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SUBORDINATED RANDOM WALK APPROACHTO ANOMALOUS RELAXATIONIN DISORDERED SYSTEMS�Aleksander StanislavskyInstitute of Radio Astronomy4 Chervonopraporna St., Kharkov 61002, Ukrainee-mail: alexstan�ira.kharkov.ua(Re
eived O
tober 28, 2002; revised version February 11, 2003)We study anomalous relaxation properties of the 
ontinuous-timerandom walk model in whi
h the spa
e-jump and waiting-time evolution isgiven by two random Markov pro
esses. This model des
ribes the subordi-nation of one random pro
ess by another. The dire
ting pro
ess is inverseto the totally skewed, stri
tly L�evy pro
ess. Owing to the properties of thedire
ting pro
ess, the relaxation fun
tion in the un
oupled random walkmodel takes the empiri
al Cole�Cole form. By means of this theoreti
alanalysis we �nd that the 
oupled and un
oupled walks lead to di�erentforms of the relaxation fun
tion.PACS numbers: 2.50.�r, 05.40.�j1. Introdu
tionThe nature of anomalous relaxation in the various 
omplex systems(amorphous semi
ondu
tors and insulators, polymers, mole
ular solid so-lutions, glasses, et
.) is the subje
t of intensive studies for many years [1,2℄(and the referen
es therein). The experimental investigations surely haveestablished the non-exponential evolution of su
h systems towards equilib-rium, i.e. the empiri
al fun
tions used to �t the experimental data exhibitthe fra
tional-power dependen
e of the relaxation responses on frequen
yand time. In fa
t, this important feature is independent on the details ofexamined systems. Undoubtedly, many-body e�e
ts play an appre
iable rolein su
h systems. So these e�e
ts indu
e time �u
tuations in the potentialseen by ea
h parti
le and essentially a
t as a noise sour
e. At the same time,� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s Za-kopane, Poland, September 7�12, 2002.(3649)



3650 A. Stanislavskythey form a 
omplex potential �xed lands
ape with many lo
al minima sep-arated by barriers of all s
ales, trapping and untrapping the parti
le orbitsin a self-similar hierar
hy of 
antori. As a result, the traje
tory of parti
les
an be very similar to a random walk. It is not surprising the parallels, sug-gested in literature [3�6℄, to be drawn between anomalous relaxation andanomalous di�usion.Now the 
ontinuous time random walk (CTRW) 
on
ept is widely a
-
epted in physi
s for the des
ription of anomalous di�usion (see review [7℄).Although the CTRW models has the 
lear advantage in for
e of their highphysi
al motivation, the master equation for anomalous di�usion is oftenintrodu
ed phenomenologi
ally, and the grounds remain o� s
reen. It is ex-
eptionally important to re
ognize the sto
hasti
 pro
ess itself responsiblefor the anomalous behavior. Without questions, this is a 
orner stone of thetheory. The re
ent works of Meers
haeft, S
he�er and Be
ker-Kern [8, 9℄have summed up the long-term studies of the problem and made things ul-timate 
lear. The motivation of our work is to explain anomalous relaxationof disordered systems from the latest a
hievements in the CTRW approa
h.We show that the appli
ations of CTRW models to relaxing pro
esses 
anbe essentially extended.The present paper is organized as follows. In Se
. 2 we des
ribe indetail the minimal CTRW model resulting in anomalous di�usion. Themain feature of our 
onsideration is that at �rst we de�ne the 
orrespondingsto
hasti
 pro
ess, whereupon the density fun
tion and the master equationare a dire
t 
onsequen
e of the pro
ess properties. We analyze the essentialaspe
ts of anomalous di�usion and anomalous relaxation in the frameworkof a one-body pi
ture. As for many-body e�e
ts, they are taken into a

ountin terms of randomizing both spatial and temporal degrees of freedom in theone-body pi
ture. Our results towards anomalous di�usion is represented inSe
. 3, and Se
. 4 is devoted to their appli
ations for anomalous relaxation.Our pi
ture embra
es the 
oupled and un
oupled walks. They lead to dif-ferent forms of di�usion and relaxation. A summary and a dis
ussion aregiven in Se
. 5. 2. Continuous time random walksA 
ontinuous time random walk des
ribes the sto
hasti
 time and spa
eevolution of a walking parti
le by means of two Markov pro
esses, randomwaiting-times and random jumps. Su

