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SUBORDINATED RANDOM WALK APPROACHTO ANOMALOUS RELAXATIONIN DISORDERED SYSTEMS�Aleksander StanislavskyInstitute of Radio Astronomy4 Chervonopraporna St., Kharkov 61002, Ukrainee-mail: alexstan�ira.kharkov.ua(Reeived Otober 28, 2002; revised version February 11, 2003)We study anomalous relaxation properties of the ontinuous-timerandom walk model in whih the spae-jump and waiting-time evolution isgiven by two random Markov proesses. This model desribes the subordi-nation of one random proess by another. The direting proess is inverseto the totally skewed, stritly L�evy proess. Owing to the properties of thedireting proess, the relaxation funtion in the unoupled random walkmodel takes the empirial Cole�Cole form. By means of this theoretialanalysis we �nd that the oupled and unoupled walks lead to di�erentforms of the relaxation funtion.PACS numbers: 2.50.�r, 05.40.�j1. IntrodutionThe nature of anomalous relaxation in the various omplex systems(amorphous semiondutors and insulators, polymers, moleular solid so-lutions, glasses, et.) is the subjet of intensive studies for many years [1,2℄(and the referenes therein). The experimental investigations surely haveestablished the non-exponential evolution of suh systems towards equilib-rium, i.e. the empirial funtions used to �t the experimental data exhibitthe frational-power dependene of the relaxation responses on frequenyand time. In fat, this important feature is independent on the details ofexamined systems. Undoubtedly, many-body e�ets play an appreiable rolein suh systems. So these e�ets indue time �utuations in the potentialseen by eah partile and essentially at as a noise soure. At the same time,� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis Za-kopane, Poland, September 7�12, 2002.(3649)



3650 A. Stanislavskythey form a omplex potential �xed landsape with many loal minima sep-arated by barriers of all sales, trapping and untrapping the partile orbitsin a self-similar hierarhy of antori. As a result, the trajetory of partilesan be very similar to a random walk. It is not surprising the parallels, sug-gested in literature [3�6℄, to be drawn between anomalous relaxation andanomalous di�usion.Now the ontinuous time random walk (CTRW) onept is widely a-epted in physis for the desription of anomalous di�usion (see review [7℄).Although the CTRW models has the lear advantage in fore of their highphysial motivation, the master equation for anomalous di�usion is oftenintrodued phenomenologially, and the grounds remain o� sreen. It is ex-eptionally important to reognize the stohasti proess itself responsiblefor the anomalous behavior. Without questions, this is a orner stone of thetheory. The reent works of Meershaeft, She�er and Beker-Kern [8, 9℄have summed up the long-term studies of the problem and made things ul-timate lear. The motivation of our work is to explain anomalous relaxationof disordered systems from the latest ahievements in the CTRW approah.We show that the appliations of CTRW models to relaxing proesses anbe essentially extended.The present paper is organized as follows. In Se. 2 we desribe indetail the minimal CTRW model resulting in anomalous di�usion. Themain feature of our onsideration is that at �rst we de�ne the orrespondingstohasti proess, whereupon the density funtion and the master equationare a diret onsequene of the proess properties. We analyze the essentialaspets of anomalous di�usion and anomalous relaxation in the frameworkof a one-body piture. As for many-body e�ets, they are taken into aountin terms of randomizing both spatial and temporal degrees of freedom in theone-body piture. Our results towards anomalous di�usion is represented inSe. 3, and Se. 4 is devoted to their appliations for anomalous relaxation.Our piture embraes the oupled and unoupled walks. They lead to dif-ferent forms of di�usion and relaxation. A summary and a disussion aregiven in Se. 5. 2. Continuous time random walksA ontinuous time random walk desribes the stohasti time and spaeevolution of a walking partile by means of two Markov proesses, randomwaiting-times and random jumps. Suessive ouples of random time andspae steps are usually onsidered as independent. However, in a ouple thetime and spae steps may be dependent.Let T1, T2, : : : be nonnegative independent and identially distributed(i.i.d.) random variables that orrespond to the waiting times between jumpsof a walking partile. The partile jumps are given by i.i.d. random vetors



