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We study anomalous relaxation properties of the continuous-time
random walk model in which the space-jump and waiting-time evolution is
given by two random Markov processes. This model describes the subordi-
nation of one random process by another. The directing process is inverse
to the totally skewed, strictly Lévy process. Owing to the properties of the
directing process, the relaxation function in the uncoupled random walk
model takes the empirical Cole—Cole form. By means of this theoretical
analysis we find that the coupled and uncoupled walks lead to different
forms of the relaxation function.

PACS numbers: 2.50.-r, 05.40.—j

1. Introduction

The nature of anomalous relaxation in the various complex systems
(amorphous semiconductors and insulators, polymers, molecular solid so-
lutions, glasses, etc.) is the subject of intensive studies for many years [1,2]
(and the references therein). The experimental investigations surely have
established the non-exponential evolution of such systems towards equilib-
rium, i.e. the empirical functions used to fit the experimental data exhibit
the fractional-power dependence of the relaxation responses on frequency
and time. In fact, this important feature is independent on the details of
examined systems. Undoubtedly, many-body effects play an appreciable role
in such systems. So these effects induce time fluctuations in the potential
seen by each particle and essentially act as a noise source. At the same time,
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they form a complex potential fixed landscape with many local minima sep-
arated by barriers of all scales, trapping and untrapping the particle orbits
in a self-similar hierarchy of cantori. As a result, the trajectory of particles
can be very similar to arandom walk. It is not surprising the parallels, sug-
gested in literature [3—6], to be drawn between anomalous relaxation and
anomalous diffusion.

Now the continuous time random walk (CTRW) concept is widely ac-
cepted in physics for the description of anomalous diffusion (see review [7]).
Although the CTRW models has the clear advantage in force of their high
physical motivation, the master equation for anomalous diffusion is often
introduced phenomenologically, and the grounds remain off screen. It is ex-
ceptionally important to recognize the stochastic process itself responsible
for the anomalous behavior. Without questions, this is a corner stone of the
theory. The recent works of Meerschaeft, Scheffler and Becker-Kern [8, 9]
have summed up the long-term studies of the problem and made things ul-
timate clear. The motivation of our work is to explain anomalous relaxation
of disordered systems from the latest achievements in the CTRW approach.
We show that the applications of CTRW models to relaxing processes can
be essentially extended.

The present paper is organized as follows. In Sec. 2 we describe in
detail the minimal CTRW model resulting in anomalous diffusion. The
main feature of our consideration is that at first we define the corresponding
stochastic process, whereupon the density function and the master equation
are a direct consequence of the process properties. We analyze the essential
aspects of anomalous diffusion and anomalous relaxation in the framework
of a one-body picture. As for many-body effects, they are taken into account
in terms of randomizing both spatial and temporal degrees of freedom in the
one-body picture. Our results towards anomalous diffusion is represented in
Sec. 3, and Sec. 4 is devoted to their applications for anomalous relaxation.
Our picture embraces the coupled and uncoupled walks. They lead to dif-
ferent forms of diffusion and relaxation. A summary and a discussion are
given in Sec. 5.

2. Continuous time random walks

A continuous time random walk describes the stochastic time and space
evolution of a walking particle by means of two Markov processes, random
waiting-times and random jumps. Successive couples of random time and
space steps are usually considered as independent. However, in a couple the
time and space steps may be dependent.

Let 11, T5, ... be nonnegative independent and identically distributed
(i.i.d.) random variables that correspond to the waiting times between jumps
of a walking particle. The particle jumps are given by i.i.d. random vectors
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ﬁl, R}, ... on the d-dimensional space R® which are assumed independent
of (T;). The position of the particle after the nth jump becomes 7, =
Yoy R;, being 7y = 0. For ¢t > 0 the number of jumps up to time ¢ is N; =
max{n € N: 3% | T; <}, and the vector X(t) =7y, = SN R; defines
the position of the particle at time t. The stochastic process {)?(t)}tzo
is called a continuous time random walk (CTRW). We consider CTRW in
the d-dimensional space and occurring at the non-negative one-dimensional
time. Though such walks consist only of discrete time and space steps, the
jump model can be generalized to “continuous steps”.

