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3662 F.J. de la Rubia et al.1. IntrodutionThe e�et of noise on the behavior of a system has been an importanttopi of interest for many years. However, the pereption of the role of noisehas hanged in the last deades, and it has evolved from the traditional ideathat the noise is a nuisane, something to be avoided and distorting thedesirable regular behavior of the system, to the modern view of noise be-ing an important ingredient in its evolution, allowing the system to exploreand hoose among many possibilities. Moreover, nowadays it is reognizedthat the noise may play an ordering role, enhaning the response to anexternal signal, leading the system to new phases, or reating and main-taining spatial patterns, for example. This new and somehow unexpetednoise-indued order may have important impliations in several branhesof Physis, Chemistry and Biology, and is a subjet of a very produtiveativity.In this paper we review some results that learly show several of thenoise-indued e�ets mentioned above. Our aim is just to present a fewrelevant examples of the onstrutive role of noise, without intending todisuss all the important results in this �eld or to inlude an exhaustivebibliography. For the sake of oniseness, we will skip many tehnial detailsin our presentation, and diret the interested reader to the referenes.2. Loalization enhaned by olored noiseOne of the most popular topis in the last deade is that of StohastiResonane (SR). In its most popular assertion, SR is normally understoodto be the phenomenon by whih an additive noise (usually onsidered un-orrelated) an enhane the oherent response of a periodially driven sub-threshold nonlinear system. First proposed in limate model studies [1℄,SR has been predited and observed in many di�erent theoretial and ex-perimental systems (see [2℄ for an extensive review, and [3℄ for some reentexperimental results). Besides the indiated lassial ombination �nonlin-ear system, additive white noise and periodi external fore�, SR an alsoour in systems with very di�erent harateristis, e.g., systems with aperi-odi foring, autonomous systems without external periodi foring but withintrinsi periodiity (limit yle), systems with multipliative noise or per-turbed by olored noise (orrelated noise), arrays of osillators, or systemswith time delay. Also reently the ase of periodially driven systems withmultipliative olored noise has been onsidered, analyzing not only the ef-fet of the noise intensity (the only parameter when onsidering white noise),but also that of the orrelation time of the noise on the SR phenomenon.



Flutuations in Nonlinear Systems: a Short Review 3663In this setion we onsider a system without periodi external foring,but with an intrinsi osillatory behavior (limit yle) and perturbed by amultipliative olored noise. We will fous on the e�et of the orrelationtime of the noise on the behavior of the system [4℄.The system is the well known Sel'kov model for glyolysis [5℄_x = �x+ �ty + x2y ;_y = b� �ty � x2y : (1)We will onsider the ontrol parameter as a random variable �t = �+ �t,i.e., as a deterministi part �, plus an stohasti perturbation �t, whih isassumed to be an OU proess, i.e., a stationary Gaussian Markov noise withzero mean, h�ti = 0, and exponential orrelationh�t�t0i = (D=�) exp �� ��t� t0�� =�� ;where � is the orrelation time and D=� = �2 is the variane of the noise.We will refer to the square root of the variane, �, as the intensity of thenoise. It is a simple exerise to show that for a ertain range of values of theparameter b, the deterministi ounterpart of (1) undergoes a superritialHopf bifuration at � � �H, and, therefore, the system shows sustainedosillations.In order to analyze the evolution of the system we numerially inte-grate (1) with � in the limit yle parameter domain. A good indiator ofthe behavior of the system is the Residene Times Distribution Funtion(RTDF) over the phase spae (i.e., the distribution of the system on thedi�erent available attrators) that tells you where and how long has beenthe system [2℄.To do that, we onsider a deterministi attrator �(�), i.e., the attratorobtained with the deterministi ounterpart of the stohasti system, eval-uated at a partiular value of the ontrol parameter, �. Next, we dividethe system phase spae in N + 1 attrators assoiated with N + 1 values ofthe parameter separated a distane ��. In this way, a mesh is omposedby onentri deterministi attrators entered around the stationary equi-librium state (x�; y�) j���H , with � in the �xed point domain. With thisonstrution, we have a series of N + 1 attratorsf�(�N=2�) : : : �(�1�); �(�0); �(�1+) : : : �(�N=2+)g;where we use the de�nition �k� � � � k��. This series divides the phasespae in N rings, eah one denoted by � (k) � (�(�k); �(�k+1)), wherek � (�k+1 + �k) =2 is the mean ontrol parameter obtained with the ontrolparameters that de�ne the boundary of the ring. The stohasti system is



