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The functional integral representation of quantum statistical mechanics
by means of the Feynman—Kac formula leads to a classical-like description
of the system. Point quantum particles are then described in terms of
random loops (closed Brownian paths), and all techniques of classical sta-
tistical mechanics become available. One advantage of this formalism is
that it is not perturbative with respect to the interaction strength, in con-
trast to the standard many-body perturbative treatment. We apply these
ideas to the Coulomb gas by constructing an effective potential (the quan-
tum analogue of the Debye potential) that incorporates both long distance
collective screening effects as well as the short range quantum mechanical
binding. For Bose systems, we show that mean field theory corresponds to
summing all tree-graphs and investigate how to go beyond the mean field
description.

PACS numbers: 05.30.—d, 71.45.-d

1. Introduction

The standard perturbative treatment of many particle systems relies on
an expansion in the strength of the interparticle interaction. This leads to
the familar Feynman diagrams of the many-body theory, see e.g. [1]. In
some circumstances such an expansion is not appropriate, especially when
the effect of the interaction is not analytic in the coupling constant. For
instance, quantum mechanical binding in partially recombined plasmas, Bose
condensation in interacting gases, as well as superconductivity cannot be
described perturbatively.

* Presented at the XV Marian Smoluchowski Symposium on Statistical Physics,
Zakopane, Poland, September 7-12, 2002.
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Another possible small parameter in the system is the density or the fu-
gacity: this leads to the virial expansion. However the traditionnal quantum
virial expansion is cumbersome. We propose in these notes an alternative
formalism that enables to benefit of the well developped classical tools of
Mayer diagrammatic.

The point is that using the Feynman—Kac functional integral represen-
tation of the Gibbs weight together with the decomposition of permutations
into cycles, the grand-canonical partition function of the quantum system
takes the classical-like form of a gas of random loops (or “polymers”). A
loop is a closed Brownian path originating at some point in space; it is an
extended object that has a shape and carries a number of particles assim-
ilated to internal degrees of freedom. In the auxillary space of loops, all
techniques of classical statistical mechanics are at hand, in particular the
very powerful and flexible Mayer diagrammatic techniques. From there we
can easily come back to the calculation of quantities of interest for the orig-
inal system of quantum particles. In fact this classical-like representation of
the quantum system has been known in a form an another since a long time
in various contexts, starting with the work of Ginibre on the convergence of
the quantum virial expansion (see [2] and original references therein). It has
also used to implement numerical simulations, see e.g. for Bose systems [3].
The present version has been derived and applied by Cornu [4] to Coulomb
systems. Here we follow the definitions given in the review [5] where ad-
ditionnal references can also be found. In Section 2 we give an essentially
self contained derivation of the so called “magic formula” that dispays the
partition of the quantum gas as that of a classical-like gas of loops. For sim-
plicity we consider only one species of particles and the derivation is based
on combinatorial properties of the permutation group. The generalisation
to several species of particles can be found in [5] where another derivation
is sketched in the framework of second quantization.

Section 3 is devoted to applications to the quantum plasma. We mainly
formulate the analogue of the classical Debye—Hiickel theory for quantum
charges and indicates some striking consequences due to the quantum me-
chanical nature of the particles. In Section 4 we consider the Bose gas and
show how the mean field limit can be recovered by a diagrammatic analysis.

2. The magic formula

We consider a system of N nonrelativisic bosonic or fermionic quantum
particles enclosed in a box A and interacting by means of the two-body
potential V(7). The total Hamiltonian reads

N
HN:Zﬁ‘FZV(Ti_Tj)a (1)
i=1 i<j
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where |p;|? = —h2A;, A; is the Laplacian on ®* with Dirichlet conditions
at the boundary of A. The properties of the potential V' (r) will be specified
in more detail in the applications.

