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ANALYSIS OF NONEQUILIBRIUM EFFECTSIN A BIMOLECULAR CHEMICAL REACTIONIN A DILUTE GAS�Andrzej S. CukrowskiInstitute of Physi
al Chemistry, Polish A
ademy of S
ien
esKasprzaka 44/52, 01-224 Warsaw, PolandandInstitute of Chemistry, �wi�tokrzyska A
ademyCh�
i«ska 5, 25-020 Kiel
e, Polande-mail: 
ukrowsk�i
hf.edu.plSiegfried Fritzs
heInstitute of Theoreti
al Physi
s, Leipzig UniversityAugustusplatz 9�11, 04109 Leipzig, Germanye-mail: Siegfried.Fritzs
he�physik.uni-leipzig.de(Re
eived November 28, 2002)We analyze a thermally a
tivated bimole
ular rea
tion in a dilute gaspro
eeding with introdu
tion of the Prigogine�Xhrouet model (PX) for therea
tive 
ross se
tion. We use the Shizgal�Karplus perturbation methodof solution of the Boltzmann equation for rea
tions A + A ! B + B andA+A� B+B to obtain the analyti
al expressions for the nonequilibriumtemperatures of reagents and for the rate of 
hemi
al rea
tion. We presentthe results obtained within one and two Sonine polynomials approxima-tions. The rate 
onstant of 
hemi
al rea
tion depends on 
on
entration ofprodu
ts for the �rst rea
tion only and for the se
ond rea
tion is 
onstant.The analyti
al results for the temperature of the reagent A and its valuein the beginning of rea
tion for the produ
t B are 
ompared with thoseobtained from the Monte Carlo 
omputer simulations with use of the Birdmethod. It is shown that the nonequilibrium e�e
ts in Shizgal�Karplustemperatures and in de
rease of the 
hemi
al 
onstant rate are more pro-noun
ed than for the lines-of-
enters model. For the PX model the rate
onstant 
an be de
reased even 4 times.PACS numbers: 05.20.Dd, 82.20.�w, 82.20.Mj, 82.20.Wt� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.(3607)
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he1. Introdu
tionThe nonequilibrium e�e
ts 
onne
ted with pro
eeding of a bimole
u-lar 
hemi
al rea
tion in a dilute gas were �rst analyzed by Prigogine andXhrouet [1℄. These authors [1℄ using the perturbation method [2℄ solvedthe Boltzmann equation for the early stages of rea
tion in whi
h the role ofprodu
ts 
ould be negle
ted. The early stages of 
hemi
al rea
tion were alsoanalyzed by Present [3, 4℄ who introdu
ed the line-of-
enters model for thispurpose. In all those papers [1,3,4℄ one temperature of rea
ting system wasintrodu
ed be
ause the produ
ts were negle
ted. As shown by Shizgal andKarplus [5, 6℄, in an analysis of further stages of 
hemi
al rea
tion the roleof produ
ts be
omes important. In this 
ase the reagents 
an have di�erentnonequilibrium temperatures. Re
ently, Shizgal and Napier [7℄ have ana-lyzed 
arefully the possibilities of solutions of the Boltzmann equation forrea
tions pro
eeding in various 
onditions and des
ribed the di�eren
es be-tween nonequilibrium e�e
ts in the early and further stages of 
hemi
al rea
-tion. In Refs. [3�7℄, as well as in many other papers [8�22℄ the line-of-
entersmodel was introdu
ed be
ause this model is simple and gives reasonable re-sults. However, another model introdu
ed in the �rst paper [1℄ has not beenused for the des
ription of the further stages of 
hemi
al rea
tion yet.It is important that for the stages of rea
tion in whi
h the rea
tionpro
eeds slow enough interesting analyti
al results 
an be obtained. Namely,the relative de
rease of the forward 
hemi
al rea
tion rate depends on themolar fra
tion of the produ
t and, on the 
ontrary, for the overall rea
tionrate su
h a de
rease is 
onstant. This problem was analyzed in some re
entpapers for the line-of-
enters model [23�26℄ and also for the reverse line-of-
enters model [26℄ for whi
h the Arrhenius a
tivation energy 
an be verysmall and even negative [27�30℄.The aim of this paper is to derive some analyti
al equations for the modeloriginally used by Pigogine and Xhrouet [1℄, i.e. the expressions for thenonequilibrium Shizgal�Karplus temperatures and for the relative de
reaseof the rate 
onstant of 
hemi
al rea
tion. We derive these results in the sameway as used previously [23℄ for the line-of-
enters model. We verify the newanalyti
al results by the Monte Carlo simulations in a similar way as thatpresented in Ref. [23℄.Our paper is organized as a follows: in Se
. 2 we des
ribe de�nitionsof quantities used to 
hara
terize the nonequilibrium e�e
ts; in Se
. 3 weformulate the Boltzmann equation for the 
hemi
al rea
tions 
onsidered; inSe
. 4 we present the perturbation solution of the Boltzmann equation ob-tained within the Shizgal�Karplus method; in Se
. 5 we show the analyti
alexpressions des
ribing nonequilibrium e�e
ts on temperature of 
omponentsand in Se
. 6 su
h expressions for the rate of 
hemi
al rea
tion; in Se
. 7
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ular . . . 3609we 
hara
terize the rea
ting system used for Monte Carlo simulations and
ompare the numeri
al results obtained from these simulations with the an-alyti
al results. In Se
. 8 we dis
uss the results obtained.2. De�nitions of quantities des
ribing nonequilibrium e�e
tsof rea
tionWe analyze the bimole
ular 
hemi
al rea
tionsA+A! B +B ; (2.1)A+A� B +B : (2.2)In Eq. (2.1) we take into 
onsideration only the forward rea
tion, whereasin Eq. (2.2) we also in
lude the reverse rea
tion. We introdu
e the nonequi-librium value of the rate of forward 
hemi
al rea
tion in the usual wayvAf = ��dnAdt �f = Z Z Z fA1fA2�0 g d
 d
A1 d
A2 ; (2.3)where the index f is introdu
ed to distinguish the forward rea
tion fromthe reverse one for whi
h the index r will be introdu
ed; nA is the numberdensity, fA1 and fA2 are the velo
ity distribution fun
tions of two 
ollidingmole
ules A, �0 is the di�erential rea
tive 
ross se
tion, 
 is the solid angle,
A1, 
A2 and g denote the velo
ities and relative velo
ity, respe
tively. Theequilibrium value of vAf isv(0)Af = Z Z Z f (0)A1 f (0)A2�0 g d
 d
A1 d
A2 ; (2.4)where f (0) is the Maxwell�Boltzmann velo
ity distribution fun
tion at tem-perature T f (0)A = nA� mA2�kT �3=2 exp�� mA
2A2kT � ; (2.5)where mA denotes the mole
ular mass and k is the Boltzmann 
onstant.These equations 
an be also used for the 
omponent B if the indi
es A arerepla
ed by indi
es B. However, it is important to take into 
onsiderationthat the total rate of 
hemi
al rea
tion is vA whi
h 
an be expressed asvA = vAf + vAr = vAf � vBf ; (2.6)v(0)A = v(0)Af + v(0)Ar = v(0)Af � v(0)Bf : (2.7)
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heWe de�ne also the following useful quantities�Rf = 1� vRfv(0)Rf (R = A;B) ; (2.8)�R = 1� vRv(0)R (R = A;B) ; (2.9)whi
h are very 
onvenient for a des
ription of nonequilibrium 
orre
tions tothe rate of 
hemi
al rea
tion.We introdu
e as Shizgal and Karplus [5℄ the temperature of 
omponentsTR = T SKR = 23nRk Z fR 12 mR 
2R d
R (R = A;B) (2.10)and the temperature of the system is related to these temperatures byT = nATA + nBTBnA + nB : (2.11)The 
hange of temperature TR due to nonequilibrium e�e
ts 
an be 
al
u-lated as �TR = T � T SKR (R = A;B) ; (2.12)where T SKR is the nonequilibrium temperature (see Eq. (2.10)). As in ourprevious papers we introdu
e the indi
es SK to emphasize that this is theShizgal�Karplus temperature. The quantities � (see Eqs. (2.8) and (2.9))and �TR (see Eq. (2.12)) 
an be used to des
ribe simple analyti
al expres-sions obtained from the perturbation theory. In order to get these expres-sions we need to solve the Boltzmann equation.3. The Boltzmann equationWe assume that the reagents are hard spheres and that their masses anddiameters do not 
hange when the rea
tion pro
eedsmA = mB = m dA = dB = d ; (3.1)where d denotes the diameter. After taking into 
onsideration Eq. (3.1)we write down the Boltzmann equation [22, 23℄ for rea
tion (2.2) for the
omponent A in the following form�fA�t = Iel + Ire (3.2)where t is the time and
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ts in a Bimole
ular . . . 3611Iel = Z Z (f 0A1f 0A2 � fA1fA2)�AAg d
d
2+ Z Z (f 0Af 0B � fAfB) �ABg d
d
2 ; (3.3)Ire = Z Z (fB1fB2 � f 0A1f 0A2) �0 g d
 d
2 ; (3.4)where f 0i are the velo
ity distribution fun
tions for i-th 
omponent after
ollisions, respe
tively, �ij are the di�erential elasti
 
