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We analyze a thermally activated bimolecular reaction in a dilute gas
proceeding with introduction of the Prigogine-Xhrouet model (PX) for the
reactive cross section. We use the Shizgal-Karplus perturbation method
of solution of the Boltzmann equation for reactions A + A — B + B and
A+ A 2 B+ B to obtain the analytical expressions for the nonequilibrium
temperatures of reagents and for the rate of chemical reaction. We present
the results obtained within one and two Sonine polynomials approxima-
tions. The rate constant of chemical reaction depends on concentration of
products for the first reaction only and for the second reaction is constant.
The analytical results for the temperature of the reagent A and its value
in the beginning of reaction for the product B are compared with those
obtained from the Monte Carlo computer simulations with use of the Bird
method. It is shown that the nonequilibrium effects in Shizgal-Karplus
temperatures and in decrease of the chemical constant rate are more pro-
nounced than for the lines-of-centers model. For the PX model the rate
constant can be decreased even 4 times.
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1. Introduction

The nonequilibrium effects connected with proceeding of a bimolecu-
lar chemical reaction in a dilute gas were first analyzed by Prigogine and
Xhrouet [1]. These authors [1| using the perturbation method |[2] solved
the Boltzmann equation for the early stages of reaction in which the role of
products could be neglected. The early stages of chemical reaction were also
analyzed by Present [3,4]| who introduced the line-of-centers model for this
purpose. In all those papers [1,3,4] one temperature of reacting system was
introduced because the products were neglected. As shown by Shizgal and
Karplus [5,6], in an analysis of further stages of chemical reaction the role
of products becomes important. In this case the reagents can have different
nonequilibrium temperatures. Recently, Shizgal and Napier [7] have ana-
lyzed carefully the possibilities of solutions of the Boltzmann equation for
reactions proceeding in various conditions and described the differences be-
tween nonequilibrium effects in the early and further stages of chemical reac-
tion. In Refs. [3-7], as well as in many other papers [8-22| the line-of-centers
model was introduced because this model is simple and gives reasonable re-
sults. However, another model introduced in the first paper [1] has not been
used for the description of the further stages of chemical reaction yet.

It is important that for the stages of reaction in which the reaction
proceeds slow enough interesting analytical results can be obtained. Namely,
the relative decrease of the forward chemical reaction rate depends on the
molar fraction of the product and, on the contrary, for the overall reaction
rate such a decrease is constant. This problem was analyzed in some recent
papers for the line-of-centers model [23-26] and also for the reverse line-of-
centers model [26] for which the Arrhenius activation energy can be very
small and even negative [27-30].

The aim of this paper is to derive some analytical equations for the model
originally used by Pigogine and Xhrouet [1], i.e. the expressions for the
nonequilibrium Shizgal-Karplus temperatures and for the relative decrease
of the rate constant of chemical reaction. We derive these results in the same
way as used previously [23] for the line-of-centers model. We verify the new
analytical results by the Monte Carlo simulations in a similar way as that
presented in Ref. [23].

Our paper is organized as a follows: in Sec. 2 we describe definitions
of quantities used to characterize the nonequilibrium effects; in Sec. 3 we
formulate the Boltzmann equation for the chemical reactions considered; in
Sec. 4 we present the perturbation solution of the Boltzmann equation ob-
tained within the Shizgal-Karplus method; in Sec. 5 we show the analytical
expressions describing nonequilibrium effects on temperature of components
and in Sec. 6 such expressions for the rate of chemical reaction; in Sec. 7
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we characterize the reacting system used for Monte Carlo simulations and
compare the numerical results obtained from these simulations with the an-
alytical results. In Sec. 8 we discuss the results obtained.