Assume that Tj belongs to the strict domain of attraction of some stable
law with index 0 < 8 < 1. The choice of the index # in the range 0 < g < 1
is conditioned by the support of the time steps T} on the non-negative semi-
axis R4. Then there exist b, > 0 such that the sum b,(Ty + --- + T},)
has asymptotically (by virtue of a convergence in distribution) the stable
distribution with index 8, if n tends to infinity. In the discrete model the
time of the mth jump is O(n) = Z?ZITJ-, To = 0. For 7 > 0 one can

write O(7) = Z]Lngj and b(1) = b, |, where |7] denotes the integer part
of 7. As has been stated in [8,9], {b(c)©(cT)}r>0 converges in distribution
of all finite dimensional marginal distributions to the process {T(7)}r>0
as ¢ — 00. The process {T'(7)} has stationary independent increments. Fur-
thermore, it is a strictly stable and totally skewed Lévy process satisfying to
{T(ct)}r>0 &% {/BT (1)} 150 for all ¢ > 0, where % denotes equality of all
finite dimensional distributions. The process {T(7)} depends on the contin-
uous internal time 7 > 0, but the index is different from thereal timet¢. The
label continuous indicates just the fact that the index belongs to a continuous
set, but does not imply the continuity of the paths. According to [8], the pro-
cess {T'(7)} is self-similar with exponent H = 1/ > 1. The sample paths
of {T()} are increasing almost surely (a.s). Since T(r) ¢ 7187 (1), where
i means equal in distribution, it follows that T(7) — oo in probability as
T — 00.

Assume that (R;) are i.i.d. R%valued random variables independent of
(T;) and let R; belong to the strict generalized domain of attraction of some
full operator stable law v. Then there exists a function B(c) invertible for
all ¢ > 0 and B(Ac¢) B(c)™' — A7 as ¢ — oo for any XA > 0, 7 being ad x d
matrix (real parts of eigenvalues of 1" are greater than or equal to 1/2),
such that B(n) Y 1, R; converges in distribution to Y as n — oo, where
Y has distribution v. Next, using the limit passage {B(c) Zztflj Ri}TZO as
¢ — 0o, we define the stochastic process {Y(7)} depending on the internal
time 7. The process has stationary independent increments with Y (0) = 0
a.s. Then {Y (1)} is continuous in law. Moreover, {Y (7)} is operator self-
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similar with exponent 7: {Y(c7)}r>0 fd. {c'Y(7)}r>0. The process is
called an operator Lévy motion [8]. If the exponent 7" = al is a constant
multiplied by the identity, then v is a stable law with index a = 1/a, and
{Y(7)} is a classical d-dimensional Lévy motion. In the particular case,
when a = 1/2, the process {Y (1)} is a d-dimensional Brownian motion.

Now we consider the limiting behavior of the counting process {N;}1>
mentioned above. It turns out that the scaling limit of this process is the
hitting time process for the Lévy motion {T'(x)};>0. This hitting time pro-
cess represents the true time evolution of the position vector of the walking
particle and is also self-similar with exponent 5. However, it is cardinally
different from {T'(z)},>0. The hitting time process S(t) = inf{z : T'(z) > ¢}
is well-defined and dependent on the true time ¢. Note that {S(t)};>0 is ac-
tually the inverse of the process {T'(x)}z>0. If T(z) < ¢ then T'(y) < ¢ for
all y > z sufficiently close to z, so that S(¢) > x. On the other hand, if
T(z) >t then T(y) >t for all y > z so that S(¢) < z. It is easily verified
that {S(t;) < z; for i = 1,...,m} = {T(z;) > t; for i = 1,...,m} holds
true for any 0 < ¢ < ... < ty, and z1,...,2,m > 0. Since {T(x)}z>0 is
strictly increasing, the process {S(¢)}s>0 is continuous and non-decreasing.
From the self-similarity of {T'(z)} it follows the same property for {S(¢)},
i.e. {S(ct)}i>o /. {c?S(t)}e>0 for any ¢ > 0. While {T'(z)},>0 is a Lévy
process, the inverse process {S(t)}¢>0 is no longer a Lévy process, neither
a Markov process, but it is a continuous submartingal, as shown in [10].