ross se
tions for 
ol-lisions between spheres i and j, 
2 is shortly written to denote the velo
ityof se
ond 
olliding mole
ule. It is worthwhile to observe that in Eq. (3.2)the post-
ollisional values of f 0i appear be
ause of the reasons dis
ussed inRefs. [1, 2℄. The Boltzmann equation for the 
hange of fB in time may bewritten in the same way after 
hanging the appropriate indi
es only.We negle
t all heat e�e
ts of this rea
tion, i.e. we assume that thisrea
tion is neither exothermal nor endothermal one and also negle
t theheat e�e
ts 
onne
ted with internal degrees of freedom. However, we takeinto 
onsideration that, even in the simplest models of rea
tive 
ollisions,the parti
les of reagents need not have the same average kineti
 energies.For the elasti
 di�erential 
ross se
tions �AA and �AB we use the expres-sion �AA = �AB = 14 d2: (3.5)We introdu
e the Prigogine�Xhrouet model [1℄ for the di�erential re-a
tive 
ross se
tion for 
ollisions between the mole
ules A as well as for
ollisions between the mole
ules B�0 = � 0 g � g014sFd2 g > g0 ; (3.6)where sF is the steri
 fa
tor and g denotes the threshold relative velo
ity of
olliding spheres. This velo
ity is simply related to the threshold energy E0E0 = mg204 : (3.7)We introdu
e the dimensionless redu
ed threshold energy "0 as"0 = E0kT : (3.8)This quantity similarly as sF will appear in our �nal equations.
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he4. Solution of the Boltzmann equationWe solve the Boltzmann equation by the perturbation method des
ribedby Shizgal and Karplus [5, 6℄ and developed by Shizgal and Napier [7℄. Werepla
e fA by f (0)A in the left hand side of Eq. (3.2) and in Eq. (3.4) by f (0)A .We introdu
e in Eq. (3.3) the nonequilibrium velo
ity distribution fun
tionas fA = f (0)A + f (1)A = f (0)A (1 +  A) : (4.1)The quantity  A is expanded in the Sonine polynomials [5, 15℄ A =Xi a(i)A S(i)1=2(C2A) ; (4.2)where C2A = mA
2A2kT : (4.3)After taking into a

