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ANALYSIS OF NONEQUILIBRIUM EFFECTSIN A BIMOLECULAR CHEMICAL REACTIONIN A DILUTE GAS�Andrzej S. CukrowskiInstitute of Physial Chemistry, Polish Aademy of SienesKasprzaka 44/52, 01-224 Warsaw, PolandandInstitute of Chemistry, �wi�tokrzyska AademyCh�i«ska 5, 25-020 Kiele, Polande-mail: ukrowsk�ihf.edu.plSiegfried FritzsheInstitute of Theoretial Physis, Leipzig UniversityAugustusplatz 9�11, 04109 Leipzig, Germanye-mail: Siegfried.Fritzshe�physik.uni-leipzig.de(Reeived November 28, 2002)We analyze a thermally ativated bimoleular reation in a dilute gasproeeding with introdution of the Prigogine�Xhrouet model (PX) for thereative ross setion. We use the Shizgal�Karplus perturbation methodof solution of the Boltzmann equation for reations A + A ! B + B andA+A� B+B to obtain the analytial expressions for the nonequilibriumtemperatures of reagents and for the rate of hemial reation. We presentthe results obtained within one and two Sonine polynomials approxima-tions. The rate onstant of hemial reation depends on onentration ofproduts for the �rst reation only and for the seond reation is onstant.The analytial results for the temperature of the reagent A and its valuein the beginning of reation for the produt B are ompared with thoseobtained from the Monte Carlo omputer simulations with use of the Birdmethod. It is shown that the nonequilibrium e�ets in Shizgal�Karplustemperatures and in derease of the hemial onstant rate are more pro-nouned than for the lines-of-enters model. For the PX model the rateonstant an be dereased even 4 times.PACS numbers: 05.20.Dd, 82.20.�w, 82.20.Mj, 82.20.Wt� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3607)



3608 A.S. Cukrowski, S. Fritzshe1. IntrodutionThe nonequilibrium e�ets onneted with proeeding of a bimoleu-lar hemial reation in a dilute gas were �rst analyzed by Prigogine andXhrouet [1℄. These authors [1℄ using the perturbation method [2℄ solvedthe Boltzmann equation for the early stages of reation in whih the role ofproduts ould be negleted. The early stages of hemial reation were alsoanalyzed by Present [3, 4℄ who introdued the line-of-enters model for thispurpose. In all those papers [1,3,4℄ one temperature of reating system wasintrodued beause the produts were negleted. As shown by Shizgal andKarplus [5, 6℄, in an analysis of further stages of hemial reation the roleof produts beomes important. In this ase the reagents an have di�erentnonequilibrium temperatures. Reently, Shizgal and Napier [7℄ have ana-lyzed arefully the possibilities of solutions of the Boltzmann equation forreations proeeding in various onditions and desribed the di�erenes be-tween nonequilibrium e�ets in the early and further stages of hemial rea-tion. In Refs. [3�7℄, as well as in many other papers [8�22℄ the line-of-entersmodel was introdued beause this model is simple and gives reasonable re-sults. However, another model introdued in the �rst paper [1℄ has not beenused for the desription of the further stages of hemial reation yet.It is important that for the stages of reation in whih the reationproeeds slow enough interesting analytial results an be obtained. Namely,the relative derease of the forward hemial reation rate depends on themolar fration of the produt and, on the ontrary, for the overall reationrate suh a derease is onstant. This problem was analyzed in some reentpapers for the line-of-enters model [23�26℄ and also for the reverse line-of-enters model [26℄ for whih the Arrhenius ativation energy an be verysmall and even negative [27�30℄.The aim of this paper is to derive some analytial equations for the modeloriginally used by Pigogine and Xhrouet [1℄, i.e. the expressions for thenonequilibrium Shizgal�Karplus temperatures and for the relative dereaseof the rate onstant of hemial reation. We derive these results in the sameway as used previously [23℄ for the line-of-enters model. We verify the newanalytial results by the Monte Carlo simulations in a similar way as thatpresented in Ref. [23℄.Our paper is organized as a follows: in Se. 2 we desribe de�nitionsof quantities used to haraterize the nonequilibrium e�ets; in Se. 3 weformulate the Boltzmann equation for the hemial reations onsidered; inSe. 4 we present the perturbation solution of the Boltzmann equation ob-tained within the Shizgal�Karplus method; in Se. 5 we show the analytialexpressions desribing nonequilibrium e�ets on temperature of omponentsand in Se. 6 suh expressions for the rate of hemial reation; in Se. 7



