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3662 F.J. de la Rubia et al.1. Introdu
tionThe e�e
t of noise on the behavior of a system has been an importanttopi
 of interest for many years. However, the per
eption of the role of noisehas 
hanged in the last de
ades, and it has evolved from the traditional ideathat the noise is a nuisan
e, something to be avoided and distorting thedesirable regular behavior of the system, to the modern view of noise be-ing an important ingredient in its evolution, allowing the system to exploreand 
hoose among many possibilities. Moreover, nowadays it is re
ognizedthat the noise may play an ordering role, enhan
ing the response to anexternal signal, leading the system to new phases, or 
reating and main-taining spatial patterns, for example. This new and somehow unexpe
tednoise-indu
ed order may have important impli
ations in several bran
hesof Physi
s, Chemistry and Biology, and is a subje
t of a very produ
tivea
tivity.In this paper we review some results that 
learly show several of thenoise-indu
ed e�e
ts mentioned above. Our aim is just to present a fewrelevant examples of the 
onstru
tive role of noise, without intending todis
uss all the important results in this �eld or to in
lude an exhaustivebibliography. For the sake of 
on
iseness, we will skip many te
hni
al detailsin our presentation, and dire
t the interested reader to the referen
es.2. Lo
alization enhan
ed by 
olored noiseOne of the most popular topi
s in the last de
ade is that of Sto
hasti
Resonan
e (SR). In its most popular assertion, SR is normally understoodto be the phenomenon by whi
h an additive noise (usually 
onsidered un-
orrelated) 
an enhan
e the 
oherent response of a periodi
ally driven sub-threshold nonlinear system. First proposed in 
limate model studies [1℄,SR has been predi
ted and observed in many di�erent theoreti
al and ex-perimental systems (see [2℄ for an extensive review, and [3℄ for some re
entexperimental results). Besides the indi
ated 
lassi
al 
ombination �nonlin-ear system, additive white noise and periodi
 external for
e�, SR 
an alsoo

ur in systems with very di�erent 
hara
teristi
s, e.g., systems with aperi-odi
 for
ing, autonomous systems without external periodi
 for
ing but withintrinsi
 periodi
ity (limit 
y
le), systems with multipli
ative noise or per-turbed by 
olored noise (
orrelated noise), arrays of os
illators, or systemswith time delay. Also re
ently the 
ase of periodi
ally driven systems withmultipli
ative 
olored noise has been 
onsidered, analyzing not only the ef-fe
t of the noise intensity (the only parameter when 
onsidering white noise),but also that of the 
orrelation time of the noise on the SR phenomenon.



Flu
tuations in Nonlinear Systems: a Short Review 3663In this se
tion we 
onsider a system without periodi
 external for
ing,but with an intrinsi
 os
illatory behavior (limit 
y
le) and perturbed by amultipli
ative 
olored noise. We will fo
us on the e�e
t of the 
orrelationtime of the noise on the behavior of the system [4℄.The system is the well known Sel'kov model for gly
olysis [5℄_x = �x+ �ty + x2y ;_y = b� �ty � x2y : (1)We will 
onsider the 
ontrol parameter as a random variable �t = �+ �t,i.e., as a deterministi
 part �, plus an sto
hasti
 perturbation �t, whi
h isassumed to be an OU pro
ess, i.e., a stationary Gaussian Markov noise withzero mean, h�ti = 0, and exponential 
orrelationh�t�t0i = (D=�) exp �� ��t� t0�� =�� ;where � is the 
orrelation time and D=� = �2 is the varian
e of the noise.We will refer to the square root of the varian
e, �, as the intensity of thenoise. It is a simple exer
ise to show that for a 
ertain range of values of theparameter b, the deterministi
 
