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1. Introduction

The effect of noise on the behavior of a system has been an important
topic of interest for many years. However, the perception of the role of noise
has changed in the last decades, and it has evolved from the traditional idea
that the noise is a nuisance, something to be avoided and distorting the
desirable regular behavior of the system, to the modern view of noise be-
ing an important ingredient in its evolution, allowing the system to explore
and choose among many possibilities. Moreover, nowadays it is recognized
that the noise may play an ordering role, enhancing the response to an
external signal, leading the system to new phases, or creating and main-
taining spatial patterns, for example. This new and somehow unexpected
noise-induced order may have important implications in several branches
of Physics, Chemistry and Biology, and is a subject of a very productive
activity.

In this paper we review some results that clearly show several of the
noise-induced effects mentioned above. Our aim is just to present a few
relevant examples of the constructive role of noise, without intending to
discuss all the important results in this field or to include an exhaustive
bibliography. For the sake of conciseness, we will skip many technical details
in our presentation, and direct the interested reader to the references.

2. Localization enhanced by colored noise

One of the most popular topics in the last decade is that of Stochastic
Resonance (SR). In its most popular assertion, SR is normally understood
to be the phenomenon by which an additive noise (usually considered un-
correlated) can enhance the coherent response of a periodically driven sub-
threshold nonlinear system. First proposed in climate model studies [1],
SR has been predicted and observed in many different theoretical and ex-
perimental systems (see [2] for an extensive review, and [3]| for some recent
experimental results). Besides the indicated classical combination “nonlin-
ear system, additive white noise and periodic external force”, SR can also
occur in systems with very different characteristics, e.g., systems with aperi-
odic forcing, autonomous systems without external periodic forcing but with
intrinsic periodicity (limit cycle), systems with multiplicative noise or per-
turbed by colored noise (correlated noise), arrays of oscillators, or systems
with time delay. Also recently the case of periodically driven systems with
multiplicative colored noise has been considered, analyzing not only the ef-
fect of the noise intensity (the only parameter when considering white noise),
but also that of the correlation time of the noise on the SR phenomenon.
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In this section we consider a system without periodic external forcing,
but with an intrinsic oscillatory behavior (limit cycle) and perturbed by a
multiplicative colored noise. We will focus on the effect of the correlation
time of the noise on the behavior of the system [4].

The system is the well known Sel’kov model for glycolysis [5]

= —z+ My + 22y,
g =b—dwy—a"y. (1)

We will consider the control parameter as a random variable Ay = A+ (;,
1.€., as a deterministic part A, plus an stochastic perturbation (;, which is
assumed to be an OU process, i.e., a stationary Gaussian Markov noise with
zero mean, ((;) = 0, and exponential correlation

(Cw) = (D/T)exp (= |t —=t'| /7)),

where 7 is the correlation time and D/7 = o2 is the variance of the noise.
We will refer to the square root of the variance, o, as the intensity of the
noise. It is a simple exercise to show that for a certain range of values of the
parameter b, the deterministic counterpart of (1) undergoes a supercritical
Hopf bifurcation at A = Ag, and, therefore, the system shows sustained
oscillations.

In order to analyze the evolution of the system we numerically inte-
grate (1) with A in the limit cycle parameter domain. A good indicator of
the behavior of the system is the Residence Times Distribution Function
(RTDF) over the phase space (i.e., the distribution of the system on the
different available attractors) that tells you where and how long has been
the system [2].

To do that, we consider a deterministic attractor A(\), i.e., the attractor
obtained with the deterministic counterpart of the stochastic system, eval-
uated at a particular value of the control parameter, A\. Next, we divide
the system phase space in N + 1 attractors associated with N 4 1 values of
the parameter separated a distance AMX. In this way, a mesh is composed
by concentric deterministic attractors centered around the stationary equi-
librium state (z*,4*) |a~ay, With X in the fixed point domain. With this
construction, we have a series of N + 1 attractors

