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QUANTUM MAYER GRAPHS: APPLICATION TOBOSE AND COULOMB GASES�Philippe A. MartinInstitute of Theoretial Physis, Swiss Federal Shool for Tehnology-LausanneCH-1015, Lausanne EPFL, Switzerland(Reeived November 11, 2002)The funtional integral representation of quantum statistial mehanisby means of the Feynman�Ka formula leads to a lassial-like desriptionof the system. Point quantum partiles are then desribed in terms ofrandom loops (losed Brownian paths), and all tehniques of lassial sta-tistial mehanis beome available. One advantage of this formalism isthat it is not perturbative with respet to the interation strength, in on-trast to the standard many-body perturbative treatment. We apply theseideas to the Coulomb gas by onstruting an e�etive potential (the quan-tum analogue of the Debye potential) that inorporates both long distaneolletive sreening e�ets as well as the short range quantum mehanialbinding. For Bose systems, we show that mean �eld theory orresponds tosumming all tree-graphs and investigate how to go beyond the mean �elddesription.PACS numbers: 05.30.�d, 71.45.�d1. IntrodutionThe standard perturbative treatment of many partile systems relies onan expansion in the strength of the interpartile interation. This leads tothe familar Feynman diagrams of the many-body theory, see e.g. [1℄. Insome irumstanes suh an expansion is not appropriate, espeially whenthe e�et of the interation is not analyti in the oupling onstant. Forinstane, quantum mehanial binding in partially reombined plasmas, Boseondensation in interating gases, as well as superondutivity annot bedesribed perturbatively.� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3629)



3630 P.A. MartinAnother possible small parameter in the system is the density or the fu-gaity: this leads to the virial expansion. However the traditionnal quantumvirial expansion is umbersome. We propose in these notes an alternativeformalism that enables to bene�t of the well developped lassial tools ofMayer diagrammati.The point is that using the Feynman�Ka funtional integral represen-tation of the Gibbs weight together with the deomposition of permutationsinto yles, the grand-anonial partition funtion of the quantum systemtakes the lassial-like form of a gas of random loops (or �polymers�). Aloop is a losed Brownian path originating at some point in spae; it is anextended objet that has a shape and arries a number of partiles assim-ilated to internal degrees of freedom. In the auxillary spae of loops, alltehniques of lassial statistial mehanis are at hand, in partiular thevery powerful and �exible Mayer diagrammati tehniques. From there wean easily ome bak to the alulation of quantities of interest for the orig-inal system of quantum partiles. In fat this lassial-like representation ofthe quantum system has been known in a form an another sine a long timein various ontexts, starting with the work of Ginibre on the onvergene ofthe quantum virial expansion (see [2℄ and original referenes therein). It hasalso used to implement numerial simulations, see e.g. for Bose systems [3℄.The present version has been derived and applied by Cornu [4℄ to Coulombsystems. Here we follow the de�nitions given in the review [5℄ where ad-ditionnal referenes an also be found. In Setion 2 we give an essentiallyself ontained derivation of the so alled �magi formula� that dispays thepartition of the quantum gas as that of a lassial-like gas of loops. For sim-pliity we onsider only one speies of partiles and the derivation is basedon ombinatorial properties of the permutation group. The generalisationto several speies of partiles an be found in [5℄ where another derivationis skethed in the framework of seond quantization.Setion 3 is devoted to appliations to the quantum plasma. We mainlyformulate the analogue of the lassial Debye�Hükel theory for quantumharges and indiates some striking onsequenes due to the quantum me-hanial nature of the partiles. In Setion 4 we onsider the Bose gas andshow how the mean �eld limit an be reovered by a diagrammati analysis.2. The magi formulaWe onsider a system of N nonrelativisi bosoni or fermioni quantumpartiles enlosed in a box � and interating by means of the two-bodypotential V (r). The total Hamiltonian readsHN = NXi=1 jpij22m + NXi<j V (ri � rj) ; (1)



