ANALYSIS OF NONEQUILIBRIUM EFFECTS IN A BIMOLECULAR CHEMICAL REACTION IN A DILUTE GAS*

Andrzej S. Cukrowski
Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
and
Institute of Chemistry, Świętokrzyska Academy
Chęcińska 5, 25-020 Kielce, Poland
e-mail: cukrowsk@ichf.edu.pl
Siegfried Fritzsche
Institute of Theoretical Physics, Leipzig University
Augustusplatz 9-11, 04109 Leipzig, Germany
e-mail: Siegfried.Fritzsche@physik.uni-leipzig.de

(Received November 28, 2002)
We analyze a thermally activated bimolecular reaction in a dilute gas proceeding with introduction of the Prigogine-Xhrouet model (PX) for the reactive cross section. We use the Shizgal-Karplus perturbation method of solution of the Boltzmann equation for reactions $A+A \rightarrow B+B$ and $A+A \rightleftarrows B+B$ to obtain the analytical expressions for the nonequilibrium temperatures of reagents and for the rate of chemical reaction. We present the results obtained within one and two Sonine polynomials approximations. The rate constant of chemical reaction depends on concentration of products for the first reaction only and for the second reaction is constant. The analytical results for the temperature of the reagent A and its value in the beginning of reaction for the product B are compared with those obtained from the Monte Carlo computer simulations with use of the Bird method. It is shown that the nonequilibrium effects in Shizgal-Karplus temperatures and in decrease of the chemical constant rate are more pronounced than for the lines-of-centers model. For the PX model the rate constant can be decreased even 4 times.

PACS numbers: 05.20.Dd, 82.20.-w, 82.20.Mj, 82.20.Wt

[^0]
1. Introduction

The nonequilibrium effects connected with proceeding of a bimolecular chemical reaction in a dilute gas were first analyzed by Prigogine and Xhrouet [1]. These authors [1] using the perturbation method [2] solved the Boltzmann equation for the early stages of reaction in which the role of products could be neglected. The early stages of chemical reaction were also analyzed by Present $[3,4]$ who introduced the line-of-centers model for this purpose. In all those papers $[1,3,4]$ one temperature of reacting system was introduced because the products were neglected. As shown by Shizgal and Karplus [5,6], in an analysis of further stages of chemical reaction the role of products becomes important. In this case the reagents can have different nonequilibrium temperatures. Recently, Shizgal and Napier [7] have analyzed carefully the possibilities of solutions of the Boltzmann equation for reactions proceeding in various conditions and described the differences between nonequilibrium effects in the early and further stages of chemical reaction. In Refs. [3-7], as well as in many other papers [8-22] the line-of-centers model was introduced because this model is simple and gives reasonable results. However, another model introduced in the first paper [1] has not been used for the description of the further stages of chemical reaction yet.

It is important that for the stages of reaction in which the reaction proceeds slow enough interesting analytical results can be obtained. Namely, the relative decrease of the forward chemical reaction rate depends on the molar fraction of the product and, on the contrary, for the overall reaction rate such a decrease is constant. This problem was analyzed in some recent papers for the line-of-centers model [23-26] and also for the reverse line-ofcenters model [26] for which the Arrhenius activation energy can be very small and even negative [27-30].

The aim of this paper is to derive some analytical equations for the model originally used by Pigogine and Xhrouet [1], i.e. the expressions for the nonequilibrium Shizgal-Karplus temperatures and for the relative decrease of the rate constant of chemical reaction. We derive these results in the same way as used previously [23] for the line-of-centers model. We verify the new analytical results by the Monte Carlo simulations in a similar way as that presented in Ref. [23].

Our paper is organized as a follows: in Sec. 2 we describe definitions of quantities used to characterize the nonequilibrium effects; in Sec. 3 we formulate the Boltzmann equation for the chemical reactions considered; in Sec. 4 we present the perturbation solution of the Boltzmann equation obtained within the Shizgal-Karplus method; in Sec. 5 we show the analytical expressions describing nonequilibrium effects on temperature of components and in Sec. 6 such expressions for the rate of chemical reaction; in Sec. 7
we characterize the reacting system used for Monte Carlo simulations and compare the numerical results obtained from these simulations with the analytical results. In Sec. 8 we discuss the results obtained.

2. Definitions of quantities describing nonequilibrium effects of reaction

We analyze the bimolecular chemical reactions

$$
\begin{align*}
& A+A \rightarrow B+B \tag{2.1}\\
& A+A \rightleftarrows B+B \tag{2.2}
\end{align*}
$$

In Eq. (2.1) we take into consideration only the forward reaction, whereas in Eq. (2.2) we also include the reverse reaction. We introduce the nonequilibrium value of the rate of forward chemical reaction in the usual way

$$
\begin{equation*}
v_{A \mathrm{f}}=-\left(\frac{d n_{A}}{d t}\right)_{\mathrm{f}}=\iiint f_{A 1} f_{A 2} \sigma_{0} g d \Omega d \boldsymbol{c}_{A 1} d \boldsymbol{c}_{A 2} \tag{2.3}
\end{equation*}
$$

where the index f is introduced to distinguish the forward reaction from the reverse one for which the index r will be introduced; n_{A} is the number density, $f_{A 1}$ and $f_{A 2}$ are the velocity distribution functions of two colliding molecules A, σ_{0} is the differential reactive cross section, Ω is the solid angle, $\boldsymbol{c}_{A 1}, \boldsymbol{c}_{A 2}$ and g denote the velocities and relative velocity, respectively. The equilibrium value of $v_{A f}$ is

$$
\begin{equation*}
v_{A \mathrm{f}}^{(0)}=\iiint f_{A 1}^{(0)} f_{A 2}^{(0)} \sigma_{0} g d \Omega d \boldsymbol{c}_{A 1} d \boldsymbol{c}_{A 2} \tag{2.4}
\end{equation*}
$$

where $f^{(0)}$ is the Maxwell-Boltzmann velocity distribution function at temperature T

$$
\begin{equation*}
f_{A}^{(0)}=n_{A}\left(\frac{m_{A}}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m_{A} c_{A}^{2}}{2 k T}\right) \tag{2.5}
\end{equation*}
$$

where m_{A} denotes the molecular mass and k is the Boltzmann constant. These equations can be also used for the component B if the indices A are replaced by indices B. However, it is important to take into consideration that the total rate of chemical reaction is v_{A} which can be expressed as

$$
\begin{gather*}
v_{A}=v_{A \mathrm{f}}+v_{A \mathrm{r}}=v_{A \mathrm{f}}-v_{B \mathrm{f}} \tag{2.6}\\
v_{A}^{(0)}=v_{A \mathrm{f}}^{(0)}+v_{A \mathrm{r}}^{(0)}=v_{A \mathrm{f}}^{(0)}-v_{B \mathrm{f}}^{(0)} \tag{2.7}
\end{gather*}
$$

We define also the following useful quantities

$$
\begin{array}{ll}
\eta_{R \mathrm{f}}=1-\frac{v_{R \mathrm{f}}}{v_{R \mathrm{f}}^{(0)}} & (R=A, B) \\
\eta_{R}=1-\frac{v_{R}}{v_{R}^{(0)}} & (R=A, B) \tag{2.9}
\end{array}
$$

which are very convenient for a description of nonequilibrium corrections to the rate of chemical reaction.