2. Definitions of quantities describing nonequilibrium effects
of reaction

We analyze the bimolecular chemical reactions
A+ A— B+ B, (2.1)

A+A=B+B. (2.2)

In Eq. (2.1) we take into consideration only the forward reaction, whereas
in Eq. (2.2) we also include the reverse reaction. We introduce the nonequi-
librium value of the rate of forward chemical reaction in the usual way

dn
vAf = — <d—tA) = // fa1fazo0gdf2dear deas (2.3)
f

where the index f is introduced to distinguish the forward reaction from
the reverse one for which the index r will be introduced; n 4 is the number
density, f41 and fa9 are the velocity distribution functions of two colliding
molecules A, oy is the differential reactive cross section, {2 is the solid angle,
ca1, ca2 and g denote the velocities and relative velocity, respectively. The
equilibrium value of v4¢ is

“S)f) = // ffﬁ)f,(gao gdf2deardeas, (2.4)

where () is the Maxwell-Boltzmann velocity distribution function at tem-

perature T
0) ma \*? mack
Ja = "A<27rkT) P < T okT ) ’ (2:9)

where m 4 denotes the molecular mass and k is the Boltzmann constant.
These equations can be also used for the component B if the indices A are
replaced by indices B. However, it is important to take into consideration
that the total rate of chemical reaction is v4 which can be expressed as

VA = VaAf + VAr = Var — UBF , (2.6)

©) _ ) 4 0 _ ) _ ©

Vy = Uyp H Uy = Uyp — Upp (2.7)
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We define also the following useful quantities

URf

anZl_W (R:AaB)a (28)
VRt

nRZl_% (R:AaB)a (29)
YR

which are very convenient for a description of nonequilibrium corrections to
the rate of chemical reaction.
We introduce as Shizgal and Karplus [5] the temperature of components

2 1
Trp = TSK = - 2 — A B 2.1
r=Tg 3an/fR2chRch (R ,B) (2.10)

and the temperature of the system is related to these temperatures by

naTs +nplB
na+ng

T = (2.11)
The change of temperature Tk due to nonequilibrium effects can be calcu-

lated as
ATr =T — THK (R=A,B), (2.12)

where T3K is the nonequilibrium temperature (see Eq. (2.10)). As in our
previous papers we introduce the indices SK to emphasize that this is the
Shizgal-Karplus temperature. The quantities 7 (see Egs. (2.8) and (2.9))
and ATg (see Eq. (2.12)) can be used to describe simple analytical expres-
sions obtained from the perturbation theory. In order to get these expres-
sions we need to solve the Boltzmann equation.

3. The Boltzmann equation
We assume that the reagents are hard spheres and that their masses and
diameters do not change when the reaction proceeds

myg=mp=m dy=dp =d, (3.1)

where d denotes the diameter. After taking into consideration Eq. (3.1)
we write down the Boltzmann equation [22,23] for reaction (2.2) for the
component A in the following form

ofa

W = lg + Ire (32)

where ¢ is the time and
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Iy = // (faifaz — farfas) 0aag d2des
+ / / (fafp — fafp) oapgdQdes, (3.3)
Lo = / / (Forfme — Fanfi) o0 gd2des | (3.4)

where f£ are the velocity distribution functions for i-th component after
collisions, respectively, o;; are the differential elastic cross sections for col-
lisions between spheres 7 and 7, ¢s is shortly written to denote the velocity
of second colliding molecule. It is worthwhile to observe that in Eq. (3.2)
the post-collisional values of fZ' appear because of the reasons discussed in
Refs. [1,2]. The Boltzmann equation for the change of fp in time may be
written in the same way after changing the appropriate indices only.

We neglect all heat effects of this reaction, i.e. we assume that this
reaction is neither exothermal nor endothermal one and also neglect the
heat effects connected with internal degrees of freedom. However, we take
into consideration that, even in the simplest models of reactive collisions,
the particles of reagents need not have the same average kinetic energies.

For the elastic differential cross sections 044 and 045 we use the expres-
sion

L
O’AA:UAB:ZCZ . (3.5)

We introduce the Prigogine-Xhrouet model [1] for the differential re-
active cross section for collisions between the molecules A as well as for
collisions between the molecules B

0 9<go
_ 3.6
70 { 1srd? 9> 90, (3.6)

where sr is the steric factor and g denotes the threshold relative velocity of
colliding spheres. This velocity is simply related to the threshold energy Ej

2
By =190 (3.7)
4
We introduce the dimensionless reduced threshold energy ¢g as
Ey
= . 3.8
€ = 1 (3.8)

This quantity similarly as sy will appear in our final equations.
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4. Solution of the Boltzmann equation
We solve the Boltzmann equation by the perturbation method described
by Shizgal and Karplus [5,6] and developed by Shizgal and Napier [7]. We

replace f4 by fﬁlo) in the left hand side of Eq. (3.2) and in Eq. (3.4) by fﬁlo).
We introduce in Eq. (3.3) the nonequilibrium velocity distribution function
as

fa= 10+ 10 = 100 +9a). (4.1)
The quantity 14 is expanded in the Sonine polynomials |5, 15]
pa=y a8 c3), (4.2)
where )
mac
2 = 2kTA ) (4.3)