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3609we haraterize the reating system used for Monte Carlo simulations andompare the numerial results obtained from these simulations with the an-alytial results. In Se. 8 we disuss the results obtained.2. De�nitions of quantities desribing nonequilibrium e�etsof reationWe analyze the bimoleular hemial reationsA+A! B +B ; (2.1)A+A� B +B : (2.2)In Eq. (2.1) we take into onsideration only the forward reation, whereasin Eq. (2.2) we also inlude the reverse reation. We introdue the nonequi-librium value of the rate of forward hemial reation in the usual wayvAf = ��dnAdt �f = Z Z Z fA1fA2�0 g d
 dA1 dA2 ; (2.3)where the index f is introdued to distinguish the forward reation fromthe reverse one for whih the index r will be introdued; nA is the numberdensity, fA1 and fA2 are the veloity distribution funtions of two ollidingmoleules A, �0 is the di�erential reative ross setion, 
 is the solid angle,A1, A2 and g denote the veloities and relative veloity, respetively. Theequilibrium value of vAf isv(0)Af = Z Z Z f (0)A1 f (0)A2�0 g d
 dA1 dA2 ; (2.4)where f (0) is the Maxwell�Boltzmann veloity distribution funtion at tem-perature T f (0)A = nA� mA2�kT �3=2 exp�� mA2A2kT � ; (2.5)where mA denotes the moleular mass and k is the Boltzmann onstant.These equations an be also used for the omponent B if the indies A arereplaed by indies B. However, it is important to take into onsiderationthat the total rate of hemial reation is vA whih an be expressed asvA = vAf + vAr = vAf � vBf ; (2.6)v(0)A = v(0)Af + v(0)Ar = v(0)Af � v(0)Bf : (2.7)



3610 A.S. Cukrowski, S. FritzsheWe de�ne also the following useful quantities�Rf = 1� vRfv(0)Rf (R = A;B) ; (2.8)�R = 1� vRv(0)R (R = A;B) ; (2.9)whih are very onvenient for a desription of nonequilibrium orretions tothe rate of hemial reation.We introdue as Shizgal and Karplus [5℄ the temperature of omponentsTR = T SKR = 23nRk Z fR 12 mR 2R dR (R = A;B) (2.10)and the temperature of the system is related to these temperatures byT = nATA + nBTBnA + nB : (2.11)The hange of temperature TR due to nonequilibrium e�ets an be alu-lated as �TR = T � T SKR (R = A;B) ; (2.12)where T SKR is the nonequilibrium temperature (see Eq. (2.10)). As in ourprevious papers we introdue the indies SK to emphasize that this is theShizgal�Karplus temperature. The quantities � (see Eqs. (2.8) and (2.9))and �TR (see Eq. (2.12)) an be used to desribe simple analytial expres-sions obtained from the perturbation theory. In order to get these expres-sions we need to solve the Boltzmann equation.3. The Boltzmann equationWe assume that the reagents are hard spheres and that their masses anddiameters do not hange when the reation proeedsmA = mB = m dA = dB = d ; (3.1)where d denotes the diameter. After taking into onsideration Eq. (3.1)we write down the Boltzmann equation [22, 23℄ for reation (2.2) for theomponent A in the following form�fA�t = Iel + Ire (3.2)where t is the time and



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3611Iel = Z Z (f 0A1f 0A2 � fA1fA2)�AAg d
d2+ Z Z (f 0Af 0B � fAfB) �ABg d
d2 ; (3.3)Ire = Z Z (fB1fB2 � f 0A1f 0A2) �0 g d
 d2 ; (3.4)where f 0i are the veloity distribution funtions for i-th omponent afterollisions, respetively, �ij are the di�erential elasti ross setions for ol-lisions between spheres i and j, 2 is shortly written to denote the veloityof seond olliding moleule. It is worthwhile to observe that in Eq. (3.2)the post-ollisional values of f 0i appear beause of the reasons disussed inRefs. [1, 2℄. The Boltzmann equation for the hange of fB in time may bewritten in the same way after hanging the appropriate indies only.We neglet all heat e�ets of this reation, i.e. we assume that thisreation is neither exothermal nor endothermal one and also neglet theheat e�ets onneted with internal degrees of freedom. However, we takeinto onsideration that, even in the simplest models of reative ollisions,the partiles of reagents need not have the same average kineti energies.For the elasti di�erential ross setions �AA and �AB we use the expres-sion �AA = �AB = 14 d2: (3.5)We introdue the Prigogine�Xhrouet model [1℄ for the di�erential re-ative ross setion for ollisions between the moleules A as well as forollisions between the moleules B�0 = � 0 g � g014sFd2 g > g0 ; (3.6)where sF is the steri fator and g denotes the threshold relative veloity ofolliding spheres. This veloity is simply related to the threshold energy E0E0 = mg204 : (3.7)We introdue the dimensionless redued threshold energy "0 as"0 = E0kT : (3.8)This quantity similarly as sF will appear in our �nal equations.