We introduce as Shizgal and Karplus [5] the temperature of components

$$
\begin{equation*}
T_{R}=T_{R}^{\mathrm{SK}}=\frac{2}{3 n_{R} k} \int f_{R} \frac{1}{2} m_{R} c_{R}^{2} d \boldsymbol{c}_{R} \quad(R=A, B) \tag{2.10}
\end{equation*}
$$

and the temperature of the system is related to these temperatures by

$$
\begin{equation*}
T=\frac{n_{A} T_{A}+n_{B} T_{B}}{n_{A}+n_{B}} \tag{2.11}
\end{equation*}
$$

The change of temperature T_{R} due to nonequilibrium effects can be calculated as

$$
\begin{equation*}
\Delta T_{R}=T-T_{R}^{\mathrm{SK}} \quad(R=A, B) \tag{2.12}
\end{equation*}
$$

where T_{R}^{SK} is the nonequilibrium temperature (see Eq. (2.10)). As in our previous papers we introduce the indices SK to emphasize that this is the Shizgal-Karplus temperature. The quantities η (see Eqs. (2.8) and (2.9)) and ΔT_{R} (see Eq. (2.12)) can be used to describe simple analytical expressions obtained from the perturbation theory. In order to get these expressions we need to solve the Boltzmann equation.

3. The Boltzmann equation

We assume that the reagents are hard spheres and that their masses and diameters do not change when the reaction proceeds

$$
\begin{equation*}
m_{A}=m_{B}=m \quad d_{A}=d_{B}=d \tag{3.1}
\end{equation*}
$$

where d denotes the diameter. After taking into consideration Eq. (3.1) we write down the Boltzmann equation $[22,23]$ for reaction (2.2) for the component A in the following form

$$
\begin{equation*}
\frac{\partial f_{A}}{\partial t}=I_{\mathrm{el}}+I_{\mathrm{re}} \tag{3.2}
\end{equation*}
$$

where t is the time and

$$
\begin{align*}
I_{\mathrm{el}} & =\iint\left(f_{A 1}^{\prime} f_{A 2}^{\prime}-f_{A 1} f_{A 2}\right) \sigma_{A A} g d \Omega d c_{2} \\
& +\iint\left(f_{A}^{\prime} f_{B}^{\prime}-f_{A} f_{B}\right) \sigma_{A B} g d \Omega d c_{2} \tag{3.3}\\
I_{\mathrm{re}} & =\iint\left(f_{B 1} f_{B 2}-f_{A 1}^{\prime} f_{A 2}^{\prime}\right) \sigma_{0} g d \Omega d \boldsymbol{c}_{2} \tag{3.4}
\end{align*}
$$

where f_{i}^{\prime} are the velocity distribution functions for i-th component after collisions, respectively, $\sigma_{i j}$ are the differential elastic cross sections for collisions between spheres i and j, \boldsymbol{c}_{2} is shortly written to denote the velocity of second colliding molecule. It is worthwhile to observe that in Eq. (3.2) the post-collisional values of f_{i}^{\prime} appear because of the reasons discussed in Refs. [1,2]. The Boltzmann equation for the change of f_{B} in time may be written in the same way after changing the appropriate indices only.

We neglect all heat effects of this reaction, i.e. we assume that this reaction is neither exothermal nor endothermal one and also neglect the heat effects connected with internal degrees of freedom. However, we take into consideration that, even in the simplest models of reactive collisions, the particles of reagents need not have the same average kinetic energies.

For the elastic differential cross sections $\sigma_{A A}$ and $\sigma_{A B}$ we use the expression

$$
\begin{equation*}
\sigma_{A A}=\sigma_{A B}=\frac{1}{4} d^{2} \tag{3.5}
\end{equation*}
$$

We introduce the Prigogine-Xhrouet model [1] for the differential reactive cross section for collisions between the molecules A as well as for collisions between the molecules B

$$
\sigma_{0}= \begin{cases}0 & g \leq g_{0} \tag{3.6}\\ \frac{1}{4} s_{F} d^{2} & g>g_{0}\end{cases}
$$

where s_{F} is the steric factor and g denotes the threshold relative velocity of colliding spheres. This velocity is simply related to the threshold energy E_{0}

$$
\begin{equation*}
E_{0}=\frac{m g_{0}^{2}}{4} \tag{3.7}
\end{equation*}
$$

We introduce the dimensionless reduced threshold energy ε_{0} as

$$
\begin{equation*}
\varepsilon_{0}=\frac{E_{0}}{k T} \tag{3.8}
\end{equation*}
$$

This quantity similarly as s_{F} will appear in our final equations.

4. Solution of the Boltzmann equation

We solve the Boltzmann equation by the perturbation method described by Shizgal and Karplus [5, 6] and developed by Shizgal and Napier [7]. We replace f_{A} by $f_{A}^{(0)}$ in the left hand side of Eq. (3.2) and in Eq. (3.4) by $f_{A}^{(0)}$. We introduce in Eq. (3.3) the nonequilibrium velocity distribution function as

$$
\begin{equation*}
f_{A}=f_{A}^{(0)}+f_{A}^{(1)}=f_{A}^{(0)}\left(1+\psi_{A}\right) . \tag{4.1}
\end{equation*}
$$

The quantity ψ_{A} is expanded in the Sonine polynomials [5,15]

$$
\begin{equation*}
\psi_{A}=\sum_{i} a_{A}^{(i)} S_{1 / 2}^{(i)}\left(\mathcal{C}_{A}^{2}\right), \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{C}_{A}^{2}=\frac{m_{A} c_{A}^{2}}{2 k T} \tag{4.3}
\end{equation*}
$$

After taking into account that the temperature T of the system does not change when the reaction proceeds and $d T / d t=0$ we can write

$$
\begin{equation*}
\frac{\partial f_{A}^{(0)}}{\partial t}=\frac{\partial f_{A}^{(0)}}{\partial n_{A}}\left(\frac{d n_{A}}{d t}\right)^{(0)}=\frac{f_{A}^{(0)}}{n_{A}}\left(\frac{d n_{A}}{d t}\right)^{(0)} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{align*}
\left(\frac{d n_{A}}{d t}\right)^{(0)}= & -\iiint f_{A 1}^{(0)} f_{A 2}^{(0)} \sigma_{0} g d \Omega d \boldsymbol{c}_{2} d \boldsymbol{c}_{1} \\
& +\iiint f_{B 1}^{(0)} f_{B 2}^{(0)} \sigma_{0} g d \Omega d \boldsymbol{c}_{2} d \boldsymbol{c}_{1} \tag{4.5}
\end{align*}
$$