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 3631where jpij2 = �~2�i, �i is the Laplaian on <3 with Dirihlet onditionsat the boundary of �. The properties of the potential V (r) will be spei�edin more detail in the appliations.The orresponding grand anonial partition funtion with inverse tem-perature � = 1kBT and fugaity z = e�� (� is the hemial potential) is�� = 1XN=0 zNN !X� (�)�f(�) ; (2)where the seond sum runs over all permutation � of the permutation groupSN of N elements. In (2) we have notedf(�) = Z� dr1 : : : Z� drN hr1; : : : ; rN je��H�U�jr1; : : : ; rN i (3)the on�gurational integral of the matrix elements of the Gibbs weighte��H� .The operators U� ats on the on�gurational kets asU�jr1; : : : ; rN i = jr�1 ; : : : ; r�N i : (4)They form a unitary representation of the permutation group on the Npartile states U�1U�2 = U�1�2 ; U�� = U�1� = U��1 (5)and (�)� is the signature of the permutation (� = +1 for bosons and � = �1for fermions) . In a �rst step we onsider in (2) the struture of sum on thefuntion f(�) de�ned on the permutation group SN .2.1. Some fats on the permutation groupEah permutation � in SN an be deomposed into k yles of lengthqi; i = 1; : : : ; k, with k � N; Pki=1 qi = N . We denote simply by Q theunordered set of integersQ = fqi; i = 1; : : : ; k; kXi=1 qi = Ng (6)and all it a yle struture. For instane the permutation� = � 1 2 3 4 5 6 77 5 2 6 3 4 1 � = (1 7)(2 5 3)(4 6)has the yle struture Q = fq1 = 2; q2 = 3; q3 = 2g.



3632 P.A. MartinTwo permutations �0 and �00 having the same yle struture Q areonjugate in SN , that is there exists � suh that�00 = ��1�0� : (7)Hene SN is the disjoint union of equivalene lasses of permutations havingthe same yle struture. Let nj be the number of yles of length j in Q,nj = 0; 1; : : : ; N; Pnj�1 jnj = N (in the above example, n2 = 2; n3 = 1;nj=0; j 6= 2; 3). Then the number of permutations that have the same ylestruture is [6℄ 1 NQ = 1q1 : : : qk N !n1! : : : nN ! : (8)Moreover the signature of a permutation(�)� = (�)Q = kYi=1 �qi�1 (9)depends only on the yle struture of �.An important observation is that the same is true for f(�) (3): it dependsonly on the yle struture of �. Indeed if �0 and �00 are onjugate, one hasfrom (3), (5) and (7)f(�00)=Z� dr1 : : :Z� drN hr1; : : : ; rN je��H�U�1� U�0U�jr1; : : : ; rN i=Z� dr1 : : :Z� drN hr1; : : : ; rN jU��e��H�U�0U�jr1; : : : ; rN i=Z� dr1 : : :Z� drN hr�1 ; : : : ; r�N je���U�0 jr�1 ; : : : ; r�N i = f(�0):(10)We have used that H� ommutes with all permutation operators and rela-belled the dummy integration variables to obtain the last equality.Selet a representative permutation ��Q in the lass Q, for instanethe anonial one that has numbers in inreasing order (in our example,1 By onvention n! = 0 when n = 0.