{AQN/2-) - AX), AN), AL ) - A2, )}

where we use the definition Ay = A + kAN, This series divides the phase
space in N rings, each one denoted by I'(vx) = (A(A), A(Ak+1)), where
Yk = (Ak+1 + k) /2 is the mean control parameter obtained with the control
parameters that define the boundary of the ring. The stochastic system is
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integrated on this mesh, and its evolution describes random trajectories,
visiting during a finite time each ring of the mesh. During the integration
process we measure the residence time in the rings as follows: let ¥ and ¢4
be the entrance and exit times to the ring I'(7;), respectively. The residence
time in this ring is #(y;) = t5 — #¥, and we denote the residence time of the
n visit event to the ring I'(yx) by tn(v%). Then, if during an integration
time I, which is achieved by integrating R realizations of M time steps,
there have been Vj, visit events to the ring I'(7), the mean residence time
of the system in this ring is given by the mean of the residence events,

that is, T(I'(yx)) = ZX’“Zl M Therefore, given a pair (o, 7), the function
defined by the histogram P(T) = P(T(v)) = P(W) is a measure of
the probability density for the system state to be in the region defined by
the ring I'(vy,) . This numerical procedure shows that the system mostly
visits the attractors surrounding the ring I'({(\;)). We remark that for our
study we have carefully selected the simulation parameters to ensure that
the phase space partition does not contain overlapped attractors such that
this has a well defined meaning. In particular (\;) and o are selected in
such a way that under a fluctuation of 30 the system trajectories remain
in the region of nonoverlapped attractors. An illustrative example of the
residence times density function (RTDF) as a function of the correlation
time is depicted in Fig. 1.
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Fig. 1. The RTDF for Eq. (1) with A = 0.123 and ¢ = 5 x 10~*. The inset plots
show the height and width behavior.

As can be seen from Fig. 1, the localization of the system trajectories
depends strongly on 7. The RTDF height shows a nonmonotonous behavior
reaching a maximum at a particular value of 7 ~ 7* and, at the same value,
the width W calculated at the height h/+/e shows a remarkable minimum,
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as represented in the inset curves. As a consequence the correlation time
of the parametric random perturbation acts as a tuner which controls (in a
statistical sense) the behavior of the system, mazimizing its localization on
the region of the phase space surrounding (\;). Furthermore, the relation
h/W (which is essentially the quality factor of the RTDF) has a maximum
for a particular value of 7, and this optimal value depends on A = ()\;), as
can be appreciated in Fig. 2. The behavior shown is a clear indication of a
T-induced SR phenomenon closely related to the localization enhancement.

Fig.2. h/W (the quality factor of the RTDF) wversus 7. The different curves are
(from bottom to top) for increasing values of A, as indicated by the vertical arrow.
The resonance-like behavior increases when moving into the oscillatory region.

To relate the optimal correlation time for maximal localization, 7*, with
the temporal scales of the deterministic counterparts we first study the be-
havior of the postponement of the bifurcation point because of the multi-
plicative noise in order to obtain the postponed bifurcation point (o, T)
[6].We next calculate the effective distance to the bifurcation point AX* =
A — Aj|, and measure from the deterministic temporal series the period,
T™*, of the oscillations when the system is evaluated at a distance AX* from
the deterministic bifurcation point. With this information, we calculate the
quantity AT* = |T* —T'(Ag)|, where T'(Ap) is the period of the determinis-
tic system at precisely the Hopf bifurcation point and obtain the following
relation between 7* and AT™

T~ (AT)* (2)

with a = —0.58.
It is worth pointing out that, from the behavior of the quantity h/W
depicted in Fig. 2 for the RTDF, it is clear that a concentration of orbits
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around a narrow range of bands in the phase space implies a bigger weight
of those particular frequencies in the power spectrum of the system, and, as
a consequence, a nonmonotonous behavior qualitatively similar to that of
Fig. 2 should be expected for the quality factor, 3, of the power spectrum,
indicating an increase of the coherence in the system response [7]. This is
indeed the case for our model (with a power spectrum quality factor showing
a maximum for a value of the correlation time close to 7*).

