
Vol. 34 (2003) ACTA PHYSICA POLONICA B No 7
QUANTUM MAYER GRAPHS: APPLICATION TOBOSE AND COULOMB GASES�Philippe A. MartinInstitute of Theoreti
al Physi
s, Swiss Federal S
hool for Te
hnology-LausanneCH-1015, Lausanne EPFL, Switzerland(Re
eived November 11, 2002)The fun
tional integral representation of quantum statisti
al me
hani
sby means of the Feynman�Ka
 formula leads to a 
lassi
al-like des
riptionof the system. Point quantum parti
les are then des
ribed in terms ofrandom loops (
losed Brownian paths), and all te
hniques of 
lassi
al sta-tisti
al me
hani
s be
ome available. One advantage of this formalism isthat it is not perturbative with respe
t to the intera
tion strength, in 
on-trast to the standard many-body perturbative treatment. We apply theseideas to the Coulomb gas by 
onstru
ting an e�e
tive potential (the quan-tum analogue of the Debye potential) that in
orporates both long distan
e
olle
tive s
reening e�e
ts as well as the short range quantum me
hani
albinding. For Bose systems, we show that mean �eld theory 
orresponds tosumming all tree-graphs and investigate how to go beyond the mean �elddes
ription.PACS numbers: 05.30.�d, 71.45.�d1. Introdu
tionThe standard perturbative treatment of many parti
le systems relies onan expansion in the strength of the interparti
le intera
tion. This leads tothe familar Feynman diagrams of the many-body theory, see e.g. [1℄. Insome 
ir
umstan
es su
h an expansion is not appropriate, espe
ially whenthe e�e
t of the intera
tion is not analyti
 in the 
oupling 
onstant. Forinstan
e, quantum me
hani
al binding in partially re
ombined plasmas, Bose
ondensation in intera
ting gases, as well as super
ondu
tivity 
annot bedes
ribed perturbatively.� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.(3629)



3630 P.A. MartinAnother possible small parameter in the system is the density or the fu-ga
ity: this leads to the virial expansion. However the traditionnal quantumvirial expansion is 
umbersome. We propose in these notes an alternativeformalism that enables to bene�t of the well developped 
lassi
al tools ofMayer diagrammati
.The point is that using the Feynman�Ka
 fun
tional integral represen-tation of the Gibbs weight together with the de
omposition of permutationsinto 
y
les, the grand-
anoni
al partition fun
tion of the quantum systemtakes the 
lassi
al-like form of a gas of random loops (or �polymers�). Aloop is a 
losed Brownian path originating at some point in spa
e; it is anextended obje
t that has a shape and 
arries a number of parti
les assim-ilated to internal degrees of freedom. In the auxillary spa
e of loops, allte
hniques of 
lassi
al statisti
al me
hani
s are at hand, in parti
ular thevery powerful and �exible Mayer diagrammati
 te
hniques. From there we
an easily 
ome ba
k to the 
al
ulation of quantities of interest for the orig-inal system of quantum parti
les. In fa
t this 
lassi
al-like representation ofthe quantum system has been known in a form an another sin
e a long timein various 
ontexts, starting with the work of Ginibre on the 
onvergen
e ofthe quantum virial expansion (see [2℄ and original referen
es therein). It hasalso used to implement numeri
al simulations, see e.g. for Bose systems [3℄.The present version has been derived and applied by Cornu [4℄ to Coulombsystems. Here we follow the de�nitions given in the review [5℄ where ad-ditionnal referen
es 
an also be found. In Se
tion 2 we give an essentiallyself 
ontained derivation of the so 
alled �magi
 formula� that dispays thepartition of the quantum gas as that of a 
lassi
al-like gas of loops. For sim-pli
ity we 
onsider only one spe
ies of parti
les and the derivation is basedon 
ombinatorial properties of the permutation group. The generalisationto several spe
ies of parti
les 
an be found in [5℄ where another derivationis sket
hed in the framework of se
ond quantization.Se
tion 3 is devoted to appli
ations to the quantum plasma. We mainlyformulate the analogue of the 
lassi
al Debye�Hü
kel theory for quantum
harges and indi
ates some striking 
onsequen
es due to the quantum me-
hani
al nature of the parti
les. In Se
tion 4 we 
onsider the Bose gas andshow how the mean �eld limit 
an be re
overed by a diagrammati
 analysis.2. The magi
 formulaWe 
onsider a system of N nonrelativisi
 bosoni
 or fermioni
 quantumparti
les en
losed in a box � and intera
ting by means of the two-bodypotential V (r). The total Hamiltonian readsHN = NXi=1 jpij22m + NXi<j V (ri � rj) ; (1)