ounterpart of (1) undergoes a super
riti
alHopf bifur
ation at � � �H, and, therefore, the system shows sustainedos
illations.In order to analyze the evolution of the system we numeri
ally inte-grate (1) with � in the limit 
y
le parameter domain. A good indi
ator ofthe behavior of the system is the Residen
e Times Distribution Fun
tion(RTDF) over the phase spa
e (i.e., the distribution of the system on thedi�erent available attra
tors) that tells you where and how long has beenthe system [2℄.To do that, we 
onsider a deterministi
 attra
tor �(�), i.e., the attra
torobtained with the deterministi
 
ounterpart of the sto
hasti
 system, eval-uated at a parti
ular value of the 
ontrol parameter, �. Next, we dividethe system phase spa
e in N + 1 attra
tors asso
iated with N + 1 values ofthe parameter separated a distan
e ��. In this way, a mesh is 
omposedby 
on
entri
 deterministi
 attra
tors 
entered around the stationary equi-librium state (x�; y�) j���H , with � in the �xed point domain. With this
onstru
tion, we have a series of N + 1 attra
torsf�(�N=2�) : : : �(�1�); �(�0); �(�1+) : : : �(�N=2+)g;where we use the de�nition �k� � � � k��. This series divides the phasespa
e in N rings, ea
h one denoted by � (
k) � (�(�k); �(�k+1)), where
k � (�k+1 + �k) =2 is the mean 
ontrol parameter obtained with the 
ontrolparameters that de�ne the boundary of the ring. The sto
hasti
 system is



3664 F.J. de la Rubia et al.integrated on this mesh, and its evolution des
ribes random traje
tories,visiting during a �nite time ea
h ring of the mesh. During the integrationpro
ess we measure the residen
e time in the rings as follows: let tk1 and tk2be the entran
e and exit times to the ring � (
k), respe
tively. The residen
etime in this ring is t(
k) = tk2 � tk1 , and we denote the residen
e time of then visit event to the ring � (
k) by tn(
k). Then, if during an integrationtime I, whi
h is a
hieved by integrating R realizations of M time steps,there have been Vk visit events to the ring � (
k), the mean residen
e timeof the system in this ring is given by the mean of the residen
e events,that is, T (� (
k)) �PVkn=1 tn(
k)I : Therefore, given a pair (�; �), the fun
tionde�ned by the histogram P (T ) � P (T (
k)) � P (T (� (
k))�� ) is a measure ofthe probability density for the system state to be in the region de�ned bythe ring � (
k) . This numeri
al pro
edure shows that the system mostlyvisits the attra
tors surrounding the ring � (h�ti). We remark that for ourstudy we have 
arefully sele
ted the simulation parameters to ensure thatthe phase spa
e partition does not 
ontain overlapped attra
tors su
h thatthis has a well de�ned meaning. In parti
ular h�ti and � are sele
ted insu
h a way that under a �u
tuation of 3� the system traje
tories remainin the region of nonoverlapped attra
tors. An illustrative example of theresiden
e times density fun
tion (RTDF) as a fun
tion of the 
orrelationtime is depi
ted in Fig. 1.

Fig. 1. The RTDF for Eq. (1) with � = 0:123 and � = 5� 10�4. The inset plotsshow the height and width behavior.As 
an be seen from Fig. 1, the lo
alization of the system traje
toriesdepends strongly on � . The RTDF height shows a nonmonotonous behaviorrea
hing a maximum at a parti
ular value of � � �� and, at the same value,the width W 
al
ulated at the height h=pe shows a remarkable minimum,
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tuations in Nonlinear Systems: a Short Review 3665as represented in the inset 
urves. As a 
onsequen
e the 
orrelation timeof the parametri
 random perturbation a
ts as a tuner whi
h 
ontrols (in astatisti
al sense) the behavior of the system, maximizing its lo
alization onthe region of the phase spa
e surrounding h�ti. Furthermore, the relationh=W (whi
h is essentially the quality fa
tor of the RTDF) has a maximumfor a parti
ular value of � , and this optimal value depends on � = h�ti, as
an be appre
iated in Fig. 2. The behavior shown is a 
lear indi
ation of a� -indu
ed SR phenomenon 
losely related to the lo
alization enhan
ement.
h / W