The corresponding grand canonical partition function with inverse tem-
perature 8 = ﬁ and fuga(:lty z = ePH (,u is the chemical potential) is

E_Zle (2)

where the second sum runs over all permutation 7 of the permutation group
Sy of N elements. In (2) we have noted

f(r) = /dr1.../drN(rl,...,rN|e_BHAU7r|r1,...,rN) (3)
A A

the configurational integral of the matrix elements of the Gibbs weight
—BHx
e :

The operators U, acts on the configurational kets as

UrP1,. o s PN) = Ty e oo s Py ) - (4)

They form a unitary representation of the permutation group on the N
particle states

U7F1U7r2 = U7r17r2a U;; = U;1 = Uz (5)

and (n)™ is the signature of the permutation (n = +1 for bosons and n = —1
for fermions) . In a first step we consider in (2) the structure of sum on the
function f(m) defined on the permutation group Sy.

2.1. Some facts on the permutation group

Each permutation 7 in Sy can be decomposed into k cycles of length
gi, 1 =1,...,k, with k < N, ZZ 19 = N. We denote simply by Q the
unordered set of integers

k
i=1

and call it a cycle structure. For instance the permutation

(3287 ) s

has the cycle structure Q@ = {q1 =2, ¢2 = 3, g3 = 2}.
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Two permutations 7’ and 7" having the same cycle structure Q are
conjugate in Syr, that is there exists 7 such that

' =rn"tn'r. (7)

Hence Sy is the disjoint union of equivalence classes of permutations having
the same cycle structure. Let n; be the number of cycles of length j in Q,
n; = 0,1,...,N, an>1 jnj = N (in the above example, no =2, n3 =1,
n;=0,j # 2,3). Then the number of permutations that have the same cycle
structure is [6] !

Ng— ! N @

ql...qknl!...nN!

Moreover the signature of a permutation

()™= (n)° = _an"‘l 9)

depends only on the cycle structure of 7.

An important observation is that the same is true for f(m) (3): it depends
only on the cycle structure of w. Indeed if 7' and 7" are conjugate, one has
from (3), (5) and (7)

f(ﬁ"):/drl.../drN<r1,...,rN|e_ﬂHAU;1U,r/U7r|r1,...,rN)
A A
:/drl.../drN<r1,...,rN|U;;e5HAUW,U7T|T1,...,TN)
A A
:/dr1.../drN(rm,...,rﬂN|e_BAU7r:|rm,...,rﬂN) = f(n').
A A

(10)

We have used that H, commutes with all permutation operators and rela-
belled the dummy integration variables to obtain the last equality.

Select a representative permutation 7o in the class Q, for instance
the canonical one that has numbers in increasing order (in our example,

! By convention n! = 0 when n = 0.
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T0—(1,2)(3,4)(5,6,7)). Then in view of (9) and (10) the sum over permuta-
tions in (2) reduces to a sum over cycle structures

OGRS ZNQ(U)Qf(ﬁQ)

= Z Z Os~k g N %NQ(H)QJC(TTQ)

k= lqla oqr=1

q—l
— szk‘ Z s %NH” F T groany) - (1)

= q1ye-5qp=1

In the second equality we have replaced the summation on cycle structures
by a summation on ordered cycle lengths, which leads to an over counting
compensated by the factor ni!...ny!/kl. The last equality follows from (8)
and (9). Finally forming the grand canonical sum (2) removes the constraint

of fixed N
00 1 00 k 7] )
Ea = ZH Z H 7 T(qureetr)) - (12)

k=0 q1,.qp=1i=1

We have thus converted the particle number summation in the grand parti-
tion function to a sum on cycle numbers.