essive 
ouples of random time andspa
e steps are usually 
onsidered as independent. However, in a 
ouple thetime and spa
e steps may be dependent.Let T1, T2, : : : be nonnegative independent and identi
ally distributed(i.i.d.) random variables that 
orrespond to the waiting times between jumpsof a walking parti
le. The parti
le jumps are given by i.i.d. random ve
tors



Subordinated Random Walk Approa
h to Anomalous Relaxation . . . 3651~R1, ~R2, : : : on the d-dimensional spa
e Rd whi
h are assumed independentof (Ti). The position of the parti
le after the nth jump be
omes ~rn =Pni=1 ~Ri, being ~r0 = 0. For t � 0 the number of jumps up to time t is Nt =maxfn 2 N : Pnj=1 Ti � tg, and the ve
tor ~X(t) = ~rNt = PNti=1 ~Ri de�nesthe position of the parti
le at time t. The sto
hasti
 pro
ess f ~X(t)gt�0is 
alled a 
ontinuous time random walk (CTRW). We 
onsider CTRW inthe d-dimensional spa
e and o

urring at the non-negative one-dimensionaltime. Though su
h walks 
onsist only of dis
rete time and spa
e steps, thejump model 
an be generalized to �
ontinuous steps�.Assume that Tj belongs to the stri
t domain of attra
tion of some stablelaw with index 0 < � < 1. The 
hoi
e of the index � in the range 0 < � < 1is 
onditioned by the support of the time steps Tj on the non-negative semi-axis R+. Then there exist bn > 0 su
h that the sum bn(T1 + � � � + Tn)has asymptoti
ally (by virtue of a 
onvergen
e in distribution) the stabledistribution with index �, if n tends to in�nity. In the dis
rete model thetime of the nth jump is �(n) = Pnj=1 Tj , T0 = 0. For � � 0 one 
anwrite �(�) =Pb�
j=1 Tj and b(�) = bb�
, where b�
 denotes the integer partof � . As has been stated in [8, 9℄, fb(
)�(
�)g��0 
onverges in distributionof all �nite dimensional marginal distributions to the pro
ess fT (�)g��0as 
!1. The pro
ess fT (�)g has stationary independent in
rements. Fur-thermore, it is a stri
tly stable and totally skewed Lévy pro
ess satisfying tofT (
�)g��0 f:d:= f
1=�T (�)g��0 for all 
 > 0, where f:d:= denotes equality of all�nite dimensional distributions. The pro
ess fT (�)g depends on the 
ontin-uous internal time � � 0, but the index is di�erent from the real time t. Thelabel 
ontinuous indi
ates just the fa
t that the index belongs to a 
ontinuousset, but does not imply the 
ontinuity of the paths. A

ording to [8℄, the pro-
ess fT (�)g is self-similar with exponent H = 1=� > 1. The sample pathsof fT (�)g are in
reasing almost surely (a.s). Sin
e T (�) d= �1=�T (1), whered= means equal in distribution, it follows that T (�) ! 1 in probability as� !1.Assume that (~Ri) are i.i.d. Rd-valued random variables independent of(Tj) and let ~Ri belong to the stri
t generalized domain of attra
tion of somefull operator stable law �. Then there exists a fun
tion B(
) invertible forall 
 > 0 and B(�
)B(
)�1 ! ��� as 
!1 for any � > 0, � being a d� dmatrix (real parts of eigenvalues of � are greater than or equal to 1/2),su
h that B(n)Pni=1 ~Ri 
onverges in distribution to Y as n ! 1, whereY has distribution �. Next, using the limit passage fB(
)Pb
�
i=1 ~Rig��0 as
 ! 1, we de�ne the sto
hasti
 pro
ess fY (�)g depending on the internaltime � . The pro
ess has stationary independent in
rements with Y (0) = 0a.s. Then fY (�)g is 
ontinuous in law. Moreover, fY (�)g is operator self-