ount that the temperature T of the system does not
hange when the rea
tion pro
eeds and dT=dt = 0 we 
an write�f (0)A�t = �f (0)A�nA �dnAdt �(0) = f (0)AnA �dnAdt �(0) ; (4.4)where �dnAdt �(0) = �Z Z Z f (0)A1 f (0)A2 �0g d
 d
2 d
1+Z Z Z f (0)B1f (0)B2�0g d
 d
2 d
1 : (4.5)In this way taking into a

ount Eqs. (2.5), (4.1) and (4.4) we write Eq. (3.2)in the following formf (0)AnA �dnAdt �(0) + Z Z f (0)A1 f (0)A2 �0gd
d
2 � Z Z f (0)B1f (0)B2�0g d
 d
2= Z Z f (0)A1 f (0)A2 ( 0A1 �  0A2 �  A1 �  A2)�AAg d
 d
2+ Z Z f (0)A1 f (0)A2 ( 0A1 �  A1)�ABg d
 d
2+ Z Z f (0)A1 f (0)B2 ( 0B1 �  B1)�ABg d
 d
2 ; (4.6)where the terms  1 2 as smaller than  1 or  2 are negle
ted. We solveEq. (4.6) within one and two Sonine polynomials expansion for the velo
ity
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ts in a Bimole
ular . . . 3613distribution fun
tion. We begin with the one Sonine polynomials approxi-mation  A1 = a(A)1 (1)S(1)1=2(C2A) = a(A)1 (1)S(1)A ; (4.7)where we introdu
e S(1)A to write the �rst Sonine polynomial in a shorterway.We de�ne very 
onvenient quantities A in a following wayARi = Z Z Z f (0)R1 f (0)R2S(i)R �0g d
 d
2 d
1 ; (R = A;B) ;(i = 0; 1; 2) : (4.8)For the Prigogine�Xhrouet model (see Eqs. (3.6)�(3.8)) it 
an be easily 
al-
ulated thatAR0 = 4sFn2Rd2��kTm �1=2 ("0 + 1) exp(�"0) ;AR1 = �2sFn2Rd2��kTm �1=2 "1 exp(�"0) ;AR2 = �12sFn2Rd2��kTm �1=2 "2 exp(�"0) ; (R = A;B) ; (4.9)where "1 = "20 + 12"0 + 12 ;"2 = �"30 + 2"20 + 14"0 + 14 : (4.10)From Eqs. (4.6) and (4.7) after using the de�nition (4.8) in a typi
al way(see Refs. [16℄ and [21℄) we obtainAA1�Æ
rAB1 = a(A)1 (1)n2A nS(1)A ; S(1)A o+a(B)1 (1)nAnB nS(1)A ; S(1)B o ; (4.11)where Æ
r equals 1 if the reverse rea
tion is taken into a

ount and 0 if not,f; g are the bra
e symbols introdu
ed by Chapman and Cowling [2℄ andparti
ularly analyzed by Shizgal and Karplus [5℄. As shown in Ref. [5℄nAa(A)1 (1) + nBa(B)1 (1) = 0 ; (4.12)nS(1)A ; S(1)A o+ nS(1)A ; S(1)B o = 0 : (4.13)From Eqs. (4.11)�(4.13) we getAA1 � Æ
rAB1 = a(A)1 (1) �nAnB + n2A�nS(1)A ; S(1)A o : (4.14)
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heAs follows from Tables I and II of Ref. [5℄fS(1)A ; S(1)A g = �4d2��kTm �1=2 : (4.15)After taking into a