Subordinated Random Walk Approah to Anomalous Relaxation . . . 3651~R1, ~R2, : : : on the d-dimensional spae Rd whih are assumed independentof (Ti). The position of the partile after the nth jump beomes ~rn =Pni=1 ~Ri, being ~r0 = 0. For t � 0 the number of jumps up to time t is Nt =maxfn 2 N : Pnj=1 Ti � tg, and the vetor ~X(t) = ~rNt = PNti=1 ~Ri de�nesthe position of the partile at time t. The stohasti proess f ~X(t)gt�0is alled a ontinuous time random walk (CTRW). We onsider CTRW inthe d-dimensional spae and ourring at the non-negative one-dimensionaltime. Though suh walks onsist only of disrete time and spae steps, thejump model an be generalized to �ontinuous steps�.Assume that Tj belongs to the strit domain of attration of some stablelaw with index 0 < � < 1. The hoie of the index � in the range 0 < � < 1is onditioned by the support of the time steps Tj on the non-negative semi-axis R+. Then there exist bn > 0 suh that the sum bn(T1 + � � � + Tn)has asymptotially (by virtue of a onvergene in distribution) the stabledistribution with index �, if n tends to in�nity. In the disrete model thetime of the nth jump is �(n) = Pnj=1 Tj , T0 = 0. For � � 0 one anwrite �(�) =Pb�j=1 Tj and b(�) = bb�, where b� denotes the integer partof � . As has been stated in [8, 9℄, fb()�(�)g��0 onverges in distributionof all �nite dimensional marginal distributions to the proess fT (�)g��0as !1. The proess fT (�)g has stationary independent inrements. Fur-thermore, it is a stritly stable and totally skewed Lévy proess satisfying tofT (�)g��0 f:d:= f1=�T (�)g��0 for all  > 0, where f:d:= denotes equality of all�nite dimensional distributions. The proess fT (�)g depends on the ontin-uous internal time � � 0, but the index is di�erent from the real time t. Thelabel ontinuous indiates just the fat that the index belongs to a ontinuousset, but does not imply the ontinuity of the paths. Aording to [8℄, the pro-ess fT (�)g is self-similar with exponent H = 1=� > 1. The sample pathsof fT (�)g are inreasing almost surely (a.s). Sine T (�) d= �1=�T (1), whered= means equal in distribution, it follows that T (�) ! 1 in probability as� !1.Assume that (~Ri) are i.i.d. Rd-valued random variables independent of(Tj) and let ~Ri belong to the strit generalized domain of attration of somefull operator stable law �. Then there exists a funtion B() invertible forall  > 0 and B(�)B()�1 ! ��� as !1 for any � > 0, � being a d� dmatrix (real parts of eigenvalues of � are greater than or equal to 1/2),suh that B(n)Pni=1 ~Ri onverges in distribution to Y as n ! 1, whereY has distribution �. Next, using the limit passage fB()Pb�i=1 ~Rig��0 as ! 1, we de�ne the stohasti proess fY (�)g depending on the internaltime � . The proess has stationary independent inrements with Y (0) = 0a.s. Then fY (�)g is ontinuous in law. Moreover, fY (�)g is operator self-



3652 A. Stanislavskysimilar with exponent � : fY (�)g��0 f:d:= f�Y (�)g��0. The proess isalled an operator Lévy motion [8℄. If the exponent � = ~aI is a onstantmultiplied by the identity, then � is a stable law with index � = 1=~a, andfY (�)g is a lassial d-dimensional Lévy motion. In the partiular ase,when ~a = 1=2, the proess fY (�)g is a d-dimensional Brownian motion.Now we onsider the limiting behavior of the ounting proess fNtgt�0mentioned above. It turns out that the saling limit of this proess is thehitting time proess for the Lévy motion fT (x)gx�0. This hitting time pro-ess represents the true time evolution of the position vetor of the walkingpartile and is also self-similar with exponent �. However, it is ardinallydi�erent from fT (x)gx�0. The hitting time proess S(t) = inffx : T (x) > tgis