3612 A.S. Cukrowski, S. Fritzshe4. Solution of the Boltzmann equationWe solve the Boltzmann equation by the perturbation method desribedby Shizgal and Karplus [5, 6℄ and developed by Shizgal and Napier [7℄. Wereplae fA by f (0)A in the left hand side of Eq. (3.2) and in Eq. (3.4) by f (0)A .We introdue in Eq. (3.3) the nonequilibrium veloity distribution funtionas fA = f (0)A + f (1)A = f (0)A (1 +  A) : (4.1)The quantity  A is expanded in the Sonine polynomials [5, 15℄ A =Xi a(i)A S(i)1=2(C2A) ; (4.2)where C2A = mA2A2kT : (4.3)After taking into aount that the temperature T of the system does nothange when the reation proeeds and dT=dt = 0 we an write�f (0)A�t = �f (0)A�nA �dnAdt �(0) = f (0)AnA �dnAdt �(0) ; (4.4)where �dnAdt �(0) = �Z Z Z f (0)A1 f (0)A2 �0g d
 d2 d1+Z Z Z f (0)B1f (0)B2�0g d
 d2 d1 : (4.5)In this way taking into aount Eqs. (2.5), (4.1) and (4.4) we write Eq. (3.2)in the following formf (0)AnA �dnAdt �(0) + Z Z f (0)A1 f (0)A2 �0gd
d2 � Z Z f (0)B1f (0)B2�0g d
 d2= Z Z f (0)A1 f (0)A2 ( 0A1 �  0A2 �  A1 �  A2)�AAg d
 d2+ Z Z f (0)A1 f (0)A2 ( 0A1 �  A1)�ABg d
 d2+ Z Z f (0)A1 f (0)B2 ( 0B1 �  B1)�ABg d
 d2 ; (4.6)where the terms  1 2 as smaller than  1 or  2 are negleted. We solveEq. (4.6) within one and two Sonine polynomials expansion for the veloity



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3613distribution funtion. We begin with the one Sonine polynomials approxi-mation  A1 = a(A)1 (1)S(1)1=2(C2A) = a(A)1 (1)S(1)A ; (4.7)where we introdue S(1)A to write the �rst Sonine polynomial in a shorterway.We de�ne very onvenient quantities A in a following wayARi = Z Z Z f (0)R1 f (0)R2S(i)R �0g d
 d2 d1 ; (R = A;B) ;(i = 0; 1; 2) : (4.8)For the Prigogine�Xhrouet model (see Eqs. (3.6)�(3.8)) it an be easily al-ulated thatAR0 = 4sFn2Rd2��kTm �1=2 ("0 + 1) exp(�"0) ;AR1 = �2sFn2Rd2��kTm �1=2 "1 exp(�"0) ;AR2 = �12sFn2Rd2��kTm �1=2 "2 exp(�"0) ; (R = A;B) ; (4.9)where "1 = "20 + 12"0 + 12 ;"2 = �"30 + 2"20 + 14"0 + 14 : (4.10)From Eqs. (4.6) and (4.7) after using the de�nition (4.8) in a typial way(see Refs. [16℄ and [21℄) we obtainAA1�ÆrAB1 = a(A)1 (1)n2A nS(1)A ; S(1)A o+a(B)1 (1)nAnB nS(1)A ; S(1)B o ; (4.11)where Ær equals 1 if the reverse reation is taken into aount and 0 if not,f; g are the brae symbols introdued by Chapman and Cowling [2℄ andpartiularly analyzed by Shizgal and Karplus [5℄. As shown in Ref. [5℄nAa(A)1 (1) + nBa(B)1 (1) = 0 ; (4.12)nS(1)A ; S(1)A o+ nS(1)A ; S(1)B o = 0 : (4.13)From Eqs. (4.11)�(4.13) we getAA1 � ÆrAB1 = a(A)1 (1) �nAnB + n2A�nS(1)A ; S(1)A o : (4.14)



3614 A.S. Cukrowski, S. FritzsheAs follows from Tables I and II of Ref. [5℄fS(1)A ; S(1)A g = �4d2��kTm �1=2 : (4.15)After taking into aount Eqs. (4.9), (4.14) and (4.15) we an writea(A)1 (1) = 12sFxA�1� Ærx2Bx2A� "1(�"0) ; (4.16)where xA and xB are the molar frations. In order not to write suh expres-sions as Eq. (4.16) separately for reations (2.1) and (2.2) we treat them astwo ases-:1.  = n orresponds to negleting (n) of the reverse reation, whereas2.  = r to taking into onsideration the reverse (r) reation. It means thatfor reations (2.1) and (2.2) Ær is Ænr=0 and Ærr=1, respetively. In order tosolve Eq. (4.6) within two Sonine polynomials approximation we introdueinstead of Eq. (4.7) the following approximation for   A1(2) = a(A)1 (2)S(1)1=2(C2A) + a(A)2 (2)S(2)1=2(C2A)= a(A)1 (2)S(1)A + a(A)2 (2)S(2)A : (4.17)Then using the typial method of solution mentioned above we obtain in-stead of Eq. (4.11) a set of two linear equationsAA1 � ÆrAB1 = nAnB"a(A)1 (2)�nS(1)A ; S(1)A o� nS(1)A ; S(1)B o nAnB�+ a(A)2 (2)�nS(1)A ; S(1)A o� nS(1)A ; S(1)B o nAnB�# ;AA2 � ÆrAB2 = nAnB"a(A)1 (2)�nS(2)A ; S(1)A o� nS(2)A ; S(1)B o nAnB�+ a(A)2 (2)�nS(2)A ; S(2)A o� nS(2)A ; S(2)B o nAnB�# : (4.18)From Eqs. (4.18) after making a similar derivation as that for obtainingEq. (4.16) from Eq. (4.11) we geta(A)1 (2) = 160sFxA�1� Ærx2Bx2A� "3 exp(�"0) ;a(A)2 (2) = 115sFxA�1� Ærx2Bx2A� "4 exp(�"0) ; (4.19)