t

l

Fig. 2. h=W (the quality fa
tor of the RTDF) versus � . The di�erent 
urves are(from bottom to top) for in
reasing values of �, as indi
ated by the verti
al arrow.The resonan
e-like behavior in
reases when moving into the os
illatory region.To relate the optimal 
orrelation time for maximal lo
alization, ��, withthe temporal s
ales of the deterministi
 
ounterparts we �rst study the be-havior of the postponement of the bifur
ation point be
ause of the multi-pli
ative noise in order to obtain the postponed bifur
ation point ��H(�; �)[6℄.We next 
al
ulate the e�e
tive distan
e to the bifur
ation point ��� =j� � ��Hj, and measure from the deterministi
 temporal series the period,T �, of the os
illations when the system is evaluated at a distan
e ��� fromthe deterministi
 bifur
ation point. With this information, we 
al
ulate thequantity �T � � jT �� T (�H)j, where T (�H) is the period of the determinis-ti
 system at pre
isely the Hopf bifur
ation point and obtain the followingrelation between �� and �T � �� � (�T �)� (2)with � = �0:58.It is worth pointing out that, from the behavior of the quantity h=Wdepi
ted in Fig. 2 for the RTDF, it is 
lear that a 
on
entration of orbits



3666 F.J. de la Rubia et al.around a narrow range of bands in the phase spa
e implies a bigger weightof those parti
ular frequen
ies in the power spe
trum of the system, and, asa 
onsequen
e, a nonmonotonous behavior qualitatively similar to that ofFig. 2 should be expe
ted for the quality fa
tor, �, of the power spe
trum,indi
ating an in
rease of the 
oheren
e in the system response [7℄. This isindeed the 
ase for our model (with a power spe
trum quality fa
tor showinga maximum for a value of the 
orrelation time 
lose to ��).It is important to mention that a qualitatively similar result 
an also beobtained for other systems with di�erent nonlinearities and 
hara
teristi
s[4, 8℄, all of them showing the same e�e
t of enhan
ed lo
alization of orbitsmediated by the 
orrelation time of the multipli
ative noise. In all 
ases thee�e
t is 
hara
terized by a power law with exponent 
lose to �1=2 indi
atingthe possible universal 
hara
ter of this phenomenon.3. Sto
hasti
 bran
h sele
tion at se
ondary bifur
ationsThe evolution of an a
tual nonlinear system o

urs through bifur
ationsthat take pla
e at 
ertain values of the 
ontrol parameter. In many situa-tions, a deterministi
 analysis 
an not give a 
omplete pi
ture of the behaviorof the system. The assumption of deterministi
, �xed values of the 
ontrolparameter is di�
ult to maintain, and it seems more reasonable to 
onsiderit as a random parameter.In that 
ase, the fa
t that the sto
hasti
 system 
an explore more dy-nami
al situations (as the 
ontrol parameter 
hanges in time) may introdu
esigni�
ative 
hanges in its temporal evolution. Des
riptions based only onstati
 properties (like stationary distributions [9℄) 
an not give a 
ompletepi
ture of the behavior, and a dynami
al des
ription is ne
essary. In quitegeneral 
ases, that more 
omplete des
ription 
an be obtained by the qual-itative theory of sto
hasti
 systems [10℄, based on 
ontrol theory, and thestudy of Lyapunov exponents [11℄ or, when it is possible, by the knowl-edge of the �rst passage times statisti
s (as it happens when the sto
hasti
perturbation is di
hotomous [12℄).In the study of the behavior of a sto
hasti
 system 
lose to a bifur
ationpoint, two assumptions are usually made: the random 
ontrol parameter isGaussian (therefore taking values in the whole interval [�1;+1℄), and thesystem is 
onsidered 
lose to its �rst bifur
ation. However, in importantsituations neither of those assumptions are 
orre
t or interesting. First, insome 
ases the 
ontrol parameter must be bounded, i.e., taking values in a�nite interval, by de�nition (a parti
ularly 
larifying example is the qualityfa
tor in prebioti
 evolution [13℄, that must take values in the interval [0; 1℄)or by physi
al arguments (small variations of temperature, for instan
e). Itis known that the behavior of systems perturbed by bounded noise is quite