After taking into account that the temperature T of the system does not
change when the reaction proceeds and dT'/dt = 0 we can write

01 _ 0f) (dna\© _ £ (dna) (4.4)
ot Ony \ dt na \ dt ’ '

where
dna\ @
(7[‘) = / / 11D 00g d2 dey de,

+ / / 7O £ 0 42 des de (45)

In this way taking into account Egs. (2.5), (4.1) and (4.4) we write Eq. (3.2)
in the following form

£ (dna\© (0) ,(0) (0) +(0)
o \ dt +//fAlfA2‘709d~QdC2—//fB1fBgUOQdeC2
_ 0) 2(0) " _ d0d
Saifus (War — a0 — a1 — Paz)oaag co
+ // f/(101)f/(102)(?/1’A1 —tha1)oapg d2des

+ // fﬁ;ol)féoz)(?ﬁlm —1p1)oapgdf2dcy, (4.6)

where the terms 1119 as smaller than 1)1 or 1o are neglected. We solve
Eq. (4.6) within one and two Sonine polynomials expansion for the velocity
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distribution function. We begin with the one Sonine polynomials approxi-
mation

dar = a8 (C3) = oV ()5, (4.7)

where we introduce 81(41) to write the first Sonine polynomial in a shorter
way.
We define very convenient quantities A in a following way
Ari :// fﬁffﬁ?sﬁ)aogdﬂd@dcl, (R=A,B),
(1=0,1,2). (4.8)

For the Prigogine-Xhrouet model (see Egs. (3.6)-(3.8)) it can be easily cal-
culated that

kT 1/2
Apy = 43Fn%d2 <7) (eg + 1) exp(—eop) ,

kT /2
Ap = —2spnd? <7T—) e1exp(—eo)
m
1 TkT\ /?
ARy = —§$Fn%2d2 <7) £2 exp(—eo) , (R=A,B), (49)
where
, 11
61:60+§€0+§7
3 9 1 1
€9 = —&y +2e( + 750 + 1 (4.10)

From Egs. (4.6) and (4.7) after using the definition (4.8) in a typical way
(see Refs. [16] and [21]) we obtain

An— 0 Apr = dV(1)n? {sﬁ}), s§>}+a§B)(1)nAnB {sﬁ}), sg})} . (4.11)

where dq; equals 1 if the reverse reaction is taken into account and 0 if not,
{,} are the brace symbols introduced by Chapman and Cowling [2]| and
particularly analyzed by Shizgal and Karplus [5]. As shown in Ref. [5]

nAagA)(l)—l—nBagB)(l) =0, (4.12)
{sV,sh+{s{. 55} =o. (4.13)

From Eqs. (4.11)—(4.13) we get

Aur = derApy = alV (1) (nanp +n3) {Sﬁ}), sg”} . (4.14)
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As follows from Tables I and IT of Ref. [5]

7N\ 1/2
(8P, sy = —aa? <i> . (4.15)

m

After taking into account Egs. (4.9), (4.14) and (4.15) we can write

2
A“a)zéaWA(l—&ﬁ%)eu—mx (4.16)
A

where £ 4 and zp are the molar fractions. In order not to write such expres-
sions as Eq. (4.16) separately for reactions (2.1) and (2.2) we treat them as
two cases-c:

1. ¢ = n corresponds to neglecting (n) of the reverse reaction, whereas

2. ¢ = r to taking into consideration the reverse (r) reaction. It means that
for reactions (2.1) and (2.2) d¢r is dpr =0 and 6,y =1, respectively. In order to
solve Eq. (4.6) within two Sonine polynomials approximation we introduce
instead of Eq. (4.7) the following approximation for 1

ya(2) = afV(2)80,(C3) + sV 2)57)(C%)

= o 2)8 +aiM(2)5? . (4.17)

Then using the typical method of solution mentioned above we obtain in-
stead of Eq. (4.11) a set of two linear equations

Api — doApl = nang [mm <{S§§), s - {st, sy}
ra) ({5050} - {s0.5} 24)
Anz — deAps = nang [ag/*)@) <{S§f), s - {s%, sy}