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3615where "3 = �"30 + 33"20 + 634 "0 + 634 ;"4 = �"30 + 3"20 + 34"0 + 34 : (4.20)Eqs. (4.16) and (4.19) are very useful in derivation of �nal analytial equa-tions. For the omponent B we an use Eq. (4.12) in order to get a(B)1 (1).5. Nonequilibrium e�ets in temperatures of omponentsWe an use Eqs. (4.16) and (4.19) to alulate the nonequilibrium tem-perature TA. T SKA (i) = TA(i) = T h1� a(A)1 (i)i (i = 1; 2) ; (5.1)where i is introdued to distinguish the Shizgal�Karplus temperature T SK(1)obtained within one Sonine polynomials approximation from that T SKA (2)obtained within two Sonine polynomials approximation. We also introdue�TA(i) = T � T SKA (i) (i = 1; 2) : (5.2)From Eqs. (5.1) and (5.2) after introdution of Eq. (4.16) we an write forthe one Sonine polynomials approximation�TA(1) = T � T SKA (1) = 12sFTxA�1� Ærx2Bx2A� "1 exp(�"0) : (5.3)Similarly, from Eqs. (5.1) and (5.2), after using Eq. (4.19) we get thefollowing expression for two Sonine polynomials approximation�TA(2) = 160sFTxA�1� Ærx2Bx2A� "3 exp(�"0) : (5.4)It is important to take into onsideration that if we neglet the reverse rea-tion Ær = 0 we have relations for �TA(i) in a simpli�ed form (see Eqs. (5.3)and (5.4)), namely the e�et of onentration would be proportional to xA.In result the appropriate ratios �TA=TsFxA are funtions of "0 only. InFig. 1 we present these ratios in a form of two urves. Additionally, weintrodue for a omparison two urves whih represent suh expressions forthe line-of-enters model (LC) (see Eqs. (35) and (36) from Ref. [23℄). Forthe LC model the appropriate redued threshold energy is denoted "�.
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Fig. 1. Relative derease of temperature TA for the forward reation (2.1) presentedin a redued form as �TA=TsFxA alulated for the PX model from Eqs. (5.3) and(5.4) with Ær = 0 as funtion of the redued threshold energy "0 and suh resultsfor the LC model as a funtion of "�.We see that we have four simple expressions for �TA(i): Eqs. (5.3) and(5.4) with Ær equal to 0 (if the reverse reation is not onsidered) and to 1otherwise. For these four ases omparisons of theoretial results for TA andthose obtained from the omputer simulations will be presented.Interesting e�ets an be observed if the early stages of hemial reationare onsidered. As it follows from Refs. [15, 17℄ the largest value of TB is inthe very beginning of reation when xB is nearly equal to 0.In order to derive the expression for the initial value of TB we take intoonsideration that in the very beginning of reation for t = 0 and for a verysmall time t = � we an writenA(0) = n ; TA(0) = T ; (5.5)nA(�) = n+ dnAdt � ; nB(�) = �dnAdt � ; (5.6)TA(�) = T + dTAdt � : (5.7)After taking into aount that (nA+nB)T is onstant and the square termswith � are muh smaller than those with � from we an use Eqs. (5.5)�(5.7),(2.11), (2.3), (4.9) as well as the following Shizgal's [31℄ resultdTAdt = 23 TA(0)n(0) AA1 (5.8)