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 3633��Q=(1,2)(3,4)(5,6,7)). Then in view of (9) and (10) the sum over permuta-tions in (2) redues to a sum over yle struturesX� (�)�f(�) = XQ NQ(�)Qf(��Q)= NXk=1 1Xq1;:::;qk=1 ÆPki qi;N n1! : : : nN !k! NQ(�)Qf(��Q)= N ! NXk=1 1k! 1Xq1;:::;qk=1 ÆPki qi;N kYi=1 �qi�1qi f(��(q1;:::;qk)) : (11)In the seond equality we have replaed the summation on yle struturesby a summation on ordered yle lengths, whih leads to an over ountingompensated by the fator n1! : : : nN !=k!. The last equality follows from (8)and (9). Finally forming the grand anonial sum (2) removes the onstraintof �xed N �� = 1Xk=0 1k! 1Xq1;:::;qk=1 kYi=1 �qi�1zqiqi f(��(q1;:::;qk)) : (12)We have thus onverted the partile number summation in the grand parti-tion funtion to a sum on yle numbers.2.2. The Feynman�Ka representationLet us �rst reall familiar ideas about the representation of the quantummehanial statistial operator by the Feynman�Ka funtional integral2.For sake of simpliity, we onsider a single partile of massm in three dimen-sions submitted to an external potential  (r). Aording to the original pathintegration introdued by Feynman [7℄, the on�gurational matrix elementsof the statistial operator assoiated with the one-partile HamiltonianH = � ~22m�+ V; � = Laplaian in <3 (13)read hr1j exp����� ~22m�+  �� jr2i = Xpaths exp��1~S(r(�))� : (14)2 This subsetion and the next one are essentially taken from Chaps. 4 and 5 in [5℄.



3634 P.A. MartinHere S(r(�)) is the lassial ation orresponding to the potential � (theEulidean ation)S(r(�)) = �~Z0 dt m2 ����dr(t)dt ����2 +  (r(t))! (15)assoiated with the path r(t) starting from r1 at �time� t = 0 and endingin r2 at �time� �~. The summation in (14) runs over all suh paths.It is very useful to parameterize the path r(t) by dimensionless variables,making the hanges = t�~ ; 0 � s � 1r1;2(s) = (1� s)r1 + sr2 + ��(s) ; �(0) = �(1) = 0 ; (16)where � = ~r �m (17)is the de Broglie thermal wave length. In (16) �(s) represents now a losedpath, alled the Brownian bridge, starting and returning to the origin withinthe �time� s = 1. In terms of these dimensionless variables, the matrixelement (14) an be written in the preise form [8℄hr1 j exp����� ~22m�+  �� j r2i = � 12��2�3=2 exp��jr1 � r2j22�2 ��Z D(�) exp0��� 1Z0 dsV ((1 � s)r1 + sr2 + ��(s))1A : (18)In (18) D(�) is a Gaussian measure (the Brownian bridge measure) withweight formally represented by exp��12 R 10 ���d�(s)ds ���2�. It is normalized to 1,has zero mean and is entirely de�ned by its ovarianeZ D(�)��(s1)��(s2) = Æ�;�(min(s1; s2)� s1s2) ; (19)where ��(s) are the Cartesian oordinates of �(s).The representation (18) has the advantage that physial parametersr1; r2; �; ~; � appear expliitly in the formula; � measures the extentof the quantum �utuation. In partiular if � is set equal to zero in thediagonal matrix element one reovers the lassial Boltzmann weight.



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 3635The extension to the many partile system is straightforward. To eahpartile is assoiated a path �i(s) The paths are distributed with indepen-dent Gaussian measures D(�i); i = 1; : : : ; N , so that the matrix element in(3) reads hr1; : : : ; rN j exp (��H�) jr�1 ; : : : ; r�N i = NYi=1� 12��2�3=2� exp��jri � r�i j22�2 �Z NYi=1D(�i)� exp0��� NXi<j 1Z0 dsV (ri;�i(s)� rj;�j(s))1A : (20)We now introdue this representation in the formula (12) to obtain the gasof loops. 2.3. The statistial mehanis of loopsIn the interation energy in (20) we group all the partile belonging to agiven yle of length q in ��, say the partiles 1; 2; : : : ; q. The orrespondingolletion of pathsri;i+1(si) = (1� si)ri + siri+1 + ��(si); i = 1; : : : ; q; (q + 1 � 1)are joined together to from again a losed Brownwian path, the random loopR(s) = ri;i+1(si); i� 1 � s < i : (21)The loop is now parametrized by the single time parameter s running from0 to q by setting si = s� [s℄; i� 1 � s < i where [s℄ is the integer part of s,see Fig. 1.One an then loate the loop at R by seleting the position of one of thepartiles, say r1 = R, and writeR(s) = R+ �X(s); X(0) =X(q) = 0 : (22)Hene the partiles are loated at the pointsrk = R+ �X(k � 1); k = 1; : : : ; q : (23)In (22), X(s) is again a dimensionless Brownian bridge starting and return-ing to the origin within the time q. Its normalized Gaussian measure Dq(X)