Quantum Mayer Graphs: Appli
ation to Bose and Coulomb Gases 3631where jpij2 = �~2�i, �i is the Lapla
ian on <3 with Diri
hlet 
onditionsat the boundary of �. The properties of the potential V (r) will be spe
i�edin more detail in the appli
ations.The 
orresponding grand 
anoni
al partition fun
tion with inverse tem-perature � = 1kBT and fuga
ity z = e�� (� is the 
hemi
al potential) is�� = 1XN=0 zNN !X� (�)�f(�) ; (2)where the se
ond sum runs over all permutation � of the permutation groupSN of N elements. In (2) we have notedf(�) = Z� dr1 : : : Z� drN hr1; : : : ; rN je��H�U�jr1; : : : ; rN i (3)the 
on�gurational integral of the matrix elements of the Gibbs weighte��H� .The operators U� a
ts on the 
on�gurational kets asU�jr1; : : : ; rN i = jr�1 ; : : : ; r�N i : (4)They form a unitary representation of the permutation group on the Nparti
le states U�1U�2 = U�1�2 ; U�� = U�1� = U��1 (5)and (�)� is the signature of the permutation (� = +1 for bosons and � = �1for fermions) . In a �rst step we 
onsider in (2) the stru
ture of sum on thefun
tion f(�) de�ned on the permutation group SN .2.1. Some fa
ts on the permutation groupEa
h permutation � in SN 
an be de
omposed into k 
y
les of lengthqi; i = 1; : : : ; k, with k � N; Pki=1 qi = N . We denote simply by Q theunordered set of integersQ = fqi; i = 1; : : : ; k; kXi=1 qi = Ng (6)and 
all it a 
y
le stru
ture. For instan
e the permutation� = � 1 2 3 4 5 6 77 5 2 6 3 4 1 � = (1 7)(2 5 3)(4 6)has the 
y
le stru
ture Q = fq1 = 2; q2 = 3; q3 = 2g.



3632 P.A. MartinTwo permutations �0 and �00 having the same 
y
le stru
ture Q are
onjugate in SN , that is there exists � su
h that�00 = ��1�0� : (7)Hen
e SN is the disjoint union of equivalen
e 
lasses of permutations havingthe same 
y
le stru
ture. Let nj be the number of 
y
les of length j in Q,nj = 0; 1; : : : ; N; Pnj�1 jnj = N (in the above example, n2 = 2; n3 = 1;nj=0; j 6= 2; 3). Then the number of permutations that have the same 
y
lestru
ture is [6℄ 1 NQ = 1q1 : : : qk N !n1! : : : nN ! : (8)Moreover the signature of a permutation(�)� = (�)Q = kYi=1 �qi�1 (9)depends only on the 
y
le stru
ture of �.An important observation is that the same is true for f(�) (3): it dependsonly on the 
y
le stru
ture of �. Indeed if �0 and �00 are 
onjugate, one hasfrom (3), (5) and (7)f(�00)=Z� dr1 : : :Z� drN hr1; : : : ; rN je��H�U�1� U�0U�jr1; : : : ; rN i=Z� dr1 : : :Z� drN hr1; : : : ; rN jU��e��H�U�0U�jr1; : : : ; rN i=Z� dr1 : : :Z� drN hr�1 ; : : : ; r�N je���U�0 jr�1 ; : : : ; r�N i = f(�0):(10)We have used that H� 
ommutes with all permutation operators and rela-belled the dummy integration variables to obtain the last equality.Sele
t a representative permutation ��Q in the 
lass Q, for instan
ethe 
anoni
al one that has numbers in in
reasing order (in our example,1 By 
onvention n! = 0 when n = 0.



Quantum Mayer Graphs: Appli
ation to Bose and Coulomb Gases 3633��Q=(1,2)(3,4)(5,6,7)). Then in view of (9) and (10) the sum over permuta-tions in (2) redu
es to a sum over 
y
le stru
turesX� (�)�f(�) = XQ NQ(�)Qf(��Q)= NXk=1 1Xq1;:::;qk=1 ÆPki qi;N n1! : : : nN !k! NQ(�)Qf(��Q)= N ! NXk=1 1k! 1Xq1;:::;qk=1 ÆPki qi;N kYi=1 �qi�1qi f(��(q1;:::;qk)) : (11)In the se
ond equality we have repla
ed the summation on 
y
le stru
turesby a summation on ordered 
y
le lengths, whi
h leads to an over 
ounting
ompensated by the fa
tor n1! : : : nN !=k!. The last equality follows from (8)and (9). Finally forming the grand 
anoni
al sum (2) removes the 
onstraintof �xed N �� = 1Xk=0 1k! 1Xq1;:::;qk=1 kYi=1 �qi�1zqiqi f(��(q1;:::;qk)) : (12)We have thus 
onverted the parti
le number summation in the grand parti-tion fun
tion to a sum on 
y
le numbers.2.2. The Feynman�Ka
 representationLet us �rst re
all familiar ideas about the representation of the quantumme
hani
al statisti
al operator by the Feynman�Ka
 fun
tional integral2.For sake of simpli
ity, we 
onsider a single parti
le of massm in three dimen-sions submitted to an external potential  (r). A