well-de�ned and dependent on the true time t. Note that fS(t)gt�0 is a-tually the inverse of the proess fT (x)gx�0. If T (x) < t then T (y) < t forall y > x su�iently lose to x, so that S(t) > x. On the other hand, ifT (x) � t then T (y) > t for all y > x so that S(t) � x. It is easily veri�edthat fS(ti) � xi for i = 1; : : : ;mg = fT (xi) � ti for i = 1; : : : ;mg holdstrue for any 0 � t1 < : : : < tm and x1; : : : ; xm � 0. Sine fT (x)gx�0 isstritly inreasing, the proess fS(t)gt�0 is ontinuous and non-dereasing.From the self-similarity of fT (x)g it follows the same property for fS(t)g,i.e. fS(t)gt�0 f:d:= f�S(t)gt�0 for any  > 0. While fT (x)gx�0 is a Lévyproess, the inverse proess fS(t)gt�0 is no longer a Lévy proess, neithera Markov proess, but it is a ontinuous submartingal, as shown in [10℄.For a real valued random variable X let E[X℄ denote its expetation.Collet important properties of the proess fS(t)gt�0� the proess fS(t)gt�0 has neither stationary nor independent inre-ments [8℄;� S(t) d= t�S(1);� for any  > 0 the proess fS(t)gt�0 has the �nite -moment E[S(t) ℄ =C(�; ) t� , where C(�; ) is a positive �nite onstant [8℄;� S(T (�)) = � a.s. and T (S(t)) � t a.s.;� the random variable S(t) has the densitypt(x) = t� x�1�1=� g� �t x�1=�� ;where g� is the density of the proess T (�).The fourth and �fth properties re�et the fat that fS(t)g is the left-inverseof the proess fT (x)g. If the probability density of fT (x)g has the index� = 1=2, then the �fth property gives the normal law as a probability densityof fS(t)g. The inverse proess to the stohasti time evolution desribesthe true time evolution of a walking partile. The hitting time S(t) =



Subordinated Random Walk Approah to Anomalous Relaxation . . . 3653inffx : T (x) > tg is alled also a �rst passage time. Really, for a �xed timeit represents the �rst passage of the stohasti time evolution above thistime level. The sample paths of fNtgt�0 and fS(t)gt�0 are inreasing. Asshown in [10, 11℄, the random value S(t) is onneted with a Mittag�Le�erdistribution via E[e�vS(t)℄ = P1n=0(�vt�)n=� (1 + n�) = E�(�vt�). Thison�rms the third property in the speial ase where  is a positive integer.3. Anomalous di�usionLet us investigate the relationship between the probability density ofthe position vetor ~rt of a walking partile at real time t and the ou-ple (Y (�); T (�)). The safe mathematial onstrution of the proess ~rt isshown in [11℄. The limit proess ~rt = Y (S(t)) is an operator Lévy motionY (�) subordinated to the hitting proess S(t) of a lassial stable subor-dinator T (�). We brie�y reall that a subordinated proess is obtained byrandomizing the time lok of a stationary proess X(t) using a new lokU(t), where U(t) is a random proess with nonnegative independent inre-ments. The resulting proess X(U(t)) is said to be subordinated to X(t),alled the parent proess, and is direted by U(t), alled the direting pro-ess. The direting proess is often referred to as the randomized time oroperational time. In general, the subordinated proess X(U(t)) an beomenon-Markovian, though its parent proess is Markovian. The proess ~rt isa saling limit of CTRW.The new proess f~rtgt�0 subordinated to the Markov proess fY (�)g��0and direted by the randomized time proess fS(t)gt�0 is well de�ned. If theproesses fY (�)g��0 and fT (�)gt�0 is unoupled (i.e. independent on eahother), the probability density of ~rt with t � 0 an be written as a weightedintegration over the internal time � so thatp~rt(t; ~x) = 1Z0 pY (�; ~x) pS(t; �) d�; (1)where pY (�; ~x) represents the probability to �nd the parent proess Y (�)at ~x on operational time � and pS(t; �) is the probability to be at the op-erational time � on real time t. The proess Y (S(t)) is self-similar withindex �� suh that fY (S(t))gt�0 f:d:= f�� Y (S(t))gt�0 is for all  > 0.Aording to [8,9℄, the limiting proess does not have stationary inrementsand is not operator stable for any t > 0. In Laplae spae the prob-ability density p~rt(t; ~x) takes the most simple form u��1�pY (u� ; ~x), sine�pS(u; �) = u��1 exp(�u��) and �pY (u�; ~x) = 1R0 pY (�; ~x) exp(�u��) d� .