For a real valued random variable X let E[X] denote its expectation.
Collect important properties of the process {S(t)}:>0

o the process {S(t)}:>0 has neither stationary nor independent incre-
ments [8];

o S(t) L475(1);

o for any v > 0 the process {S(t)}s>0 has the finite y-moment E[S(t)7] =
C(B,7v)t%7, where C(f,7) is a positive finite constant [8];

o S(T(r)) =7 as. and T(S(t)) > t a.s,;

o the random variable S(¢) has the density

t 4 _
pt(iﬁ):Eiﬁ P gg (tiﬁ 1/ﬁ>,

where gg is the density of the process T'(7).

The fourth and fifth properties reflect the fact that {S(¢)} is the left-inverse
of the process {T'(x)}. If the probability density of {T(x)} has the index
B = 1/2, then the fifth property gives the normal law as a probability density
of {S(¢)}. The inverse process to the stochastic time evolution describes
the true time evolution of a walking particle. The hitting time S(t) =
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inf{z : T'(z) > t} is called also a first passage time. Really, for a fixed time
it represents the first passage of the stochastic time evolution above this
time level. The sample paths of {N;};>0 and {S(¢)};>0 are increasing. As
shown in [10,11], the random value S(¢) is connected with a Mittag—Leffler
distribution via E[e "] = S°°° (—vt®)"/T'(1 + np) = Eg(—vt?). This
confirms the third property in the special case where +y is a positive integer.

3. Anomalous diffusion

Let us investigate the relationship between the probability density of
the position vector #; of a walking particle at real time ¢ and the cou-
ple (Y(7),T(7)). The safe mathematical construction of the process 7, is
shown in [11]. The limit process #; = Y (S(¢)) is an operator Lévy motion
Y (7) subordinated to the hitting process S(t) of a classical stable subor-
dinator T'(7). We briefly recall that a subordinated process is obtained by
randomizing the time clock of a stationary process X (¢) using a new clock
U(t), where U(t) is a random process with nonnegative independent incre-
ments. The resulting process X (U(t)) is said to be subordinated to X (),
called the parent process, and is directed by U(t), called the directing pro-
cess. The directing process is often referred to as the randomized time or
operational time. In general, the subordinated process X (U(t)) can become
non-Markovian, though its parent process is Markovian. The process 7 is
a scaling limit of CTRW.

The new process {#; };>¢ subordinated to the Markov process {Y (7)}r>0
and directed by the randomized time process {S(t) }s>¢ is well defined. If the
processes {Y () },>0 and {T(7)}s>0 is uncoupled (i.e. independent on each
other), the probability density of #; with ¢ > 0 can be written as a weighted
integration over the internal time 7 so that

oo

PP (1) = / P (7. 8) S (t,7) dr, (1)
0

where pY (7, 2) represents the probability to find the parent process Y (7)
at & on operational time 7 and p°(t,7) is the probability to be at the op-
erational time 7 on real time ¢. The process Y (S(¢)) is self-similar with
index BT such that {Y(S(ct))}is0 =% {PTY(S(t))}is0 is for all ¢ > 0.
According to [8,9], the limiting process does not have stationary increments
and is not operator stable for any ¢ > 0. In Laplace space the prob-
ability density p™ (¢, &) takes the most simple form u?~'pY (u?, %), since