3664 F.J. de la Rubia et al.integrated on this mesh, and its evolution desribes random trajetories,visiting during a �nite time eah ring of the mesh. During the integrationproess we measure the residene time in the rings as follows: let tk1 and tk2be the entrane and exit times to the ring � (k), respetively. The residenetime in this ring is t(k) = tk2 � tk1 , and we denote the residene time of then visit event to the ring � (k) by tn(k). Then, if during an integrationtime I, whih is ahieved by integrating R realizations of M time steps,there have been Vk visit events to the ring � (k), the mean residene timeof the system in this ring is given by the mean of the residene events,that is, T (� (k)) �PVkn=1 tn(k)I : Therefore, given a pair (�; �), the funtionde�ned by the histogram P (T ) � P (T (k)) � P (T (� (k))�� ) is a measure ofthe probability density for the system state to be in the region de�ned bythe ring � (k) . This numerial proedure shows that the system mostlyvisits the attrators surrounding the ring � (h�ti). We remark that for ourstudy we have arefully seleted the simulation parameters to ensure thatthe phase spae partition does not ontain overlapped attrators suh thatthis has a well de�ned meaning. In partiular h�ti and � are seleted insuh a way that under a �utuation of 3� the system trajetories remainin the region of nonoverlapped attrators. An illustrative example of theresidene times density funtion (RTDF) as a funtion of the orrelationtime is depited in Fig. 1.

Fig. 1. The RTDF for Eq. (1) with � = 0:123 and � = 5� 10�4. The inset plotsshow the height and width behavior.As an be seen from Fig. 1, the loalization of the system trajetoriesdepends strongly on � . The RTDF height shows a nonmonotonous behaviorreahing a maximum at a partiular value of � � �� and, at the same value,the width W alulated at the height h=pe shows a remarkable minimum,



Flutuations in Nonlinear Systems: a Short Review 3665as represented in the inset urves. As a onsequene the orrelation timeof the parametri random perturbation ats as a tuner whih ontrols (in astatistial sense) the behavior of the system, maximizing its loalization onthe region of the phase spae surrounding h�ti. Furthermore, the relationh=W (whih is essentially the quality fator of the RTDF) has a maximumfor a partiular value of � , and this optimal value depends on � = h�ti, asan be appreiated in Fig. 2. The behavior shown is a lear indiation of a� -indued SR phenomenon losely related to the loalization enhanement.
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Fig. 2. h=W (the quality fator of the RTDF) versus � . The di�erent urves are(from bottom to top) for inreasing values of �, as indiated by the vertial arrow.The resonane-like behavior inreases when moving into the osillatory region.To relate the optimal orrelation time for maximal loalization, ��, withthe temporal sales of the deterministi ounterparts we �rst study the be-havior of the postponement of the bifuration point beause of the multi-pliative noise in order to obtain the postponed bifuration point ��H(�; �)[6℄.We next alulate the e�etive distane to the bifuration point ��� =j� � ��Hj, and measure from the deterministi temporal series the period,T �, of the osillations when the system is evaluated at a distane ��� fromthe deterministi bifuration point. With this information, we alulate thequantity �T � � jT �� T (�H)j, where T (�H) is the period of the determinis-ti system at preisely the Hopf bifuration point and obtain the followingrelation between �� and �T � �� � (�T �)� (2)with � = �0:58.It is worth pointing out that, from the behavior of the quantity h=Wdepited in Fig. 2 for the RTDF, it is lear that a onentration of orbits