It is important to mention that a qualitatively similar result can also be
obtained for other systems with different nonlinearities and characteristics
[4,8], all of them showing the same effect of enhanced localization of orbits
mediated by the correlation time of the multiplicative noise. In all cases the
effect is characterized by a power law with exponent close to —1/2 indicating
the possible universal character of this phenomenon.

3. Stochastic branch selection at secondary bifurcations

The evolution of an actual nonlinear system occurs through bifurcations
that take place at certain values of the control parameter. In many situa-
tions, a deterministic analysis can not give a complete picture of the behavior
of the system. The assumption of deterministic, fixed values of the control
parameter is difficult to maintain, and it seems more reasonable to consider
it as a random parameter.

In that case, the fact that the stochastic system can explore more dy-
namical situations (as the control parameter changes in time) may introduce
significative changes in its temporal evolution. Descriptions based only on
static properties (like stationary distributions [9]) can not give a complete
picture of the behavior, and a dynamical description is necessary. In quite
general cases, that more complete description can be obtained by the qual-
itative theory of stochastic systems [10], based on control theory, and the
study of Lyapunov exponents [11] or, when it is possible, by the knowl-
edge of the first passage times statistics (as it happens when the stochastic
perturbation is dichotomous [12]).

In the study of the behavior of a stochastic system close to a bifurcation
point, two assumptions are usually made: the random control parameter is
Gaussian (therefore taking values in the whole interval [—oc, +o0]), and the
system is considered close to its first bifurcation. However, in important
situations neither of those assumptions are correct or interesting. First, in
some cases the control parameter must be bounded, i.e., taking values in a
finite interval, by definition (a particularly clarifying example is the quality
factor in prebiotic evolution [13], that must take values in the interval [0, 1])
or by physical arguments (small variations of temperature, for instance). It
is known that the behavior of systems perturbed by bounded noise is quite
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different, not only from that of the unperturbed, deterministic situation,
but also from the stochastic case with Gaussian perturbations. Effects like
disappearance of stationary solutions, slowing down, bistability and random
symmetry breaking are known to occur [14], and produce substantial changes
in the asymptotic behavior (see [12] for a complete analytical description of
one dimensional systems perturbed by dichotomous noise).

On the other hand, the behavior of the system at secondary and higher
bifurcations is fundamental in the evolution towards more complex struc-
tures. From the point of view of the geometry of the bifurcation diagram,
there is an apparently trivial, but with important implications, difference
between primary and higher order bifurcations. While for the former the
system approaches the bifurcation point through an horizontal straight line
of steady states, in the latter case it passes the bifurcation point following
a tilted line, as shown qualitatively in Fig. 3. There is, therefore, a lack of
symmetry at higher order bifurcations. As we will see, this will be a crucial
factor to understand the asymptotic behavior of the system.

Fig. 3. Schematic view of a deterministic bifurcation diagram, showing one primary
and two secondary bifurcations (within the circle). The symbols p and ¢ indicate
pitchfork and transcritical, respectively.

In this section we will discuss the temporal evolution of one-dimensional
simple systems with bounded stochastic control parameter, passing through
two paradigmatic bifurcations that usually come together in high order bi-
furcations: pitchfork and transcritical (see Fig. 3). To be precise, for the
analytical discussion the bounded noise will be a dichotomous process, while
the numerical simulations that will illustrate the behavior will be made with
a continuous bounded noise.

Let us first consider the deterministic equation

&= —(a; —2*) (e — ka) (3)

as an example of a system undergoing bifurcations without horizontal
branches. To fix ideas we choose k > 0, and with this, the straight branch
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has a positive slope. Two local bifurcations occur at the values oy = 0
(pitchfork) and a = k2 (transcritical).

We now suppose that the bifurcation parameter « is perturbed by a
symmetric dichotomous noise, &, around its mean value

Oét:a‘f’ft- (4)

In this way, a; can only take two possible values: a4 A alternatively, with
the time between switches governed by the distribution ¢ (¢) = Aexp (—At).
The average residence time in each of the two states is 1/A, whereas the
correlation time of the noise is given by 7, = 1/2\.