3636 P.A. Martin

Fig. 1. A q partile loop.is the omposition of that of the q open �laments that onstitute the loop(see (18))Dq(X)=(2�q)3=2 qYk=1exp ��12(Xk+1 �Xk)2�(2�)3=2 dX2 : : : dXqD(�1) : : : D(�q);(24)where one sets X1 = Xq+1 = 0. One an alulate its ovariane from thede�nitions (19), (21) and (22)Z Dq(X)X�(s1)X�(s2) = Æ��q �min�s1q ; s2q �� s1q s2q � : (25)Thus a loop R(s) is haraterized by its loation in spae, the number qof partile it arries and its shape X(s). We denote olletively the set ofparameters L = f R; q; X(�) g (26)and onsider L as a point in the phase spae of loops. The parameters q andX(�) an be thought as the internal degrees of freedom of a loop loated atR, and the phase spae integration is de�ned asdL : : : = Z dR 1Xq=1 Z Dq(X) : : : : (27)We selet in (20) all the pair interations of partiles belonging to the sameloop to onstitute the self energy of the loop U(L). Aording to the de�ni-



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 3637tions (21) and (22) it an be written asU(L) = 12 qZ0 ds1 qZo ds2 �1� Æ[s1℄;[s2℄� ~Æ(s1� s2)V (�(X(s1)�X(s2))) : (28)The periodi delta funtion ~Æ(s) = 1Xn=�1 e2i�ns (29)assures the equal time interation ondition that ours in the Feynman-Ka representation (20). The term involving the Kroneker symbol Æ[s1℄;[s2℄substrats out in (28) the self energy of the partiles qV (0).All quantities pertaining to a single loop in (20) and (12) are now ol-leted into the loop ativityz(L) = (�)q�1q exp(��q)(2�q�2)3=2 exp(��U(L)) : (30)Finally, one must take into aount the remaining interation potentials in(20) that ouple partiles belonging to di�erent loops, namelyU(L1; : : : ;Lk) = kX1=i<j V (Li;Lj) (31)with the loop pair potentialV (L1;L2) = q1Z0 ds1 q2Z0 ds2~Æ(s1 � s2)V (R1 + �X(s1)�R2 � �X(s2)) : (32)Then putting all de�nitions together leads to the �nal formula for the par-tition funtion �� (12) (the �magi formula�)�� = 1Xk=0 1k! Z kYi=1 dLiz(Li) exp(��U(L1; : : : ;Lk)) : (33)We all the system de�ned by the relations (25) to (33) the �system of loops�or �system of polymers� assoiated to the quantum mehanial many-bodyproblem. Although the so de�ned statistial mehanis of polymers has alassial struture, one should be aware that the polymers do not have the



3638 P.A. Martingenuine lassial pairwise interation between their elements whih wouldreadVlassial(L1;L2) = q1Z0 ds1 q2Z0 ds2V (R1 + �X(s1)�R2 � �X(s2)) (34)instead of (32). The �quantum polymer� interation (32) is onstrained bythe equal time ondition ~Æ(s1 � s2) whih is of purely quantum origin.At this point one an bene�t of the lassial-like struture of the partitionfuntion (33) to use the available tools of lassial statistial mehanis inthe spae of polymers, in partiular the Mayer diagrammati [15℄. LabelledMayer graphs �n onsist of n verties (i); i = 1; : : : ; n; onneted by bondsf(i; j). In the spae of loops, a vertex (i) is labelled by the loop variable Liand reeives a weight given by the ativity z(Li) (30). The bond linking theverties (i) and (j) is de�ned byf(i; j) = exp(��V (Li;Lj))� 1 (35)with V (Li;Lj) the loop-loop interation (32). From there one an obtainall quantities of interest aording to the standard rules of Mayer diagram-mati. As an example, the density of loops �loop(L) is given by the standardexpansion�loop(L1)= 1Xn=1 1(n� 1)! Z dL2 : : : dLnz(L1)z(L2) : : : z(Ln)u(L1;L2; : : : ;Ln);(36)where u(L1;L2; : : : ;Ln) =X�n Y(i;j)2�n f(i; j) (37)is the Ursell funtion. The sum runs on all labelled onneted graphs �nwith n verties. To obtain the low fugaity expansion of the partile density� from the loop density, we have to sum �loop(L) on the internal variablesof L, � = 1Xq=1 q Z Dq(X)�loop(q;X) (38)the additional q fator taking into aount that the loop L arries q partiles.Higher order loop orrelation funtions an as well be written in terms oftheir Mayer expansions and the way to obtain the orresponding partileorrelations is lari�ed for instane in the appendix D of [9℄.