Flu
tuations in Nonlinear Systems: a Short Review 3667di�erent, not only from that of the unperturbed, deterministi
 situation,but also from the sto
hasti
 
ase with Gaussian perturbations. E�e
ts likedisappearan
e of stationary solutions, slowing down, bistability and randomsymmetry breaking are known to o

ur [14℄, and produ
e substantial 
hangesin the asymptoti
 behavior (see [12℄ for a 
omplete analyti
al des
ription ofone dimensional systems perturbed by di
hotomous noise).On the other hand, the behavior of the system at se
ondary and higherbifur
ations is fundamental in the evolution towards more 
omplex stru
-tures. From the point of view of the geometry of the bifur
ation diagram,there is an apparently trivial, but with important impli
ations, di�eren
ebetween primary and higher order bifur
ations. While for the former thesystem approa
hes the bifur
ation point through an horizontal straight lineof steady states, in the latter 
ase it passes the bifur
ation point followinga tilted line, as shown qualitatively in Fig. 3. There is, therefore, a la
k ofsymmetry at higher order bifur
ations. As we will see, this will be a 
ru
ialfa
tor to understand the asymptoti
 behavior of the system.
p

p
t

Fig. 3. S
hemati
 view of a deterministi
 bifur
ation diagram, showing one primaryand two se
ondary bifur
ations (within the 
ir
le). The symbols p and t indi
atepit
hfork and trans
riti
al, respe
tively.In this se
tion we will dis
uss the temporal evolution of one-dimensionalsimple systems with bounded sto
hasti
 
ontrol parameter, passing throughtwo paradigmati
 bifur
ations that usually 
ome together in high order bi-fur
ations: pit
hfork and trans
riti
al (see Fig. 3). To be pre
ise, for theanalyti
al dis
ussion the bounded noise will be a di
hotomous pro
ess, whilethe numeri
al simulations that will illustrate the behavior will be made witha 
ontinuous bounded noise.Let us �rst 
onsider the deterministi
 equation_x = �(�t � x2)(�t � kx) (3)as an example of a system undergoing bifur
ations without horizontalbran
hes. To �x ideas we 
hoose k > 0, and with this, the straight bran
h



3668 F.J. de la Rubia et al.has a positive slope. Two lo
al bifur
ations o

ur at the values �1 = 0(pit
hfork) and �2 = k2 (trans
riti
al).We now suppose that the bifur
ation parameter � is perturbed by asymmetri
 di
hotomous noise, �t, around its mean value�t = �+ �t : (4)In this way, �t 
an only take two possible values: ��� alternatively, withthe time between swit
hes governed by the distribution � (t) = � exp (��t).The average residen
e time in ea
h of the two states is 1=�, whereas the
orrelation time of the noise is given by �
 = 1=2�.The dynami
s of this model is the sto
hasti
 mixture of two determin-isti
 autonomous systems governed by the equation (3) when the 
ontrolparameter takes one of its two possible values � � �. We will 
all F� thetwo for
es a
ting on the system, i.e., the right hand side of (3) for �t = +�and �t = ��, respe
tively. The asymptoti
 analysis may be 
arried out bylooking at the �rst passage and sojourn times statisti
s for intervals betweentwo su

essive zeroes of the 
orresponding for
es F� (see [12℄ for the te
h-ni
al details). If a and b are the extremes of su
h an interval, the Lapla
etransform of the �rst passage times distributions are [12℄~f+b (sjx0) = e�(�+s)T+(x0!b) + � bZx0 dx1F+(x1)e�(�+s)T+(x0!x1) ~f�b (sjx1) ; (5)~f�b (sjx0) = �� x0Za dx1F�(x1)e�(�+s)T�(x0!x1) ~f+b (sjx1) ; (6)where f�a;b(tjx0)dt are the probabilities of �rst rea
hing, in the time interval(t; t+dt), the boundary a or b starting at x0 2 [a; b℄, and taking into a