ount Eqs. (4.9), (4.14) and (4.15) we 
an writea(A)1 (1) = 12sFxA�1� Æ
rx2Bx2A� "1(�"0) ; (4.16)where xA and xB are the molar fra
tions. In order not to write su
h expres-sions as Eq. (4.16) separately for rea
tions (2.1) and (2.2) we treat them astwo 
ases-
:1. 
 = n 
orresponds to negle
ting (n) of the reverse rea
tion, whereas2. 
 = r to taking into 
onsideration the reverse (r) rea
tion. It means thatfor rea
tions (2.1) and (2.2) Æ
r is Ænr=0 and Ærr=1, respe
tively. In order tosolve Eq. (4.6) within two Sonine polynomials approximation we introdu
einstead of Eq. (4.7) the following approximation for   A1(2) = a(A)1 (2)S(1)1=2(C2A) + a(A)2 (2)S(2)1=2(C2A)= a(A)1 (2)S(1)A + a(A)2 (2)S(2)A : (4.17)Then using the typi
al method of solution mentioned above we obtain in-stead of Eq. (4.11) a set of two linear equationsAA1 � Æ
rAB1 = nAnB"a(A)1 (2)�nS(1)A ; S(1)A o� nS(1)A ; S(1)B o nAnB�+ a(A)2 (2)�nS(1)A ; S(1)A o� nS(1)A ; S(1)B o nAnB�# ;AA2 � Æ
rAB2 = nAnB"a(A)1 (2)�nS(2)A ; S(1)A o� nS(2)A ; S(1)B o nAnB�+ a(A)2 (2)�nS(2)A ; S(2)A o� nS(2)A ; S(2)B o nAnB�# : (4.18)From Eqs. (4.18) after making a similar derivation as that for obtainingEq. (4.16) from Eq. (4.11) we geta(A)1 (2) = 160sFxA�1� Æ
rx2Bx2A� "3 exp(�"0) ;a(A)2 (2) = 115sFxA�1� Æ
rx2Bx2A� "4 exp(�"0) ; (4.19)
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ts in a Bimole
ular . . . 3615where "3 = �"30 + 33"20 + 634 "0 + 634 ;"4 = �"30 + 3"20 + 34"0 + 34 : (4.20)Eqs. (4.16) and (4.19) are very useful in derivation of �nal analyti
al equa-tions. For the 
omponent B we 
an use Eq. (4.12) in order to get a(B)1 (1).5. Nonequilibrium e�e
ts in temperatures of 
omponentsWe 
an use Eqs. (4.16) and (4.19) to 
al
ulate the nonequilibrium tem-perature TA. T SKA (i) = TA(i) = T h1� a(A)1 (i)i (i = 1; 2) ; (5.1)where i is introdu
ed to distinguish the Shizgal�Karplus temperature T SK(1)obtained within one Sonine polynomials approximation from that T SKA (2)obtained within two Sonine polynomials approximation. We also introdu
e�TA(i) = T � T SKA (i) (i = 1; 2) : (5.2)From Eqs. (5.1) and (5.2) after introdu
tion of Eq. (4.16) we 
an write forthe one Sonine polynomials approximation�TA(1) = T � T SKA (1) = 12sFTxA�1� Æ
rx2Bx2A� "1 exp(�"0) : (5.3)Similarly, from Eqs. (5.1) and (5.2), after using Eq. (4.19) we get thefollowing expression for two Sonine polynomials approximation�TA(2) = 160sFTxA�1� Æ
rx2Bx2A� "3 exp(�"0) : (5.4)It is important to take into 
onsideration that if we negle
t the reverse rea
-tion Æ
r = 0 we have relations for �TA(i) in a simpli�ed form (see Eqs. (5.3)and (5.4)), namely the e�e
t of 
on
entration would be proportional to xA.In result the appropriate ratios �TA=TsFxA are fun
tions of "0 only. InFig. 1 we present these ratios in a form of two 
urves. Additionally, weintrodu
e for a 
omparison two 
urves whi
h represent su
h expressions forthe line-of-
enters model (LC) (see Eqs. (35) and (36) from Ref. [23℄). Forthe LC model the appropriate redu
ed threshold energy is denoted "�.
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Fig. 1. Relative de
rease of temperature TA for the forward rea
tion (2.1) presentedin a redu
ed form as �TA=TsFxA 
al
ulated for the PX model from Eqs. (5.3) and(5.4) with Æ
r = 0 as fun
tion of the redu
ed threshold energy "0 and su
h resultsfor the LC model as a fun
tion of "�.We see that we have four simple expressions for �TA(i): Eqs. (5.3) and(5.4) with Æ
r equal to 0 (if the reverse rea
tion is not 
onsidered) and to 1otherwise. For these four 
ases 
omparisons of theoreti
al results for TA andthose obtained from the 
omputer simulations will be presented.Interesting e�e
ts 
an be observed if the early stages of 
hemi
al rea
tionare 
onsidered. As it follows from Refs. [15, 17℄ the largest value of TB is inthe very beginning of rea
tion when xB is nearly equal to 0.In order to derive the expression for the initial value of TB we take into
onsideration that in the very beginning of rea
tion for t = 0 and for a verysmall time t = � we 
an writenA(0) = n ; TA(0) = T ; (5.5)nA(�) = n+ dnAdt � ; nB(�) = �dnAdt � ; (5.6)TA(�) = T + dTAdt � : (5.7)After taking into a