In this way taking into account Eqs. (2.5), (4.1) and (4.4) we write Eq. (3.2) in the following form

$$
\begin{align*}
& \frac{f_{A}^{(0)}}{n_{A}}\left(\frac{d n_{A}}{d t}\right)^{(0)}+\iint f_{A 1}^{(0)} f_{A 2}^{(0)} \sigma_{0} g d \Omega d \boldsymbol{c}_{2}-\iint f_{B 1}^{(0)} f_{B 2}^{(0)} \sigma_{0} g d \Omega d \boldsymbol{c}_{2} \\
= & \iint f_{A 1}^{(0)} f_{A 2}^{(0)}\left(\psi_{A 1}^{\prime}-\psi_{A 2}^{\prime}-\psi_{A 1}-\psi_{A 2}\right) \sigma_{A A} g d \Omega d \boldsymbol{c}_{2} \\
& +\iint f_{A 1}^{(0)} f_{A 2}^{(0)}\left(\psi_{A 1}^{\prime}-\psi_{A 1}\right) \sigma_{A B} g d \Omega d \boldsymbol{c}_{2} \\
& +\iint f_{A 1}^{(0)} f_{B 2}^{(0)}\left(\psi_{B 1}^{\prime}-\psi_{B 1}\right) \sigma_{A B} g d \Omega d \boldsymbol{c}_{2}, \tag{4.6}
\end{align*}
$$

where the terms $\psi_{1} \psi_{2}$ as smaller than ψ_{1} or ψ_{2} are neglected. We solve Eq. (4.6) within one and two Sonine polynomials expansion for the velocity
distribution function. We begin with the one Sonine polynomials approximation

$$
\begin{equation*}
\psi_{A 1}=a_{1}^{(A)}(1) S_{1 / 2}^{(1)}\left(\mathcal{C}_{A}^{2}\right)=a_{1}^{(A)}(1) S_{A}^{(1)} \tag{4.7}
\end{equation*}
$$

where we introduce $S_{A}^{(1)}$ to write the first Sonine polynomial in a shorter way.

We define very convenient quantities A in a following way

$$
A_{R i}=\iiint f_{R 1}^{(0)} f_{R 2}^{(0)} S_{R}^{(i)} \sigma_{0} g d \Omega d \boldsymbol{c}_{2} d \boldsymbol{c}_{1}, \quad(R=A, B), ~(i=0,1,2)
$$

For the Prigogine-Xhrouet model (see Eqs. (3.6)-(3.8)) it can be easily calculated that

$$
\begin{align*}
& A_{R 0}=4 s_{F} n_{R}^{2} d^{2}\left(\frac{\pi k T}{m}\right)^{1 / 2}\left(\varepsilon_{0}+1\right) \exp \left(-\varepsilon_{0}\right) \\
& A_{R 1}=-2 s_{F} n_{R}^{2} d^{2}\left(\frac{\pi k T}{m}\right)^{1 / 2} \varepsilon_{1} \exp \left(-\varepsilon_{0}\right) \\
& A_{R 2}=-\frac{1}{2} s_{F} n_{R}^{2} d^{2}\left(\frac{\pi k T}{m}\right)^{1 / 2} \varepsilon_{2} \exp \left(-\varepsilon_{0}\right), \quad(R=A, B) \tag{4.9}
\end{align*}
$$

where

$$
\begin{array}{r}
\varepsilon_{1}=\varepsilon_{0}^{2}+\frac{1}{2} \varepsilon_{0}+\frac{1}{2} \\
\varepsilon_{2}=-\varepsilon_{0}^{3}+2 \varepsilon_{0}^{2}+\frac{1}{4} \varepsilon_{0}+\frac{1}{4} . \tag{4.10}
\end{array}
$$

From Eqs. (4.6) and (4.7) after using the definition (4.8) in a typical way (see Refs. [16] and [21]) we obtain

$$
\begin{equation*}
A_{A 1}-\delta_{\mathrm{cr}} A_{B 1}=a_{1}^{(A)}(1) n_{A}^{2}\left\{S_{A}^{(1)}, S_{A}^{(1)}\right\}+a_{1}^{(B)}(1) n_{A} n_{B}\left\{S_{A}^{(1)}, S_{B}^{(1)}\right\} \tag{4.11}
\end{equation*}
$$

where $\delta_{\text {cr }}$ equals 1 if the reverse reaction is taken into account and 0 if not, $\{$,$\} are the brace symbols introduced by Chapman and Cowling [2] and$ particularly analyzed by Shizgal and Karplus [5]. As shown in Ref. [5]

$$
\begin{align*}
n_{A} a_{1}^{(A)}(1)+n_{B} a_{1}^{(B)}(1) & =0 \tag{4.12}\\
\left\{S_{A}^{(1)}, S_{A}^{(1)}\right\}+\left\{S_{A}^{(1)}, S_{B}^{(1)}\right\} & =0 \tag{4.13}
\end{align*}
$$

From Eqs. (4.11)-(4.13) we get

$$
\begin{equation*}
A_{A 1}-\delta_{\mathrm{cr}} A_{B 1}=a_{1}^{(A)}(1)\left(n_{A} n_{B}+n_{A}^{2}\right)\left\{S_{A}^{(1)}, S_{A}^{(1)}\right\} \tag{4.14}
\end{equation*}
$$

As follows from Tables I and II of Ref. [5]

$$
\begin{equation*}
\left\{S_{A}^{(1)}, S_{A}^{(1)}\right\}=-4 d^{2}\left(\frac{\pi k T}{m}\right)^{1 / 2} \tag{4.15}
\end{equation*}
$$

After taking into account Eqs. (4.9), (4.14) and (4.15) we can write

$$
\begin{equation*}
a_{1}^{(A)}(1)=\frac{1}{2} s_{F} x_{A}\left(1-\delta_{\mathrm{cr}} \frac{x_{B}^{2}}{x_{A}^{2}}\right) \varepsilon_{1}\left(-\varepsilon_{0}\right) \tag{4.16}
\end{equation*}
$$

where x_{A} and x_{B} are the molar fractions. In order not to write such expressions as Eq. (4.16) separately for reactions (2.1) and (2.2) we treat them as two cases-c:

1. $\mathrm{c}=\mathrm{n}$ corresponds to neglecting (n) of the reverse reaction, whereas
2. $\mathrm{c}=\mathrm{r}$ to taking into consideration the reverse (r) reaction. It means that for reactions (2.1) and (2.2) δ_{cr} is $\delta_{\mathrm{nr}}=0$ and $\delta_{\mathrm{rr}}=1$, respectively. In order to solve Eq. (4.6) within two Sonine polynomials approximation we introduce instead of Eq. (4.7) the following approximation for ψ

$$
\begin{align*}
\psi_{A 1}(2) & =a_{1}^{(A)}(2) S_{1 / 2}^{(1)}\left(\mathcal{C}_{A}^{2}\right)+a_{2}^{(A)}(2) S_{1 / 2}^{(2)}\left(\mathcal{C}_{A}^{2}\right) \\
& =a_{1}^{(A)}(2) S_{A}^{(1)}+a_{2}^{(A)}(2) S_{A}^{(2)} \tag{4.17}
\end{align*}
$$