ording to the original pathintegration introdu
ed by Feynman [7℄, the 
on�gurational matrix elementsof the statisti
al operator asso
iated with the one-parti
le HamiltonianH = � ~22m�+ V; � = Lapla
ian in <3 (13)read hr1j exp����� ~22m�+  �� jr2i = Xpaths exp��1~S(r(�))� : (14)2 This subse
tion and the next one are essentially taken from Chaps. 4 and 5 in [5℄.



3634 P.A. MartinHere S(r(�)) is the 
lassi
al a
tion 
orresponding to the potential � (theEu
lidean a
tion)S(r(�)) = �~Z0 dt m2 ����dr(t)dt ����2 +  (r(t))! (15)asso
iated with the path r(t) starting from r1 at �time� t = 0 and endingin r2 at �time� �~. The summation in (14) runs over all su
h paths.It is very useful to parameterize the path r(t) by dimensionless variables,making the 
hanges = t�~ ; 0 � s � 1r1;2(s) = (1� s)r1 + sr2 + ��(s) ; �(0) = �(1) = 0 ; (16)where � = ~r �m (17)is the de Broglie thermal wave length. In (16) �(s) represents now a 
losedpath, 
alled the Brownian bridge, starting and returning to the origin withinthe �time� s = 1. In terms of these dimensionless variables, the matrixelement (14) 
an be written in the pre
ise form [8℄hr1 j exp����� ~22m�+  �� j r2i = � 12��2�3=2 exp��jr1 � r2j22�2 ��Z D(�) exp0��� 1Z0 dsV ((1 � s)r1 + sr2 + ��(s))1A : (18)In (18) D(�) is a Gaussian measure (the Brownian bridge measure) withweight formally represented by exp��12 R 10 ���d�(s)ds ���2�. It is normalized to 1,has zero mean and is entirely de�ned by its 
ovarian
eZ D(�)��(s1)��(s2) = Æ�;�(min(s1; s2)� s1s2) ; (19)where ��(s) are the Cartesian 
oordinates of �(s).The representation (18) has the advantage that physi
al parametersr1; r2; �; ~; � appear expli
itly in the formula; � measures the extentof the quantum �u
tuation. In parti
ular if � is set equal to zero in thediagonal matrix element one re
overs the 
lassi
al Boltzmann weight.



Quantum Mayer Graphs: Appli
ation to Bose and Coulomb Gases 3635The extension to the many parti
le system is straightforward. To ea
hparti
le is asso
iated a path �i(s) The paths are distributed with indepen-dent Gaussian measures D(�i); i = 1; : : : ; N , so that the matrix element in(3) reads hr1; : : : ; rN j exp (��H�) jr�1 ; : : : ; r�N i = NYi=1� 12��2�3=2� exp��jri � r�i j22�2 �Z NYi=1D(�i)� exp0��� NXi<j 1Z0 dsV (ri;�i(s)� rj;�j(s))1A : (20)We now introdu
e this representation in the formula (12) to obtain the gasof loops. 2.3. The statisti
al me
hani
s of loopsIn the intera
tion energy in (20) we group all the parti
le belonging to agiven 
y
le of length q in ��, say the parti
les 1; 2; : : : ; q. The 
orresponding
olle
tion of pathsri;i+1(si) = (1� si)ri + siri+1 + ��(si); i = 1; : : : ; q; (q + 1 � 1)are joined together to from again a 
losed Brownwian path, the random loopR(s) = ri;i+1(si); i� 1 � s < i : (21)The loop is now parametrized by the single time parameter s running from0 to q by setting si = s� [s℄; i� 1 � s < i where [s℄ is the integer part of s,see Fig. 1.One 
an then lo
ate the loop at R by sele
ting the position of one of theparti
les, say r1 = R, and writeR(s) = R+ �X(s); X(0) =X(q) = 0 : (22)Hen
e the parti
les are lo
ated at the pointsrk = R+ �X(k � 1); k = 1; : : : ; q : (23)In (22), X(s) is again a dimensionless Brownian bridge starting and return-ing to the origin within the time q. Its normalized Gaussian measure Dq(X)
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Fig. 1. A q parti
le loop.is the 
omposition of that of the q open �laments that 
onstitute the loop(see (18))Dq(X)=(2�q)3=2 qYk=1exp ��12(Xk+1 �Xk)2�(2�)3=2 dX2 : : : dXqD(�1) : : : D(�q);(24)where one sets X1 = Xq+1 = 0. One 
an 
al
ulate its 
ovarian
e from thede�nitions (19), (21) and (22)Z Dq(X)X�(s1)X�(s2) = Æ��q �min�s1q ; s2q �� s1q s2q � : (25)Thus a loop R(s) is 
hara
terized by its lo
ation in spa
e, the number qof parti
le it 
arries and its shape X(s). We denote 
olle
tively the set ofparameters L = f R; q; X(�) g (26)and 
onsider L as a point in the phase spa
e of loops. The parameters q andX(�) 
an be thought as the internal degrees of freedom of a loop lo
ated atR, and the phase spa
e integration is de�ned asdL : : : = Z dR 1Xq=1 Z Dq(X) : : : : (27)We sele
t in (20) all the pair intera
tions of parti
les belonging to the sameloop to 
onstitute the self energy of the loop U(L). A