Lol () ({sgp,sgp} {595} 14

From Eqs. (4.18) after making a similar derivation as that for obtaining
Eq. (4.16) from Eq. (4.11) we get

] . (4.18)

1
agA)(Z) = —SFTA <1 — 5cri—B

2

60 2

(A) 1 T
ay '(2) = ESpiEA 1_6crx_2 eqexp(—eg) , (4.19)

A
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where
63 63
€3 = _58+3353+Z€°+Z’
5 .9 3 3
es = —eg+3e5+ Je0+ ;- (4.20)

Egs. (4.16) and (4.19) are very useful in derivation of final analytical equa-
tions. For the component B we can use Eq. (4.12) in order to get agB)(l).

5. Nonequilibrium effects in temperatures of components

We can use Eqs. (4.16) and (4.19) to calculate the nonequilibrium tem-
perature T'4.

TSK(G) = Tu(i) = T [1 —a{V (i)} (i=1,2), (5.1)

where i is introduced to distinguish the Shizgal-Karplus temperature T5¥ (1)
obtained within one Sonine polynomials approximation from that T5%(2)
obtained within two Sonine polynomials approximation. We also introduce

AT, (i) =T — TSE(4) (i=1,2). (5.2)

From Eqgs. (5.1) and (5.2) after introduction of Eq. (4.16) we can write for
the one Sonine polynomials approximation

2

1 T
ATA(l) =T — TEK(l) = §$FT.’L‘A <1 - 5CTI_2B) €1 exp(—eo) . (53)
A

Similarly, from Egs. (5.1) and (5.2), after using Eq. (4.19) we get the
following expression for two Sonine polynomials approximation

2

1 x
ATA(Q) = @SFTIA <1 - 5CI‘I_2B> €3 exp(—eo) . (54)
A

It is important to take into consideration that if we neglect the reverse reac-
tion der = 0 we have relations for AT'4(7) in a simplified form (see Eqs. (5.3)
and (5.4)), namely the effect of concentration would be proportional to z 4.
In result the appropriate ratios AT4/Tspz4 are functions of £y only. In
Fig. 1 we present these ratios in a form of two curves. Additionally, we
introduce for a comparison two curves which represent such expressions for
the line-of-centers model (LC) (see Eqgs. (35) and (36) from Ref. [23]). For
the LC model the appropriate reduced threshold energy is denoted e*.
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Fig. 1. Relative decrease of temperature T4 for the forward reaction (2.1) presented
in a reduced form as AT 4 /Tspx 4 calculated for the PX model from Eqs. (5.3) and
(5.4) with éc, = 0 as function of the reduced threshold energy ¢ and such results
for the LC model as a function of *.

We see that we have four simple expressions for ATy (7): Egs. (5.3) and
(5.4) with d. equal to 0 (if the reverse reaction is not considered) and to 1
otherwise. For these four cases comparisons of theoretical results for T4 and
those obtained from the computer simulations will be presented.

Interesting effects can be observed if the early stages of chemical reaction
are considered. As it follows from Refs. [15,17] the largest value of Ts is in
the very beginning of reaction when zp is nearly equal to 0.

In order to derive the expression for the initial value of T we take into
consideration that in the very beginning of reaction for £ = 0 and for a very
small time ¢ = 7 we can write

n4(0) =n, TA(0)=T, (5.5)
na(r) = +dZ—tAT, ng(r) ——d;‘;‘ , (5.6)
Ta(r) =T+ %T. (5.7)

After taking into account that (n4 +mnp)T is constant and the square terms
with 7 are much smaller than those with 7 from we can use Egs. (5.5)-(5.7),
(2.11), (2.3), (4.9) as well as the following Shizgal’s [31] result

ATy _ 274(0)
dt 3 n(0)

Am (5.8)
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and we can derive

From this result (discussed also in Sec. 8) for the PX model (see Egs. (4.9))
it follows
1 £1

AT, =T-T = lim ATg =—=T .
5(0) p(0) = Jim ATp = —3T 41

(5.10)

In the further stages of chemical reaction we can calculate Tz from the
appropriate expression for T4 if we use Eq. (2.11). We can use Egs. (5.3)
and (5.4) for four cases mentioned above in order to have expressions for the
nonequilibrium effects on temperature for the component B. We present
these expressions in the following way:

(1) For one Sonine approximation with the reverse reaction neglected

ATp(1) =T — TEX(1) = —%sFT <%) erexp(—go).  (5.11)

From Eq. (5.11) we see that for very small molar fraction of B this effect
could be very large. It means that the results of the perturbation method
cannot be analyzed in the ranges of very small . We analyze this problem
after showing the next 3 equations for ATg.