The dynamics of this model is the stochastic mixture of two determin-
istic autonomous systems governed by the equation (3) when the control
parameter takes one of its two possible values a + A. We will call Fiy the
two forces acting on the system, i.e., the right hand side of (3) for & = +A
and & = — A, respectively. The asymptotic analysis may be carried out by
looking at the first passage and sojourn times statistics for intervals between
two successive zeroes of the corresponding forces Fy (see [12] for the tech-
nical details). If ¢ and b are the extremes of such an interval, the Laplace
transform of the first passage times distributions are [12]

b

s d 3
fif (slzg) = e o) r(@o=b) +A/7F+21)e_(“s)T*(“_m)fb(8|ﬂc1)a(5)

Zo
Zo

Firtslan) = =x [ e T o), ©)

a

where f;tb(t|x0)dt are the probabilities of first reaching, in the time interval
(t,t+dt), the boundary a or b starting at xy € [a, b], and taking into account
the initial value of the noise £A. The quantities

dx’

Y
Ti(x%y):/m (7)

T

are the times to go from z to y under the corresponding force.

Equations for the other two distributions can be obtained from (5) and (6)
by switching simultaneously b to @ and + to —. The qualitative behavior of
the system can be deduced from the zeroth order moments (the escape prob-
abilities) of the distributions, while the first moments give us an indication
of the characteristic times in which the system evolves.
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The result of the analysis allows us to draw the stochastic bifurcation
diagram (that depends on the interval of variation of the control parameter)
and discuss the asymptotic behavior of the system [12]. For our simple model
this can be qualitatively visualized in the stochastic bifurcation diagram of
Fig. 4, corresponding to a perturbation of small amplitude, i.e., A < A, =

%(052 — 051).

X

Fig.4. Stochastic bifurcation diagram, corresponding to Eq. (3) with bounded
noise. The arrows indicate the direction of the flow (see the text for an explanation
of the meaning of the different regions).

The interpretation of this bifurcation diagram is as follows: for a fixed
value of the mean of the bifurcation parameter «, and in the limit ¢ — oo,
the trajectories will be confined between the thick lines (which are portions
of the curves F;, = 0 and F_ = 0). Projection of the intervals between these
thick lines onto the y axis gives the exact support region of the correspond-
ing stationary probability distribution. The arrows indicate the behavior
depending on the initial conditions (the direction of the stochastic flow),
and the filled regions denote bistability areas, in the sense that a trajectory
starting in any of these areas will leave it, with probability one, by crossing
one of the boundaries. If the upper boundary is crossed, the trajectory will
reach the upper stationary region (which is an invariant set). If the other
boundary is crossed, the trajectory will reach the lower stationary (invari-
ant) region. Notice that, due to the bounded character of the noise, the two
invariant sets are not connected, and jumps between the two regions are not
permitted. This last behavior, that is recovered when considering a Gaus-
sian noise, would be the consequence of the existence of a unique, bimodal,
stationary probability distribution, whereas in the present case there are
actually two different stationary probability distributions with unconnected
supports. Finally, dotted lines are not part of the bifurcation diagram, but
are included to indicate regions in which some delay occurs, i.e., regions
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in which trajectories move back and forth for some time but they end up
escaping, with probability one, in the direction indicated by the arrows.

The main conclusions that can be deduced from this qualitative picture
under these conditions, are: (i) the noise forces the system to choose, for
any initial condition and with probability one, only one of the branches
in a pitchfork bifurcation, depending on the slope of the line of stationary
states crossing the bifurcation point; (7i) the noise, again for any initial
condition and with probability one, drives the system away from the region
around a transcritical bifurcation. In other words, the noise drives the system
deterministically through successive bifurcations.

It should be remarked that the qualitative behavior discussed above does
not change if instead of a dichotomous noise, one considers a continuous
diffusion-like process taking values in a bounded interval, although the quan-
titative properties may be impossible to calculate analytically. Moreover,
other situations can be observed if the interval of variation of the control
parameter changes, and, for example, the bistability regions may disappear
if the interval becomes big enough to cover the two local bifurcation points.
We will not discuss these possibilities any further.