ording to the de�ni-
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ation to Bose and Coulomb Gases 3637tions (21) and (22) it 
an be written asU(L) = 12 qZ0 ds1 qZo ds2 �1� Æ[s1℄;[s2℄� ~Æ(s1� s2)V (�(X(s1)�X(s2))) : (28)The periodi
 delta fun
tion ~Æ(s) = 1Xn=�1 e2i�ns (29)assures the equal time intera
tion 
ondition that o

urs in the Feynman-Ka
 representation (20). The term involving the Krone
ker symbol Æ[s1℄;[s2℄substra
ts out in (28) the self energy of the parti
les qV (0).All quantities pertaining to a single loop in (20) and (12) are now 
ol-le
ted into the loop a
tivityz(L) = (�)q�1q exp(��q)(2�q�2)3=2 exp(��U(L)) : (30)Finally, one must take into a

ount the remaining intera
tion potentials in(20) that 
ouple parti
les belonging to di�erent loops, namelyU(L1; : : : ;Lk) = kX1=i<j V (Li;Lj) (31)with the loop pair potentialV (L1;L2) = q1Z0 ds1 q2Z0 ds2~Æ(s1 � s2)V (R1 + �X(s1)�R2 � �X(s2)) : (32)Then putting all de�nitions together leads to the �nal formula for the par-tition fun
tion �� (12) (the �magi
 formula�)�� = 1Xk=0 1k! Z kYi=1 dLiz(Li) exp(��U(L1; : : : ;Lk)) : (33)We 
all the system de�ned by the relations (25) to (33) the �system of loops�or �system of polymers� asso
iated to the quantum me
hani
al many-bodyproblem. Although the so de�ned statisti
al me
hani
s of polymers has a
lassi
al stru
ture, one should be aware that the polymers do not have the



3638 P.A. Martingenuine 
lassi
al pairwise intera
tion between their elements whi
h wouldreadV
lassi
al(L1;L2) = q1Z0 ds1 q2Z0 ds2V (R1 + �X(s1)�R2 � �X(s2)) (34)instead of (32). The �quantum polymer� intera
tion (32) is 
onstrained bythe equal time 
ondition ~Æ(s1 � s2) whi
h is of purely quantum origin.At this point one 
an bene�t of the 
lassi
al-like stru
ture of the partitionfun
tion (33) to use the available tools of 
lassi
al statisti
al me
hani
s inthe spa
e of polymers, in parti
ular the Mayer diagrammati
 [15℄. LabelledMayer graphs �n 
onsist of n verti
es (i); i = 1; : : : ; n; 
onne
ted by bondsf(i; j). In the spa
e of loops, a vertex (i) is labelled by the loop variable Liand re
eives a weight given by the a
tivity z(Li) (30). The bond linking theverti
es (i) and (j) is de�ned byf(i; j) = exp(��V (Li;Lj))� 1 (35)with V (Li;Lj) the loop-loop intera
tion (32). From there one 
an obtainall quantities of interest a