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3617and we an derive TB(0) = limxB!0TB = T �1� 23 AA1AA0� : (5.9)From this result (disussed also in Se. 8) for the PX model (see Eqs. (4.9))it follows �TB(0) = T � TB(0) = limxB!0�TB = �13T "1"0 + 1 : (5.10)In the further stages of hemial reation we an alulate TB from theappropriate expression for TA if we use Eq. (2.11). We an use Eqs. (5.3)and (5.4) for four ases mentioned above in order to have expressions for thenonequilibrium e�ets on temperature for the omponent B. We presentthese expressions in the following way:(1) For one Sonine approximation with the reverse reation negleted�TB(1) = T � T SKB (1) = �12sFT �(1� xB)2xB � "1 exp(�"0) : (5.11)From Eq. (5.11) we see that for very small molar fration of B this e�etould be very large. It means that the results of the perturbation methodannot be analyzed in the ranges of very small xB. We analyze this problemafter showing the next 3 equations for �TB.(2) For two Sonine approximation with the reverse reation negleted�TB(2) = � 160sFT �(1� xB)2xB � "3 exp(�"0) : (5.12)(3) For one Sonine approximation with the reverse reation taken intoaount �TB(1) = �12sFT �(1� xB)xB � 1� "1 exp(�"0) : (5.13)(4) For two Sonine approximation with the reverse reation taken intoaount �TB(2) = � 160sFT �(1� xB)xB � 1� "3 exp(�"0) : (5.14)It is possible that in some ases the hemial reation proeeds so fastthat the perturbation solution of the Boltzmann equation an not be used. Inthese ases it is very useful to observe that if the hemial reation proeedsTB dereases. Therefore, we an writeT SKB < TB(0) : (5.15)



3618 A.S. Cukrowski, S. FritzsheIt is su�ient to ompare the appropriate expression for �TB to see therange of xB in whih the solutions obtained an be valid.We analyze suh a range of xB for the ase 3. in whih the reversereation is taken into aount for the solution within one Sonine polynomialapproximation. From Eqs. (5.10), (5.13) and (5.15) it an be derived that�2 + 23 exp("0)sF ("0 + 1)��1 < xB < 12 : (5.16)Suh inequalities for the ranges of xB in whih the results from the pertur-bation solution are valid, an be also simply derived for the ases 1, 2 and4 if we use for a omparison of TB(0) with TB alulated from Eqs. (5.11),(5.12) and (5.14), respetively.6. Nonequilibrium e�ets in rate onstants of hemial reationIn order to distinguish separate results for the rates of forward rea-tion and the total one (in whih the reverse reation is also onsidered) weintrodue vAf = v(0)Af + v(1)Af ; (6.1)vA = v(0)A + v(1)A = v(0)Af + v(0)Ar + v(1)Af + v(1)Ar= v(0)Af � v(0)Bf + v(1)Af � v(1)Bf ; (6.2)where the upper index (1) is onneted with Eq. (4.1). After taking intoaount Eqs. (2.8) and (2.9) we introdue also�Rf = �v(1)Rfv(0)Rf ; (R = A;B) ; (6.3)�R = �v(1)Rv(0)R ; (R = A;B) : (6.4)From Eqs. (2.4), (2.5) and (3.6) we obtainv(0)Rf = k(0)Rf n2R = 4sFn2R��kTm �1=2 ("0+1) exp(�"0) ; (R = A;B) ; (6.5)where k(0)Rf is the equilibrium forward reation rate onstant. After tak-ing into onsideration Eq. (6.1) and using, as in the previous setion, theShizgal�Karplus solution of the Boltzmann equation (see Eqs. (2.3)�(2.5),



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3619(4.1), (4.7)�(4.9), (4.16), (4.17) and (4.19)) we obtain the following nonequi-librium ontributions to the rate of hemial reation within one and twoSonine polynomial approximation, respetivelyv(1)Af (1) = k(1)Af (1)n2A= �2s2Fn2AxA�1� Ærx2Bx2A� d2��kTm �1=2 "21 exp(�2"0) ; (6.6)v(1)Af (2) = k(1)Af (2)n2A= � 115s2Fn2AxA�1� Ærx2Bx2A � d2��kTm �1=2 ("1"3+"2"4) exp(�2"0) :(6.7)Similarly as in the disussion of nonequilibrium e�ets of hemial reationon temperature we disuss four ases:1. One Sonine polynomials approximation with the reverse reation ne-gleted (see Eq. (2.1)). From Eqs. (6.3), (6.5) and (6.6) after taking intoaount that Ær = Ænr = 0 we get�Af(1) = 12sFxA "21"0 + 1(�"0) : (6.8)2. Two Sonine polynomials approximation with the reverse reation ne-gleted. From Eqs. (6.3), (6.5) and (6.7) we get�Af(2) = 160sFxA�"1"3 + "2"4"0 + 1 � exp(�"0) : (6.9)3. One Sonine polynomials approximation with the reverse reation onsid-ered (see Eq. (2.2)). From Eqs. (6.4)�(6.6) after taking into aount thatÆr = Ærr = 1 we get�A(f)(1) = 12sFxA�1� x2Bx2A� "21"0 + 1(�"0) : (6.10)As Eq. (6.10) onerns the forward reation nonequilibrium ontributionsin reation (2.2) we have introdued the index f as (f) to distinguish � inEq. (6.10) from that in Eq. (6.8). For this ase after a areful analysisof relations for the forward and reverse hemial reation rates and rateonstants (see, e.g. Ref. [23℄) we an obtain.�A(1) = 12sF �"20 + 12"0 + 12�2"0 + 1 exp(�"0) = �B(1) : (6.11)