2.2. The Feynman—Kac representation

Let us first recall familiar ideas about the representation of the quantum
mechanical statistical operator by the Feynman-Kac functional integral?.
For sake of simplicity, we consider a single particle of mass m in three dimen-
sions submitted to an external potential 4)(r). According to the original path
integration introduced by Feynman [7|, the configurational matrix elements
of the statistical operator associated with the one-particle Hamiltonian

h2
H = ——A +V, A =Laplacian in ®* (13)

read

rilexp (8 (—g=044) ) ira) = X e (—386:00) - ()

paths

% This subsection and the next one are essentially taken from Chaps. 4 and 5 in [5].
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Here S(7(-)) is the classical action corresponding to the potential —1) (the

Euclidean action)
8h
S(r(-)) :/dt (%
0

associated with the path r(¢) starting from r; at “time” ¢ = 0 and ending
in r9 at “time” BhA. The summation in (14) runs over all such paths.

It is very useful to parameterize the path r(¢) by dimensionless variables,
making the change

dr(t) |2

dt

+¢(r(t))> (15)

t
= g
ri2(s) = (L=s)ri+sra+28(s),  £(0)=¢(1) =0,  (16)

A= h\/g (17)

is the de Broglie thermal wave length. In (16) £(s) represents now a closed
path, called the Brownian bridge, starting and returning to the origin within
the “time” s = 1. In terms of these dimensionless variables, the matrix
element (14) can be written in the precise form [§|

2 3/2 w2
(r1 | exp <—B <—2h—mA —|—z/1>) | ro) = <2771)\2> exp <_%)

1
X/D(g)exp —ﬁ/dsV((l —s)ry +sra+ XE(s)) | - (18)
0

S 0< s <1

where

In (18) D(&) is a Gaussian measure (the Brownian bridge measure) with

weight formally represented by exp <_% 01 ‘dggs)

2
). It is normalized to 1,

has zero mean and is entirely defined by its covariance

/ D(€)€u(51)6(53) = Oy (min(sy, 2) — s152) (19)

where &,(s) are the Cartesian coordinates of £(s).

The representation (18) has the advantage that physical parameters
r1, T, B, A, X\ appear explicitly in the formula; A\ measures the extent
of the quantum fluctuation. In particular if X is set equal to zero in the
diagonal matrix element one recovers the classical Boltzmann weight.
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The extension to the many particle system is straightforward. To each
particle is associated a path &;(s) The paths are distributed with indepen-
dent Gaussian measures D(§;), i = 1,..., N, so that the matrix element in
(3) reads

1 \32
(7"1, . ,rN|exp (—,BHA) |r7r17' .- 7r7rN> = H <27T>\2>

i=1
2 N
X exp <_7|r1 2)\27”' )/HD({i)
i=1

1

N
xexp -8 / A5V (7, (5) — 75, (5)) | - (20)
i< %

We now introduce this representation in the formula (12) to obtain the gas
of loops.

2.3. The statistical mechanics of loops

In the interaction energy in (20) we group all the particle belonging to a
given cycle of length ¢ in 7, say the particles 1,2,...,q. The corresponding
collection of paths

riip1(si) = (1 —si)ri +sirip1 + X€(si), i=1,...,¢q, (¢+1=1)
are joined together to from again a closed Brownwian path, the random loop
R(s) = riiyi1(si), i—1<s<i. (21)

The loop is now parametrized by the single time parameter s running from
0 to ¢ by setting s; = s — [s], i — 1 < s < i where [s] is the integer part of s,
see Fig. 1.

One can then locate the loop at R by selecting the position of one of the
particles, say r1 = R, and write

R(s) =R+ XX (s), X(0)=X(q)=0. (22)
Hence the particles are located at the points
r,=R+XX(k-1), k=1,...,q. (23)

In (22), X (s) is again a dimensionless Brownian bridge starting and return-
ing to the origin within the time ¢. Its normalized Gaussian measure D, (X)
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Ls (s)

Lo (s)

];|.q+1(s)

Fig.1. A ¢ particle loop.

is the composition of that of the ¢ open filaments that constitute the loop
(see (18))

q 1 2
exp __(-Xk—H — .Xk)
Dq(X):(qu)3/2H (=3 @2n)? )dX2 ...dX,D(¢&)...D(&,),
k=1
(24)
where one sets X1 = X411 = 0. One can calculate its covariance from the
definitions (19), (21) and (22)