Then using the typical method of solution mentioned above we obtain instead of Eq. (4.11) a set of two linear equations

$$
\begin{align*}
A_{A 1}-\delta_{\mathrm{cr}} A_{B 1}= & n_{A} n_{B}\left[a_{1}^{(A)}(2)\left(\left\{S_{A}^{(1)}, S_{A}^{(1)}\right\}-\left\{S_{A}^{(1)}, S_{B}^{(1)}\right\} \frac{n_{A}}{n_{B}}\right)\right. \\
& \left.+a_{2}^{(A)}(2)\left(\left\{S_{A}^{(1)}, S_{A}^{(1)}\right\}-\left\{S_{A}^{(1)}, S_{B}^{(1)}\right\} \frac{n_{A}}{n_{B}}\right)\right] \\
A_{A 2}-\delta_{\mathrm{cr}} A_{B 2}= & n_{A} n_{B}\left[a_{1}^{(A)}(2)\left(\left\{S_{A}^{(2)}, S_{A}^{(1)}\right\}-\left\{S_{A}^{(2)}, S_{B}^{(1)}\right\} \frac{n_{A}}{n_{B}}\right)\right. \\
& \left.+a_{2}^{(A)}(2)\left(\left\{S_{A}^{(2)}, S_{A}^{(2)}\right\}-\left\{S_{A}^{(2)}, S_{B}^{(2)}\right\} \frac{n_{A}}{n_{B}}\right)\right] . \tag{4.18}
\end{align*}
$$

From Eqs. (4.18) after making a similar derivation as that for obtaining Eq. (4.16) from Eq. (4.11) we get

$$
\begin{align*}
& a_{1}^{(A)}(2)=\frac{1}{60} s_{F} x_{A}\left(1-\delta_{\mathrm{cr}} \frac{x_{B}^{2}}{x_{A}^{2}}\right) \varepsilon_{3} \exp \left(-\varepsilon_{0}\right), \\
& a_{2}^{(A)}(2)=\frac{1}{15} s_{F} x_{A}\left(1-\delta_{\mathrm{cr}} \frac{x_{B}^{2}}{x_{A}^{2}}\right) \varepsilon_{4} \exp \left(-\varepsilon_{0}\right), \tag{4.19}
\end{align*}
$$

where

$$
\begin{align*}
& \varepsilon_{3}=-\varepsilon_{0}^{3}+33 \varepsilon_{0}^{2}+\frac{63}{4} \varepsilon_{0}+\frac{63}{4}, \\
& \varepsilon_{4}=-\varepsilon_{0}^{3}+3 \varepsilon_{0}^{2}+\frac{3}{4} \varepsilon_{0}+\frac{3}{4} . \tag{4.20}
\end{align*}
$$

Eqs. (4.16) and (4.19) are very useful in derivation of final analytical equations. For the component B we can use Eq. (4.12) in order to get $a_{1}^{(B)}(1)$.

5. Nonequilibrium effects in temperatures of components

We can use Eqs. (4.16) and (4.19) to calculate the nonequilibrium temperature T_{A}.

$$
\begin{equation*}
T_{A}^{\mathrm{SK}}(i)=T_{A}(i)=T\left[1-a_{1}^{(A)}(i)\right] \quad(i=1,2) \tag{5.1}
\end{equation*}
$$

where i is introduced to distinguish the Shizgal-Karplus temperature $T^{\mathrm{SK}}(1)$ obtained within one Sonine polynomials approximation from that $T_{A}^{\mathrm{SK}}(2)$ obtained within two Sonine polynomials approximation. We also introduce

$$
\begin{equation*}
\Delta T_{A}(i)=T-T_{A}^{\mathrm{SK}}(i) \quad(i=1,2) \tag{5.2}
\end{equation*}
$$

From Eqs. (5.1) and (5.2) after introduction of Eq. (4.16) we can write for the one Sonine polynomials approximation

$$
\begin{equation*}
\Delta T_{A}(1)=T-T_{A}^{\mathrm{SK}}(1)=\frac{1}{2} s_{F} T x_{A}\left(1-\delta_{\mathrm{cr}} \frac{x_{B}^{2}}{x_{A}^{2}}\right) \varepsilon_{1} \exp \left(-\varepsilon_{0}\right) \tag{5.3}
\end{equation*}
$$

Similarly, from Eqs. (5.1) and (5.2), after using Eq. (4.19) we get the following expression for two Sonine polynomials approximation

$$
\begin{equation*}
\Delta T_{A}(2)=\frac{1}{60} s_{F} T x_{A}\left(1-\delta_{\mathrm{cr}} \frac{x_{B}^{2}}{x_{A}^{2}}\right) \varepsilon_{3} \exp \left(-\varepsilon_{0}\right) \tag{5.4}
\end{equation*}
$$

It is important to take into consideration that if we neglect the reverse reaction $\delta_{\mathrm{cr}}=0$ we have relations for $\Delta T_{A}(i)$ in a simplified form (see Eqs. (5.3) and (5.4)), namely the effect of concentration would be proportional to x_{A}. In result the appropriate ratios $\Delta T_{A} / T s_{F} x_{A}$ are functions of ε_{0} only. In Fig. 1 we present these ratios in a form of two curves. Additionally, we introduce for a comparison two curves which represent such expressions for the line-of-centers model (LC) (see Eqs. (35) and (36) from Ref. [23]). For the LC model the appropriate reduced threshold energy is denoted ε^{*}.

Fig. 1. Relative decrease of temperature T_{A} for the forward reaction (2.1) presented in a reduced form as $\Delta T_{A} / T s_{F} x_{A}$ calculated for the PX model from Eqs. (5.3) and (5.4) with $\delta_{\mathrm{cr}}=0$ as function of the reduced threshold energy ε_{0} and such results for the LC model as a function of ε^{*}.

We see that we have four simple expressions for $\Delta T_{A}(i)$: Eqs. (5.3) and (5.4) with $\delta_{\text {cr }}$ equal to 0 (if the reverse reaction is not considered) and to 1 otherwise. For these four cases comparisons of theoretical results for T_{A} and those obtained from the computer simulations will be presented.

Interesting effects can be observed if the early stages of chemical reaction are considered. As it follows from Refs. $[15,17]$ the largest value of T_{B} is in the very beginning of reaction when x_{B} is nearly equal to 0 .

In order to derive the expression for the initial value of T_{B} we take into consideration that in the very beginning of reaction for $t=0$ and for a very small time $t=\tau$ we can write

$$
\begin{gather*}
n_{A}(0)=n, \quad T_{A}(0)=T, \tag{5.5}\\
n_{A}(\tau)=n+\frac{d n_{A}}{d t} \tau, \quad n_{B}(\tau)=-\frac{d n_{A}}{d t} \tau, \tag{5.6}\\
T_{A}(\tau)=T+\frac{d T_{A}}{d t} \tau . \tag{5.7}
\end{gather*}
$$

After taking into account that $\left(n_{A}+n_{B}\right) T$ is constant and the square terms with τ are much smaller than those with τ from we can use Eqs. (5.5)-(5.7), (2.11), (2.3), (4.9) as well as the following Shizgal's [31] result

$$
\begin{equation*}
\frac{d T_{A}}{d t}=\frac{2}{3} \frac{T_{A}(0)}{n(0)} A_{A 1} \tag{5.8}
\end{equation*}
$$

and we can derive

$$
\begin{equation*}
T_{B}(0)=\lim _{x_{B} \rightarrow 0} T_{B}=T\left(1-\frac{2}{3} \frac{A_{A 1}}{A_{A 0}}\right) \tag{5.9}
\end{equation*}
$$