(o)
7% (u, 7) = uP1 exp(—uﬂr) and ﬁy(uﬁ,a_f) = pr(T,:if) exp(—uﬁr) dr.
0
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If the operator Lévy motion Y (7) on R? has the probability distribution
p (z,T), the linear operator TTf(x) = [ f(z —y)p(y,T)dy forms a convolu-
tion semigroup with generator L = lim, 10 YT, —Ty) [12]. Then the map-
ping q(z,7) = TTf(ac) solves the abstract Cauchy problem dq(z,7)/01 =
Lq(z,7) with the initial condition ¢(z,0) = f(z). The distinguishing fea-
ture of the process {Y ()} is that the generator L is time-independent. In all
other respects its exact form can be quite arbitrary. If {Y'(7)} is an a-stable
Lévy motion, the operator L is a multidimensional fractional derivative of or-
der « [13]. In general, for an operator Lévy motion it even represents a gener-
alized fractional derivative on R? whose order of differentiation can vary with
coordinate [14]. When the operator L acts on the Laplace image p™* (u, &) =
uP1pY (uP, @), we obtain [L"(u, &) = uf pt (u, @) — f(&)uP !, where
f(2) is the initial condition. The inverse Laplace transform of the latter
expression gives the abstract partial differential equation with the fractional
derivative of time:

t
(1, E) = (@) + ﬁ [0t L] e, @
0

The solution of (2) is directly connected with the solution of dpY (1, &) /0T =
LpY (r,&). The probability density p°(¢,7) is written as t‘ﬂFﬂ(z) with
z = 7/t?, and the function Fj(z) has the H-function representation

k

1-8.8))_x (=2)
(0,1) >_I§k!F(1—ﬁ—kﬁ)’

where I'(z) is the ordinary Gamma function. Then the probability density
p"t(t, &) is expressed in terms of the following integral relation

Fof) = Y (

p(48) = [ B £ (@) s, 3)
0

The formula is especially useful for the probability density p¥ (7, %), known
either in a closed form (for example, an harmonic potential in the standard
Fokker—Planck equation) or in the context of separation of variables. More-
over, each functional of such a solution can be obtained from the solution
by immediate integration, only if the functional exists. It should be noted
here that the probability density p(t,7) has finite moments of any order,
although the subordinator 7'(7) has not the property. The function Fz(z)
vanishes exponentially for large positive z and strictly positive on (0, 00).
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Now assume that the waiting time between jumps and the jumps sizes
are no more independent. The CTRWs are called coupled. Then the subor-
dination relation (1) takes a more general form

P (1, 8) = / P{Y(r) = &| S(t) = 7} pS(t,7) dr, (4)
0

where P{Y (1) = & | S(t) = 7} describes the conditional distribution be-
tween T'(7) and Y (7). Following the arguments of [9], the probability density

of {#;} is written as
oo t
://fu(iat_T)dTa (5)
0 0

where f,,(2,t) has the Fourier—Laplace transform

// (@R} o5t 1 (&, 1) dt dT = exp{—(k,s)}

R 0

well defined for all (k,s) € R? x Ry, and 1(k, s) is the log-characteristic
function of (Y, T). Recall that infinitely divisible distributions are just de-
termined by its log-characteristic function (Lévy-Khinchin formula). If Q is
a positive quadratic form on R%, (@,b) € R? x R, and ¢ is a Lévy measure
of (Y, T) on R? x R, /{(0,0)}, the log-characteristic function is

W(k,s) =i(@-k)+Q(k)+ / (1—ei<i"g>‘st+@> P(dz, dt).