3652 A. Stanislavskysimilar with exponent � : fY (
�)g��0 f:d:= f
�Y (�)g��0. The pro
ess is
alled an operator Lévy motion [8℄. If the exponent � = ~aI is a 
onstantmultiplied by the identity, then � is a stable law with index � = 1=~a, andfY (�)g is a 
lassi
al d-dimensional Lévy motion. In the parti
ular 
ase,when ~a = 1=2, the pro
ess fY (�)g is a d-dimensional Brownian motion.Now we 
onsider the limiting behavior of the 
ounting pro
ess fNtgt�0mentioned above. It turns out that the s
aling limit of this pro
ess is thehitting time pro
ess for the Lévy motion fT (x)gx�0. This hitting time pro-
ess represents the true time evolution of the position ve
tor of the walkingparti
le and is also self-similar with exponent �. However, it is 
ardinallydi�erent from fT (x)gx�0. The hitting time pro
ess S(t) = inffx : T (x) > tgis well-de�ned and dependent on the true time t. Note that fS(t)gt�0 is a
-tually the inverse of the pro
ess fT (x)gx�0. If T (x) < t then T (y) < t forall y > x su�
iently 
lose to x, so that S(t) > x. On the other hand, ifT (x) � t then T (y) > t for all y > x so that S(t) � x. It is easily veri�edthat fS(ti) � xi for i = 1; : : : ;mg = fT (xi) � ti for i = 1; : : : ;mg holdstrue for any 0 � t1 < : : : < tm and x1; : : : ; xm � 0. Sin
e fT (x)gx�0 isstri
tly in
reasing, the pro
ess fS(t)gt�0 is 
ontinuous and non-de
reasing.From the self-similarity of fT (x)g it follows the same property for fS(t)g,i.e. fS(
t)gt�0 f:d:= f
�S(t)gt�0 for any 
 > 0. While fT (x)gx�0 is a Lévypro
ess, the inverse pro
ess fS(t)gt�0 is no longer a Lévy pro
ess, neithera Markov pro
ess, but it is a 
ontinuous submartingal, as shown in [10℄.For a real valued random variable X let E[X℄ denote its expe
tation.Colle
t important properties of the pro
ess fS(t)gt�0� the pro
ess fS(t)gt�0 has neither stationary nor independent in
re-ments [8℄;� S(t) d= t�S(1);� for any 
 > 0 the pro
ess fS(t)gt�0 has the �nite 
-moment E[S(t)
 ℄ =C(�; 
) t�
 , where C(�; 
) is a positive �nite 
onstant [8℄;� S(T (�)) = � a.s. and T (S(t)) � t a.s.;� the random variable S(t) has the densitypt(x) = t� x�1�1=� g� �t x�1=�� ;where g� is the density of the pro
ess T (�).The fourth and �fth properties re�e
t the fa
t that fS(t)g is the left-inverseof the pro
ess fT (x)g. If the probability density of fT (x)g has the index� = 1=2, then the �fth property gives the normal law as a probability densityof fS(t)g. The inverse pro
ess to the sto
hasti
 time evolution des
ribesthe true time evolution of a walking parti
le. The hitting time S(t) =