ount that (nA+nB)T is 
onstant and the square termswith � are mu
h smaller than those with � from we 
an use Eqs. (5.5)�(5.7),(2.11), (2.3), (4.9) as well as the following Shizgal's [31℄ resultdTAdt = 23 TA(0)n(0) AA1 (5.8)
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ts in a Bimole
ular . . . 3617and we 
an derive TB(0) = limxB!0TB = T �1� 23 AA1AA0� : (5.9)From this result (dis
ussed also in Se
. 8) for the PX model (see Eqs. (4.9))it follows �TB(0) = T � TB(0) = limxB!0�TB = �13T "1"0 + 1 : (5.10)In the further stages of 
hemi
al rea
tion we 
an 
al
ulate TB from theappropriate expression for TA if we use Eq. (2.11). We 
an use Eqs. (5.3)and (5.4) for four 
ases mentioned above in order to have expressions for thenonequilibrium e�e
ts on temperature for the 
omponent B. We presentthese expressions in the following way:(1) For one Sonine approximation with the reverse rea
tion negle
ted�TB(1) = T � T SKB (1) = �12sFT �(1� xB)2xB � "1 exp(�"0) : (5.11)From Eq. (5.11) we see that for very small molar fra
tion of B this e�e
t
ould be very large. It means that the results of the perturbation method
annot be analyzed in the ranges of very small xB. We analyze this problemafter showing the next 3 equations for �TB.(2) For two Sonine approximation with the reverse rea
tion negle
ted�TB(2) = � 160sFT �(1� xB)2xB � "3 exp(�"0) : (5.12)(3) For one Sonine approximation with the reverse rea
tion taken intoa

ount �TB(1) = �12sFT �(1� xB)xB � 1� "1 exp(�"0) : (5.13)(4) For two Sonine approximation with the reverse rea
tion taken intoa

ount �TB(2) = � 160sFT �(1� xB)xB � 1� "3 exp(�"0) : (5.14)It is possible that in some 
ases the 
hemi
al rea
tion pro
eeds so fastthat the perturbation solution of the Boltzmann equation 
an not be used. Inthese 
ases it is very useful to observe that if the 
hemi
al rea
tion pro
eedsTB de
reases. Therefore, we 
an writeT SKB < TB(0) : (5.15)
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ient to 
ompare the appropriate expression for �TB to see therange of xB in whi
h the solutions obtained 
an be valid.We analyze su
h a range of xB for the 
ase 3. in whi
h the reverserea
tion is taken into a

ount for the solution within one Sonine polynomialapproximation. From Eqs. (5.10), (5.13) and (5.15) it 
an be derived that�2 + 23 exp("0)sF ("0 + 1)��1 < xB < 12 : (5.16)Su
h inequalities for the ranges of xB in whi
h the results from the pertur-bation solution are valid, 
an be also simply derived for the 
ases 1, 2 and4 if we use for a 
omparison of TB(0) with TB 
al
ulated from Eqs. (5.11),(5.12) and (5.14), respe
tively.6. Nonequilibrium e�e
ts in rate 
onstants of 
hemi
al rea
tionIn order to distinguish separate results for the rates of forward rea
-tion and the total one (in whi
h the reverse rea
tion is also 
onsidered) weintrodu
e vAf = v(0)Af + v(1)Af ; (6.1)vA = v(0)A + v(1)A = v(0)Af + v(0)Ar + v(1)Af + v(1)Ar= v(0)Af � v(0)Bf + v(1)Af � v(1)Bf ; (6.2)where the upper index (1) is 
onne
ted with Eq. (4.1). After taking intoa

ount Eqs. (2.8) and (2.9) we introdu
e also�Rf = �v(1)Rfv(0)Rf ; (R = A;B) ; (6.3)�R = �v(1)Rv(0)R ; (R = A;B) : (6.4)From Eqs. (2.4), (2.5) and (3.6) we obtainv(0)Rf = k(0)Rf n2R = 4sFn2R��kTm �1=2 ("0+1) exp(�"0) ; (R = A;B) ; (6.5)where k(0)Rf is the equilibrium forward rea
tion rate 
onstant. After tak-ing into 
onsideration Eq. (6.1) and using, as in the previous se
tion, theShizgal�Karplus solution of the Boltzmann equation (see Eqs. (2.3)�(2.5),
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ts in a Bimole
ular . . . 3619(4.1), (4.7)�(4.9), (4.16), (4.17) and (4.19)) we obtain the following nonequi-librium 
ontributions to the rate of 
hemi
al rea
tion within one and twoSonine polynomial approximation, respe
tivelyv(1)Af (1) = k(1)Af (1)n2A= �2s2Fn2AxA�1� Æ
rx2Bx2A� d2��kTm �1=2 "21 exp(�2"0) ; (6.6)v(1)Af (2) = k(1)Af (2)n2A= � 115s2Fn2AxA�1� Æ
rx2Bx2A � d2��kTm �1=2 ("1"3+"2"4) exp(�2"0) :(6.7)Similarly as in the dis
ussion of nonequilibrium e�e
ts of 
hemi
al rea
tionon temperature we dis
uss four 
ases:1. One Sonine polynomials approximation with the reverse rea
tion ne-gle
ted (see Eq. (2.1)). From Eqs. (6.3), (6.5) and (6.6) after taking intoa