To end up this section, and to illustrate the temporal evolution of the
system, in Fig. 5 we show the result of a numerical simulation of our model
with the control parameter perturbed by a bounded, symmetric and contin-
uous noise. In Fig. 5(a) the system passes through two successive pitchfork
bifurcations, whereas Fig. 5(b) depicts the very fast escape of the system
from the region around a transcritical bifurcation.

Fig. 5. Numerical simulation of the system passing through two pitchfork bifurca-
tions (a), and a transcritical bifurcation (b).
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4. Noise in spatially extended systems

The systems considered in the preceding sections had in common that
they were homogeneous. When considering spatially extended systems,
many more possibilities may appear due to the spatial couplings in the
system. In particular, the combination of spatial coupling and noise may
amplify and extend in time a short time noise-induced instability, leading
to a diversity of phenomena, such as, for instance, first and second order
phase transitions, noise-induced ordered phases, and ordered spatial struc-
tures [15,16]. In the context of the present paper, we will concentrate on
the appearance of order/disorder phase transitions and on spatial pattern
formation.

4.1. Noise-induced phase transitions

To begin with, we consider the time-dependent Ginzburg—Landau model
(GL), well known in the theory of equilibrium critical phenomena. To mimic
random quenched impurities, which play an important role in the physi-
cal properties of many systems, and , at the same time, to have a system
amenable to analytical study, we perturb the control parameter of the orig-
inal GL model by a dichotomous stochastic process with infinite correlation
time. If {1);} is a scalar field defined on a d-dimensional square lattice, the
time dependent GL model with dichotomous quenched impurities is given
by the following dimensionless Langevin equation [17]

D
Ori = (a+ Gi)hi — 9 + 24 > (W — i) + i (8)
(51)
where the sum runs over the 2d nearest neighbors of site 4, and 7; are Gaus-
sian white noises with zero mean and correlation

(mi)n; (1)) = di50(t — ') . (9)

The quenched multiplicative noises (;, that represent impurities in the
system, are Markovian dichotomous processes spatially uncorrelated and
with infinite correlation time. The probability density of the impurities is

P(G)=pid0(Gi—A)+pd(G+4), (10)

where A denotes the intensity of the multiplicative noise. Note that, when
referring to the impurities, the terms probability and proportion can be ex-
changed in the thermodynamic limit, since then p. is equal to the proportion
of +A impurities.
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The Eq. (8) can also be described in terms of a local potential at each
site given by

. 4
V) = - Oy B (1)

The sign of the quadratic term of the potential determines the local
dynamics at each site. If (o + (;) < 0, we have a single well potential with
a single equilibrium point at 4; = 0. On the other hand, if (a + ¢;) > 0, the
state 9; = 0 becomes unstable and V (1);; (;) is a double well potential with
two symmetric stable points at ¥; = £v/a + (.

To have an idea of the phase diagram of the model, we use a Weiss mean
field approximation for spatially extended systems [16]. Replacing, in the
diffusive term, the field at the nearest neighbors by the mean value, (1),
we can drop the lattice index and write down the following equation for the
temporal evolution of the field at a generic site

O = (a+ Q) —9* + D ((4h) — ) + 1, (12)

where ( is a random variable with a probability distribution given by (10).
This equation is equivalent to the system

Ops = (@£ A)pe — L + D () —91) + 1, (13)

where 74 is the field at a site where { = £ A.

Equation (12) is not a closed evolution equation for the stochastic pro-
cess 1), but it can be easily solved in the stationary regime with (1) as a
parameter. The stationary solution reads

Pt (13 (9)) = p4 Pt (93 () +p- Py (45 (1)) , (14)

where P:tc (1; (b)) are the stationary probability densities for the two dy-
namics defined by (13). These probability densities are

PE (i (1)) = NFe 2V W) +DU—W))] (15)

I

where the potential V (¢;¢) is defined in (11) and N* are normalization
constants.
Finally, the following self-consistent condition must be fulfilled

(W) = / P (4 () g (16)
R

This equation has () = 0 as a solution for any value of the parame-
ters. This solution is called the disordered phase. However, non symmetric
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solutions exist in some regions of the space of parameters. These solutions
with (¢) # 0 are called ordered phases. A phase transition occurs when the
system is driven from a region with only the symmetric solution to a region
with ordered phases.