RYx R /{(0,0)}

It should be pointed out that the log-characteristic function of an infinitely
divisible distribution is the symbol of pseudo-differential operator defined
by the generator of the corresponding convolution semigroup [12]. Thus, in
our notations we have

FL(iDy, 0) p™|(&,t) = (k. 5) FLP™](@,1). (6)

If ¢ does not grow too fast at infinite, the function 4 (iD,, d;) is pointwise
defined and can be extended to larger spaces of functions (or even distribu-

tions) [9]. Then we can write (5) in the form FL[p™|(&,t) = s 1 /y(k, s).
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The inverse Fourier-Laplace transform s%~1 gives the distribution &(z)t#/
I'(1—p), where 6(z) is the Dirac §-function. At last formally the expression
of the corresponding pseudo-differential equation can be written as

=B
r-p)

In fact, Eq. (2) is a particular case of (7), where 9(k,s) = (k) + sP.
However, the coupled model is more flexible for anomalous diffusion than
uncoupled one. As has been shown in [9], the effect of subordinating Y (1)
is to lighten the tail of p™(&,t) and slow the spreading rate, whereas in
the uncoupled case the subordinated process #; spreads slowly, but has the
same tail behavior as Y (7). Therefore, the uncoupled model behaves as
subdiffusion, and the coupled model can set also in anomalous superdiffusion.

$(iDg, 0y) p™ (%, 1) = 6(F) (7)

4. Anomalous relaxation

In a many-body system, the relaxation function is the self part of the
density autocorrelation function [3]. Within the framework of the one-body
picture, this function corresponds to the characteristic function G(t) of the
position vector r; of a walking particle at time ¢

-2 S(t)

Gi(t) = Elexp(ik -7,)] = E [exp <—k T)] , (8)

where k is the wave number. Therefore, we consider Gy(t) as the relax-
ation function. The frequency-domain response ¢*(w) is connected with the
relaxation function G (t) via the one-sided Fourier transform

o

¢ (w) =1 — iw / e” WG (t) dt. (9)

0

As is well known [15], the (dielectric) susceptibility x(w) is defined by the
formula:
¢* (w) = X(“’)i_xoo’
X0 — Xoo

where the constant y, represents the asymptotic value of x(w), and xo
is the value of the opposite limit. In the case of a normal random walk
these functions indicate the relaxation of Debye type exp(—t/7) with the
constant 7. The formula (3) under consideration of CTRWs leads to the
Cole—Cole relaxation with ¢f(w) = 1/(1 + (iAw)?), where A and a are
some constants. It should be noted that though the result first was obtained
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for one-dimensional CTRW model in [5, 6], it remains valid for the multidi-
mensional case and for non-normal distributions of space steps. Here it is
important for the waiting time between successive jumps and space jumps to
be independent of each other. When the condition is invalid, the relaxation
functions can be other types.

Consider a concrete coupled example [9], where the necessary calcula-
tions can be carried out completely. Let T" be a stable subordinator with
Laplace transform Ele *T] = exp(—s®), 0 < § < 1, and the conditional
distribution of Y | T' = ¢ is normal with mean zero and variance 2¢t. The
log-characteristic function of (Y, T') is given by

P(k,s) = (l_e'2 + 3)5

Next we use the result (6) and write the Fourier-Laplace image of the prob-
ability density of the process 7y = Y (S(t))

The inverse Laplace transform yields

t
I - Gl DY
ot = [ R "

2
Expanding exp(—k t) into a Taylor series and integrating (10) with respect

to u leads to
(o0}

I n 2\
Gk(t):;)%(—k?t) .

This model describes a coupled space-time diffusion having the same scaling
index as Brownian motion [9]. However, the relaxation response based on
the CTRW model is different of the exponential law typical for the ordinary
Brownian motion.