ording to the standard rules of Mayer diagram-mati
. As an example, the density of loops �loop(L) is given by the standardexpansion�loop(L1)= 1Xn=1 1(n� 1)! Z dL2 : : : dLnz(L1)z(L2) : : : z(Ln)u(L1;L2; : : : ;Ln);(36)where u(L1;L2; : : : ;Ln) =X�n Y(i;j)2�n f(i; j) (37)is the Ursell fun
tion. The sum runs on all labelled 
onne
ted graphs �nwith n verti
es. To obtain the low fuga
ity expansion of the parti
le density� from the loop density, we have to sum �loop(L) on the internal variablesof L, � = 1Xq=1 q Z Dq(X)�loop(q;X) (38)the additional q fa
tor taking into a

ount that the loop L 
arries q parti
les.Higher order loop 
orrelation fun
tions 
an as well be written in terms oftheir Mayer expansions and the way to obtain the 
orresponding parti
le
orrelations is 
lari�ed for instan
e in the appendix D of [9℄.



Quantum Mayer Graphs: Appli
ation to Bose and Coulomb Gases 36393. Quantum plasmaWe appIy the formalism to the study of the s
reening me
hanisms in aplasma of quantum me
hani
al 
harges. The system 
onsists of S spe
ies ofquantum parti
les with 
harges e�, � = 1; : : : ;S, intera
ting withthe Coulomb potential e�1e�2 1jr1�r2j . In the polymer representation, thisCoulomb gas is isomorphi
 to a system of 
harged �u
tuating wires; theloop variable L in
ludes now the additional index � that spe
i�es the typeof asso
iated 
harges 3.For 
lassi
al 
harges, one knows that in the plasma the long range of theCoulomb potential is redu
ed be
ause of s
reening: a given 
harge surroundsitself by a 
loud of 
harges of opposite sign that 
an
els the Coulombi
 tailjrj�1 by neutrality. This repla
es the bare Coulomb potential by an e�e
tiveshort range potential V e�(r) in the medium. In the mean �eld theory s
hemeof Debye and Hü
kel, one hasV e�D (r) = e��Drr ; r = jrj ;~V e�D (k) = 4�k2 + �2D ; k = jkj ; (39)where the se
ond line gives the Fourier representation and��1D = (4��X� z�e2�)�1=2 (40)is the Debye s
reening length (z� = e��� and �� are the fuga
ity and the
hemi
al potential of parti
les of spe
ies �). In the diagrammati
 language,V e�(r) is obtained as the 
hain summation of Mayer graphs with linearizedbonds f (`)(i; j) = ��e�ie�j 1jri�rj j , see Fig. 2.Fig. 2. The e�e
tive 
hain potential.The same pro
edure 
an be applied to the quantum plasma by summingthe 
hains of quantum Mayer graphs in the spa
e of loops: this provides ane�e
tive loop-loop intera
tion whi
h is the quantum analogue of the 
lassi
alDebye potential. To 
ondense the notation we set L = fR; �g with � =f�; q; Xg denoting the set of internal degrees of freedom of the loop. The3 If parti
les have spins, the spin degenera
y is in
luded in the loop a
tivity z(L).



3640 P.A. Martinresult of the quantum me
hani
al 
hain summation is found to be in Fourierrepresentation [9℄~V e�(k; �a; �b) = qaZ0 dsa qbZ0 dsb eik�[�aXa(sa)��bXb(sb)℄� 1Xn=�1 4�k2 + �2(k; n)e�2i�n(sa�sb): (41)where the �s
reening 
oe�
ients� �2(k; n) are given by�2(k; n) = 4��X� e2�Xq Z D(X) z(�) ������ qZ0 ds eik���X(s)e2i�ns������2 (42)with �� the thermal wave length of the parti
le of spe
ies � and z(�) thea
tivity (30) of the loop. Although fermioni
 a
tivities 
an be negative, the
oe�
ients �2(k; n) 
an be shown to be positive when the density is lowenough. One notes on (42) that in the 
lassi
al limit (i.e. q = 1, Boltzmannstatisti
s, and �� = 0), �2(k; n) vanishes for n 6= 0 whereas �2(k; 0) redu
esto �D and hen
e one re
overs the 
lassi
al Debye potential (40). In generalone has limk!0 �2(k; 0) = �2D(1 +O(z)) 6= 0 but if n 6= 0, �2(k; n) = O(k2)vanishes as k ! 0. This shows that in the sum in (41) the term n = 0is regular at k = 0 and is thus responsible for 
lassi
al s
reening, but then 6= 0 terms have a k�2 singularity that will 
ause an algebrai
 tail at longdistan
es (see (43) bellow).The formula (41) is 
onsiderably more 
ompli
ated than the simple 
lassi-
al Debye potential (39) sin
e it embodies the e�e
ts of the quantum �u
tua-tions. However in the low density (z � 1) and weakly degenerate (��D � 1)regime ~V e�(k; �a; �b) has a physi
ally 
lear meaning depending on variousspatial s
ales (for a detailed analysis see [9℄). Several appli
ations of the for-malism of quantum Mayer graphs to quantum plasmas and more referen
esare found in the review [5℄.Long distan
e behaviour, r � ��1DAt very large distan
es, the de
ay is dominated by the multipole in-tera
tions between 
harged loops of arbitrary shapes. A loop L 
arries aninstantaneous dipole moment e���X(s) so that the asymptoti
 behaviour
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ation to Bose and Coulomb Gases 3641is that of a dipole-dipole intera
tion potentialV e�(r; �a; �b) � qaZ0 dsa qbZ0 dsb(1� ~Æ(sa � sb))(�aX(sa) � r)(�bX(sb) � r)1r(43)as r = jra � rbj ! 1. One notes that monopoles are s
reened, i.e. 
harge-
harge and 
harge-dipole terms do not o