ountthe initial value of the noise ��. The quantitiesT�(x! y) = yZx dx0F�(x0) (7)are the times to go from x to y under the 
orresponding for
e.Equations for the other two distributions 
an be obtained from (5) and (6)by swit
hing simultaneously b to a and + to �. The qualitative behavior ofthe system 
an be dedu
ed from the zeroth order moments (the es
ape prob-abilities) of the distributions, while the �rst moments give us an indi
ationof the 
hara
teristi
 times in whi
h the system evolves.



Flu
tuations in Nonlinear Systems: a Short Review 3669The result of the analysis allows us to draw the sto
hasti
 bifur
ationdiagram (that depends on the interval of variation of the 
ontrol parameter)and dis
uss the asymptoti
 behavior of the system [12℄. For our simple modelthis 
an be qualitatively visualized in the sto
hasti
 bifur
ation diagram ofFig. 4, 
orresponding to a perturbation of small amplitude, i.e., � < �
 =12(�2 � �1).
X

F + = 0

F - = 0

Fig. 4. Sto
hasti
 bifur
ation diagram, 
orresponding to Eq. (3) with boundednoise. The arrows indi
ate the dire
tion of the �ow (see the text for an explanationof the meaning of the di�erent regions).The interpretation of this bifur
ation diagram is as follows: for a �xedvalue of the mean of the bifur
ation parameter �, and in the limit t ! 1,the traje
tories will be 
on�ned between the thi
k lines (whi
h are portionsof the 
urves F+ = 0 and F� = 0). Proje
tion of the intervals between thesethi
k lines onto the y axis gives the exa
t support region of the 
orrespond-ing stationary probability distribution. The arrows indi
ate the behaviordepending on the initial 
onditions (the dire
tion of the sto
hasti
 �ow),and the �lled regions denote bistability areas, in the sense that a traje
torystarting in any of these areas will leave it, with probability one, by 
rossingone of the boundaries. If the upper boundary is 
rossed, the traje
tory willrea
h the upper stationary region (whi
h is an invariant set). If the otherboundary is 
rossed, the traje
tory will rea
h the lower stationary (invari-ant) region. Noti
e that, due to the bounded 
hara
ter of the noise, the twoinvariant sets are not 
onne
ted, and jumps between the two regions are notpermitted. This last behavior, that is re
overed when 
onsidering a Gaus-sian noise, would be the 
onsequen
e of the existen
e of a unique, bimodal,stationary probability distribution, whereas in the present 
ase there area
tually two di�erent stationary probability distributions with un
onne
tedsupports. Finally, dotted lines are not part of the bifur
ation diagram, butare in
luded to indi
ate regions in whi
h some delay o

urs, i.e., regions
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h traje
tories move ba
k and forth for some time but they end upes
aping, with probability one, in the dire
tion indi
ated by the arrows.The main 
on
lusions that 
an be dedu
ed from this qualitative pi
tureunder these 
onditions, are: (i) the noise for
es the system to 
hoose, forany initial 
ondition and with probability one, only one of the bran
hesin a pit
hfork bifur
ation, depending on the slope of the line of stationarystates 
rossing the bifur
ation point; (ii) the noise, again for any initial
ondition and with probability one, drives the system away from the regionaround a trans
riti
al bifur
ation. In other words, the noise drives the systemdeterministi
ally through su