3654 A. StanislavskyIf the operator L�evy motion Y (�) on Rd has the probability distributionp (x; �), the linear operator T̂�f(x) = R f(x� y) p (y; �) dy forms a onvolu-tion semigroup with generator L̂ = lim�#0 ��1(T̂� � T̂0) [12℄. Then the map-ping q(x; �) = T̂�f(x) solves the abstrat Cauhy problem �q(x; �)=�� =L̂ q(x; �) with the initial ondition q(x; 0) = f(x). The distinguishing fea-ture of the proess fY (�)g is that the generator L̂ is time-independent. In allother respets its exat form an be quite arbitrary. If fY (�)g is an �-stableL�evy motion, the operator L̂ is a multidimensional frational derivative of or-der � [13℄. In general, for an operator L�evy motion it even represents a gener-alized frational derivative onRd whose order of di�erentiation an vary withoordinate [14℄. When the operator L̂ ats on the Laplae image �p~rt(u; ~x) =u��1�pY (u� ; ~x), we obtain [L̂ �p~rt ℄(u; ~x) = u� �p~rt(u; ~x) � f(~x)u��1, wheref(~x) is the initial ondition. The inverse Laplae transform of the latterexpression gives the abstrat partial di�erential equation with the frationalderivative of time:p~rt(t; ~x) = f(~x) + 1� (�) tZ0 d�(t� �)��1 hL̂ p~rti (�; ~x) : (2)The solution of (2) is diretly onneted with the solution of �pY (�; ~x)=�� =L̂ pY (�; ~x). The probability density pS(t; �) is written as t��F�(z) withz = �=t�, and the funtion F�(z) has the H-funtion representationF�(z) = H1011  z�����(1� �; �)(0; 1) ! = 1Xk=0 (�z)kk!� (1� � � k�) ;where � (x) is the ordinary Gamma funtion. Then the probability densityp~rt(t; ~x) is expressed in terms of the following integral relationp~rt(t; ~x) = 1Z0 F�(z) fY (t�z; ~x) dz : (3)The formula is espeially useful for the probability density pY (�; ~x), knowneither in a losed form (for example, an harmoni potential in the standardFokker�Plank equation) or in the ontext of separation of variables. More-over, eah funtional of suh a solution an be obtained from the solutionby immediate integration, only if the funtional exists. It should be notedhere that the probability density pS(t; �) has �nite moments of any order,although the subordinator T (�) has not the property. The funtion F�(z)vanishes exponentially for large positive z and stritly positive on (0;1).



Subordinated Random Walk Approah to Anomalous Relaxation . . . 3655Now assume that the waiting time between jumps and the jumps sizesare no more independent. The CTRWs are alled oupled. Then the subor-dination relation (1) takes a more general formp~rt(t; ~x) = 1Z0 PfY (�) = ~x j S(t) = �g pS(t; �) d�; (4)where PfY (�) = ~x j S(t) = �g desribes the onditional distribution be-tween T (�) and Y (�). Following the arguments of [9℄, the probability densityof f~rtg is written as p~rt(t; ~x) = 1Z0 tZ0 fu(~x; t� �) d� ; (5)where fu(~x; t) has the Fourier�Laplae transformFL[fu℄(~x; t) = ZRd 1Z0 eih~x�~ki e�st fu(~x; t) dt d~x = expf� (~k; s)gwell de�ned for all (~k; s) 2 Rd �R+, and  (~k; s) is the log-harateristifuntion of (Y; T ). Reall that in�nitely divisible distributions are just de-termined by its log-harateristi funtion (L�evy-Khinhin formula). If Q isa positive quadrati form on Rd, (~a; b) 2 Rd�R+ and � is a L�evy measureof (Y; T ) on Rd �R+=f(0; 0)g, the log-harateristi funtion is (~k; s) = ih~a�~ki+Q(~k)+ ZRd�R+=f(0;0)g  1�eih~x�~ki�st+ ih~x � ~ki1 + k~xk2!�(d~x; dt):It should be pointed out that the log-harateristi funtion of an in�nitelydivisible distribution is the symbol of pseudo-di�erential operator de�nedby the generator of the orresponding onvolution semigroup [12℄. Thus, inour notations we haveFL[ (iDx; �t) p~rt ℄(~x; t) =  (~k; s)FL[p~rt ℄(~x; t) : (6)If  does not grow too fast at in�nite, the funtion  (iDx; �t) is pointwisede�ned and an be extended to larger spaes of funtions (or even distribu-tions) [9℄. Then we an write (5) in the form FL[p~rt ℄(~x; t) = s��1= (~k; s).