(2) For two Sonine approximation with the reverse reaction neglected

ATg(2) = —%SFT <%) e3 exp(—¢p) . (5.12)

(3) For one Sonine approximation with the reverse reaction taken into
account ) )
-z
ATp(1) = —=spT <Q — 1) e1exp(—eop) . (5.13)
2 B
(4) For two Sonine approximation with the reverse reaction taken into
account . .
-z
ATg(2) = ——spT U=zp) ), exp(—¢g) . (5.14)
60 TR
It is possible that in some cases the chemical reaction proceeds so fast
that the perturbation solution of the Boltzmann equation can not be used. In
these cases it is very useful to observe that if the chemical reaction proceeds
T decreases. Therefore, we can write

T5K < Tp(0). (5.15)
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It is sufficient to compare the appropriate expression for ATg to see the
range of zp in which the solutions obtained can be valid.

We analyze such a range of xp for the case 3. in which the reverse
reaction is taken into account for the solution within one Sonine polynomial
approximation. From Egs. (5.10), (5.13) and (5.15) it can be derived that

gy 2 () N\ ] (5.16)
- X —. .
3sp(eo+1) B>

Such inequalities for the ranges of zp in which the results from the pertur-
bation solution are valid, can be also simply derived for the cases 1, 2 and
4 if we use for a comparison of T (0) with Tp calculated from Egs. (5.11),
(5.12) and (5.14), respectively.

6. Nonequilibrium effects in rate constants of chemical reaction

In order to distinguish separate results for the rates of forward reac-
tion and the total one (in which the reverse reaction is also considered) we
introduce

VAF = Ug)f) + Ugf) , (6.1)
VA= US)) —i—vg) = Ug)f) —i—vg? —H)Sf) —i—vgr)
= oy} — vl + 0} — oyt (6:2)

where the upper index (1) is connected with Eq. (4.1). After taking into
account Egs. (2.8) and (2.9) we introduce also

(1)
npe =~ (R=4,B), (6.3)
URs
oD
NR = ——l (R=A,B). (6.4)
Q)
R
From Egs. (2.4), (2.5) and (3.6) we obtain

LT 1/2
Ul([gf) = kl(,gf)n% = 4$F7L%3 <%) (eo+1)exp(—eg), (R=A,B), (6.5)

where kgf) is the equilibrium forward reaction rate constant. After tak-

ing into consideration Eq. (6.1) and using, as in the previous section, the
Shizgal-Karplus solution of the Boltzmann equation (see Egs. (2.3)-(2.5),
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(4.1), (4.7)—(4.9), (4.16), (4.17) and (4.19)) we obtain the following nonequi-
librium contributions to the rate of chemical reaction within one and two
Sonine polynomial approximation, respectively

2 ET\ /2
= —2s52n%z, <1 - 5crz—§) d? <%) 2 exp(—2ey) . (6.6)
A

W) = K @)nd

1 Ser? ET\ /2
= —Es%niIA <1——C;£B> d2 <7Tm ) (6163+€264) exp(—260) .

(6.7)

Similarly as in the discussion of nonequilibrium effects of chemical reaction
on temperature we discuss four cases:

1. One Sonine polynomials approximation with the reverse reaction ne-
glected (see Eq. (2.1)). From Egs. (6.3), (6.5) and (6.6) after taking into
account that §o; = oy = 0 we get

1 2

1) == !
nar(1) RS FTAT T

(—€0) - (6.8)

2. Two Sonine polynomials approximation with the reverse reaction ne-
glected. From Eqgs. (6.3), (6.5) and (6.7) we get

@) _is - €1€3 + €9€4
nAf ~ 60 FTA 7€0+1

) exp(—¢o) . (6.9)

3. One Sonine polynomials approximation with the reverse reaction consid-
ered (see Eq. (2.2)). From Eqs. (6.4)—(6.6) after taking into account that
Ocr = 0y = 1 we get

2 2
nag (1) = %3F$A< — x—f) T (—ep). (6.10)
A

As Eq. (6.10) concerns the forward reaction nonequilibrium contributions
in reaction (2.2) we have introduced the index f as (f) to distinguish 7 in
Eq. (6.10) from that in Eq. (6.8). For this case after a careful analysis
of relations for the forward and reverse chemical reaction rates and rate
constants (see, e.g. Ref. [23]) we can obtain.