/Dq(X)Xﬂ(sl)Xy(SQ) = 0 [min <%1 %) - %1%2] . (29)

Thus a loop R(s) is characterized by its location in space, the number ¢
of particle it carries and its shape X (s). We denote collectively the set of
parameters

L={ R, ¢ X()} (26)

and consider £ as a point in the phase space of loops. The parameters ¢ and
X () can be thought as the internal degrees of freedom of a loop located at
R, and the phase space integration is defined as

dﬁ...:/ng/Dq(X).... (27)

We select in (20) all the pair interactions of particles belonging to the same
loop to constitute the self energy of the loop U(L). According to the defini-
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tions (21) and (22) it can be written as

q

q
/d$1 /dSQ (1 — (5[51]7[52]) 5(81 — SQ)V()\(X(Sl) — X(Sg))) . (28)
0

o

vie) =

The periodic delta function

S(S): Z e2i7rns (29)

n=-—oo

assures the equal time interaction condition that occurs in the Feynman-
Kac representation (20). The term involving the Kronecker symbol ] 1s,]
substracts out in (28) the self energy of the particles ¢V (0).

All quantities pertaining to a single loop in (20) and (12) are now col-
lected into the loop activity

() exp(Buq)
q (2mgA2)3/2

2(L) = exp(—pU(L)).- (30)

Finally, one must take into account the remaining interaction potentials in
(20) that couple particles belonging to different loops, namely

k
U(Ly,....Ly) =Y V(L L;) (31)

1=i<y
with the loop pair potential

V(ﬁl, ﬁg) = /d81 /dSQS(Sl — SQ)V(Rl + )\X(Sl) — Ry — )\X(SQ)) . (32)
0 0

Then putting all definitions together leads to the final formula for the par-
tition function =4 (12) (the “magic formula”)

) k
2a=Y g [ Tlaca@ien-puicn, . ..c). (3
k=0 Y i=1

We call the system defined by the relations (25) to (33) the “system of loops”
or “system of polymers” associated to the quantum mechanical many-body
problem. Although the so defined statistical mechanics of polymers has a
classical structure, one should be aware that the polymers do not have the
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genuine classical pairwise interaction between their elements which would
read

q1

q2
Velassical (L1, L2) = /dé’l /d82V(R1 +AX(s1) — Ry — XX (s2)) (34)
0 0

instead of (32). The “quantum polymer” interaction (32) is constrained by
the equal time condition 8(s; — s9) which is of purely quantum origin.

At this point one can benefit of the classical-like structure of the partition
function (33) to use the available tools of classical statistical mechanics in
the space of polymers, in particular the Mayer diagrammatic [15]. Labelled
Mayer graphs I, consist of n vertices (i), i = 1,...,n, connected by bonds
f(i,7). In the space of loops, a vertex (i) is labelled by the loop variable £;
and receives a weight given by the activity z(£;) (30). The bond linking the
vertices (i) and (j) is defined by

[ ) = exp(=pV (L, L)) — 1 (35)

with V(L;, £;) the loop-loop interaction (32). From there one can obtain
all quantities of interest according to the standard rules of Mayer diagram-
matic. As an example, the density of loops pjoep(L) is given by the standard
expansion

o0

Proop(L1) Z /d£2 ALy 2(L1)2(L) ... 2(Ln)u(Ly, Loy - .oy L),
n= 1 (36)

where
u(Ly, Loy La) = ] fG.9) (37)

F‘n (i,j)EFn

is the Ursell function. The sum runs on all labelled connected graphs I3,
with n vertices. To obtain the low fugacity expansion of the particle density
p from the loop density, we have to sum pigep(£) on the internal variables

of L,
o= Z [ PuX0manp (0. %) (38)

the additional ¢ factor taking into account that the loop L carries g particles.
Higher order loop correlation functions can as well be written in terms of
their Mayer expansions and the way to obtain the corresponding particle
correlations is clarified for instance in the appendix D of [9].
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3. Quantum plasma