ount that Æ
r = Ænr = 0 we get�Af(1) = 12sFxA "21"0 + 1(�"0) : (6.8)2. Two Sonine polynomials approximation with the reverse rea
tion ne-gle
ted. From Eqs. (6.3), (6.5) and (6.7) we get�Af(2) = 160sFxA�"1"3 + "2"4"0 + 1 � exp(�"0) : (6.9)3. One Sonine polynomials approximation with the reverse rea
tion 
onsid-ered (see Eq. (2.2)). From Eqs. (6.4)�(6.6) after taking into a

ount thatÆ
r = Ærr = 1 we get�A(f)(1) = 12sFxA�1� x2Bx2A� "21"0 + 1(�"0) : (6.10)As Eq. (6.10) 
on
erns the forward rea
tion nonequilibrium 
ontributionsin rea
tion (2.2) we have introdu
ed the index f as (f) to distinguish � inEq. (6.10) from that in Eq. (6.8). For this 
ase after a 
areful analysisof relations for the forward and reverse 
hemi
al rea
tion rates and rate
onstants (see, e.g. Ref. [23℄) we 
an obtain.�A(1) = 12sF �"20 + 12"0 + 12�2"0 + 1 exp(�"0) = �B(1) : (6.11)
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heThis is a very important result whi
h shows that if the reverse rea
tion is
onsidered the nonequilibrium 
orre
tions to the rate of 
hemi
al rea
tiondo not depend on 
on
entrations and are the same for both the 
omponents.4. Two Sonine approximation with the reverse rea
tion 
onsidered (seeEq. (2.2)). For this 
ase we 
an perform derivations in the same way asin the 
ase of one Sonine polynomial approximation des
ribed above. Weuse Eq. (6.7) instead of Eq. (6.6) and we get instead of Eq. (6.11)�A(f)(2) = 160sFxA�1� x2Bx2A��"1"3 + "2"4"0 + 1 � exp(�"0) : (6.12)For this 
ase we 
an obtain�A(2) = 160sF�"1"3 + "2"4"0 + 1 � exp(�"0) = �B(2) : (6.13)It should be emphasized that, on the 
ontrary to the 
ase of negle
ting of thereverse rea
tion in whi
h in Eqs. (6.8) and (6.10) xA appears, in Eqs. (6.11)and (6.13) the nonequilibrium 
orre
tions to the rate of 
hemi
al rea
tionare the same for both the 
omponents and do not depend on their 
on
entra-tions. In Fig. 2 we present for the PX model the nonequilibrium de
rease ofthe rate 
onstant of 
hemi
al rea
tion as a fun
tion of the redu
ed thresholdenergy "0 (see Eqs. (6.11), (6.13)). For a 
omparison we present also su
hresults for the LC model (see Eqs. (59) and (61) from Ref. [23℄).
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Fig. 2. Relative de
rease of the rate 
onstant of the overall rea
tion (2.2) for thePX model (Eqs. (6.11), (6.13)) as a fun
tion of "0 and su
h results for the LCmodel as a fun
tion of "�.
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ular . . . 36217. Comparison of results following from analyti
al resultswith those obtained from the Monte Carlo simulationsIn order to perform 
omputer simulations we use the Bird algorithmprepared by the se
ond author of this paper. This algorithm is based onthe earlier results Bird [32�35℄ dis
ussed also in Ref. [36℄ and parti
ularlydes
ribed in Ref. [23℄.We have used the following system for simulations. A volumeV = 2777:78 nm3 
ontains in the beginning NA = 1000 spheres A andNB = 0 spheres B having the same diameter d = 0:35 nm and masses16 g/mol. This 
orresponds to the pa
king fa
tor 0.008082. The equilib-rium temperature is 300K. As the 
hemi
al rea
tion pro
eeds the spheresA 
hange in rea
tive 
ollisions to the spheres B and vi
e versa. Therefore,the number of spheres B in
reases and the number of spheres A de
reasesto NA = 1000�NB . The average translational energy of the 
omponents Aand B and also their temperatures 
hange. The time is des
ribed by timesteps �t = 0:6941 � 10�13s. In order to obtain su�
ient a