ur in the asymptoti
 form (43) sothat the bare Coulombi
 de
ay r�1 is only redu
ed in the plasma to a r�3de
ay 
ara
teristi
 for dipole intera
tion. This is a feature due to intrinsi
quantum �u
tuations: the latter are at the origin of multipole for
es that
annot be s
reened in the quantum plasma. These residual multipole for
esgive rise to an algebrai
 de
ay of the parti
le 
orrelations whi
h is of theform (in a spatially homogeneous plasma) [10℄�ab(ra; rb)� �a�b � Aabjra � rbj6 ; jra � rbj ! 1 ; (44)where �ab(ra; rb) is the 
orrelation fun
tion for parti
les of spe
ies a and b,and the 
oe�
ient Aab depends of the thermodynami
al parameters of theplasma phase. The redu
tion of the dipole de
ay r�3 (43) to the van derWaals like de
ay r�6 is due to the spheri
ally symetri
al average over loopdipoles when integrating the internal degrees of freedom of the loops.It is remarkable that in the ele
tron�proton plasma the 
oe�
ients Aab
an be expli
itly 
al
ulated at the lowest order in density [11℄. The all havethe 
ommon valueAee = Aep = App = �2 ~4�4e4960 � 1me + 1mp�2 : (45)One �nds also that the 
orrelation of a parti
le ar ra with the total 
hargeat rb de
ays as jra�rbj�8 and the 
harge-
harge 
orrelation de
ays as jra�rbj�10. The main point is that 
orrelations of quantum 
harges never showthe exponential de
ay predi
ted by the 
lassi
al Debye�Hü
kel theory (39),but have various types of algebrai
 de
ays generated by the loop �u
tuationsin the polymer representation of the plasma.Intermediate distan
es, r � ��1DThe algebrai
 tail (43) (due to the singular n 6= 0 terms in (41)) is nowof order �2r�3 � �2�3D and has to be 
ompared to the 
ontribution of then = 0 term. Repla
ing �2(k; 0) by �2D we see that this term is the 
lassi
als
reened Debye potential (39) between loops, whi
h reads in 
on�guration
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e V e�D (r; �a; �b) = qaZ0 dsa qbZ0 dsb e��Djr+�aXa(sa)��bXb(sb)jjr + �aXa(sa)� �bXb(sb)j� qaqb e��Drr ; r � ��1D ; (46)where in the se
ond line we have negle
ted terms of the order of ��D. In thisrange the 
ontribution of the tail �2r�3 is (��D)2 smaller than V e�D (r; �a; �b)One 
on
ludes that on the s
ale r � ��1D the e�e
tive loop-loop potentialbehaves as the standard Debye potential that des
ribes 
olle
tive s
reeninge�e
ts. Short distan
es, r � ��1DIf the distan
e between loops is very short 
ompared to the Debye length,no s
reening e�e
ts take pla
e and one �nds that the e�e
tive potentialredu
es (up to a 
onstant) to the bare loop-loop Coulomb potentialV e�(r; �a; �b) � qaZ0 dsa qbZ0 dsb 1jr + �aXa(sa)� �bXb(sb)j �qaqb�D; r ! 0 :(47)This will a