1 (Bt e+ D)’
SF

na(l) == p—— exp(—eg) = np(1). (6.11)
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This is a very important result which shows that if the reverse reaction is
considered the nonequilibrium corrections to the rate of chemical reaction
do not depend on concentrations and are the same for both the components.
4. Two Sonine approximation with the reverse reaction considered (see
Eq. (2.2)). For this case we can perform derivations in the same way as
in the case of one Sonine polynomial approximation described above. We
use Eq. (6.7) instead of Eq. (6.6) and we get instead of Eq. (6.11)

1 IQ £1€3 + €9€4
nam(2) = G0 FEA < - i) <6()T exp(—e&op) . (6.12)

For this case we can obtain

1 <61€3 + E9€4

go+1 ) exp(—eo) =15(2). (6.13)

It should be emphasized that, on the contrary to the case of neglecting of the
reverse reaction in which in Eqgs. (6.8) and (6.10) x4 appears, in Eqs. (6.11)
and (6.13) the nonequilibrium corrections to the rate of chemical reaction
are the same for both the components and do not depend on their concentra-
tions. In Fig. 2 we present for the PX model the nonequilibrium decrease of
the rate constant of chemical reaction as a function of the reduced threshold
energy ¢o (see Egs. (6.11), (6.13)). For a comparison we present also such
results for the LC model (see Egs. (59) and (61) from Ref. [23]).

15

*
8,80

Fig.2. Relative decrease of the rate constant of the overall reaction (2.2) for the
PX model (Egs. (6.11), (6.13)) as a function of gy and such results for the LC
model as a function of £*.
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7. Comparison of results following from analytical results
with those obtained from the Monte Carlo simulations

In order to perform computer simulations we use the Bird algorithm
prepared by the second author of this paper. This algorithm is based on
the earlier results Bird [32-35] discussed also in Ref. [36] and particularly
described in Ref. [23].

We have used the following system for simulations. A volume
V = 2777.78nm? contains in the beginning Ny = 1000 spheres A and
Np = 0 spheres B having the same diameter d = 0.35 nm and masses
16 g/mol. This corresponds to the packing factor 0.008082. The equilib-
rium temperature is 300 K. As the chemical reaction proceeds the spheres
A change in reactive collisions to the spheres B and vice versa. Therefore,
the number of spheres B increases and the number of spheres A decreases
to Ng = 1000 — Np. The average translational energy of the components A
and B and also their temperatures change. The time is described by time
steps At = 0.6941 x 10~ '3s. In order to obtain sufficient accuracy we have
performed in each simulation a large number of runs R (R > 50000) and
obtained average values of Ny, Np, T4 and Tp as well as the number of
elastic and reactive collisions as a function of the time steps. The results
of such simulations are compared with the results following from the ana-
lytical expressions derived in preceding sections. In Fig. 3 we present the
results for the initial temperature of component B as a function of the re-
duced threshold energy eo. The analytical curve for T5(0) is obtained from
Eq. (5.10) and the small circles represent the average values of T obtained
from the beginning time steps in the simulation.

1100 ——— B —
900 1 -
S 1 L
m 700 T L
'_ 4 L
500 1 i

300 ———
0 2 4 6 8

Fig.3. The temperatures Tp(0) as a function of 9. The solid curve represents
the results calculated from Eq. (5.10) and the small circles those obtained from
simulations.
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In Fig. 4 we show the changes of temperature of component A for a sys-
tem in which the forward reaction proceeds only and the number of spheres
B can be even equal to 1000 which corresponds to the molar fraction of B
zp = 1.0. The reduced threshold energy is chosen ¢y = 3.0 and the steric
factor sp = 1.0. The straight lines 1 and 2 are obtained from the analytical
results within one and two Sonine polynomials approximation, respectively,