3656 A. StanislavskyThe inverse Fourier�Laplae transform s��1 gives the distribution Æ(~x) t��=� (1��), where Æ(x) is the Dira Æ-funtion. At last formally the expressionof the orresponding pseudo-di�erential equation an be written as (iDx; �t) p~rt(~x; t) = Æ(~x) t��� (1� �) : (7)In fat, Eq. (2) is a partiular ase of (7), where  (~k; s) =  (~k) + s�.However, the oupled model is more �exible for anomalous di�usion thanunoupled one. As has been shown in [9℄, the e�et of subordinating Y (�)is to lighten the tail of p~rt(~x; t) and slow the spreading rate, whereas inthe unoupled ase the subordinated proess ~rt spreads slowly, but has thesame tail behavior as Y (�). Therefore, the unoupled model behaves assubdi�usion, and the oupled model an set also in anomalous superdi�usion.4. Anomalous relaxationIn a many-body system, the relaxation funtion is the self part of thedensity autoorrelation funtion [3℄. Within the framework of the one-bodypiture, this funtion orresponds to the harateristi funtion Gk(t) of theposition vetor rt of a walking partile at time tGk(t) = E[exp(i ~k � ~rt)℄ = E �exp��~k2S(t)2 �� ; (8)where ~k is the wave number. Therefore, we onsider Gk(t) as the relax-ation funtion. The frequeny-domain response �?(!) is onneted with therelaxation funtion Gk(t) via the one-sided Fourier transform�?(!) = 1� i! 1Z0 e�i!tGk(t) dt : (9)As is well known [15℄, the (dieletri) suseptibility �(!) is de�ned by theformula: �?(!) = �(!)� �1�0 � �1 ;where the onstant �1 represents the asymptoti value of �(!), and �0is the value of the opposite limit. In the ase of a normal random walkthese funtions indiate the relaxation of Debye type exp(�t=�) with theonstant � . The formula (3) under onsideration of CTRWs leads to theCole�Cole relaxation with �?CC(!) = 1=(1 + (iA!)a), where A and a aresome onstants. It should be noted that though the result �rst was obtained



Subordinated Random Walk Approah to Anomalous Relaxation . . . 3657for one-dimensional CTRW model in [5, 6℄, it remains valid for the multidi-mensional ase and for non-normal distributions of spae steps. Here it isimportant for the waiting time between suessive jumps and spae jumps tobe independent of eah other. When the ondition is invalid, the relaxationfuntions an be other types.Consider a onrete oupled example [9℄, where the neessary alula-tions an be arried out ompletely. Let T be a stable subordinator withLaplae transform E[e�sT ℄ = exp(�s�), 0 < � < 1, and the onditionaldistribution of Y j T = t is normal with mean zero and variane 2t. Thelog-harateristi funtion of (Y; T ) is given by (~k; s) = �~k2 + s�� :Next we use the result (6) and write the Fourier�Laplae image of the prob-ability density of the proess ~rt = Y (S(t))FL hp~rti (~x; t) = s��1�~k2 + s�� :The inverse Laplae transform yieldsGk(t) = tZ0 e�~k2uu��1 (t� u)��� (�)� (1� �) du ; (10)Expanding exp(�~k2t) into a Taylor series and integrating (10) with respetto u leads to Gk(t) = 1Xn=0 � (� + n)� (�) (n!)2 ��~k2t�n :This model desribes a oupled spae-time di�usion having the same salingindex as Brownian motion [9℄. However, the relaxation response based onthe CTRW model is di�erent of the exponential law typial for the ordinaryBrownian motion.On the other hand, the Cole�Cole relaxation funtion is related to theproesses having the Mittag�Le�er distribution. Let Zn denote the sum ofn independent random values with Mittag�Le�er distribution. Then theLaplae transform of n�1=�Zn is (1 + s�=n)�n, whih tends to e�s� as ntends to in�nity. This indiates the in�nity divisibility of the Mittag�Le�erdistribution [16℄. By virtue of the power asymptoti form (long tail) thedistribution with parameter � is attrated to the stable distribution with



3658 A. Stanislavskyexponent �, 0 < � < 1. The property of Mittag�Le�er distribution enablesone to develop a orresponding stohasti proess. The stohasti proess(alled Mittag�Le�er's) is subordinated to a stable proess by the diretinggamma proess [16℄. This direting proess an be onneted with hannelswithing in suh a system, where eah hannel develops as an independentrandom proess with the Mittag�Le�er distribution. The most of the the-oretial models desribing the relaxation response takes into onsiderationa ooperative nature of the phenomenon (for example, the dipole�dipole in-teration and the interation of di�erent polar regions in onformity withthe dieletri relaxation) [1,2℄. The Mittag�Le�er proess after its substitu-tion