3666 F.J. de la Rubia et al.around a narrow range of bands in the phase spae implies a bigger weightof those partiular frequenies in the power spetrum of the system, and, asa onsequene, a nonmonotonous behavior qualitatively similar to that ofFig. 2 should be expeted for the quality fator, �, of the power spetrum,indiating an inrease of the oherene in the system response [7℄. This isindeed the ase for our model (with a power spetrum quality fator showinga maximum for a value of the orrelation time lose to ��).It is important to mention that a qualitatively similar result an also beobtained for other systems with di�erent nonlinearities and harateristis[4, 8℄, all of them showing the same e�et of enhaned loalization of orbitsmediated by the orrelation time of the multipliative noise. In all ases thee�et is haraterized by a power law with exponent lose to �1=2 indiatingthe possible universal harater of this phenomenon.3. Stohasti branh seletion at seondary bifurationsThe evolution of an atual nonlinear system ours through bifurationsthat take plae at ertain values of the ontrol parameter. In many situa-tions, a deterministi analysis an not give a omplete piture of the behaviorof the system. The assumption of deterministi, �xed values of the ontrolparameter is di�ult to maintain, and it seems more reasonable to onsiderit as a random parameter.In that ase, the fat that the stohasti system an explore more dy-namial situations (as the ontrol parameter hanges in time) may introduesigni�ative hanges in its temporal evolution. Desriptions based only onstati properties (like stationary distributions [9℄) an not give a ompletepiture of the behavior, and a dynamial desription is neessary. In quitegeneral ases, that more omplete desription an be obtained by the qual-itative theory of stohasti systems [10℄, based on ontrol theory, and thestudy of Lyapunov exponents [11℄ or, when it is possible, by the knowl-edge of the �rst passage times statistis (as it happens when the stohastiperturbation is dihotomous [12℄).In the study of the behavior of a stohasti system lose to a bifurationpoint, two assumptions are usually made: the random ontrol parameter isGaussian (therefore taking values in the whole interval [�1;+1℄), and thesystem is onsidered lose to its �rst bifuration. However, in importantsituations neither of those assumptions are orret or interesting. First, insome ases the ontrol parameter must be bounded, i.e., taking values in a�nite interval, by de�nition (a partiularly larifying example is the qualityfator in prebioti evolution [13℄, that must take values in the interval [0; 1℄)or by physial arguments (small variations of temperature, for instane). Itis known that the behavior of systems perturbed by bounded noise is quite



Flutuations in Nonlinear Systems: a Short Review 3667di�erent, not only from that of the unperturbed, deterministi situation,but also from the stohasti ase with Gaussian perturbations. E�ets likedisappearane of stationary solutions, slowing down, bistability and randomsymmetry breaking are known to our [14℄, and produe substantial hangesin the asymptoti behavior (see [12℄ for a omplete analytial desription ofone dimensional systems perturbed by dihotomous noise).On the other hand, the behavior of the system at seondary and higherbifurations is fundamental in the evolution towards more omplex stru-tures. From the point of view of the geometry of the bifuration diagram,there is an apparently trivial, but with important impliations, di�erenebetween primary and higher order bifurations. While for the former thesystem approahes the bifuration point through an horizontal straight lineof steady states, in the latter ase it passes the bifuration point followinga tilted line, as shown qualitatively in Fig. 3. There is, therefore, a lak ofsymmetry at higher order bifurations. As we will see, this will be a ruialfator to understand the asymptoti behavior of the system.
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Fig. 3. Shemati view of a deterministi bifuration diagram, showing one primaryand two seondary bifurations (within the irle). The symbols p and t indiatepithfork and transritial, respetively.In this setion we will disuss the temporal evolution of one-dimensionalsimple systems with bounded stohasti ontrol parameter, passing throughtwo paradigmati bifurations that usually ome together in high order bi-furations: pithfork and transritial (see Fig. 3). To be preise, for theanalytial disussion the bounded noise will be a dihotomous proess, whilethe numerial simulations that will illustrate the behavior will be made witha ontinuous bounded noise.Let us �rst onsider the deterministi equation_x = �(�t � x2)(�t � kx) (3)as an example of a system undergoing bifurations without horizontalbranhes. To �x ideas we hoose k > 0, and with this, the straight branh