From this result (discussed also in Sec. 8) for the PX model (see Eqs. (4.9)) it follows

$$
\begin{equation*}
\Delta T_{B}(0)=T-T_{B}(0)=\lim _{x_{B} \rightarrow 0} \Delta T_{B}=-\frac{1}{3} T \frac{\varepsilon_{1}}{\varepsilon_{0}+1} \tag{5.10}
\end{equation*}
$$

In the further stages of chemical reaction we can calculate T_{B} from the appropriate expression for T_{A} if we use Eq. (2.11). We can use Eqs. (5.3) and (5.4) for four cases mentioned above in order to have expressions for the nonequilibrium effects on temperature for the component B. We present these expressions in the following way:
(1) For one Sonine approximation with the reverse reaction neglected

$$
\begin{equation*}
\Delta T_{B}(1)=T-T_{B}^{\mathrm{SK}}(1)=-\frac{1}{2} s_{F} T\left(\frac{\left(1-x_{B}\right)^{2}}{x_{B}}\right) \varepsilon_{1} \exp \left(-\varepsilon_{0}\right) \tag{5.11}
\end{equation*}
$$

From Eq. (5.11) we see that for very small molar fraction of B this effect could be very large. It means that the results of the perturbation method cannot be analyzed in the ranges of very small x_{B}. We analyze this problem after showing the next 3 equations for ΔT_{B}.
(2) For two Sonine approximation with the reverse reaction neglected

$$
\begin{equation*}
\Delta T_{B}(2)=-\frac{1}{60} s_{F} T\left(\frac{\left(1-x_{B}\right)^{2}}{x_{B}}\right) \varepsilon_{3} \exp \left(-\varepsilon_{0}\right) \tag{5.12}
\end{equation*}
$$

(3) For one Sonine approximation with the reverse reaction taken into account

$$
\begin{equation*}
\Delta T_{B}(1)=-\frac{1}{2} s_{F} T\left(\frac{\left(1-x_{B}\right)}{x_{B}}-1\right) \varepsilon_{1} \exp \left(-\varepsilon_{0}\right) \tag{5.13}
\end{equation*}
$$

(4) For two Sonine approximation with the reverse reaction taken into account

$$
\begin{equation*}
\Delta T_{B}(2)=-\frac{1}{60} s_{F} T\left(\frac{\left(1-x_{B}\right)}{x_{B}}-1\right) \varepsilon_{3} \exp \left(-\varepsilon_{0}\right) \tag{5.14}
\end{equation*}
$$

It is possible that in some cases the chemical reaction proceeds so fast that the perturbation solution of the Boltzmann equation can not be used. In these cases it is very useful to observe that if the chemical reaction proceeds T_{B} decreases. Therefore, we can write

$$
\begin{equation*}
T_{B}^{\mathrm{SK}}<T_{B}(0) \tag{5.15}
\end{equation*}
$$

It is sufficient to compare the appropriate expression for ΔT_{B} to see the range of x_{B} in which the solutions obtained can be valid.

We analyze such a range of x_{B} for the case 3 . in which the reverse reaction is taken into account for the solution within one Sonine polynomial approximation. From Eqs. (5.10), (5.13) and (5.15) it can be derived that

$$
\begin{equation*}
\left(2+\frac{2}{3} \frac{\exp \left(\varepsilon_{0}\right)}{s_{F}\left(\varepsilon_{0}+1\right)}\right)^{-1}<x_{B}<\frac{1}{2} \tag{5.16}
\end{equation*}
$$

Such inequalities for the ranges of x_{B} in which the results from the perturbation solution are valid, can be also simply derived for the cases 1,2 and 4 if we use for a comparison of $T_{B}(0)$ with T_{B} calculated from Eqs. (5.11), (5.12) and (5.14), respectively.

6. Nonequilibrium effects in rate constants of chemical reaction

In order to distinguish separate results for the rates of forward reaction and the total one (in which the reverse reaction is also considered) we introduce

$$
\begin{align*}
v_{A \mathrm{f}} & =v_{A \mathrm{f}}^{(0)}+v_{A \mathrm{f}}^{(1)} \tag{6.1}\\
v_{A}=v_{A}^{(0)}+v_{A}^{(1)} & =v_{A \mathrm{f}}^{(0)}+v_{A \mathrm{r}}^{(0)}+v_{A \mathrm{f}}^{(1)}+v_{A \mathrm{r}}^{(1)} \\
& =v_{A \mathrm{f}}^{(0)}-v_{B \mathrm{f}}^{(0)}+v_{A \mathrm{f}}^{(1)}-v_{B \mathrm{f}}^{(1)} \tag{6.2}
\end{align*}
$$

where the upper index (1) is connected with Eq. (4.1). After taking into account Eqs. (2.8) and (2.9) we introduce also

$$
\begin{array}{ll}
\eta_{R \mathrm{f}}=-\frac{v_{R \mathrm{f}}^{(1)}}{v_{R \mathrm{f}}^{(0)}}, & (R=A, B) \\
\eta_{R}=-\frac{v_{R}^{(1)}}{v_{R}^{(0)}}, & (R=A, B) \tag{6.4}
\end{array}
$$

From Eqs. (2.4), (2.5) and (3.6) we obtain

$$
\begin{equation*}
v_{R \mathrm{f}}^{(0)}=k_{R \mathrm{f}}^{(0)} n_{R}^{2}=4 s_{F} n_{R}^{2}\left(\frac{\pi k T}{m}\right)^{1 / 2}\left(\varepsilon_{0}+1\right) \exp \left(-\varepsilon_{0}\right), \quad(R=A, B) \tag{6.5}
\end{equation*}
$$

where $k_{R f}^{(0)}$ is the equilibrium forward reaction rate constant. After taking into consideration Eq. (6.1) and using, as in the previous section, the Shizgal-Karplus solution of the Boltzmann equation (see Eqs. (2.3)-(2.5),
(4.1), (4.7)-(4.9), (4.16), (4.17) and (4.19)) we obtain the following nonequilibrium contributions to the rate of chemical reaction within one and two Sonine polynomial approximation, respectively

$$
\begin{align*}
v_{A f}^{(1)}(1) & =k_{A \mathrm{f}}^{(1)}(1) n_{A}^{2} \\
& =-2 s_{F}^{2} n_{A}^{2} x_{A}\left(1-\delta_{\mathrm{cr}} \frac{x_{B}^{2}}{x_{A}^{2}}\right) d^{2}\left(\frac{\pi k T}{m}\right)^{1 / 2} \varepsilon_{1}^{2} \exp \left(-2 \varepsilon_{0}\right), \tag{6.6}\\
v_{A f}^{(1)}(2) & =k_{A \mathrm{f}}^{(1)}(2) n_{A}^{2} \\
& =-\frac{1}{15} s_{F}^{2} n_{A}^{2} x_{A}\left(1-\frac{\delta_{\mathrm{cr}} x_{B}^{2}}{x_{A}^{2}}\right) d^{2}\left(\frac{\pi k T}{m}\right)^{1 / 2}\left(\varepsilon_{1} \varepsilon_{3}+\varepsilon_{2} \varepsilon_{4}\right) \exp \left(-2 \varepsilon_{0}\right) . \tag{6.7}
\end{align*}
$$