ount for the quantum me
hani
al binding, whi
h o

urs at dis-tan
es of the order of the Bohr radius aB � ��1D and so gives the posssibilityto des
ribe re
ombination pro
esses in the plasma (formation of atoms andmole
ules). The e�e
tive potential de�ned in (41) in
orporates in a singlefun
tion all the basi
 phenomena that s
reen the intera
tion of quantum
harges at long, intermediate and short distan
es. In parti
ular, after areorganisation of the Mayer diagrammati
 suitable to treat re
ombinationproblems, it enables to treat in a fully 
onsistent way the 
orre
tions to theequation of state of ideal gases in the Saha regime. It 
an also be used toderive the �rst 
orre
tions to the van der Waals for
es between atoms andmole
ules in a low density medium. These appli
ations are the subje
t of anumber of papers in preparation [12℄ .4. Bose gasFollowing the re
ent observation of Bose 
ondensation of 
old atoms intraps [13℄, there are strong motivations for a better understanding of theme
hanism of this phase transition. We show how to re
over the mean �eldtheory of the homogeneous Bose gas by means of diagrammati
 summationand dis
uss the mathemati
al problems that arise when one wants to extendthe analysis beyond mean �eld.
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ation to Bose and Coulomb Gases 3643It is well known that the van der Waals theory of the liquid-gas transitionis obtained in the limit of a weak long range pair potential [14℄V
(r) = 
3V (
r) (48)as 
 ! 0 where V (r) is a �xed potential with �nite total integral R drV (r) �a <1. In order to des
ribe the liquid gas transition one needs a strong lo-
al repusion between the parti
les and V
(r) only represents the long rangeattra
tive part of the intera
tion. For bosons the situation is di�erent sin
ethe 
ondensation phenomenon is already present in the free gas, the issuebeing to see whether the transition survives the introdu
tion of an intera
-tion. To assure thermodynami
 stability, we assume that both the potentialV (r) � 0 and its Fourier transform ~V (k) � 0 are positive.The mean �eld equation is a self 
onsistent relation that determines thegrand 
anoni
al density �(�) as fun
tion of the 
hemi
al potential ��(�) = �0(�� a�(�)) : (49)In (49) �0(�) = 1(2��2)3=2 1Xq=1 e��qq3=2 (50)is the well known formula [15℄ for the grand 
anoni
al density of the free gasand � = ~p�=m (51)is the thermal wave length.The series (50) 
onverges for � � 0 so that the self 
onsistent equation(49) is meaningful whenever �� a�(�) � 0, namely for � � �
. The 
riti
al
hemi
al potential �
 is de�ned by �
 � a�(�
) = 0, thus �
 has the value�
 = a�0;
 where �0;
 = �0(� = 0) is the 
riti
al density of the free gas.The equation (49) has been rigorously derived in the limit 
 ! 0 (wherethe range of the potential (48) extends to in�nity) in a number of works[16�18℄ and is also known that its solution 
an be extended above the 
riti
al
hemi
al potential as �(�) = �=a; � > �
.To establish equation (49) in the van der Waals limit in the diagrammati
language, let us �rst single out the dominant 
ontributions of bond andverti
es as 
 !1.The 
ontributions of order O(1) in 
 of the s
aled potential 
3V (
r) will
ome from the linarized bond f
(i; j) � f (`)
 (i; j) � ��V
(i; j) whi
h reads(see (32))f (`)
 (i; j)=��
3 qiZ0 dsi qjZ0 dsj~Æ(si�sj)V (
(Ri�Rj)+
�(Xi(si)�Xj(sj))) :(52)
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ontribution of order O(1) on
e integrated on one ofthe loop position Ri or Rj sin
e by s
aling its total spatial integralZ dRjf (`)
 (i; j) = ��aqiqj (53)is independant of 
. In the a
tivity (30) we simply disregard the self energyU
(L) sin
e the latter is O(
3) and approximatez(L) � z(0)(q) � zqq(2�q�2)3=2 : (54)The point is now that the mean �eld equation results of the summation ofall tree graphs with bonds (52) and verti
es (54)4. Consider indeed a rootedtree graph Tn+1 with verti
es (0; 1; : : : ; n) for whi
h the root point is ofdegree 1 (0 is the label of the root point) 5. Hen
e the root point is linked tothe rest of the graph by a single bond, say f (`)(0; 1). Call Tn the subgraphof Tn+1 with verti
es (1; 2; : : : ; n) and tn(L1) the value of this subgraph on
eintegrated on the verti
es 2; : : : ; n. Then the value tn+1(L0) of the rootedgraph Tn+1 is tn+1(L0) = ��z(0)(q0)Z dL1V
(L0;L1)tn(L1) : (55)Be
ause of translation invarian
e tn(L1) = tn(q1;X1) does not depend onthe position R1 of the loop L1. Thus the spatial integration R1 
an beperformed on V
(L0;L1) as in (53) so thatntn+1(L0) = z(0)(q0)(��aq0)24 1Xq1=1 q1 Z Dq1(X1)ntn(q1;X1)35 : (56)A