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 36393. Quantum plasmaWe appIy the formalism to the study of the sreening mehanisms in aplasma of quantum mehanial harges. The system onsists of S speies ofquantum partiles with harges e�, � = 1; : : : ;S, interating withthe Coulomb potential e�1e�2 1jr1�r2j . In the polymer representation, thisCoulomb gas is isomorphi to a system of harged �utuating wires; theloop variable L inludes now the additional index � that spei�es the typeof assoiated harges 3.For lassial harges, one knows that in the plasma the long range of theCoulomb potential is redued beause of sreening: a given harge surroundsitself by a loud of harges of opposite sign that anels the Coulombi tailjrj�1 by neutrality. This replaes the bare Coulomb potential by an e�etiveshort range potential V e�(r) in the medium. In the mean �eld theory shemeof Debye and Hükel, one hasV e�D (r) = e��Drr ; r = jrj ;~V e�D (k) = 4�k2 + �2D ; k = jkj ; (39)where the seond line gives the Fourier representation and��1D = (4��X� z�e2�)�1=2 (40)is the Debye sreening length (z� = e��� and �� are the fugaity and thehemial potential of partiles of speies �). In the diagrammati language,V e�(r) is obtained as the hain summation of Mayer graphs with linearizedbonds f (`)(i; j) = ��e�ie�j 1jri�rj j , see Fig. 2.Fig. 2. The e�etive hain potential.The same proedure an be applied to the quantum plasma by summingthe hains of quantum Mayer graphs in the spae of loops: this provides ane�etive loop-loop interation whih is the quantum analogue of the lassialDebye potential. To ondense the notation we set L = fR; �g with � =f�; q; Xg denoting the set of internal degrees of freedom of the loop. The3 If partiles have spins, the spin degeneray is inluded in the loop ativity z(L).



3640 P.A. Martinresult of the quantum mehanial hain summation is found to be in Fourierrepresentation [9℄~V e�(k; �a; �b) = qaZ0 dsa qbZ0 dsb eik�[�aXa(sa)��bXb(sb)℄� 1Xn=�1 4�k2 + �2(k; n)e�2i�n(sa�sb): (41)where the �sreening oe�ients� �2(k; n) are given by�2(k; n) = 4��X� e2�Xq Z D(X) z(�) ������ qZ0 ds eik���X(s)e2i�ns������2 (42)with �� the thermal wave length of the partile of speies � and z(�) theativity (30) of the loop. Although fermioni ativities an be negative, theoe�ients �2(k; n) an be shown to be positive when the density is lowenough. One notes on (42) that in the lassial limit (i.e. q = 1, Boltzmannstatistis, and �� = 0), �2(k; n) vanishes for n 6= 0 whereas �2(k; 0) reduesto �D and hene one reovers the lassial Debye potential (40). In generalone has limk!0 �2(k; 0) = �2D(1 +O(z)) 6= 0 but if n 6= 0, �2(k; n) = O(k2)vanishes as k ! 0. This shows that in the sum in (41) the term n = 0is regular at k = 0 and is thus responsible for lassial sreening, but then 6= 0 terms have a k�2 singularity that will ause an algebrai tail at longdistanes (see (43) bellow).The formula (41) is onsiderably more ompliated than the simple lassi-al Debye potential (39) sine it embodies the e�ets of the quantum �utua-tions. However in the low density (z � 1) and weakly degenerate (��D � 1)regime ~V e�(k; �a; �b) has a physially lear meaning depending on variousspatial sales (for a detailed analysis see [9℄). Several appliations of the for-malism of quantum Mayer graphs to quantum plasmas and more referenesare found in the review [5℄.Long distane behaviour, r � ��1DAt very large distanes, the deay is dominated by the multipole in-terations between harged loops of arbitrary shapes. A loop L arries aninstantaneous dipole moment e���X(s) so that the asymptoti behaviour