3668 F.J. de la Rubia et al.has a positive slope. Two loal bifurations our at the values �1 = 0(pithfork) and �2 = k2 (transritial).We now suppose that the bifuration parameter � is perturbed by asymmetri dihotomous noise, �t, around its mean value�t = �+ �t : (4)In this way, �t an only take two possible values: ��� alternatively, withthe time between swithes governed by the distribution � (t) = � exp (��t).The average residene time in eah of the two states is 1=�, whereas theorrelation time of the noise is given by � = 1=2�.The dynamis of this model is the stohasti mixture of two determin-isti autonomous systems governed by the equation (3) when the ontrolparameter takes one of its two possible values � � �. We will all F� thetwo fores ating on the system, i.e., the right hand side of (3) for �t = +�and �t = ��, respetively. The asymptoti analysis may be arried out bylooking at the �rst passage and sojourn times statistis for intervals betweentwo suessive zeroes of the orresponding fores F� (see [12℄ for the teh-nial details). If a and b are the extremes of suh an interval, the Laplaetransform of the �rst passage times distributions are [12℄~f+b (sjx0) = e�(�+s)T+(x0!b) + � bZx0 dx1F+(x1)e�(�+s)T+(x0!x1) ~f�b (sjx1) ; (5)~f�b (sjx0) = �� x0Za dx1F�(x1)e�(�+s)T�(x0!x1) ~f+b (sjx1) ; (6)where f�a;b(tjx0)dt are the probabilities of �rst reahing, in the time interval(t; t+dt), the boundary a or b starting at x0 2 [a; b℄, and taking into aountthe initial value of the noise ��. The quantitiesT�(x! y) = yZx dx0F�(x0) (7)are the times to go from x to y under the orresponding fore.Equations for the other two distributions an be obtained from (5) and (6)by swithing simultaneously b to a and + to �. The qualitative behavior ofthe system an be dedued from the zeroth order moments (the esape prob-abilities) of the distributions, while the �rst moments give us an indiationof the harateristi times in whih the system evolves.



Flutuations in Nonlinear Systems: a Short Review 3669The result of the analysis allows us to draw the stohasti bifurationdiagram (that depends on the interval of variation of the ontrol parameter)and disuss the asymptoti behavior of the system [12℄. For our simple modelthis an be qualitatively visualized in the stohasti bifuration diagram ofFig. 4, orresponding to a perturbation of small amplitude, i.e., � < � =12(�2 � �1).
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Fig. 4. Stohasti bifuration diagram, orresponding to Eq. (3) with boundednoise. The arrows indiate the diretion of the �ow (see the text for an explanationof the meaning of the di�erent regions).The interpretation of this bifuration diagram is as follows: for a �xedvalue of the mean of the bifuration parameter �, and in the limit t ! 1,the trajetories will be on�ned between the thik lines (whih are portionsof the urves F+ = 0 and F� = 0). Projetion of the intervals between thesethik lines onto the y axis gives the exat support region of the orrespond-ing stationary probability distribution. The arrows indiate the behaviordepending on the initial onditions (the diretion of the stohasti �ow),and the �lled regions denote bistability areas, in the sense that a trajetorystarting in any of these areas will leave it, with probability one, by rossingone of the boundaries. If the upper boundary is rossed, the trajetory willreah the upper stationary region (whih is an invariant set). If the otherboundary is rossed, the trajetory will reah the lower stationary (invari-ant) region. Notie that, due to the bounded harater of the noise, the twoinvariant sets are not onneted, and jumps between the two regions are notpermitted. This last behavior, that is reovered when onsidering a Gaus-sian noise, would be the onsequene of the existene of a unique, bimodal,stationary probability distribution, whereas in the present ase there areatually two di�erent stationary probability distributions with unonnetedsupports. Finally, dotted lines are not part of the bifuration diagram, butare inluded to indiate regions in whih some delay ours, i.e., regions



3670 F.J. de la Rubia et al.in whih trajetories move bak and forth for some time but they end upesaping, with probability one, in the diretion indiated by the arrows.The main onlusions that an be dedued from this qualitative pitureunder these onditions, are: (i) the noise fores the system to hoose, forany initial ondition and with probability one, only one of the branhesin a pithfork bifuration, depending on the slope of the line of stationarystates rossing the bifuration point; (ii) the noise, again for any initialondition and with probability one, drives the system away from the regionaround a transritial bifuration. In other words, the noise drives the systemdeterministially through suessive bifurations.It should be remarked that the qualitative behavior disussed above doesnot hange if instead of a dihotomous noise, one onsiders a ontinuousdi�usion-like proess taking values in a bounded interval, although the quan-titative properties may be impossible to alulate analytially. Moreover,other situations an be observed if the interval of variation of the ontrolparameter hanges, and, for example, the bistability regions may disappearif the interval beomes big enough to over the two loal bifuration points.We will not disuss these possibilities any further.To end up this setion, and to illustrate the temporal evolution of thesystem, in Fig. 5 we show the result of a numerial simulation of our modelwith the ontrol parameter perturbed by a bounded, symmetri and ontin-uous noise. In Fig. 5(a) the system passes through two suessive pithforkbifurations, whereas Fig. 5(b) depits the very fast esape of the systemfrom the region around a transritial bifuration.
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Fig. 5. Numerial simulation of the system passing through two pithfork bifura-tions (a), and a transritial bifuration (b).