in (8) gives the relaxation funtion of the well-know Havriliak�Negamiempirial law. Thus, the Havriliak�Negami relaxation response an be alsoexplained from the CTRW approah, if the hitting time proess of a walk-ing partile transforms into the Mittag�Le�er proess. For that the hittingtime proess has an appropriate distribution attrated to a stable distri-bution. The subordination of the latter results just in the Mittag�Le�erproess. In this onnetion it should be mentioned that the Lévy proesssubordinated by another Lévy one leads again to the Lévy proess, but withother index [12℄. The more detailed analysis of the Mittag�Le�er proessas applied to the CTRW model will be onsidered in the future work.As for the strethed-exponential form of the relaxation funtion [17℄, thetype of relaxation annot be explained from the above CTRW models. Theappropriate random proess must be other, namely the frational Brownianmotion. A mean-zero Gaussian proess fBH(t); t � 0g is alled frationalBrownian motion, ifE[BH(t)BH(s)℄ = 12 �t2H + s2H� j t� s j2H	E �BH(1)2�with 0 < H < 1. This proess is self-similar with stationary inrements,but has independent inrements only for H = 1=2 [18℄. Using the Gaussianproperty of the frational Brownian motion, in the simplest ase the hara-teristi funtion of the proess is written as Gk(t) = exp(�~k2t2H). Withinthe framework of the one-body piture we onsider Gk(t) as the relaxationfuntion. Thus, the frational Brownian motion leads to the Kohlraush law.It is interesting to observe that the CTRW approah to anomalous re-laxation in disordered systems does not assume an obligatory real travel ofa real partile. In partiular, for the dieletri systems under a week externaleletri �eld the ative dipoles hange their diretion during the relaxationdynamis so that the marosopi e�et is de�ned by the resulting polariza-tion vetor. This vetor an be imagined as a position vetor of a �virtual�traveling partile toward that end to apply an appropriate CTRW model.The arguments support the wide appliation of CTRW models to relaxingproesses.



Subordinated Random Walk Approah to Anomalous Relaxation . . . 36595. Summary and disussionIn the light of the latest ahievements the CTRW approah has extendedappreiably its potentialities. It suggests to desribe anomalous di�usion andanomalous relaxation in terms of subordinated random proesses so that theindex of the original Markov parent proess is randomized by ontinuous, in-reasing and non-Markovian proess, whih is the inverse to a totally skewed,stritly L�evy proess. The new proess represents the limit proess general-izing �disrete steps� of the CTRW to �ontinuous steps�. The randomizedtime lok shows both small and large periods of resting in jumps of thestohasti time evolution our with no �nite mean. This re�ets the ab-sene of a harateristi time sale typial for the ordinary relaxation anddi�usion. The anomalous behavior originates from the slowly deaying andself-similar distribution of the stohasti time evolution.The oupled and unoupled models of the CTRW desribe di�erent pro-esses of relaxation and di�usion. So, the relaxation funtion in the un-oupled CTRW model has the Cole�Cole type, whereas the oupled CTRWmodel gives rise to a more general law. The models and their modi�ationsallow one to obtain many well-know empirial funtions �tted for experi-mental data of relaxation and di�usive phenomena. This emphasizes theuniversality of the CTRW approah. It should be also noted here the otheruniversal approah to anomalous relaxation, suggested in [19�21℄. It pro-eeds from the randomization of parameters of distributions that desribesthe relaxation rates in disordered systems. Although the point of view isenough lose to ours in this paper, there are di�erenes. Their omparisonwill be arried out elsewhere.I am very grateful to Prof. K. Weron from the Wrolaw University ofTehnology (Poland) and the referee for their useful omments.REFERENCES[1℄ A.K. Jonsher, Dieletri Relaxation in Solids, Chelsea Dieletri Press,London 1983.[2℄ A.K. Jonsher, Universal Relaxation Law, Chelsea Dieletri Press, London1996.[3℄ S. Gomi, F. Yonezawa, Phys. Rev. Lett. 74, 4125 (1995).[4℄ S. Fujiwara, F. Yonezawa, Phys. Rev. E51, 2277 (1995).[5℄ M. Kotulski, K. Weron, Physia A 232, 180 (1996).[6℄ M. Kotulski, K. Weron, Let. Notes Stat. 114, 379 (1996).[7℄ R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000).
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