essive bifur
ations.It should be remarked that the qualitative behavior dis
ussed above doesnot 
hange if instead of a di
hotomous noise, one 
onsiders a 
ontinuousdi�usion-like pro
ess taking values in a bounded interval, although the quan-titative properties may be impossible to 
al
ulate analyti
ally. Moreover,other situations 
an be observed if the interval of variation of the 
ontrolparameter 
hanges, and, for example, the bistability regions may disappearif the interval be
omes big enough to 
over the two lo
al bifur
ation points.We will not dis
uss these possibilities any further.To end up this se
tion, and to illustrate the temporal evolution of thesystem, in Fig. 5 we show the result of a numeri
al simulation of our modelwith the 
ontrol parameter perturbed by a bounded, symmetri
 and 
ontin-uous noise. In Fig. 5(a) the system passes through two su

essive pit
hforkbifur
ations, whereas Fig. 5(b) depi
ts the very fast es
ape of the systemfrom the region around a trans
riti
al bifur
ation.
X

α

(a) (b)

Fig. 5. Numeri
al simulation of the system passing through two pit
hfork bifur
a-tions (a), and a trans
riti
al bifur
ation (b).
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tuations in Nonlinear Systems: a Short Review 36714. Noise in spatially extended systemsThe systems 
onsidered in the pre
eding se
tions had in 
ommon thatthey were homogeneous. When 
onsidering spatially extended systems,many more possibilities may appear due to the spatial 
ouplings in thesystem. In parti
ular, the 
ombination of spatial 
oupling and noise mayamplify and extend in time a short time noise-indu
ed instability, leadingto a diversity of phenomena, su
h as, for instan
e, �rst and se
ond orderphase transitions, noise-indu
ed ordered phases, and ordered spatial stru
-tures [15, 16℄. In the 
ontext of the present paper, we will 
on
entrate onthe appearan
e of order/disorder phase transitions and on spatial patternformation. 4.1. Noise-indu
ed phase transitionsTo begin with, we 
onsider the time-dependent Ginzburg�Landau model(GL), well known in the theory of equilibrium 
riti
al phenomena. To mimi
random quen
hed impurities, whi
h play an important role in the physi-
al properties of many systems, and , at the same time, to have a systemamenable to analyti
al study, we perturb the 
ontrol parameter of the orig-inal GL model by a di
hotomous sto
hasti
 pro
ess with in�nite 
orrelationtime. If f ig is a s
alar �eld de�ned on a d-dimensional square latti
e, thetime dependent GL model with di
hotomous quen
hed impurities is givenby the following dimensionless Langevin equation [17℄�t i = (�+ �i) i �  3i + D2dXhjii ( j �  i) + �i ; (8)where the sum runs over the 2d nearest neighbors of site i, and �i are Gaus-sian white noises with zero mean and 
orrelation
�i(t)�j(t0)� = ÆijÆ(t� t0) : (9)The quen
hed multipli
ative noises �i, that represent impurities in thesystem, are Markovian di
hotomous pro
esses spatially un
orrelated andwith in�nite 
orrelation time. The probability density of the impurities isP (�i) = p+Æ (�i ��) + p�Æ (�i +�) ; (10)where � denotes the intensity of the multipli
ative noise. Note that, whenreferring to the impurities, the terms probability and proportion 
an be ex-
hanged in the thermodynami
 limit, sin
e then p� is equal to the proportionof �� impurities.
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an also be des
ribed in terms of a lo
al potential at ea
hsite given by V ( i; �i) = �(�+ �i)2  2i +  4i4 : (11)The sign of the quadrati
 term of the potential determines the lo
aldynami
s at ea
h site. If (�+ �i) < 0, we have a single well potential witha single equilibrium point at  i = 0. On the other hand, if (�+ �i) > 0, thestate  i = 0 be
omes unstable and V ( i; �i) is a double well potential withtwo symmetri
 stable points at  i = �p�+ �i.To have an idea of the phase diagram of the model, we use a Weiss mean�eld approximation for spatially extended systems [16℄. Repla
ing, in thedi�usive term, the �eld at the nearest neighbors by the mean value, h i,we 
an drop the latti
e index and write down the following equation for thetemporal evolution of the �eld at a generi
 site�t = (�+ �) �  3 +D (h i �  ) + � ; (12)where � is a random variable with a probability distribution given by (10).This equation is equivalent to the system�t � = (���) � �  3� +D (h i �  �) + � ; (13)where  � is the �eld at a site where � = ��.Equation (12) is not a 
losed evolution equation for the sto
hasti
 pro-
ess  , but it 
an be easily solved in the stationary regime with h i as aparameter. The stationary solution readsPst ( ; h i) = p+P+st ( ; h i) + p�P�st ( ; h i) ; (14)where P�st ( ; h i) are the stationary probability densities for the two dy-nami
s de�ned by (13). These probability densities areP�st ( ; h i) = N�e�2[V ( ;��)+D ( �h i)℄ ; (15)where the potential V ( ; �) is de�ned in (11) and N� are normalization
onstants.Finally, the following self-
onsistent 
ondition must be ful�lledh i = Z<  Pst ( ; h i) d : (16)This equation has h i = 0 as a solution for any value of the parame-ters. This solution is 
alled the disordered phase. However, non symmetri
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tuations in Nonlinear Systems: a Short Review 3673solutions exist in some regions of the spa
e of parameters. These solutionswith h i 6= 0 are 
alled ordered phases. A phase transition o