Flutuations in Nonlinear Systems: a Short Review 36714. Noise in spatially extended systemsThe systems onsidered in the preeding setions had in ommon thatthey were homogeneous. When onsidering spatially extended systems,many more possibilities may appear due to the spatial ouplings in thesystem. In partiular, the ombination of spatial oupling and noise mayamplify and extend in time a short time noise-indued instability, leadingto a diversity of phenomena, suh as, for instane, �rst and seond orderphase transitions, noise-indued ordered phases, and ordered spatial stru-tures [15, 16℄. In the ontext of the present paper, we will onentrate onthe appearane of order/disorder phase transitions and on spatial patternformation. 4.1. Noise-indued phase transitionsTo begin with, we onsider the time-dependent Ginzburg�Landau model(GL), well known in the theory of equilibrium ritial phenomena. To mimirandom quenhed impurities, whih play an important role in the physi-al properties of many systems, and , at the same time, to have a systemamenable to analytial study, we perturb the ontrol parameter of the orig-inal GL model by a dihotomous stohasti proess with in�nite orrelationtime. If f ig is a salar �eld de�ned on a d-dimensional square lattie, thetime dependent GL model with dihotomous quenhed impurities is givenby the following dimensionless Langevin equation [17℄�t i = (�+ �i) i �  3i + D2dXhjii ( j �  i) + �i ; (8)where the sum runs over the 2d nearest neighbors of site i, and �i are Gaus-sian white noises with zero mean and orrelation
�i(t)�j(t0)� = ÆijÆ(t� t0) : (9)The quenhed multipliative noises �i, that represent impurities in thesystem, are Markovian dihotomous proesses spatially unorrelated andwith in�nite orrelation time. The probability density of the impurities isP (�i) = p+Æ (�i ��) + p�Æ (�i +�) ; (10)where � denotes the intensity of the multipliative noise. Note that, whenreferring to the impurities, the terms probability and proportion an be ex-hanged in the thermodynami limit, sine then p� is equal to the proportionof �� impurities.



3672 F.J. de la Rubia et al.The Eq. (8) an also be desribed in terms of a loal potential at eahsite given by V ( i; �i) = �(�+ �i)2  2i +  4i4 : (11)The sign of the quadrati term of the potential determines the loaldynamis at eah site. If (�+ �i) < 0, we have a single well potential witha single equilibrium point at  i = 0. On the other hand, if (�+ �i) > 0, thestate  i = 0 beomes unstable and V ( i; �i) is a double well potential withtwo symmetri stable points at  i = �p�+ �i.To have an idea of the phase diagram of the model, we use a Weiss mean�eld approximation for spatially extended systems [16℄. Replaing, in thedi�usive term, the �eld at the nearest neighbors by the mean value, h i,we an drop the lattie index and write down the following equation for thetemporal evolution of the �eld at a generi site�t = (�+ �) �  3 +D (h i �  ) + � ; (12)where � is a random variable with a probability distribution given by (10).This equation is equivalent to the system�t � = (���) � �  3� +D (h i �  �) + � ; (13)where  � is the �eld at a site where � = ��.Equation (12) is not a losed evolution equation for the stohasti pro-ess  , but it an be easily solved in the stationary regime with h i as aparameter. The stationary solution readsPst ( ; h i) = p+P+st ( ; h i) + p�P�st ( ; h i) ; (14)where P�st ( ; h i) are the stationary probability densities for the two dy-namis de�ned by (13). These probability densities areP�st ( ; h i) = N�e�2[V ( ;��)+D ( �h i)℄ ; (15)where the potential V ( ; �) is de�ned in (11) and N� are normalizationonstants.Finally, the following self-onsistent ondition must be ful�lledh i = Z<  Pst ( ; h i) d : (16)This equation has h i = 0 as a solution for any value of the parame-ters. This solution is alled the disordered phase. However, non symmetri