300 f——T——T——————
275 | —
250 | -

225 [

0 0.2 0.4 0.6 0.8 1.0

Fig.4. Temperature T4 as a function of molar fraction z g for the forward reaction
(2.1) with eg = 3 and sp = 1.0. Results from the simulation are represented with
irregular line and those from the perturbation solution within one and two Sonine
polynomials approximation with straight lines denoted 1 and 2 (see Egs. (5.3) and
(5.4) with de; = 0), respectively.
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Fig.5. Temperature T4 as a function of molar fraction xp for the forward-reverse
reaction (2.2) with g = 1.5 and sp = 0.1. Results from the simulation are repre-
sented with irregular line and those from expressions obtained within appropriate
Sonine polynomials approximations (see Eqgs. (5.3) and (5.4) with d., = 1) with
curves denoted 1 and 2, respectively.
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(see Eqs. (5.3) and (5.4) with 6 = 0). The irregular curve shows T4
obtained from simulations. In the next two figures we show such results as
those presented in Fig. 4 but for the case in which also the reverse reaction
proceeds. Therefore, the molar fraction zp can not exceed 0.5. In this case
we introduce d; = 1.0 in Egs. (5.3), (5.4). In Fig. 5 we introduce gy = 1.5
and sp = 0.1, whereas in Fig. 6 ¢g = 3.0 and sp = 0.2.
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Fig.6. Results for T4 represented in the same way as in Fig. 5 but for ¢g = 3.0

and sp = 0.2.
Additionally, in Fig. 7 we show the velocity distribution functions of the

components A and B after a 1000 time steps in a typical simulation. We
have chosen ¢g = 3.0 and sp = 0.2 for this purpose just to show the shapes

of the curves only.
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Fig. 7. The velocity distribution functions of reagents A and B as a function of c4
and cp in 10® for the forward-reverse reaction (2.2) with g9 = 3.0 and sz = 0.2 after
1000 time steps of simulation corresponding to g = 0.23. Results from simulations
are represented with irregular lines and the Maxwell-Boltzmann distributions for

the appropriate temperatures T4 and T with regular lines, respectively.
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8. Discussion

We have solved the Boltzmann equation using the perturbation method
for the case of bimolecular chemical reaction proceeding in a dilute gas.
We have introduced the Prigogine-Xhrouet model (PX) for the reactive
cross section and obtained the analytical expressions for the noneqilibrium
Shizgal-Karplus temperatures and reaction rate constants as functions of
the reduced threshold energy 9. We have analyzed such analytical results
for two cases: 1. the reaction proceeds in forward direction only, 2. the
forward and reverse reactions proceed.

For the case 1. we have obtained the results for temperatures T4 which
can be calculated from appropriate ATy for one and two Sonine polynomials
approximations (see Eqs. (5.3) and (5.4) with §.,, = 0). In Fig. 1 we have
shown that for the PX model ATy can be larger than it would be for the line-
of-centers model (LC) for the appropriate reduced threshold energy £*. The
temperature Tz can be calculated from Egs. (2.12), (5.11) and (5.12). We
have also derived expressions for the relative decrease of the rate constant
of chemical reaction for both the approximations (see Egs. (6.8) and (6.9)).

For the case 2. we have derived appropriate expressions for temperature
T4 (see Egs. (5.3) and (5.4) with 6., = 1). We have also obtained equations
for the relative decrease of the rate constant of chemical reaction (see Egs.
(6.10)—(6.13)). It is interesting that in this case for the PX model the relative
decrease of the rate constant of the overall reaction (see Eqgs. (6.11) and
(6.13) does not depend on zp similarly as for the other models already
analyzed (see Refs [23,25,26]). It even more interesting that for the PX
model this decrease is more pronounced that for the other models. This can
be seen from Fig. 2. Namely, for g = 3 the rate constant of reaction (2.1)
can be even 4 times smaller than its equilibrium value which corresponds
to n = 0.75. This result is very important because for the LC model the
maximum value of n is about 0.45, 4.e. the rate constant for that model
could be about 1.8 times smaller than its equilibrium value.