3620 A.S. Cukrowski, S. FritzsheThis is a very important result whih shows that if the reverse reation isonsidered the nonequilibrium orretions to the rate of hemial reationdo not depend on onentrations and are the same for both the omponents.4. Two Sonine approximation with the reverse reation onsidered (seeEq. (2.2)). For this ase we an perform derivations in the same way asin the ase of one Sonine polynomial approximation desribed above. Weuse Eq. (6.7) instead of Eq. (6.6) and we get instead of Eq. (6.11)�A(f)(2) = 160sFxA�1� x2Bx2A��"1"3 + "2"4"0 + 1 � exp(�"0) : (6.12)For this ase we an obtain�A(2) = 160sF�"1"3 + "2"4"0 + 1 � exp(�"0) = �B(2) : (6.13)It should be emphasized that, on the ontrary to the ase of negleting of thereverse reation in whih in Eqs. (6.8) and (6.10) xA appears, in Eqs. (6.11)and (6.13) the nonequilibrium orretions to the rate of hemial reationare the same for both the omponents and do not depend on their onentra-tions. In Fig. 2 we present for the PX model the nonequilibrium derease ofthe rate onstant of hemial reation as a funtion of the redued thresholdenergy "0 (see Eqs. (6.11), (6.13)). For a omparison we present also suhresults for the LC model (see Eqs. (59) and (61) from Ref. [23℄).
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Fig. 2. Relative derease of the rate onstant of the overall reation (2.2) for thePX model (Eqs. (6.11), (6.13)) as a funtion of "0 and suh results for the LCmodel as a funtion of "�.



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 36217. Comparison of results following from analytial resultswith those obtained from the Monte Carlo simulationsIn order to perform omputer simulations we use the Bird algorithmprepared by the seond author of this paper. This algorithm is based onthe earlier results Bird [32�35℄ disussed also in Ref. [36℄ and partiularlydesribed in Ref. [23℄.We have used the following system for simulations. A volumeV = 2777:78 nm3 ontains in the beginning NA = 1000 spheres A andNB = 0 spheres B having the same diameter d = 0:35 nm and masses16 g/mol. This orresponds to the paking fator 0.008082. The equilib-rium temperature is 300K. As the hemial reation proeeds the spheresA hange in reative ollisions to the spheres B and vie versa. Therefore,the number of spheres B inreases and the number of spheres A dereasesto NA = 1000�NB . The average translational energy of the omponents Aand B and also their temperatures hange. The time is desribed by timesteps �t = 0:6941 � 10�13s. In order to obtain su�ient auray we haveperformed in eah simulation a large number of runs R (R � 50000) andobtained average values of NA, NB, TA and TB as well as the number ofelasti and reative ollisions as a funtion of the time steps. The resultsof suh simulations are ompared with the results following from the ana-lytial expressions derived in preeding setions. In Fig. 3 we present theresults for the initial temperature of omponent B as a funtion of the re-dued threshold energy "0. The analytial urve for TB(0) is obtained fromEq. (5.10) and the small irles represent the average values of TB obtainedfrom the beginning time steps in the simulation.
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Fig. 3. The temperatures TB(0) as a funtion of "0. The solid urve representsthe results alulated from Eq. (5.10) and the small irles those obtained fromsimulations.



3622 A.S. Cukrowski, S. FritzsheIn Fig. 4 we show the hanges of temperature of omponent A for a sys-tem in whih the forward reation proeeds only and the number of spheresB an be even equal to 1000 whih orresponds to the molar fration of BxB = 1:0. The redued threshold energy is hosen "0 = 3:0 and the sterifator sF = 1:0. The straight lines 1 and 2 are obtained from the analytialresults within one and two Sonine polynomials approximation, respetively,
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Fig. 4. Temperature TA as a funtion of molar fration xB for the forward reation(2.1) with "0 = 3 and sF = 1:0. Results from the simulation are represented withirregular line and those from the perturbation solution within one and two Soninepolynomials approximation with straight lines denoted 1 and 2 (see Eqs. (5.3) and(5.4) with Ær = 0), respetively.
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Fig. 5. Temperature TA as a funtion of molar fration xB for the forward�reversereation (2.2) with "0 = 1:5 and sF = 0:1. Results from the simulation are repre-sented with irregular line and those from expressions obtained within appropriateSonine polynomials approximations (see Eqs. (5.3) and (5.4) with Ær = 1) withurves denoted 1 and 2, respetively.