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 3641is that of a dipole-dipole interation potentialV e�(r; �a; �b) � qaZ0 dsa qbZ0 dsb(1� ~Æ(sa � sb))(�aX(sa) � r)(�bX(sb) � r)1r(43)as r = jra � rbj ! 1. One notes that monopoles are sreened, i.e. harge-harge and harge-dipole terms do not our in the asymptoti form (43) sothat the bare Coulombi deay r�1 is only redued in the plasma to a r�3deay arateristi for dipole interation. This is a feature due to intrinsiquantum �utuations: the latter are at the origin of multipole fores thatannot be sreened in the quantum plasma. These residual multipole foresgive rise to an algebrai deay of the partile orrelations whih is of theform (in a spatially homogeneous plasma) [10℄�ab(ra; rb)� �a�b � Aabjra � rbj6 ; jra � rbj ! 1 ; (44)where �ab(ra; rb) is the orrelation funtion for partiles of speies a and b,and the oe�ient Aab depends of the thermodynamial parameters of theplasma phase. The redution of the dipole deay r�3 (43) to the van derWaals like deay r�6 is due to the spherially symetrial average over loopdipoles when integrating the internal degrees of freedom of the loops.It is remarkable that in the eletron�proton plasma the oe�ients Aaban be expliitly alulated at the lowest order in density [11℄. The all havethe ommon valueAee = Aep = App = �2 ~4�4e4960 � 1me + 1mp�2 : (45)One �nds also that the orrelation of a partile ar ra with the total hargeat rb deays as jra�rbj�8 and the harge-harge orrelation deays as jra�rbj�10. The main point is that orrelations of quantum harges never showthe exponential deay predited by the lassial Debye�Hükel theory (39),but have various types of algebrai deays generated by the loop �utuationsin the polymer representation of the plasma.Intermediate distanes, r � ��1DThe algebrai tail (43) (due to the singular n 6= 0 terms in (41)) is nowof order �2r�3 � �2�3D and has to be ompared to the ontribution of then = 0 term. Replaing �2(k; 0) by �2D we see that this term is the lassialsreened Debye potential (39) between loops, whih reads in on�guration



3642 P.A. Martinspae V e�D (r; �a; �b) = qaZ0 dsa qbZ0 dsb e��Djr+�aXa(sa)��bXb(sb)jjr + �aXa(sa)� �bXb(sb)j� qaqb e��Drr ; r � ��1D ; (46)where in the seond line we have negleted terms of the order of ��D. In thisrange the ontribution of the tail �2r�3 is (��D)2 smaller than V e�D (r; �a; �b)One onludes that on the sale r � ��1D the e�etive loop-loop potentialbehaves as the standard Debye potential that desribes olletive sreeninge�ets. Short distanes, r � ��1DIf the distane between loops is very short ompared to the Debye length,no sreening e�ets take plae and one �nds that the e�etive potentialredues (up to a onstant) to the bare loop-loop Coulomb potentialV e�(r; �a; �b) � qaZ0 dsa qbZ0 dsb 1jr + �aXa(sa)� �bXb(sb)j �qaqb�D; r ! 0 :(47)This will aount for the quantum mehanial binding, whih ours at dis-tanes of the order of the Bohr radius aB � ��1D and so gives the posssibilityto desribe reombination proesses in the plasma (formation of atoms andmoleules). The e�etive potential de�ned in (41) inorporates in a singlefuntion all the basi phenomena that sreen the interation of quantumharges at long, intermediate and short distanes. In partiular, after areorganisation of the Mayer diagrammati suitable to treat reombinationproblems, it enables to treat in a fully onsistent way the orretions to theequation of state of ideal gases in the Saha regime. It an also be used toderive the �rst orretions to the van der Waals fores between atoms andmoleules in a low density medium. These appliations are the subjet of anumber of papers in preparation [12℄ .4. Bose gasFollowing the reent observation of Bose ondensation of old atoms intraps [13℄, there are strong motivations for a better understanding of themehanism of this phase transition. We show how to reover the mean �eldtheory of the homogeneous Bose gas by means of diagrammati summationand disuss the mathematial problems that arise when one wants to extendthe analysis beyond mean �eld.



