mimi
ked in terms of multi-a�ne sto
hasti
 pro
ess (seeRef. [46℄). 5. Con
luding remarksThe guideline of this paper has been the interpretation of di�erent aspe
tsof the predi
tability of a system as a way to 
hara
terize its 
omplexity.We have dis
ussed the relation between 
haoti
ity, the Kolmogorov�Sinaientropy and algorithmi
 
omplexity. As 
learly exposed in the seminal worksof Alekseev and Yakobson [14℄ and Ford [17℄, the time sequen
es generatedby a system with sensitive dependen
e on initial 
onditions have non-zero al-gorithmi
 
omplexity. A relation exists between the maximal 
ompression ofa sequen
e and its KS-entropy. Therefore, one 
an give a de�nition of 
om-plexity, without referring to a spe
i�
 des
ription, as an intrinsi
 propertyof the system.The study of these di�erent aspe
ts of predi
tability 
onstitutes a usefulmethod for a quantitative 
hara
terization of �
omplexity�, suggesting thefollowing equivalen
es:Complex = Un
ompressible = Unpredi
table (5.1)The above point of view, based on dynami
al systems and information the-ory, quanti�es the 
omplexity of a sequen
e 
onsidering ea
h symbol relevantbut it does not 
apture the stru
tural level. Let us 
larify this point withthe following example. A binary sequen
e obtained with a 
oin tossing is,from the point of view adopted in this review, 
omplex sin
e it 
annot be
ompressed (i.e. it is unpredi
table). On the other hand su
h a sequen
eis somehow trivial, i.e. with low �organizational� 
omplexity. It would beimportant to introdu
e a quantitative measure of this intuitive idea. Theprogresses of the resear
h on this intriguing and di�
ult issue are still ratherslow. We just mention some of the most promising proposals as the logi
aldepth and the sophisti
ation [47℄.We thank G. Bo�etta, A. Celani, D. Vergni and M. Cen
ini for the long
ollaboration and many fruitful dis
ussions on the subje
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