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3623(see Eqs. (5.3) and (5.4) with Ær = 0). The irregular urve shows TAobtained from simulations. In the next two �gures we show suh results asthose presented in Fig. 4 but for the ase in whih also the reverse reationproeeds. Therefore, the molar fration xB an not exeed 0.5. In this asewe introdue Ær = 1:0 in Eqs. (5.3), (5.4). In Fig. 5 we introdue "0 = 1:5and sF = 0:1, whereas in Fig. 6 "0 = 3:0 and sF = 0:2.
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Fig. 6. Results for TA represented in the same way as in Fig. 5 but for "0 = 3:0and sF = 0:2.Additionally, in Fig. 7 we show the veloity distribution funtions of theomponents A and B after a 1000 time steps in a typial simulation. Wehave hosen "0 = 3:0 and sF = 0:2 for this purpose just to show the shapesof the urves only.
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Fig. 7. The veloity distribution funtions of reagents A and B as a funtion of Aand B in 103 for the forward�reverse reation (2.2) with "0 = 3:0 and sF = 0:2 after1000 time steps of simulation orresponding to xB = 0:23. Results from simulationsare represented with irregular lines and the Maxwell�Boltzmann distributions forthe appropriate temperatures TA and TB with regular lines, respetively.



3624 A.S. Cukrowski, S. Fritzshe8. DisussionWe have solved the Boltzmann equation using the perturbation methodfor the ase of bimoleular hemial reation proeeding in a dilute gas.We have introdued the Prigogine�Xhrouet model (PX) for the reativeross setion and obtained the analytial expressions for the noneqilibriumShizgal�Karplus temperatures and reation rate onstants as funtions ofthe redued threshold energy "0. We have analyzed suh analytial resultsfor two ases: 1. the reation proeeds in forward diretion only, 2. theforward and reverse reations proeed.For the ase 1. we have obtained the results for temperatures TA whihan be alulated from appropriate �TA for one and two Sonine polynomialsapproximations (see Eqs. (5.3) and (5.4) with Ær = 0). In Fig. 1 we haveshown that for the PX model �TA an be larger than it would be for the line-of-enters model (LC) for the appropriate redued threshold energy "�. Thetemperature TB an be alulated from Eqs. (2.12), (5.11) and (5.12). Wehave also derived expressions for the relative derease of the rate onstantof hemial reation for both the approximations (see Eqs. (6.8) and (6.9)).For the ase 2. we have derived appropriate expressions for temperatureTA (see Eqs. (5.3) and (5.4) with Ær = 1). We have also obtained equationsfor the relative derease of the rate onstant of hemial reation (see Eqs.(6.10)�(6.13)). It is interesting that in this ase for the PX model the relativederease of the rate onstant of the overall reation (see Eqs. (6.11) and(6.13) does not depend on xB similarly as for the other models alreadyanalyzed (see Refs [23, 25, 26℄). It even more interesting that for the PXmodel this derease is more pronouned that for the other models. This anbe seen from Fig. 2. Namely, for "0 = 3 the rate onstant of reation (2.1)an be even 4 times smaller than its equilibrium value whih orrespondsto � = 0:75. This result is very important beause for the LC model themaximum value of � is about 0.45, i.e. the rate onstant for that modelould be about 1.8 times smaller than its equilibrium value.From a omparison of Eqs. (6.8), (6.10) and (6.11) or Eqs. (6.9), (6.12)and (6.13) we an see that in general �A(f) is smaller than �Af whih issmaller than �. It is important in the analysis for hemial reations pro-eeding relatively far-from-equilibrium [15, 20℄. Namely, only for reationsharaterized by su�iently large "0 and small sF the results for �Af and�A(f) an be analyzed for small values of xB. Only in this ase the valuesof these quantities an approah to the value of �. We had this situation inthe analysis of the LC model [20℄.In order to verify the validity of results obtained within the perturba-tion method of solution we have additionally performed the Monte Carlosimulations. We have made omparisons between the results obtained from