According to the mean field theory, phase transitions occur at those
values of the parameters satisfying the condition

/1/) 0Py (4 (4))
R

dip = 2D [ %Py (1;0)deyp = 1. 17
o ‘M:O v mfd} (:0) dy a7)

In order to discuss the phase diagram in the plane (A, D) given by
Eq. (17), we must distinguish two cases: @ < 0 and «a > 0.

For a negative and A < |a/, it is obvious that no ordered phase can exist,
since 9 = 0 is stable in the two possible local potentials (11). On the other
hand, if A > || a fraction py of sites feels a double well potential and then,
for strong enough coupling D, an ordered phase may appear. In Fig. 6 we
plot the phase diagram for & = —0.75 and several values of p,. Note that,

T T T

D

2 F
— p,=01
e p, =03
---p,=05
—--p,=09

0
0
Fig.6. Phase diagram for @« = —0.75 and different values of p;. The ordered

regions are located to the right of the phase boundaries. The possibility of DOD
reentrant phase transitions depends on the values of p;.

below a certain value of p,, a reentrant transition disorder-order-disorder
(DOD) with the coupling appears. That is, by continuously increasing the
coupling we can first drive the system from a disordered to an ordered state
and then back to a disordered state. This reentrant phenomenon is always
present in the system below that critical value of p. Note that by decreasing
p4 the ordered phase shifts to the right, due to the fact that the fraction of
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double well local potentials decreases and then these potentials have to be
deeper, i.e., A must be larger, in order to keep stable the ordered phase.

For a > 0, we have two possibilities. If A < «, every site feels a double
well potential and therefore an ordered phase appears for a given value
of the coupling. On the other hand, if A > « the competition between
the two dynamics produces new transitions depending on the value of py.
Fig. 7 shows the phase boundaries for a = 0.75. There is a topological
change around p; = 0.22: below this value, the region of disordered states
is connected and the region of ordered states is disconnected (see for instance
the curve for py = 0.2, whereas above py = 0.22 it is the other way around
(see py = 0.225). Note that in this case there are two kinds of reentrant
phase transitions: the one described previously (DOD) and a new one order-
disorder-order (ODO) increasing the noise intensity A. This new reentrant
phase transition appears above a given value of the coupling.

— p.=01

A \ i e p.=02
’ \ == p,=0225
\ ipop |—--p.=05

Fig. 7. Phase diagram for a = —0.75 and different values of py. Two distinct
reentrant phase transitions, DOD and ODO, are indicated by the arrows.

The behavior of the order parameter, m = |[(1)|, is depicted in Fig. 8 as
a function of D for the DOD transition (a), and as a function of A for the
ODO transition (b).

It is important to stress that the approximate mean field analysis pre-
sented above is qualitatively confirmed by precise computer simulations of
a two-dimensional version of the original model (8), which, on the other
hand, allow us to locate the position of the critical points and study the
dependence of the order parameter and the susceptibility with the size of
the system [17]. Fig. 9 depicts the result of a numerical simulation of the
field, clearly showing the ODO by increasing the noise strength A.
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(2) (b)

0.5 0.8

0.4
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D D

Fig. 8. Behavior of the order parameter: (a) as a function of D(py =0.3,a=—0.75,
A = 4) for a DOD reentrant transition; (b) as a function of A (py = 0.2, a = 0.75,
D = 4) for an ODO reentrant transition.

4.2. Pattern formation

The ordering or disordering effect of additive and multiplicative noise
on the formation and stability of spatially ordered structures in different
systems has attracted much interest in the last decade [15]. In particular, for
the Swift-Hohenberg equation (a model to describe the onset of Rayleigh—
Bénard convection), it has been shown that the presence of a multiplicative
noise in the control parameter may advance the appearance of patterns.
However, in this and other models the existence of patterns is already in
the deterministic version of the equations, and it is interesting to ask for the
possibility of having pure noise-induced patterns, i.e., a stochastic system
with patterns that are not present in the deterministic situation.