We apply the formalism to the study of the screening mechanisms in a
plasma of quantum mechanical charges. The system consists of S species of
quantum particles with charges e,, a« = 1,...,5, interacting with
the Coulomb potential 6a16a2m- In the polymer representation, this
Coulomb gas is isomorphic to a system of charged fluctuating wires; the
loop variable £ includes now the additional index « that specifies the type
of associated charges 3.

For classical charges, one knows that in the plasma the long range of the
Coulomb potential is reduced because of screening: a given charge surrounds
itself by a cloud of charges of opposite sign that cancels the Coulombic tail
||~ by neutrality. This replaces the bare Coulomb potential by an effective
short range potential Ve () in the medium. In the mean field theory scheme
of Debye and Hiickel, one has

—KDT
vsTr) = =——. r=lnl.

- 47

Vietk) = ———, k=1k 39
D() k2+H2D’ ||7 ( )

where the second line gives the Fourier representation and

kit = (AnB ) zael)™/? (40)

is the Debye screening length (z, = e®#e and p, are the fugacity and the
chemical potential of particles of species ). In the diagrammatic language,
Veff (1) is obtained as the chain summation of Mayer graphs with linearized
bonds f®)(i,5) = —ﬂeaieajm, see Fig. 2.

—ﬁe,,ebVeﬂ(a,b)Eg) cb>+c e—O0O+0—e—e—0O+

Fig. 2. The effective chain potential.

The same procedure can be applied to the quantum plasma by summing
the chains of quantum Mayer graphs in the space of loops: this provides an
effective loop-loop interaction which is the quantum analogue of the classical
Debye potential. To condense the notation we set £ = {R, x} with x =
{a, q, X'} denoting the set of internal degrees of freedom of the loop. The

3 If particles have spins, the spin degeneracy is included in the loop activity z(L).



3640 P.A. MARTIN

result of the quantum mechanical chain summation is found to be in Fourier
representation [9]

Qa b
VT (k, Xa x3) = / dsq / disy e PaXa(sa) =X X4 (s1)]
0 0
X i 4771'672”71(5@755). (41)
W= k2 + k2(k,n)

where the “screening coefficients” x2(k,n) are given by

2

q
Iﬁ?g(k, n) = 4nf3 Z ez Z / D(X) Z(X) /ds eik~)\aX(s)62i7ms (42)
el q 0

with A, the thermal wave length of the particle of species « and z(x) the
activity (30) of the loop. Although fermionic activities can be negative, the
coefficients x2(k,n) can be shown to be positive when the density is low
enough. One notes on (42) that in the classical limit (i.e. ¢ = 1, Boltzmann
statistics, and A\, = 0), k2(k,n) vanishes for n # 0 whereas x2(k, 0) reduces
to kp and hence one recovers the classical Debye potential (40). In general
one has limy_,0 k%(k,0) = k3 (1 + O(2)) # 0 but if n # 0, x%(k,n) = O(k?)
vanishes as k — 0. This shows that in the sum in (41) the term n = 0
is regular at £ = 0 and is thus responsible for classical screening, but the
n # 0 terms have a k2 singularity that will cause an algebraic tail at long
distances (see (43) bellow).

The formula (41) is considerably more complicated than the simple classi-
cal Debye potential (39) since it embodies the effects of the quantum fluctua-
tions. However in the low density (z < 1) and weakly degenerate (Akp < 1)
regime VT (k. x4, x») has a physically clear meaning depending on various
spatial scales (for a detailed analysis see [9]). Several applications of the for-
malism of quantum Mayer graphs to quantum plasmas and more references
are found in the review [5].