Similarly as in the discussion of nonequilibrium effects of chemical reaction on temperature we discuss four cases:

1. One Sonine polynomials approximation with the reverse reaction neglected (see Eq. (2.1)). From Eqs. (6.3), (6.5) and (6.6) after taking into account that $\delta_{\mathrm{cr}}=\delta_{\mathrm{nr}}=0$ we get

$$
\begin{equation*}
\eta_{A \mathrm{f}}(1)=\frac{1}{2} s_{F} x_{A} \frac{\varepsilon_{1}^{2}}{\varepsilon_{0}+1}\left(-\varepsilon_{0}\right) \tag{6.8}
\end{equation*}
$$

2. Two Sonine polynomials approximation with the reverse reaction neglected. From Eqs. (6.3), (6.5) and (6.7) we get

$$
\begin{equation*}
\eta_{A f}(2)=\frac{1}{60} s_{F} x_{A}\left(\frac{\varepsilon_{1} \varepsilon_{3}+\varepsilon_{2} \varepsilon_{4}}{\varepsilon_{0}+1}\right) \exp \left(-\varepsilon_{0}\right) \tag{6.9}
\end{equation*}
$$

3. One Sonine polynomials approximation with the reverse reaction considered (see Eq. (2.2)). From Eqs. (6.4)-(6.6) after taking into account that $\delta_{\mathrm{cr}}=\delta_{\mathrm{rr}}=1$ we get

$$
\begin{equation*}
\eta_{A(\mathrm{f})}(1)=\frac{1}{2} s_{F} x_{A}\left(1-\frac{x_{B}^{2}}{x_{A}^{2}}\right) \frac{\varepsilon_{1}^{2}}{\varepsilon_{0}+1}\left(-\varepsilon_{0}\right) . \tag{6.10}
\end{equation*}
$$

As Eq. (6.10) concerns the forward reaction nonequilibrium contributions in reaction (2.2) we have introduced the index f as (f) to distinguish η in Eq. (6.10) from that in Eq. (6.8). For this case after a careful analysis of relations for the forward and reverse chemical reaction rates and rate constants (see, e.g. Ref. [23]) we can obtain.

$$
\begin{equation*}
\eta_{A}(1)=\frac{1}{2} s_{F} \frac{\left(\varepsilon_{0}^{2}+\frac{1}{2} \varepsilon_{0}+\frac{1}{2}\right)^{2}}{\varepsilon_{0}+1} \exp \left(-\varepsilon_{0}\right)=\eta_{B}(1) \tag{6.11}
\end{equation*}
$$

This is a very important result which shows that if the reverse reaction is considered the nonequilibrium corrections to the rate of chemical reaction do not depend on concentrations and are the same for both the components. 4. Two Sonine approximation with the reverse reaction considered (see Eq. (2.2)). For this case we can perform derivations in the same way as in the case of one Sonine polynomial approximation described above. We use Eq. (6.7) instead of Eq. (6.6) and we get instead of Eq. (6.11)

$$
\begin{equation*}
\eta_{A(\mathrm{f})}(2)=\frac{1}{60} s_{F} x_{A}\left(1-\frac{x_{B}^{2}}{x_{A}^{2}}\right)\left(\frac{\varepsilon_{1} \varepsilon_{3}+\varepsilon_{2} \varepsilon_{4}}{\varepsilon_{0}+1}\right) \exp \left(-\varepsilon_{0}\right) . \tag{6.12}
\end{equation*}
$$

For this case we can obtain

$$
\begin{equation*}
\eta_{A}(2)=\frac{1}{60} s_{F}\left(\frac{\varepsilon_{1} \varepsilon_{3}+\varepsilon_{2} \varepsilon_{4}}{\varepsilon_{0}+1}\right) \exp \left(-\varepsilon_{0}\right)=\eta_{B}(2) \tag{6.13}
\end{equation*}
$$

It should be emphasized that, on the contrary to the case of neglecting of the reverse reaction in which in Eqs. (6.8) and (6.10) x_{A} appears, in Eqs. (6.11) and (6.13) the nonequilibrium corrections to the rate of chemical reaction are the same for both the components and do not depend on their concentrations. In Fig. 2 we present for the PX model the nonequilibrium decrease of the rate constant of chemical reaction as a function of the reduced threshold energy ε_{0} (see Eqs. (6.11), (6.13)). For a comparison we present also such results for the LC model (see Eqs. (59) and (61) from Ref. [23]).

Fig. 2. Relative decrease of the rate constant of the overall reaction (2.2) for the PX model (Eqs. (6.11), (6.13)) as a function of ε_{0} and such results for the LC model as a function of ε^{*}.

7. Comparison of results following from analytical results with those obtained from the Monte Carlo simulations

In order to perform computer simulations we use the Bird algorithm prepared by the second author of this paper. This algorithm is based on the earlier results Bird [32-35] discussed also in Ref. [36] and particularly described in Ref. [23].

We have used the following system for simulations. A volume $V=2777.78 \mathrm{~nm}^{3}$ contains in the beginning $N_{A}=1000$ spheres A and $N_{B}=0$ spheres B having the same diameter $d=0.35 \mathrm{~nm}$ and masses $16 \mathrm{~g} / \mathrm{mol}$. This corresponds to the packing factor 0.008082 . The equilibrium temperature is 300 K . As the chemical reaction proceeds the spheres A change in reactive collisions to the spheres B and vice versa. Therefore, the number of spheres B increases and the number of spheres A decreases to $N_{A}=1000-N_{B}$. The average translational energy of the components A and B and also their temperatures change. The time is described by time steps $\Delta t=0.6941 \times 10^{-13} \mathrm{~s}$. In order to obtain sufficient accuracy we have performed in each simulation a large number of runs $R \quad(R \geq 50000)$ and obtained average values of N_{A}, N_{B}, T_{A} and T_{B} as well as the number of elastic and reactive collisions as a function of the time steps. The results of such simulations are compared with the results following from the analytical expressions derived in preceding sections. In Fig. 3 we present the results for the initial temperature of component B as a function of the reduced threshold energy ε_{0}. The analytical curve for $T_{B}(0)$ is obtained from Eq. (5.10) and the small circles represent the average values of T_{B} obtained from the beginning time steps in the simulation.

Fig. 3. The temperatures $T_{B}(0)$ as a function of ε_{0}. The solid curve represents the results calculated from Eq. (5.10) and the small circles those obtained from simulations.