On the other hand, the Cole-Cole relaxation function is related to the
processes having the Mittag—Leffler distribution. Let Z,, denote the sum of
n independent random values with Mittag—Leffler distribution. Then the
Laplace transform of n~ /87, is (1 4+ s%/n)~", which tends to e’ asn
tends to infinity. This indicates the infinity divisibility of the Mittag—Leffler
distribution [16]. By virtue of the power asymptotic form (long tail) the
distribution with parameter 3 is attracted to the stable distribution with
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exponent 3, 0 < 8 < 1. The property of Mittag—Leffler distribution enables
one to develop a corresponding stochastic process. The stochastic process
(called Mittag—Leffler’s) is subordinated to a stable process by the directing
gamma process [16]. This directing process can be connected with channel
switching in such a system, where each channel develops as an independent
random process with the Mittag—Leffler distribution. The most of the the-
oretical models describing the relaxation response takes into consideration
a cooperative nature of the phenomenon (for example, the dipole—dipole in-
teraction and the interaction of different polar regions in conformity with
the dielectric relaxation) [1,2]. The Mittag—Leffler process after its substitu-
tion in (8) gives the relaxation function of the well-know Havriliak-Negami
empirical law. Thus, the Havriliak—-Negami relaxation response can be also
explained from the CTRW approach, if the hitting time process of a walk-
ing particle transforms into the Mittag—LefHer process. For that the hitting
time process has an appropriate distribution attracted to a stable distri-
bution. The subordination of the latter results just in the Mittag—Leffler
process. In this connection it should be mentioned that the Lévy process
subordinated by another Lévy one leads again to the Lévy process, but with
other index [12]. The more detailed analysis of the Mittag—Leffler process
as applied to the CTRW model will be considered in the future work.

As for the stretched-exponential form of the relaxation function [17], the
type of relaxation cannot be explained from the above CTRW models. The
appropriate random process must be other, namely the fractional Brownian
motion. A mean-zero Gaussian process {Bg(t),t > 0} is called fractional
Brownian motion, if

E[By(t) Bu(s)] = 1 {t*! + s*— |t — s "} E [By(1)?]

with 0 < H < 1. This process is self-similar with stationary increments,
but has independent increments only for H = 1/2 [18]. Using the Gaussian
property of the fractional Brownian motion, in the simplest case the charac-

teristic function of the process is written as Gi(t) = exp(—EQt2H). Within
the framework of the one-body picture we consider Gi(¢) as the relaxation
function. Thus, the fractional Brownian motion leads to the Kohlrausch law.

It is interesting to observe that the CTRW approach to anomalous re-
laxation in disordered systems does not assume an obligatory real travel of
areal particle. In particular, for the dielectric systems under a week external
electric field the active dipoles change their direction during the relaxation
dynamics so that the macroscopic effect is defined by the resulting polariza-
tion vector. This vector can be imagined as a position vector of a “virtual”
traveling particle toward that end to apply an appropriate CTRW model.
The arguments support the wide application of CTRW models to relaxing
processes.
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5. Summary and discussion

In the light of the latest achievements the CTRW approach has extended
appreciably its potentialities. It suggests to describe anomalous diffusion and
anomalous relaxation in terms of subordinated random processes so that the
index of the original Markov parent process is randomized by continuous, in-
creasing and non-Markovian process, which is the inverse to a totally skewed,
strictly Lévy process. The new process represents the limit process general-
izing “discrete steps” of the CTRW to “continuous steps”. The randomized
time clock shows both small and large periods of resting in jumps of the
stochastic time evolution occur with no finite mean. This reflects the ab-
sence of a characteristic time scale typical for the ordinary relaxation and
diffusion. The anomalous behavior originates from the slowly decaying and
self-similar distribution of the stochastic time evolution.

The coupled and uncoupled models of the CTRW describe different pro-
cesses of relaxation and diffusion. So, the relaxation function in the un-
coupled CTRW model has the Cole—Cole type, whereas the coupled CTRW
model gives rise to a more general law. The models and their modifications
allow one to obtain many well-know empirical functions fitted for experi-
mental data of relaxation and diffusive phenomena. This emphasizes the
universality of the CTRW approach. It should be also noted here the other
universal approach to anomalous relaxation, suggested in [19-21]. It pro-
ceeds from the randomization of parameters of distributions that describes
the relaxation rates in disordered systems. Although the point of view is
enough close to ours in this paper, there are differences. Their comparison
will be carried out elsewhere.

I am very grateful to Prof. K. Weron from the Wroclaw University of
Technology (Poland) and the referee for their useful comments.
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