Flutuations in Nonlinear Systems: a Short Review 3673solutions exist in some regions of the spae of parameters. These solutionswith h i 6= 0 are alled ordered phases. A phase transition ours when thesystem is driven from a region with only the symmetri solution to a regionwith ordered phases.Aording to the mean �eld theory, phase transitions our at thosevalues of the parameters satisfying the onditionZ<  �Pst ( ; h i)� h i ����h i=0 d = 2D Z<  2Pst ( ; 0) d = 1 : (17)In order to disuss the phase diagram in the plane (�;D) given byEq. (17), we must distinguish two ases: � < 0 and � > 0.For � negative and � < j�j, it is obvious that no ordered phase an exist,sine  = 0 is stable in the two possible loal potentials (11). On the otherhand, if � > j�j a fration p+ of sites feels a double well potential and then,for strong enough oupling D, an ordered phase may appear. In Fig. 6 weplot the phase diagram for � = �0:75 and several values of p+. Note that,
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p+ = 0.9Fig. 6. Phase diagram for � = �0:75 and di�erent values of p+. The orderedregions are loated to the right of the phase boundaries. The possibility of DODreentrant phase transitions depends on the values of p+.below a ertain value of p+, a reentrant transition disorder-order-disorder(DOD) with the oupling appears. That is, by ontinuously inreasing theoupling we an �rst drive the system from a disordered to an ordered stateand then bak to a disordered state. This reentrant phenomenon is alwayspresent in the system below that ritial value of p+. Note that by dereasingp+ the ordered phase shifts to the right, due to the fat that the fration of



3674 F.J. de la Rubia et al.double well loal potentials dereases and then these potentials have to bedeeper, i.e., � must be larger, in order to keep stable the ordered phase.For � > 0, we have two possibilities. If � < �, every site feels a doublewell potential and therefore an ordered phase appears for a given valueof the oupling. On the other hand, if � > � the ompetition betweenthe two dynamis produes new transitions depending on the value of p+.Fig. 7 shows the phase boundaries for � = 0:75. There is a topologialhange around p+ = 0:22: below this value, the region of disordered statesis onneted and the region of ordered states is disonneted (see for instanethe urve for p+ = 0:2, whereas above p+ = 0:22 it is the other way around(see p+ = 0:225). Note that in this ase there are two kinds of reentrantphase transitions: the one desribed previously (DOD) and a new one order-disorder-order (ODO) inreasing the noise intensity �. This new reentrantphase transition appears above a given value of the oupling.
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Fig. 7. Phase diagram for � = �0:75 and di�erent values of p+. Two distintreentrant phase transitions, DOD and ODO, are indiated by the arrows.The behavior of the order parameter, m = jh ij, is depited in Fig. 8 asa funtion of D for the DOD transition (a), and as a funtion of � for theODO transition (b).It is important to stress that the approximate mean �eld analysis pre-sented above is qualitatively on�rmed by preise omputer simulations ofa two-dimensional version of the original model (8), whih, on the otherhand, allow us to loate the position of the ritial points and study thedependene of the order parameter and the suseptibility with the size ofthe system [17℄. Fig. 9 depits the result of a numerial simulation of the�eld, learly showing the ODO by inreasing the noise strength �.
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Fig. 8. Behavior of the order parameter: (a) as a funtion of D(p+=0:3; �=�0:75,� = 4) for a DOD reentrant transition; (b) as a funtion of � (p+ = 0:2, � = 0:75,D = 4) for an ODO reentrant transition.4.2. Pattern formationThe ordering or disordering e�et of additive and multipliative noiseon the formation and stability of spatially ordered strutures in di�erentsystems has attrated muh interest in the last deade [15℄. In partiular, forthe Swift�Hohenberg equation (a model to desribe the onset of Rayleigh�Bénard onvetion), it has been shown that the presene of a multipliativenoise in the ontrol parameter may advane the appearane of patterns.However, in this and other models the existene of patterns is already inthe deterministi version of the equations, and it is interesting to ask for thepossibility of having pure noise-indued patterns, i.e., a stohasti systemwith patterns that are not present in the deterministi situation.To study that possibility we take the following equation [18, 19℄�'�t = �' �1 + '2�2�D �r2 + k20�'+ �1 + '2� � ; (18)where ' (r; t) is a salar �eld taking values in a d dimensional spae, thespatial oupling is of the Swift�Hohenberg type, and � is a noise, white inspae and time, with the propertiesh�i(t)i = 0 h�i(t)�j(t0)i = �2Æi;jÆ(t� t0) : (19)The dispersion relation related to the oupling operator L=�D �r2+k20�,when applied to a plane wave, isLeikr = ! (k) eikr = h�D �k20 � k2�2i eikr (20)with k0 as the most unstable mode. It is easy to show that if we set � = a,a onstant, non stohasti value, the homogeneous solution is the uniquesteady state of (18).
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Fig. 9. Stationary values of the �eld for inreasing values of �, from (a) to (f),showing an ODO phase transition.To obtain information on the behavior of the stohasti system, a mean�eld analysis an be performed on a disretized version of (18) on a d-dimensional lattie with lattie spaing �x [18℄. Considering a spei� site'i = ' (and �i = �), and replaing the value of the salar variable 'j at thesites oupled to 'i by a non-uniform average �eld'j = h'i os �k � (r � r0)� : (21)The equation for 'i takes on the following simple form_'i = �'i �1 + '2i �2 + �1 + '2i � � +D!(k)'i �De�('i � h'i) (22)