Analysis of Nonequilibrium E�ets in a Bimoleular . . . 3625the analytial expressions and those obtained from simulations for the tem-peratures only, i.e. in the same way as we have done in Ref. [23℄ for theLC model. The reason is that the auray of results from simulations fortemperatures is muh better than for suh results for the rate onstants.We have additionally derived the expression for TB(0), i.e. for the tem-perature of produt B in early stages of reation (see Eq. (5.10)). We thinkthat the way of derivation is shown in Se. 5 in more onvining way thanearlier for the LC model in Ref. [17℄. Namely, in Ref. [17℄ we assumed that,as the fastest moleules A hange to B, the produt B must have the maxi-mum temperature in the beginning of reation and the time derivative of TBshould be equal to zero, however, the last ondition (although leads to goodresults) in general need not be ful�lled. In Fig. 3 we have shown the ompar-ison for results for TB(0). We see that the agreement between the analytialresults and those from simulations is very good. However, for large valuesof "0, e.g. "0 > 7 the auray is a little bit worse beause we get very smallamount of the produt B. Naturally, the temperature TB obtained from theanalytial expressions should not be larger than TB(0) beause TB dereasesas the reation proeeds. For fast reations, e.g. for those proeeding withsF = 1:0, small values of "0 and in a stage of reation with small xB , thereation an be too fast to use the perturbation method. A omparisonof TB(0) with TB , i.e. (TB < TB(0)), permits to �nd the range of xB inwhih the perturbation solution an not work. Just to give one example, wehave hosen one Sonine polynomial approximation for the forward�reversereation and obtained the inequality for xB (see Eq. (5.16). In next �gures,we have shown omparisons of analytial results for TA with those obtainedfrom simulations. From these �gures it an be easily seen that, similarly asin the ase of inequality disussed above, only for su�iently large xB suhomparisons are reasonable. In Fig. 4 we have shown suh a omparison forthe ase of negleting of the reverse reation with "0 = 3:0 and sF = 1:0.We see that for large xB the agreement is fairly good. In the next two �g-ures we have presented suh omparisons for the forward�reverse reationsintroduing "0 = 1:5 and sF = 0:1 (see Fig. 5) and "0 = 3:0 and sF = 0:2(see Fig. 6). These results are fairly good, however, the role of inequality(5.16) is important if xB is not large enough. In Fig. 7 we have additionallyshown the veloity distribution funtions fA and fB for the simulation with"0 = 3:0 and sF = 0:2 after 1000 time steps. From Fig. 7 it an be seen thatthe shapes of these distribution funtions are nearly Maxwellian and theyshow that TA < TB , whih is typial for the Shizgal�Kaplus temperaturesfor the reation analyzed. The results presented in Figs. 4�7 on�rm thefat that the perturbation method gives good results for slow hemial rea-tions. Naturally, for slow reations the formulas for the relative derease ofthe overall reation rate onstant are also valid (see Eqs. (6.11) and (6.13)).



3626 A.S. Cukrowski, S. FritzsheIt means that for "0 = 3:0, sF = 1:0 and su�iently large xB the nonequilib-rium rate onstant ould be even 4 times smaller than its equilibrium value.Therefore, the role of nonequilibrium e�ets for the PX model an be morevisible than in the ase of the LC model (Figs. 1 and 2). It is interesting thatNowakowski analyzing a bimoleular reation with negletion of produts inthe Lorentz gas has obtained also larger nonequilibrium orretions to thereation rate for the PX model than for the LC model [37℄.Just to summarize, we have used the Shizgal�Karplus perturbationmethod of solution of the Boltzmann equation for the Prigogine�Xhrouetmodel in order to obtain the analytial results for the relative derease ofthe rate onstant of hemial reation as well as for nonequilibrium tem-peratures. We have used the Bird method of Monte Carlo simulations toon�rm the results obtained. We have shown that the noneqilibrium e�etsonneted with proeeding of the hemial reation an be more pronounedfor the Prigogine�Xhrouet model than for the line-of-enters model.The authors would like to thank the Polish State Committee for Sienti�Researh (KBN) and Deutsheforshungsgemeinshaft (in the framework ofSFB 294) for the �nanial support. Additionaly, the �rst author wouldlike to thank his son MS. M.J. Cukrowski Jr. from Warsaw University ofTehnology, Faulty of Mathematis and Information Siene for a help insome �nal omputer evaluations and editorial preparations of the paper.REFERENCES[1℄ I. Prigogine, E. Xhrouet, Physia 15, 913 (1949).[2℄ S. Chapman, T.G. Cowling,Mathematial Theory of Nonuniform Gases, Cam-bridge Univ. Press, Cambridge 1970.[3℄ R.D. Present, J. Chem. Phys. 31, 747 (1959).[4℄ R.D. Present, M. Morris, J. Chem. Phys. 50, 151 (1969).[5℄ B. Shizgal, J. Karplus, J. Chem. Phys. 54, 4345 (1971).[6℄ B. Shizgal, J. Karplus, J. Chem. Phys. 54, 4357 (1971).[7℄ B.D. Shizgal, D.G. Napier, Physia A 233, 50 (1996).[8℄ J. Ross, P. Mazur, J. Chem. Phys. 35, 19 (1961).[9℄ C.W. Pyun, J. Ross, J. Chem. Phys. 40, 2572 (1964).[10℄ R. Kapral, S. Hudson, J. Ross, J. Chem. Phys. 52, 4262 (1970).[11℄ L. Monhik, J. Chem. Phys. 53, 4307 (1970).[12℄ B.C. Eu, K.W. Li, Physia A 88, 135 (1977).[13℄ J.M. Fitzpatrik, E.A. Desloge, J. Chem. Phys. 59, 5526 (1973).
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