In Fig. 4 we show the changes of temperature of component A for a system in which the forward reaction proceeds only and the number of spheres B can be even equal to 1000 which corresponds to the molar fraction of B $x_{B}=1.0$. The reduced threshold energy is chosen $\varepsilon_{0}=3.0$ and the steric factor $s_{F}=1.0$. The straight lines 1 and 2 are obtained from the analytical results within one and two Sonine polynomials approximation, respectively,

Fig. 4. Temperature T_{A} as a function of molar fraction x_{B} for the forward reaction (2.1) with $\varepsilon_{0}=3$ and $s_{F}=1.0$. Results from the simulation are represented with irregular line and those from the perturbation solution within one and two Sonine polynomials approximation with straight lines denoted 1 and 2 (see Eqs. (5.3) and (5.4) with $\delta_{\text {cr }}=0$), respectively.

Fig. 5. Temperature T_{A} as a function of molar fraction x_{B} for the forward-reverse reaction (2.2) with $\varepsilon_{0}=1.5$ and $s_{F}=0.1$. Results from the simulation are represented with irregular line and those from expressions obtained within appropriate Sonine polynomials approximations (see Eqs. (5.3) and (5.4) with $\delta_{\text {cr }}=1$) with curves denoted 1 and 2 , respectively.
(see Eqs. (5.3) and (5.4) with $\delta_{\text {cr }}=0$). The irregular curve shows T_{A} obtained from simulations. In the next two figures we show such results as those presented in Fig. 4 but for the case in which also the reverse reaction proceeds. Therefore, the molar fraction x_{B} can not exceed 0.5 . In this case we introduce $\delta_{\text {cr }}=1.0$ in Eqs. (5.3), (5.4). In Fig. 5 we introduce $\varepsilon_{0}=1.5$ and $s_{F}=0.1$, whereas in Fig. $6 \varepsilon_{0}=3.0$ and $s_{F}=0.2$.

Fig. 6. Results for T_{A} represented in the same way as in Fig. 5 but for $\varepsilon_{0}=3.0$ and $s_{F}=0.2$.

Additionally, in Fig. 7 we show the velocity distribution functions of the components A and B after a 1000 time steps in a typical simulation. We have chosen $\varepsilon_{0}=3.0$ and $s_{F}=0.2$ for this purpose just to show the shapes of the curves only.

Fig. 7. The velocity distribution functions of reagents A and B as a function of c_{A} and c_{B} in 10^{3} for the forward-reverse reaction (2.2) with $\varepsilon_{0}=3.0$ and $s_{F}=0.2$ after 1000 time steps of simulation corresponding to $x_{B}=0.23$. Results from simulations are represented with irregular lines and the Maxwell-Boltzmann distributions for the appropriate temperatures T_{A} and T_{B} with regular lines, respectively.

8. Discussion

We have solved the Boltzmann equation using the perturbation method for the case of bimolecular chemical reaction proceeding in a dilute gas. We have introduced the Prigogine-Xhrouet model (PX) for the reactive cross section and obtained the analytical expressions for the noneqilibrium Shizgal-Karplus temperatures and reaction rate constants as functions of the reduced threshold energy ε_{0}. We have analyzed such analytical results for two cases: 1. the reaction proceeds in forward direction only, 2. the forward and reverse reactions proceed.

For the case 1. we have obtained the results for temperatures T_{A} which can be calculated from appropriate ΔT_{A} for one and two Sonine polynomials approximations (see Eqs. (5.3) and (5.4) with $\delta_{\text {cr }}=0$). In Fig. 1 we have shown that for the PX model ΔT_{A} can be larger than it would be for the line-of-centers model (LC) for the appropriate reduced threshold energy ε^{*}. The temperature T_{B} can be calculated from Eqs. (2.12), (5.11) and (5.12). We have also derived expressions for the relative decrease of the rate constant of chemical reaction for both the approximations (see Eqs. (6.8) and (6.9)).

For the case 2. we have derived appropriate expressions for temperature T_{A} (see Eqs. (5.3) and (5.4) with $\delta_{\text {cr }}=1$). We have also obtained equations for the relative decrease of the rate constant of chemical reaction (see Eqs. (6.10)-(6.13)). It is interesting that in this case for the PX model the relative decrease of the rate constant of the overall reaction (see Eqs. (6.11) and (6.13) does not depend on x_{B} similarly as for the other models already analyzed (see Refs [23, 25, 26]). It even more interesting that for the PX model this decrease is more pronounced that for the other models. This can be seen from Fig. 2. Namely, for $\varepsilon_{0}=3$ the rate constant of reaction (2.1) can be even 4 times smaller than its equilibrium value which corresponds to $\eta=0.75$. This result is very important because for the LC model the maximum value of η is about 0.45 , i.e. the rate constant for that model could be about 1.8 times smaller than its equilibrium value.

From a comparison of Eqs. (6.8), (6.10) and (6.11) or Eqs. (6.9), (6.12) and (6.13) we can see that in general $\eta_{A(f)}$ is smaller than $\eta_{A f}$ which is smaller than η. It is important in the analysis for chemical reactions proceeding relatively far-from-equilibrium [15, 20]. Namely, only for reactions characterized by sufficiently large ε_{0} and small s_{F} the results for $\eta_{A \mathrm{f}}$ and $\eta_{A(\mathrm{f})}$ can be analyzed for small values of x_{B}. Only in this case the values of these quantities can approach to the value of η. We had this situation in the analysis of the LC model [20].

In order to verify the validity of results obtained within the perturbation method of solution we have additionally performed the Monte Carlo simulations. We have made comparisons between the results obtained from
the analytical expressions and those obtained from simulations for the temperatures only, i.e. in the same way as we have done in Ref. [23] for the LC model. The reason is that the accuracy of results from simulations for temperatures is much better than for such results for the rate constants.

We have additionally derived the expression for $T_{B}(0)$, i.e. for the temperature of product B in early stages of reaction (see Eq. (5.10)). We think that the way of derivation is shown in Sec. 5 in more convincing way than earlier for the LC model in Ref. [17]. Namely, in Ref. [17] we assumed that, as the fastest molecules A change to B, the product B must have the maximum temperature in the beginning of reaction and the time derivative of T_{B} should be equal to zero, however, the last condition (although leads to good results) in general need not be fulfilled. In Fig. 3 we have shown the comparison for results for $T_{B}(0)$. We see that the agreement between the analytical results and those from simulations is very good. However, for large values of ε_{0}, e.g. $\varepsilon_{0}>7$ the accuracy is a little bit worse because we get very small amount of the product B. Naturally, the temperature T_{B} obtained from the analytical expressions should not be larger than $T_{B}(0)$ because T_{B} decreases as the reaction proceeds. For fast reactions, e.g. for those proceeding with $s_{F}=1.0$, small values of ε_{0} and in a stage of reaction with small x_{B}, the reaction can be too fast to use the perturbation method. A comparison of $T_{B}(0)$ with T_{B}, i.e. $\left(T_{B}<T_{B}(0)\right)$, permits to find the range of x_{B} in which the perturbation solution can not work. Just to give one example, we have chosen one Sonine polynomial approximation for the forward-reverse reaction and obtained the inequality for x_{B} (see Eq. (5.16). In next figures, we have shown comparisons of analytical results for T_{A} with those obtained from simulations. From these figures it can be easily seen that, similarly as in the case of inequality discussed above, only for sufficiently large x_{B} such comparisons are reasonable. In Fig. 4 we have shown such a comparison for the case of neglecting of the reverse reaction with $\varepsilon_{0}=3.0$ and $s_{F}=1.0$. We see that for large x_{B} the agreement is fairly good. In the next two figures we have presented such comparisons for the forward-reverse reactions introducing $\varepsilon_{0}=1.5$ and $s_{F}=0.1$ (see Fig. 5) and $\varepsilon_{0}=3.0$ and $s_{F}=0.2$ (see Fig. 6). These results are fairly good, however, the role of inequality (5.16) is important if x_{B} is not large enough. In Fig. 7 we have additionally shown the velocity distribution functions f_{A} and f_{B} for the simulation with $\varepsilon_{0}=3.0$ and $s_{F}=0.2$ after 1000 time steps. From Fig. 7 it can be seen that the shapes of these distribution functions are nearly Maxwellian and they show that $T_{A}<T_{B}$, which is typical for the Shizgal-Kaplus temperatures for the reaction analyzed. The results presented in Figs. 4-7 confirm the fact that the perturbation method gives good results for slow chemical reactions. Naturally, for slow reactions the formulas for the relative decrease of the overall reaction rate constant are also valid (see Eqs. (6.11) and (6.13)).