ura
y we haveperformed in ea
h simulation a large number of runs R (R � 50000) andobtained average values of NA, NB, TA and TB as well as the number ofelasti
 and rea
tive 
ollisions as a fun
tion of the time steps. The resultsof su
h simulations are 
ompared with the results following from the ana-lyti
al expressions derived in pre
eding se
tions. In Fig. 3 we present theresults for the initial temperature of 
omponent B as a fun
tion of the re-du
ed threshold energy "0. The analyti
al 
urve for TB(0) is obtained fromEq. (5.10) and the small 
ir
les represent the average values of TB obtainedfrom the beginning time steps in the simulation.
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Fig. 3. The temperatures TB(0) as a fun
tion of "0. The solid 
urve representsthe results 
al
ulated from Eq. (5.10) and the small 
ir
les those obtained fromsimulations.
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heIn Fig. 4 we show the 
hanges of temperature of 
omponent A for a sys-tem in whi
h the forward rea
tion pro
eeds only and the number of spheresB 
an be even equal to 1000 whi
h 
orresponds to the molar fra
tion of BxB = 1:0. The redu
ed threshold energy is 
hosen "0 = 3:0 and the steri
fa
tor sF = 1:0. The straight lines 1 and 2 are obtained from the analyti
alresults within one and two Sonine polynomials approximation, respe
tively,
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Fig. 4. Temperature TA as a fun
tion of molar fra
tion xB for the forward rea
tion(2.1) with "0 = 3 and sF = 1:0. Results from the simulation are represented withirregular line and those from the perturbation solution within one and two Soninepolynomials approximation with straight lines denoted 1 and 2 (see Eqs. (5.3) and(5.4) with Æ
r = 0), respe
tively.
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Fig. 5. Temperature TA as a fun
tion of molar fra
tion xB for the forward�reverserea
tion (2.2) with "0 = 1:5 and sF = 0:1. Results from the simulation are repre-sented with irregular line and those from expressions obtained within appropriateSonine polynomials approximations (see Eqs. (5.3) and (5.4) with Æ
r = 1) with
urves denoted 1 and 2, respe
tively.
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ular . . . 3623(see Eqs. (5.3) and (5.4) with Æ
r = 0). The irregular 
urve shows TAobtained from simulations. In the next two �gures we show su
h results asthose presented in Fig. 4 but for the 
ase in whi
h also the reverse rea
tionpro
eeds. Therefore, the molar fra
tion xB 
an not ex
eed 0.5. In this 
asewe introdu
e Æ
r = 1:0 in Eqs. (5.3), (5.4). In Fig. 5 we introdu
e "0 = 1:5and sF = 0:1, whereas in Fig. 6 "0 = 3:0 and sF = 0:2.
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Fig. 6. Results for TA represented in the same way as in Fig. 5 but for "0 = 3:0and sF = 0:2.Additionally, in Fig. 7 we show the velo
ity distribution fun
tions of the
omponents A and B after a 1000 time steps in a typi
al simulation. Wehave 
hosen "0 = 3:0 and sF = 0:2 for this purpose just to show the shapesof the 
urves only.
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Fig. 7. The velo
ity distribution fun
tions of reagents A and B as a fun
tion of 
Aand 
B in 103 for the forward�reverse rea
tion (2.2) with "0 = 3:0 and sF = 0:2 after1000 time steps of simulation 
orresponding to xB = 0:23. Results from simulationsare represented with irregular lines and the Maxwell�Boltzmann distributions forthe appropriate temperatures TA and TB with regular lines, respe
tively.
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he8. Dis
ussionWe have solved the Boltzmann equation using the perturbation methodfor the 
ase of bimole
ular 
hemi
al rea
tion pro
eeding in a dilute gas.We have introdu
ed the Prigogine�Xhrouet model (PX) for the rea
tive
ross se
tion and obtained the analyti
al expressions for the noneqilibriumShizgal�Karplus temperatures and rea
tion rate 
onstants as fun
tions ofthe redu
ed threshold energy "0. We have analyzed su
h analyti
al resultsfor two 
ases: 1. the rea
tion pro
eeds in forward dire
tion only, 2. theforward and reverse rea
tions pro
eed.For the 
ase 1. we have obtained the results for temperatures TA whi
h
an be 
al
ulated from appropriate �TA for one and two Sonine polynomialsapproximations (see Eqs. (5.3) and (5.4) with Æ
r = 0). In Fig. 1 we haveshown that for the PX model �TA 
an be larger than it would be for the line-of-
enters model (LC) for the appropriate redu
ed threshold energy "�. Thetemperature TB 
an be 
al
ulated from Eqs. (2.12), (5.11) and (5.12). Wehave also derived expressions for the relative de
rease of the rate 
onstantof 
hemi
al rea
tion for both the approximations (see Eqs. (6.8) and (6.9)).For the 
ase 2. we have derived appropriate expressions for temperatureTA (see Eqs. (5.3) and (5.4) with Æ
r = 1). We have also obtained equationsfor the relative de
rease of the rate 
onstant of 
hemi
al rea
tion (see Eqs.(6.10)�(6.13)). It is interesting that in this 
ase for the PX model the relativede
rease of the rate 
onstant of the overall rea
tion (see Eqs. (6.11) and(6.13) does not depend on xB similarly as for the other models alreadyanalyzed (see Refs [23, 25, 26℄). It even more interesting that for the PXmodel this de
rease is more pronoun
ed that for the other models. This 
anbe seen from Fig. 2. Namely, for "0 = 3 the rate 
onstant of rea
tion (2.1)
an be even 4 times smaller than its equilibrium value whi
h 
orrespondsto � = 0:75. This result is very important be
ause for the LC model themaximum value of � is about 0.45, i.e. the rate 
onstant for that model
ould be about 1.8 times smaller than its equilibrium value.From a 
omparison of Eqs. (6.8), (6.10) and (6.11) or Eqs. (6.9), (6.12)and (6.13) we 
an see that in general �A(f) is smaller than �Af whi
h issmaller than �. It is important in the analysis for 
hemi
al rea
tions pro-
eeding relatively far-from-equilibrium [15, 20℄. Namely, only for rea
tions
hara
terized by su�
iently large "0 and small sF the results for �Af and�A(f) 
an be analyzed for small values of xB. Only in this 
ase the valuesof these quantities 
an approa
h to the value of �. We had this situation inthe analysis of the LC model [20℄.In order to verify the validity of results obtained within the perturba-tion method of solution we have additionally performed the Monte Carlosimulations. We have made 
omparisons between the results obtained from
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ular . . . 3625the analyti
al expressions and those obtained from simulations for the tem-peratures only, i.e. in the same way as we have done in Ref. [23℄ for theLC model. The reason is that the a