Subordinated Random Walk Approa
h to Anomalous Relaxation . . . 3653inffx : T (x) > tg is 
alled also a �rst passage time. Really, for a �xed timeit represents the �rst passage of the sto
hasti
 time evolution above thistime level. The sample paths of fNtgt�0 and fS(t)gt�0 are in
reasing. Asshown in [10, 11℄, the random value S(t) is 
onne
ted with a Mittag�Le�erdistribution via E[e�vS(t)℄ = P1n=0(�vt�)n=� (1 + n�) = E�(�vt�). This
on�rms the third property in the spe
ial 
ase where 
 is a positive integer.3. Anomalous di�usionLet us investigate the relationship between the probability density ofthe position ve
tor ~rt of a walking parti
le at real time t and the 
ou-ple (Y (�); T (�)). The safe mathemati
al 
onstru
tion of the pro
ess ~rt isshown in [11℄. The limit pro
ess ~rt = Y (S(t)) is an operator Lévy motionY (�) subordinated to the hitting pro
ess S(t) of a 
lassi
al stable subor-dinator T (�). We brie�y re
all that a subordinated pro
ess is obtained byrandomizing the time 
lo
k of a stationary pro
ess X(t) using a new 
lo
kU(t), where U(t) is a random pro
ess with nonnegative independent in
re-ments. The resulting pro
ess X(U(t)) is said to be subordinated to X(t),
alled the parent pro
ess, and is dire
ted by U(t), 
alled the dire
ting pro-
ess. The dire
ting pro
ess is often referred to as the randomized time oroperational time. In general, the subordinated pro
ess X(U(t)) 
an be
omenon-Markovian, though its parent pro
ess is Markovian. The pro
ess ~rt isa s
aling limit of CTRW.The new pro
ess f~rtgt�0 subordinated to the Markov pro
ess fY (�)g��0and dire
ted by the randomized time pro
ess fS(t)gt�0 is well de�ned. If thepro
esses fY (�)g��0 and fT (�)gt�0 is un
oupled (i.e. independent on ea
hother), the probability density of ~rt with t � 0 
an be written as a weightedintegration over the internal time � so thatp~rt(t; ~x) = 1Z0 pY (�; ~x) pS(t; �) d�; (1)where pY (�; ~x) represents the probability to �nd the parent pro
ess Y (�)at ~x on operational time � and pS(t; �) is the probability to be at the op-erational time � on real time t. The pro
ess Y (S(t)) is self-similar withindex �� su
h that fY (S(
t))gt�0 f:d:= f
�� Y (S(t))gt�0 is for all 
 > 0.A

ording to [8,9℄, the limiting pro
ess does not have stationary in
rementsand is not operator stable for any t > 0. In Lapla
e spa
e the prob-ability density p~rt(t; ~x) takes the most simple form u��1�pY (u� ; ~x), sin
e�pS(u; �) = u��1 exp(�u��) and �pY (u�; ~x) = 1R0 pY (�; ~x) exp(�u��) d� .



3654 A. StanislavskyIf the operator L�evy motion Y (�) on Rd has the probability distributionp (x; �), the linear operator T̂�f(x) = R f(x� y) p (y; �) dy forms a 
onvolu-tion semigroup with generator L̂ = lim�#0 ��1(T̂� � T̂0) [12℄. Then the map-ping q(x; �) = T̂�f(x) solves the abstra
t Cau
hy problem �q(x; �)=�� =L̂ q(x; �) with the initial 
ondition q(x; 0) = f(x). The distinguishing fea-ture of the pro
ess fY (�)g is that the generator L̂ is time-independent. In allother respe
ts its exa
t form 
an be quite arbitrary. If fY (�)g is an �-stableL�evy motion, the operator L̂ is a multidimensional fra
tional derivative of or-der � [13℄. In general, for an operator L�evy motion it even represents a gener-alized fra
tional derivative onRd whose order of di�erentiation 
an vary with
oordinate [14℄. When the operator L̂ a
ts on the Lapla
e image �p~rt(u; ~x) =u��1�pY (u� ; ~x), we obtain [L̂ �p~rt ℄(u; ~x) = u� �p~rt(u; ~x) � f(~x)u��1, wheref(~x) is the initial 
ondition. The inverse Lapla
e transform of the latterexpression gives the abstra
t partial di�erential equation with the fra
tionalderivative of time:p~rt(t; ~x) = f(~x) + 1� (�) tZ0 d�(t� �)��1 hL̂ p~rti (�; ~x) : (2)The solution of (2) is dire
tly 
onne
ted with the solution of �pY (�; ~x)=�� =L̂ pY (�; ~x). The probability density pS(t; �) is written as t��F�(z) withz = �=t�, and the fun
tion F�(z) has the H-fun
tion representationF�(z) = H1011  z�����(1� �; �)(0; 1) ! = 1Xk=0 (�z)kk!� (1� � � k�) ;where � (x) is the ordinary Gamma fun
tion. Then the probability densityp~rt(t; ~x) is expressed in terms of the following integral relationp~rt(t; ~x) = 1Z0 F�(z) fY (t�z; ~x) dz : (3)The formula is espe
ially useful for the probability density pY (�; ~x), knowneither in a 
losed form (for example, an harmoni
 potential in the standardFokker�Plan
k equation) or in the 
ontext of separation of variables. More-over, ea
h fun
tional of su
h a solution 
an be obtained from the solutionby immediate integration, only if the fun
tional exists. It should be notedhere that the probability density pS(t; �) has �nite moments of any order,although the subordinator T (�) has not the property. The fun
tion F�(z)vanishes exponentially for large positive z and stri
tly positive on (0;1).