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 3643It is well known that the van der Waals theory of the liquid-gas transitionis obtained in the limit of a weak long range pair potential [14℄V(r) = 3V (r) (48)as  ! 0 where V (r) is a �xed potential with �nite total integral R drV (r) �a <1. In order to desribe the liquid gas transition one needs a strong lo-al repusion between the partiles and V(r) only represents the long rangeattrative part of the interation. For bosons the situation is di�erent sinethe ondensation phenomenon is already present in the free gas, the issuebeing to see whether the transition survives the introdution of an intera-tion. To assure thermodynami stability, we assume that both the potentialV (r) � 0 and its Fourier transform ~V (k) � 0 are positive.The mean �eld equation is a self onsistent relation that determines thegrand anonial density �(�) as funtion of the hemial potential ��(�) = �0(�� a�(�)) : (49)In (49) �0(�) = 1(2��2)3=2 1Xq=1 e��qq3=2 (50)is the well known formula [15℄ for the grand anonial density of the free gasand � = ~p�=m (51)is the thermal wave length.The series (50) onverges for � � 0 so that the self onsistent equation(49) is meaningful whenever �� a�(�) � 0, namely for � � �. The ritialhemial potential � is de�ned by � � a�(�) = 0, thus � has the value� = a�0; where �0; = �0(� = 0) is the ritial density of the free gas.The equation (49) has been rigorously derived in the limit  ! 0 (wherethe range of the potential (48) extends to in�nity) in a number of works[16�18℄ and is also known that its solution an be extended above the ritialhemial potential as �(�) = �=a; � > �.To establish equation (49) in the van der Waals limit in the diagrammatilanguage, let us �rst single out the dominant ontributions of bond andverties as  !1.The ontributions of order O(1) in  of the saled potential 3V (r) willome from the linarized bond f(i; j) � f (`) (i; j) � ��V(i; j) whih reads(see (32))f (`) (i; j)=��3 qiZ0 dsi qjZ0 dsj~Æ(si�sj)V ((Ri�Rj)+�(Xi(si)�Xj(sj))) :(52)