It means that for $\varepsilon_{0}=3.0, s_{F}=1.0$ and sufficiently large x_{B} the nonequilibrium rate constant could be even 4 times smaller than its equilibrium value. Therefore, the role of nonequilibrium effects for the PX model can be more visible than in the case of the LC model (Figs. 1 and 2). It is interesting that Nowakowski analyzing a bimolecular reaction with neglection of products in the Lorentz gas has obtained also larger nonequilibrium corrections to the reaction rate for the PX model than for the LC model [37].

Just to summarize, we have used the Shizgal-Karplus perturbation method of solution of the Boltzmann equation for the Prigogine-Xhrouet model in order to obtain the analytical results for the relative decrease of the rate constant of chemical reaction as well as for nonequilibrium temperatures. We have used the Bird method of Monte Carlo simulations to confirm the results obtained. We have shown that the noneqilibrium effects connected with proceeding of the chemical reaction can be more pronounced for the Prigogine-Xhrouet model than for the line-of-centers model.

The authors would like to thank the Polish State Committee for Scientific Research (KBN) and Deutscheforschungsgemeinschaft (in the framework of SFB 294) for the financial support. Additionaly, the first author would like to thank his son MS. M.J. Cukrowski Jr. from Warsaw University of Technology, Faculty of Mathematics and Information Science for a help in some final computer evaluations and editorial preparations of the paper.

REFERENCES

[1] I. Prigogine, E. Xhrouet, Physica 15, 913 (1949).
[2] S. Chapman, T.G. Cowling, Mathematical Theory of Nonuniform Gases, Cambridge Univ. Press, Cambridge 1970.
[3] R.D. Present, J. Chem. Phys. 31, 747 (1959).
[4] R.D. Present, M. Morris, J. Chem. Phys. 50, 151 (1969).
[5] B. Shizgal, J. Karplus, J. Chem. Phys. 54, 4345 (1971).
[6] B. Shizgal, J. Karplus, J. Chem. Phys. 54, 4357 (1971).
[7] B.D. Shizgal, D.G. Napier, Physica A 233, 50 (1996).
[8] J. Ross, P. Mazur, J. Chem. Phys. 35, 19 (1961).
[9] C.W. Pyun, J. Ross, J. Chem. Phys. 40, 2572 (1964).
[10] R. Kapral, S. Hudson, J. Ross, J. Chem. Phys. 52, 4262 (1970).
[11] L. Monchick, J. Chem. Phys. 53, 4307 (1970).
[12] B.C. Eu, K.W. Li, Physica A 88, 135 (1977).
[13] J.M. Fitzpatrick, E.A. Desloge, J. Chem. Phys. 59, 5526 (1973).
[14] A.S. Cukrowski, J. Popielawski, R. Schmidt, W. Stiller, J. Chem. Phys. 89, 197 (1988).
[15] A.S. Cukrowski, S. Fritzsche, J. Popielawski, Far-from-Equilibrium Dynamics of Chemical Systems, Eds. J. Popielawski and J. Gorecki, Proceedings of Second International Symphosium, Swidno (Poland), September 1990, World Sci. Publ., Singapore, New Jersey 1991, p. 91.
[16] J. Gorecki, J. Popielawski, A.S. Cukrowski, Phys. Rev. A44, 3791 (1991).
[17] J. Popielawski, A.S. Cukrowski, S. Fritzsche, Physica A 188, 344 (1992).
[18] J. Gorecki, B.C. Eu, J. Chem. Phys. 97, 6695 (1992).
[19] B. Nowakowski, J. Popielawski, J. Chem. Phys. 100, 7602 (1994).
[20] A.S. Cukrowski, J. Popielawski, Lihong Qin, J.S. Dahler, J. Chem. Phys. 97, 9086 (1992).
[21] B.V. Alexeev, A. Chikhaoui, I.T. Grushin, Phys. Rev. E49, 2809 (1994).
[22] D.G. Napier, B. Shizgal, Phys. Rev. E52, 3797 (1995).
[23] A.S. Cukrowski, Physica A 275, 134 (2000).
[24] B. Nowakowski, J. Chem. Phys. 109, 3443 (1998).
[25] A.S. Cukrowski, S. Fritzsche, J. Fort, Chem. Phys. Lett. 341, 585 (2001).
[26] A.S. Cukrowski, J. Fort, S. Fritzsche, Acta Phys. Pol. B 33, 1085 (2002).
[27] A.S. Cukrowski, W. Stiller, R, Schmidt, Theor. Chim. Acta 73, 67 (1988).
[28] W. Stiller, R. Schmidt, E. Müller, N.V. Shokhierev, Z. Phys. Chem. 162, 119 (1989).
[29] W. Stiller, Arrhenius Equation and Nonequilibrium Kinetics, Teubner Texte zur Physik B21, Leipzig 1989.
[30] A.S. Cukrowski, M.A. Telka, Chem. Phys. Lett. 297, 402 (1998).
[31] B. Shizgal, J. Chem. Phys. 55, 76 (1971).
[32] G.A. Bird, Molecular Gas Dynamics, Oxford University Press, London 1976, p. 118.
[33] G.A. Bird, Commun. Appl. Num. Methods 4, 165 (1988).
[34] G.A. Bird, A Contemporary Implementation of the Direct Simulation Monte Carlo Method, NATO Advanced Study Institute, Microscopic Simulations of Complex Hydrodynamic Phenomena, Alghero, Sardinia, July 1991.
[35] G.A. Bird, General Programs for Numerical Simulation of Rarefied gas Flows, G.A.B. Consulting Pty. Ltd., Killary, Australia, 1988.
[36] R. Haberlandt, S. Fritzsche, G. Peinel, K. Heinzinger, Molekulardynamik, Vieveg, Leipzig, Mainz 1994 (in German).
[37] B. Nowakowski, Acta Phys. Pol. B 28, 1031 (1995).

[^0]: * Presented at the XV Marian Smoluchowski Symposium on Statistical Physics, Zakopane, Poland, September 7-12, 2002.