To study that possibility we take the following equation [18,19]
a—‘oz—¢(1+<p2)2—D (V24 K)o+ (1+¢%) ¢ (18)
ot 0) ¥ ® )

where ¢ (r,t) is a scalar field taking values in a d dimensional space, the
spatial coupling is of the Swift-Hohenberg type, and ¢ is a noise, white in
space and time, with the properties

(&) =0 (&) = 080(t —1'). (19)

The dispersion relation related to the coupling operator L=—D (V2 —I-kg) ,
when applied to a plane wave, is

L™ = o (k) %" = [ D (F — k?)°] " (20)

with kg as the most unstable mode. It is easy to show that if we set £ = a,
a constant, non stochastic value, the homogeneous solution is the unique
steady state of (18).
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<0 ¥Y=0 >0

Fig.9. Stationary values of the field for increasing values of A, from (a) to (f),
showing an ODO phase transition.

To obtain information on the behavior of the stochastic system, a mean
field analysis can be performed on a discretized version of (18) on a d-
dimensional lattice with lattice spacing Az [18]. Considering a specific site
@i = ¢ (and & = &), and replacing the value of the scalar variable ¢; at the
sites coupled to ¢; by a non-uniform average field

©; = () cos [k: < (r— r')] . (21)

The equation for @; takes on the following simple form

¢i = —pi (1+¢2) + (1 + @) € + Dw(k)pi — Desr(i — () (22)
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20 2 & i
2 § :

and )
2d 9 2d

Notice that (¢) now plays the role of the amplitude of the spatial pat-
terns, and that if Az < 1 the dispersion relation (23) reduces to the con-
tinuous case w (k) = —D (k3 — k2)2.

Applying now the standard techniques of the mean field theory [16], we
may obtain the points in the D versus o2 plane at which a particular k-vector

becomes unstable. Fig. 10 depicts the phase diagram for a two-dimensional
system and for some particular choices of the parameters.

Desg = D (24)

1.5

0.5 PRI SRS U SN S A [N N S S S [ S S '
0

Fig.10. Phase diagram obtained by a mean field analysis with kg = Az = 1.
The different curves are for distinct values of the wave vector k (increasing from

top to bottom). The solid line corresponds to the most unstable mode, such that
w (k) =0.

The system shows patterns in the regions above the curves, and it can
be seen that, for a fixed value of D, and increasing the intensity of the noise
the system goes from an homogeneous state to a spatial pattern situation.
This spatially ordered state is destroyed by another transition that happens
when the noise intensity is big enough, although this final state is differ-
ent from the one corresponding to small noise, since now many modes are
destabilized. Fig. 11 shows the result of a numerical simulation of (18) on a
two-dimensional lattice, illustrating the noise-induced patterns.
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RS

Fig.11. Numerical simulation of a two-dimensional version of Eq. (18), showing
the noise-induced patterns. The values of the parameters are kg = Az =1, D = 15,
and o2 = 10.

At this point it is worth pointing out that the nonlinearities of the model
are not crucial for the existence of a phase transition in our model, as it can
be shown that in the limit D — oo, the phase transition occurs at the point
where the coefficient of the linear term, including the noise contribution
resulting from the Stratonovich interpretation, vanishes [16].

Finally, it is interesting to mention that a novel mechanism for pattern
formation, in systems with alternating dynamics, has been recently proposed
[20], opening new possibilities in this important field.

5. Conclusions

In this paper we have presented several examples showing convincing ev-
idence of the constructive role of noise. As illustrated in the quite different
cases considered, the noise may lead to a better localization of orbits in pe-
riodic systems, drive the system almost deterministically through successive
bifurcations, and promote ordered phases and spatial patterns not present in
the deterministic counterpart. It seems clear that one should get rid of the
idea that the presence of noise in nonlinear systems is merely a disturbance
over a convenient regular (deterministic) behavior. The evolution of actual
nonlinear systems should be considered as a combination of deterministic
laws and fluctuations.

This work has been supported by Direccion General de Investigacion
(Spain) Project No. BFM2001-0291. JB also acknowledges financial support
by MECD (Spain) Grant No. EX2001-02880680.
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