Subordinated Random Walk Approa
h to Anomalous Relaxation . . . 3655Now assume that the waiting time between jumps and the jumps sizesare no more independent. The CTRWs are 
alled 
oupled. Then the subor-dination relation (1) takes a more general formp~rt(t; ~x) = 1Z0 PfY (�) = ~x j S(t) = �g pS(t; �) d�; (4)where PfY (�) = ~x j S(t) = �g des
ribes the 
onditional distribution be-tween T (�) and Y (�). Following the arguments of [9℄, the probability densityof f~rtg is written as p~rt(t; ~x) = 1Z0 tZ0 fu(~x; t� �) d� ; (5)where fu(~x; t) has the Fourier�Lapla
e transformFL[fu℄(~x; t) = ZRd 1Z0 eih~x�~ki e�st fu(~x; t) dt d~x = expf� (~k; s)gwell de�ned for all (~k; s) 2 Rd �R+, and  (~k; s) is the log-
hara
teristi
fun
tion of (Y; T ). Re
all that in�nitely divisible distributions are just de-termined by its log-
hara
teristi
 fun
tion (L�evy-Khin
hin formula). If Q isa positive quadrati
 form on Rd, (~a; b) 2 Rd�R+ and � is a L�evy measureof (Y; T ) on Rd �R+=f(0; 0)g, the log-
hara
teristi
 fun
tion is (~k; s) = ih~a�~ki+Q(~k)+ ZRd�R+=f(0;0)g  1�eih~x�~ki�st+ ih~x � ~ki1 + k~xk2!�(d~x; dt):It should be pointed out that the log-
hara
teristi
 fun
tion of an in�nitelydivisible distribution is the symbol of pseudo-di�erential operator de�nedby the generator of the 
orresponding 
onvolution semigroup [12℄. Thus, inour notations we haveFL[ (iDx; �t) p~rt ℄(~x; t) =  (~k; s)FL[p~rt ℄(~x; t) : (6)If  does not grow too fast at in�nite, the fun
tion  (iDx; �t) is pointwisede�ned and 
an be extended to larger spa
es of fun
tions (or even distribu-tions) [9℄. Then we 
an write (5) in the form FL[p~rt ℄(~x; t) = s��1= (~k; s).



3656 A. StanislavskyThe inverse Fourier�Lapla
e transform s��1 gives the distribution Æ(~x) t��=� (1��), where Æ(x) is the Dira
 Æ-fun
tion. At last formally the expressionof the 
orresponding pseudo-di�erential equation 
an be written as (iDx; �t) p~rt(~x; t) = Æ(~x) t��� (1� �) : (7)In fa
t, Eq. (2) is a parti
ular 
ase of (7), where  (~k; s) =  (~k) + s�.However, the 
oupled model is more �exible for anomalous di�usion thanun
oupled one. As has been shown in [9℄, the e�e
t of subordinating Y (�)is to lighten the tail of p~rt(~x; t) and slow the spreading rate, whereas inthe un
oupled 
ase the subordinated pro
ess ~rt spreads slowly, but has thesame tail behavior as Y (�). Therefore, the un
oupled model behaves assubdi�usion, and the 
oupled model 
an set also in anomalous superdi�usion.4. Anomalous relaxationIn a many-body system, the relaxation fun
tion is the self part of thedensity auto
orrelation fun
tion [3℄. Within the framework of the one-bodypi
ture, this fun
tion 
orresponds to the 
hara
teristi
 fun
tion Gk(t) of theposition ve
tor rt of a walking parti
le at time tGk(t) = E[exp(i ~k � ~rt)℄ = E �exp��~k2S(t)2 �� ; (8)where ~k is the wave number. Therefore, we 
onsider Gk(t) as the relax-ation fun
tion. The frequen
y-domain response �?(!) is 
onne
ted with therelaxation fun
tion Gk(t) via the one-sided Fourier transform�?(!) = 1� i! 1Z0 e�i!tGk(t) dt : (9)As is well known [15℄, the (diele
tri
) sus
eptibility �(!) is de�ned by theformula: �?(!) = �(!)� �1�0 � �1 ;where the 
onstant �1 represents the asymptoti
 value of �(!), and �0is the value of the opposite limit. In the 
ase of a normal random walkthese fun
tions indi
ate the relaxation of Debye type exp(�t=�) with the
onstant � . The formula (3) under 
onsideration of CTRWs leads to theCole�Cole relaxation with �?CC(!) = 1=(1 + (iA!)a), where A and a aresome 
onstants. It should be noted that though the result �rst was obtained