Long distance behaviour, r >> 551

At very large distances, the decay is dominated by the multipole in-
teractions between charged loops of arbitrary shapes. A loop L carries an
instantaneous dipole moment e, A, X (s) so that the asymptotic behaviour
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is that of a dipole-dipole interaction potential

da 1]
V) ~ [ ds [ dsuld = 3sa = ) QaX 5)- D)X (s1) - 9);
0 0

(43)
as r = |r, — rp| — oo. One notes that monopoles are screened, i.e. charge-
charge and charge-dipole terms do not occur in the asymptotic form (43) so
that the bare Coulombic decay r~! is only reduced in the plasma to a =3
decay caracteristic for dipole interaction. This is a feature due to intrinsic
quantum fluctuations: the latter are at the origin of multipole forces that
cannot be screened in the quantum plasma. These residual multipole forces
give rise to an algebraic decay of the particle correlations which is of the
form (in a spatially homogeneous plasma) [10]

Agp
pab(raarb) — PaPb ™~ | . |ra - rb| — 00, (44)

Ta — rb|6’

where pgp(rq,rp) is the correlation function for particles of species a and b,
and the coefficient A, depends of the thermodynamical parameters of the
plasma phase. The reduction of the dipole decay r—3 (43) to the van der
Waals like decay =6 is due to the spherically symetrical average over loop
dipoles when integrating the internal degrees of freedom of the loops.

It is remarkable that in the electron—proton plasma the coefficients A,
can be explicitly calculated at the lowest order in density [11]. The all have
the common value

Bt (1 1)?
Ape = App = Ay = p? — 4+ — . 4
P pp p 960 <me + mp) ( 5)

One finds also that the correlation of a particle ar r, with the total charge
at 7y, decays as |r, — |8 and the charge-charge correlation decays as |7, —
ry| 710, The main point is that correlations of quantum charges never show
the exponential decay predicted by the classical Debye—Hiickel theory (39),
but have various types of algebraic decays generated by the loop fluctuations
in the polymer representation of the plasma.

Intermediate distances, r ~ r@Bl

The algebraic tail (43) (due to the singular n # 0 terms in (41)) is now
of order \2r—3 ~ )\25?]’3 and has to be compared to the contribution of the
n = 0 term. Replacing x?(k,0) by k2 we see that this term is the classical
screened Debye potential (39) between loops, which reads in configuration
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space
eff( ) f i e HDIT+Xa Xa(sa) = A X (s0)]
VB (75 Xa» Xb :/ds/dsb
b (75 Xa> X J a / [P+ XX a(Sa) — X p(sp)]
e hprT 1
~ (aqb ro T~ '%]5 ’ (46)

where in the second line we have neglected terms of the order of Akp. In this
range the contribution of the tail \2r~3 is (Akp)? smaller than VT (r, x4, x5)
One concludes that on the scale r ~ r@Bl the effective loop-loop potential
behaves as the standard Debye potential that describes collective screening
effects.

Short distances, 7 < ,%]51

If the distance between loops is very short compared to the Debye length,
no screening effects take place and one finds that the effective potential
reduces (up to a constant) to the bare loop-loop Coulomb potential

qa b
1
Vet (7, Xa, N/d /d —~ , r—0.
(r Xa Xb) / 8(1 $b|r + )\aXa(Sa) _ )\bXb(Sb)| QaQbK'D r

(47)
This will account for the quantum mechanical binding, which occurs at dis-
tances of the order of the Bohr radius ag < 551 and so gives the posssibility
to describe recombination processes in the plasma (formation of atoms and
molecules). The effective potential defined in (41) incorporates in a single
function all the basic phenomena that screen the interaction of quantum
charges at long, intermediate and short distances. In particular, after a
reorganisation of the Mayer diagrammatic suitable to treat recombination
problems, it enables to treat in a fully consistent way the corrections to the
equation of state of ideal gases in the Saha regime. It can also be used to
derive the first corrections to the van der Waals forces between atoms and
molecules in a low density medium. These applications are the subject of a
number of papers in preparation [12] .