ording to (38) the quantity in the bra
ket is pre
isely the 
ontributionto the parti
le density �tree(�) of the graph Tn6. Therefore the sum of allindexed tree graphs having a root point of degree 1 isz(0)(q0)(��aq0�tree(�)) :The sum of all tree graphs with root point of degree n isz(0)(q0)(��vq0�tree(�))n=n!4 A tree is a Mayer graph without 
y
les.5 The degree of a point is the number of lines in
ident at this point.6 The additional fa
tor n in (56) o

urs be
ause the root point 0 
an be linked to anyof the n verti
es of Tn.
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Fig. 3. A rooted tree graph with subgraph Tn.(the fa
tor 1=n! takes 
are of the fa
t that the labelling of verti
es belongingto the di�erent bran
hes atta
hed to the root point 
an be permuted withoutgiving rise to new Mayer graphs). Finally, summing on all trees rooted atthe point 0 gives the density of loops. To obtain the parti
le density we stillhave to sum on the internal variables q0;X0 of the root loop with a fa
torq0 a

ording to (38). Hen
e introdu
ing (54) yields�tree(�) = 1Xn=0 q0z(0)(q0)n! (��aq0�tree(�))n= 1Xq0=1 exp(�(�� a�tree(�)))(2�q0�2)3=2= �0(�� a�tree(�)) ; (57)whi
h is the mean �eld equation (49). One has of 
ourse to prove that allthe negle
ted terms (the non linear part of the bond f
(i; j) and the graphswith 
y
les) do not 
ontribute as 
 ! 0, see [19℄.The question now arises to investigate the �rst 
orre
tions to the mean�eld theory when 
 is not driven to the limit but kept small. A �rst stepin this dire
tion is provided by a generalization of the mean �eld equationvalid for the intera
ting gas [19℄�(�) = F (�� a�(�)) : (58)The di�eren
e with (49) is that here F (�) 
ontains the full information onthe intera
ting gas. It is de�ned in the diagrammati
 of loops as the sum of
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ible Mayer graphs. The basi
 bondf(i; j) = f (`(i; j) + f (n`)(i; j)is de
omposed into two new bondsf (`)(i; j) = ��V (i; j)and f (n`)(i; j) = e��V (i;j) � 1 + �V (i; j) :Then a graph is said irredu
ible if it 
annot be dis
onne
ted by 
uttinga linear intera
tion bond f (`)(i; j). One 
an show that the series of thesegraphs is 
onvergent when the 
hemi
al potential is su�
iently negative (i.e.at su�
iently low density) so that equation (58) is meaningful in this regime.Moreover, as expe
ted, lim
!0 F
(�) = �0(�) when the s
aling parameter 
is introdu
ed in the potential.In order to see what is the nature of the problems involved in an analysisthat goes beyond mean �eld let us 
onsider the simplest irredu
ible diagramwhi
h is the single root vertex with a
tivity z(L). Its 
ontribution to F (�)is a

ording to (38) and (30) isF (0)(�) = 1Xq=1 q Z Dq(X)z(L)= 1(2��2)3=2 1Xq=1 e��qq3=2 �(q) : (59)Here we have introdu
ed the partition fun
tion (normalized to 1)�(q) = Z Dq(X)e��U(q;X) (60)of a single 
losed polymer having the repulsive energy (28). Comparing (59)to (50) we see that the radius of 
onvergen
e of the sum is now determinedby the asymptoti
 behaviour of �(q) as q ! 1. This radius will in turndetermine a 
riti
al 
hemi
al potential renormalized by the intera
tion. Itis �rmly established, although not rigorously proved, that the normalizedpartition �
l(q) fun
tion of a single 
lassi
al self repelling 
losed polymerwith intera
tion (34) behaves (in three dimensions) as [20℄�
l(q) � C e��Aqq3(�pol�1=2) ; q !1 ; (61)
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ation to Bose and Coulomb Gases 3647where A is a 
onstant depending of the 
hoi
e of the potential V (r) and�pol = 0; 589 is the universal 
riti
al exponent for a swollen polymer. Itis apparently not known at the moment if a similar behaviour holds forthe �quantum polymers� o

uring in the representation of the Bose gas.In addition one has also to deal with higher order irredu
ible graphs with
y
les and bonds f (n`)(i; j) that involve pair intera
tions between di�erentpolymers. These questions are under investigation and we believe that theysuggest interesting problems and analogies between the des
ription of theBose phase transition and polymer theories.REFERENCES[1℄ A. Fetter, J.D. Wale
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