Subordinated Random Walk Approa
h to Anomalous Relaxation . . . 3657for one-dimensional CTRW model in [5, 6℄, it remains valid for the multidi-mensional 
ase and for non-normal distributions of spa
e steps. Here it isimportant for the waiting time between su

essive jumps and spa
e jumps tobe independent of ea
h other. When the 
ondition is invalid, the relaxationfun
tions 
an be other types.Consider a 
on
rete 
oupled example [9℄, where the ne
essary 
al
ula-tions 
an be 
arried out 
ompletely. Let T be a stable subordinator withLapla
e transform E[e�sT ℄ = exp(�s�), 0 < � < 1, and the 
onditionaldistribution of Y j T = t is normal with mean zero and varian
e 2t. Thelog-
hara
teristi
 fun
tion of (Y; T ) is given by (~k; s) = �~k2 + s�� :Next we use the result (6) and write the Fourier�Lapla
e image of the prob-ability density of the pro
ess ~rt = Y (S(t))FL hp~rti (~x; t) = s��1�~k2 + s�� :The inverse Lapla
e transform yieldsGk(t) = tZ0 e�~k2uu��1 (t� u)��� (�)� (1� �) du ; (10)Expanding exp(�~k2t) into a Taylor series and integrating (10) with respe
tto u leads to Gk(t) = 1Xn=0 � (� + n)� (�) (n!)2 ��~k2t�n :This model des
ribes a 
oupled spa
e-time di�usion having the same s
alingindex as Brownian motion [9℄. However, the relaxation response based onthe CTRW model is di�erent of the exponential law typi
al for the ordinaryBrownian motion.On the other hand, the Cole�Cole relaxation fun
tion is related to thepro
esses having the Mittag�Le�er distribution. Let Zn denote the sum ofn independent random values with Mittag�Le�er distribution. Then theLapla
e transform of n�1=�Zn is (1 + s�=n)�n, whi
h tends to e�s� as ntends to in�nity. This indi
ates the in�nity divisibility of the Mittag�Le�erdistribution [16℄. By virtue of the power asymptoti
 form (long tail) thedistribution with parameter � is attra
ted to the stable distribution with