4. Bose gas

Following the recent observation of Bose condensation of cold atoms in
traps [13], there are strong motivations for a better understanding of the
mechanism of this phase transition. We show how to recover the mean field
theory of the homogeneous Bose gas by means of diagrammatic summation
and discuss the mathematical problems that arise when one wants to extend
the analysis beyond mean field.



Quantum Mayer Graphs: Application to Bose and Coulomb Gases 3643

It is well known that the van der Waals theory of the liquid-gas transition
is obtained in the limit of a weak long range pair potential [14]

Vy(r) =7’V (yr) (48)

asy — 0 where V(r) is a fixed potential with finite total integral [ drV (r) =
a < oo. In order to describe the liquid gas transition one needs a strong lo-
cal repusion between the particles and V, (r) only represents the long range
attractive part of the interaction. For bosons the situation is different since
the condensation phenomenon is already present in the free gas, the issue
being to see whether the transition survives the introduction of an interac-
tion. To assure thermodynamic stability, we assume that both the potential
V(r) > 0 and its Fourier transform V' (k) > 0 are positive.

The mean field equation is a self consistent relation that determines the
grand canonical density p(p) as function of the chemical potential u

p(p) = po(p — ap(p)) . (49)
In (49) . % Bug
po(p) = (27r)\2)3/2 pt e (50)

is the well known formula [15] for the grand canonical density of the free gas

and X = in/BJm (51)

is the thermal wave length.

The series (50) converges for u < 0 so that the self consistent equation
(49) is meaningful whenever u — ap(p) < 0, namely for u < p.. The critical
chemical potential p,. is defined by p. — ap(p.) = 0, thus u. has the value
pe = apo,c Where po . = po(p = 0) is the critical density of the free gas.

The equation (49) has been rigorously derived in the limit v — 0 (where
the range of the potential (48) extends to infinity) in a number of works
[16-18] and is also known that its solution can be extended above the critical
chemical potential as p(u) = u/a, p > fie.

To establish equation (49) in the van der Waals limit in the diagrammatic
language, let us first single out the dominant contributions of bond and
vertices as y — 00.

The contributions of order O(1) in 7 of the scaled potential v3V (yr) will
come from the linarized bond f,(7,7) ~ fn(f) (¢,j) = —BV4(4,5) which reads
(see (32))

q; q;
1O, j)=—p7" / ds; / ds ;6 (5: — 5)V (7(R; — R;)HyA(Xi(s:) — X (5,)))
0 0
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This bond will give a contribution of order O(1) once integrated on one of
the loop position R; or R; since by scaling its total spatial integral

/def@ (4,7) = —Bagiq; (53)

is independant of 7. In the activity (30) we simply disregard the self energy
U, (L) since the latter is O(y3) and approximate

Zq

AL) ~ 20 (g) = eI

(54)
The point is now that the mean field equation results of the summation of
all tree graphs with bonds (52) and vertices (54)*. Consider indeed a rooted
tree graph T,y1 with vertices (0,1,...,n) for which the root point is of
degree 1 (0 is the label of the root point) 5. Hence the root point is linked to
the rest of the graph by a single bond, say £(9(0,1). Call T}, the subgraph
of Ty,+1 with vertices (1,2,...,n) and ¢,(L£;) the value of this subgraph once
integrated on the vertices 2,...,n. Then the value t,.1(Lg) of the rooted
graph T), 1 is

tnt1(Lo) = _/32(0)(%)/dﬁlvfy(ﬁmﬁl)tn(ﬁl)- (55)

Because of translation invariance t,(L£1) = t,(q1, X1) does not depend on
the position Ry of the loop £1. Thus the spatial integration R; can be
performed on V,(Lg, £1) as in (53) so that

ntni1(Lo) = 2 (q0)(—Bago) | Y Q1/Dq1(X1)ntn(Q1,X1) - (56)

q1=1

According to (38) the quantity in the bracket is precisely the contribution
to the particle density piree(pt) of the graph T,5. Therefore the sum of all
indexed tree graphs having a root point of degree 1 is

20 (q0)(—Baqopiree (1)) -

The sum of all tree graphs with root point of degree n is

2 (g0) (—Bvqopiree (1)) /!