3644 P.A. MartinThis bond will give a ontribution of order O(1) one integrated on one ofthe loop position Ri or Rj sine by saling its total spatial integralZ dRjf (`) (i; j) = ��aqiqj (53)is independant of . In the ativity (30) we simply disregard the self energyU(L) sine the latter is O(3) and approximatez(L) � z(0)(q) � zqq(2�q�2)3=2 : (54)The point is now that the mean �eld equation results of the summation ofall tree graphs with bonds (52) and verties (54)4. Consider indeed a rootedtree graph Tn+1 with verties (0; 1; : : : ; n) for whih the root point is ofdegree 1 (0 is the label of the root point) 5. Hene the root point is linked tothe rest of the graph by a single bond, say f (`)(0; 1). Call Tn the subgraphof Tn+1 with verties (1; 2; : : : ; n) and tn(L1) the value of this subgraph oneintegrated on the verties 2; : : : ; n. Then the value tn+1(L0) of the rootedgraph Tn+1 is tn+1(L0) = ��z(0)(q0)Z dL1V(L0;L1)tn(L1) : (55)Beause of translation invariane tn(L1) = tn(q1;X1) does not depend onthe position R1 of the loop L1. Thus the spatial integration R1 an beperformed on V(L0;L1) as in (53) so thatntn+1(L0) = z(0)(q0)(��aq0)24 1Xq1=1 q1 Z Dq1(X1)ntn(q1;X1)35 : (56)Aording to (38) the quantity in the braket is preisely the ontributionto the partile density �tree(�) of the graph Tn6. Therefore the sum of allindexed tree graphs having a root point of degree 1 isz(0)(q0)(��aq0�tree(�)) :The sum of all tree graphs with root point of degree n isz(0)(q0)(��vq0�tree(�))n=n!4 A tree is a Mayer graph without yles.5 The degree of a point is the number of lines inident at this point.6 The additional fator n in (56) ours beause the root point 0 an be linked to anyof the n verties of Tn.



Quantum Mayer Graphs: Appliation to Bose and Coulomb Gases 3645

Fig. 3. A rooted tree graph with subgraph Tn.(the fator 1=n! takes are of the fat that the labelling of verties belongingto the di�erent branhes attahed to the root point an be permuted withoutgiving rise to new Mayer graphs). Finally, summing on all trees rooted atthe point 0 gives the density of loops. To obtain the partile density we stillhave to sum on the internal variables q0;X0 of the root loop with a fatorq0 aording to (38). Hene introduing (54) yields�tree(�) = 1Xn=0 q0z(0)(q0)n! (��aq0�tree(�))n= 1Xq0=1 exp(�(�� a�tree(�)))(2�q0�2)3=2= �0(�� a�tree(�)) ; (57)whih is the mean �eld equation (49). One has of ourse to prove that allthe negleted terms (the non linear part of the bond f(i; j) and the graphswith yles) do not ontribute as  ! 0, see [19℄.The question now arises to investigate the �rst orretions to the mean�eld theory when  is not driven to the limit but kept small. A �rst stepin this diretion is provided by a generalization of the mean �eld equationvalid for the interating gas [19℄�(�) = F (�� a�(�)) : (58)The di�erene with (49) is that here F (�) ontains the full information onthe interating gas. It is de�ned in the diagrammati of loops as the sum of



3646 P.A. Martinall irreduible Mayer graphs. The basi bondf(i; j) = f (`(i; j) + f (n`)(i; j)is deomposed into two new bondsf (`)(i; j) = ��V (i; j)and f (n`)(i; j) = e��V (i;j) � 1 + �V (i; j) :Then a graph is said irreduible if it annot be disonneted by uttinga linear interation bond f (`)(i; j). One an show that the series of thesegraphs is onvergent when the hemial potential is su�iently negative (i.e.at su�iently low density) so that equation (58) is meaningful in this regime.Moreover, as expeted, lim!0 F(�) = �0(�) when the saling parameter is introdued in the potential.In order to see what is the nature of the problems involved in an analysisthat goes beyond mean �eld let us onsider the simplest irreduible diagramwhih is the single root vertex with ativity z(L). Its ontribution to F (�)is aording to (38) and (30) isF (0)(�) = 1Xq=1 q Z Dq(X)z(L)= 1(2��2)3=2 1Xq=1 e��qq3=2 �(q) : (59)Here we have introdued the partition funtion (normalized to 1)�(q) = Z Dq(X)e��U(q;X) (60)of a single losed polymer having the repulsive energy (28). Comparing (59)to (50) we see that the radius of onvergene of the sum is now determinedby the asymptoti behaviour of �(q) as q ! 1. This radius will in turndetermine a ritial hemial potential renormalized by the interation. Itis �rmly established, although not rigorously proved, that the normalizedpartition �l(q) funtion of a single lassial self repelling losed polymerwith interation (34) behaves (in three dimensions) as [20℄�l(q) � C e��Aqq3(�pol�1=2) ; q !1 ; (61)
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