From a comparison of Eqs. (6.8), (6.10) and (6.11) or Egs. (6.9), (6.12)
and (6.13) we can see that in general 7, is smaller than ns¢ which is
smaller than 7. It is important in the analysis for chemical reactions pro-
ceeding relatively far-from-equilibrium [15,20]. Namely, only for reactions
characterized by sufficiently large ¢y and small sy the results for n4r and
na(r) can be analyzed for small values of zp. Only in this case the values
of these quantities can approach to the value of 7. We had this situation in
the analysis of the LC model [20].

In order to verify the validity of results obtained within the perturba-
tion method of solution we have additionally performed the Monte Carlo
simulations. We have made comparisons between the results obtained from
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the analytical expressions and those obtained from simulations for the tem-
peratures only, i.e. in the same way as we have done in Ref. [23] for the
LC model. The reason is that the accuracy of results from simulations for
temperatures is much better than for such results for the rate constants.

We have additionally derived the expression for Tg(0), i.e. for the tem-
perature of product B in early stages of reaction (see Eq. (5.10)). We think
that the way of derivation is shown in Sec. 5 in more convincing way than
earlier for the LC model in Ref. [17]. Namely, in Ref. [17] we assumed that,
as the fastest molecules A change to B, the product B must have the maxi-
mum temperature in the beginning of reaction and the time derivative of Ts
should be equal to zero, however, the last condition (although leads to good
results) in general need not be fulfilled. In Fig. 3 we have shown the compar-
ison for results for Tp(0). We see that the agreement between the analytical
results and those from simulations is very good. However, for large values
of gg, e.g. g > 7 the accuracy is a little bit worse because we get very small
amount of the product B. Naturally, the temperature T obtained from the
analytical expressions should not be larger than T (0) because T decreases
as the reaction proceeds. For fast reactions, e.g. for those proceeding with
srp = 1.0, small values of g9 and in a stage of reaction with small zpg, the
reaction can be too fast to use the perturbation method. A comparison
of Tp(0) with T , i.e. (T < Tg(0)), permits to find the range of zp in
which the perturbation solution can not work. Just to give one example, we
have chosen one Sonine polynomial approximation for the forward-reverse
reaction and obtained the inequality for 25 (see Eq. (5.16). In next figures,
we have shown comparisons of analytical results for T’y with those obtained
from simulations. From these figures it can be easily seen that, similarly as
in the case of inequality discussed above, only for sufficiently large zp such
comparisons are reasonable. In Fig. 4 we have shown such a comparison for
the case of neglecting of the reverse reaction with ¢g = 3.0 and sp = 1.0.
We see that for large xp the agreement is fairly good. In the next two fig-
ures we have presented such comparisons for the forward-reverse reactions
introducing g = 1.5 and sp = 0.1 (see Fig. 5) and ¢g = 3.0 and sp = 0.2
(see Fig. 6). These results are fairly good, however, the role of inequality
(5.16) is important if 2 is not large enough. In Fig. 7 we have additionally
shown the velocity distribution functions f4 and fp for the simulation with
go = 3.0 and sp = 0.2 after 1000 time steps. From Fig. 7 it can be seen that
the shapes of these distribution functions are nearly Maxwellian and they
show that T4 < T , which is typical for the Shizgal-Kaplus temperatures
for the reaction analyzed. The results presented in Figs. 4-7 confirm the
fact that the perturbation method gives good results for slow chemical reac-
tions. Naturally, for slow reactions the formulas for the relative decrease of
the overall reaction rate constant are also valid (see Eqgs. (6.11) and (6.13)).
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It means that for g = 3.0, sp = 1.0 and sufficiently large z g the nonequilib-
rium rate constant could be even 4 times smaller than its equilibrium value.
Therefore, the role of nonequilibrium effects for the PX model can be more
visible than in the case of the LC model (Figs. 1 and 2). It is interesting that
Nowakowski analyzing a bimolecular reaction with neglection of products in
the Lorentz gas has obtained also larger nonequilibrium corrections to the
reaction rate for the PX model than for the LC model [37].

Just to summarize, we have used the Shizgal-Karplus perturbation
method of solution of the Boltzmann equation for the Prigogine-Xhrouet
model in order to obtain the analytical results for the relative decrease of
the rate constant of chemical reaction as well as for nonequilibrium tem-
peratures. We have used the Bird method of Monte Carlo simulations to
confirm the results obtained. We have shown that the noneqilibrium effects
connected with proceeding of the chemical reaction can be more pronounced
for the Prigogine-Xhrouet model than for the line-of-centers model.
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