Flutuations in Nonlinear Systems: a Short Review 3677with ! (k) = �D k20 � 2d�x2 + 2�x2 dXi=1 os (�xki)!2 (23)and De� = D "� 2d�x2 � k20�2 + 2d�x4 + !(k)# : (24)Notie that h'i now plays the role of the amplitude of the spatial pat-terns, and that if �x � 1 the dispersion relation (23) redues to the on-tinuous ase ! (k) = �D �k20 � k2�2.Applying now the standard tehniques of the mean �eld theory [16℄, wemay obtain the points in theD versus �2 plane at whih a partiular k-vetorbeomes unstable. Fig. 10 depits the phase diagram for a two-dimensionalsystem and for some partiular hoies of the parameters.
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Fig. 10. Phase diagram obtained by a mean �eld analysis with k0 = �x = 1.The di�erent urves are for distint values of the wave vetor k (inreasing fromtop to bottom). The solid line orresponds to the most unstable mode, suh that! (k) = 0.The system shows patterns in the regions above the urves, and it anbe seen that, for a �xed value of D, and inreasing the intensity of the noisethe system goes from an homogeneous state to a spatial pattern situation.This spatially ordered state is destroyed by another transition that happenswhen the noise intensity is big enough, although this �nal state is di�er-ent from the one orresponding to small noise, sine now many modes aredestabilized. Fig. 11 shows the result of a numerial simulation of (18) on atwo-dimensional lattie, illustrating the noise-indued patterns.
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Fig. 11. Numerial simulation of a two-dimensional version of Eq. (18), showingthe noise-indued patterns. The values of the parameters are k0 = �x = 1, D = 15,and �2 = 10.At this point it is worth pointing out that the nonlinearities of the modelare not ruial for the existene of a phase transition in our model, as it anbe shown that in the limit D !1, the phase transition ours at the pointwhere the oe�ient of the linear term, inluding the noise ontributionresulting from the Stratonovih interpretation, vanishes [16℄.Finally, it is interesting to mention that a novel mehanism for patternformation, in systems with alternating dynamis, has been reently proposed[20℄, opening new possibilities in this important �eld.5. ConlusionsIn this paper we have presented several examples showing onvining ev-idene of the onstrutive role of noise. As illustrated in the quite di�erentases onsidered, the noise may lead to a better loalization of orbits in pe-riodi systems, drive the system almost deterministially through suessivebifurations, and promote ordered phases and spatial patterns not present inthe deterministi ounterpart. It seems lear that one should get rid of theidea that the presene of noise in nonlinear systems is merely a disturbaneover a onvenient regular (deterministi) behavior. The evolution of atualnonlinear systems should be onsidered as a ombination of deterministilaws and �utuations.This work has been supported by Direión General de Investigaión(Spain) Projet No. BFM2001-0291. JB also aknowledges �nanial supportby MECD (Spain) Grant No. EX2001-02880680.
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