ura
y of results from simulations fortemperatures is mu
h better than for su
h results for the rate 
onstants.We have additionally derived the expression for TB(0), i.e. for the tem-perature of produ
t B in early stages of rea
tion (see Eq. (5.10)). We thinkthat the way of derivation is shown in Se
. 5 in more 
onvin
ing way thanearlier for the LC model in Ref. [17℄. Namely, in Ref. [17℄ we assumed that,as the fastest mole
ules A 
hange to B, the produ
t B must have the maxi-mum temperature in the beginning of rea
tion and the time derivative of TBshould be equal to zero, however, the last 
ondition (although leads to goodresults) in general need not be ful�lled. In Fig. 3 we have shown the 
ompar-ison for results for TB(0). We see that the agreement between the analyti
alresults and those from simulations is very good. However, for large valuesof "0, e.g. "0 > 7 the a

ura
y is a little bit worse be
ause we get very smallamount of the produ
t B. Naturally, the temperature TB obtained from theanalyti
al expressions should not be larger than TB(0) be
ause TB de
reasesas the rea
tion pro
eeds. For fast rea
tions, e.g. for those pro
eeding withsF = 1:0, small values of "0 and in a stage of rea
tion with small xB , therea
tion 
an be too fast to use the perturbation method. A 
omparisonof TB(0) with TB , i.e. (TB < TB(0)), permits to �nd the range of xB inwhi
h the perturbation solution 
an not work. Just to give one example, wehave 
hosen one Sonine polynomial approximation for the forward�reverserea
tion and obtained the inequality for xB (see Eq. (5.16). In next �gures,we have shown 
omparisons of analyti
al results for TA with those obtainedfrom simulations. From these �gures it 
an be easily seen that, similarly asin the 
ase of inequality dis
ussed above, only for su�
iently large xB su
h
omparisons are reasonable. In Fig. 4 we have shown su
h a 
omparison forthe 
ase of negle
ting of the reverse rea
tion with "0 = 3:0 and sF = 1:0.We see that for large xB the agreement is fairly good. In the next two �g-ures we have presented su
h 
omparisons for the forward�reverse rea
tionsintrodu
ing "0 = 1:5 and sF = 0:1 (see Fig. 5) and "0 = 3:0 and sF = 0:2(see Fig. 6). These results are fairly good, however, the role of inequality(5.16) is important if xB is not large enough. In Fig. 7 we have additionallyshown the velo
ity distribution fun
tions fA and fB for the simulation with"0 = 3:0 and sF = 0:2 after 1000 time steps. From Fig. 7 it 
an be seen thatthe shapes of these distribution fun
tions are nearly Maxwellian and theyshow that TA < TB , whi
h is typi
al for the Shizgal�Kaplus temperaturesfor the rea
tion analyzed. The results presented in Figs. 4�7 
on�rm thefa
t that the perturbation method gives good results for slow 
hemi
al rea
-tions. Naturally, for slow rea
tions the formulas for the relative de
rease ofthe overall rea
tion rate 
onstant are also valid (see Eqs. (6.11) and (6.13)).
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heIt means that for "0 = 3:0, sF = 1:0 and su�
iently large xB the nonequilib-rium rate 
onstant 
ould be even 4 times smaller than its equilibrium value.Therefore, the role of nonequilibrium e�e
ts for the PX model 
an be morevisible than in the 
ase of the LC model (Figs. 1 and 2). It is interesting thatNowakowski analyzing a bimole
ular rea
tion with negle
tion of produ
ts inthe Lorentz gas has obtained also larger nonequilibrium 
orre
tions to therea
tion rate for the PX model than for the LC model [37℄.Just to summarize, we have used the Shizgal�Karplus perturbationmethod of solution of the Boltzmann equation for the Prigogine�Xhrouetmodel in order to obtain the analyti
al results for the relative de
rease ofthe rate 
onstant of 
hemi
al rea
tion as well as for nonequilibrium tem-peratures. We have used the Bird method of Monte Carlo simulations to
on�rm the results obtained. We have shown that the noneqilibrium e�e
ts
onne
ted with pro
eeding of the 
hemi
al rea
tion 
an be more pronoun
edfor the Prigogine�Xhrouet model than for the line-of-
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