4 A tree is a Mayer graph without cycles.

® The degree of a point is the number of lines incident at this point.

§ The additional factor n in (56) occurs because the root point 0 can be linked to any
of the n vertices of T,.
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Tn+1

Fig.3. A rooted tree graph with subgraph T,.

(the factor 1/n! takes care of the fact that the labelling of vertices belonging
to the different branches attached to the root point can be permuted without
giving rise to new Mayer graphs). Finally, summing on all trees rooted at
the point 0 gives the density of loops. To obtain the particle density we still
have to sum on the internal variables g9, X of the root loop with a factor
qo according to (38). Hence introducing (54) yields

> gnz(0)
Ptree(p) = Z %7((]0) (—Baqopiree ()"

n!
n=0
= exp(B(i — apiree (1))
a qu::l (2mqoA?)3/?
= Po (M - aptree(ﬂ)) ) (57)

which is the mean field equation (49). One has of course to prove that all
the neglected terms (the non linear part of the bond f, (4, j) and the graphs
with cycles) do not contribute as vy — 0, see [19].

The question now arises to investigate the first corrections to the mean
field theory when -~y is not driven to the limit but kept small. A first step
in this direction is provided by a generalization of the mean field equation
valid for the interacting gas [19]

p(p) = F(p —ap(p)) - (58)

The difference with (49) is that here F(u) contains the full information on
the interacting gas. It is defined in the diagrammatic of loops as the sum of
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all irreducible Mayer graphs. The basic bond
Fi5) = £ 5) + 10 )
is decomposed into two new bonds
1O, 4) = =pV (i)

and N
F0 (6, 5) = e V0 1 4 gV (i, 4).

Then a graph is said irreducible if it cannot be disconnected by cutting
a linear interaction bond f®(i,5). One can show that the series of these
graphs is convergent when the chemical potential is sufficiently negative (i.e.
at sufficiently low density) so that equation (58) is meaningful in this regime.
Moreover, as expected, lim,_,o F, (1) = po(p) when the scaling parameter
is introduced in the potential.

In order to see what is the nature of the problems involved in an analysis
that goes beyond mean field let us consider the simplest irreducible diagram
which is the single root vertex with activity z(L£). Its contribution to F'(u)
is according to (38) and (30) is

FOu) = Yoa [ DX
q=1

eﬁuq

- (272) 3/22 3/2

Here we have introduced the partition function (normalized to 1)

/D e PU@X) (60)

of a single closed polymer having the repulsive energy (28). Comparing (59)
to (50) we see that the radius of convergence of the sum is now determined
by the asymptotic behaviour of k(q) as ¢ — oo. This radius will in turn
determine a critical chemical potential renormalized by the interaction. It
is firmly established, although not rigorously proved, that the normalized
partition k(q) function of a single classical self repelling closed polymer
with interaction (34) behaves (in three dimensions) as [20]

Kel(q) ~ Cm , q— 00, (61)
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where A is a constant depending of the choice of the potential V(r) and
Vpot = 0,589 is the universal critical exponent for a swollen polymer. It
is apparently not known at the moment if a similar behaviour holds for
the “quantum polymers” occuring in the representation of the Bose gas.
In addition one has also to deal with higher order irreducible graphs with
cycles and bonds £ (i, j) that involve pair interactions between different
polymers. These questions are under investigation and we believe that they
suggest interesting problems and analogies between the description of the
Bose phase transition and polymer theories.
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