3658 A. Stanislavskyexponent �, 0 < � < 1. The property of Mittag�Le�er distribution enablesone to develop a 
orresponding sto
hasti
 pro
ess. The sto
hasti
 pro
ess(
alled Mittag�Le�er's) is subordinated to a stable pro
ess by the dire
tinggamma pro
ess [16℄. This dire
ting pro
ess 
an be 
onne
ted with 
hannelswit
hing in su
h a system, where ea
h 
hannel develops as an independentrandom pro
ess with the Mittag�Le�er distribution. The most of the the-oreti
al models des
ribing the relaxation response takes into 
onsiderationa 
ooperative nature of the phenomenon (for example, the dipole�dipole in-tera
tion and the intera
tion of di�erent polar regions in 
onformity withthe diele
tri
 relaxation) [1,2℄. The Mittag�Le�er pro
ess after its substitu-tion in (8) gives the relaxation fun
tion of the well-know Havriliak�Negamiempiri
al law. Thus, the Havriliak�Negami relaxation response 
an be alsoexplained from the CTRW approa
h, if the hitting time pro
ess of a walk-ing parti
le transforms into the Mittag�Le�er pro
ess. For that the hittingtime pro
ess has an appropriate distribution attra
ted to a stable distri-bution. The subordination of the latter results just in the Mittag�Le�erpro
ess. In this 
onne
tion it should be mentioned that the Lévy pro
esssubordinated by another Lévy one leads again to the Lévy pro
ess, but withother index [12℄. The more detailed analysis of the Mittag�Le�er pro
essas applied to the CTRW model will be 
onsidered in the future work.As for the stret
hed-exponential form of the relaxation fun
tion [17℄, thetype of relaxation 
annot be explained from the above CTRW models. Theappropriate random pro
ess must be other, namely the fra
tional Brownianmotion. A mean-zero Gaussian pro
ess fBH(t); t � 0g is 
alled fra
tionalBrownian motion, ifE[BH(t)BH(s)℄ = 12 �t2H + s2H� j t� s j2H	E �BH(1)2�with 0 < H < 1. This pro
ess is self-similar with stationary in
rements,but has independent in
rements only for H = 1=2 [18℄. Using the Gaussianproperty of the fra
tional Brownian motion, in the simplest 
ase the 
hara
-teristi
 fun
tion of the pro
ess is written as Gk(t) = exp(�~k2t2H). Withinthe framework of the one-body pi
ture we 
onsider Gk(t) as the relaxationfun
tion. Thus, the fra
tional Brownian motion leads to the Kohlraus
h law.It is interesting to observe that the CTRW approa
h to anomalous re-laxation in disordered systems does not assume an obligatory real travel ofa real parti
le. In parti
ular, for the diele
tri
 systems under a week externalele
tri
 �eld the a
tive dipoles 
hange their dire
tion during the relaxationdynami
s so that the ma
ros
opi
 e�e
t is de�ned by the resulting polariza-tion ve
tor. This ve
tor 
an be imagined as a position ve
tor of a �virtual�traveling parti
le toward that end to apply an appropriate CTRW model.The arguments support the wide appli
ation of CTRW models to relaxingpro
esses.
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ussionIn the light of the latest a
hievements the CTRW approa
h has extendedappre
iably its potentialities. It suggests to des
ribe anomalous di�usion andanomalous relaxation in terms of subordinated random pro
esses so that theindex of the original Markov parent pro
ess is randomized by 
ontinuous, in-
reasing and non-Markovian pro
ess, whi
h is the inverse to a totally skewed,stri
tly L�evy pro
ess. The new pro
ess represents the limit pro
ess general-izing �dis
rete steps� of the CTRW to �
ontinuous steps�. The randomizedtime 
lo
k shows both small and large periods of resting in jumps of thesto
hasti
 time evolution o

ur with no �nite mean. This re�e
ts the ab-sen
e of a 
hara
teristi
 time s
ale typi
al for the ordinary relaxation anddi�usion. The anomalous behavior originates from the slowly de
aying andself-similar distribution of the sto
hasti
 time evolution.The 
oupled and un
oupled models of the CTRW des
ribe di�erent pro-
esses of relaxation and di�usion. So, the relaxation fun
tion in the un-
oupled CTRW model has the Cole�Cole type, whereas the 
oupled CTRWmodel gives rise to a more general law. The models and their modi�
ationsallow one to obtain many well-know empiri
al fun
tions �tted for experi-mental data of relaxation and di�usive phenomena. This emphasizes theuniversality of the CTRW approa
h. It should be also noted here the otheruniversal approa
h to anomalous relaxation, suggested in [19�21℄. It pro-
eeds from the randomization of parameters of distributions that des
ribesthe relaxation rates in disordered systems. Although the point of view isenough 
lose to ours in this paper, there are di�eren
es. Their 
omparisonwill be 
arried out elsewhere.I am very grateful to Prof. K. Weron from the Wro
law University ofTe
hnology (Poland) and the referee for their useful 
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