urs when thesystem is driven from a region with only the symmetri
 solution to a regionwith ordered phases.A

ording to the mean �eld theory, phase transitions o

ur at thosevalues of the parameters satisfying the 
onditionZ<  �Pst ( ; h i)� h i ����h i=0 d = 2D Z<  2Pst ( ; 0) d = 1 : (17)In order to dis
uss the phase diagram in the plane (�;D) given byEq. (17), we must distinguish two 
ases: � < 0 and � > 0.For � negative and � < j�j, it is obvious that no ordered phase 
an exist,sin
e  = 0 is stable in the two possible lo
al potentials (11). On the otherhand, if � > j�j a fra
tion p+ of sites feels a double well potential and then,for strong enough 
oupling D, an ordered phase may appear. In Fig. 6 weplot the phase diagram for � = �0:75 and several values of p+. Note that,
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p+ = 0.3
p+ = 0.5
p+ = 0.9Fig. 6. Phase diagram for � = �0:75 and di�erent values of p+. The orderedregions are lo
ated to the right of the phase boundaries. The possibility of DODreentrant phase transitions depends on the values of p+.below a 
ertain value of p+, a reentrant transition disorder-order-disorder(DOD) with the 
oupling appears. That is, by 
ontinuously in
reasing the
oupling we 
an �rst drive the system from a disordered to an ordered stateand then ba
k to a disordered state. This reentrant phenomenon is alwayspresent in the system below that 
riti
al value of p+. Note that by de
reasingp+ the ordered phase shifts to the right, due to the fa
t that the fra
tion of
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al potentials de
reases and then these potentials have to bedeeper, i.e., � must be larger, in order to keep stable the ordered phase.For � > 0, we have two possibilities. If � < �, every site feels a doublewell potential and therefore an ordered phase appears for a given valueof the 
oupling. On the other hand, if � > � the 
ompetition betweenthe two dynami
s produ
es new transitions depending on the value of p+.Fig. 7 shows the phase boundaries for � = 0:75. There is a topologi
al
hange around p+ = 0:22: below this value, the region of disordered statesis 
onne
ted and the region of ordered states is dis
onne
ted (see for instan
ethe 
urve for p+ = 0:2, whereas above p+ = 0:22 it is the other way around(see p+ = 0:225). Note that in this 
ase there are two kinds of reentrantphase transitions: the one des
ribed previously (DOD) and a new one order-disorder-order (ODO) in
reasing the noise intensity �. This new reentrantphase transition appears above a given value of the 
oupling.
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Fig. 7. Phase diagram for � = �0:75 and di�erent values of p+. Two distin
treentrant phase transitions, DOD and ODO, are indi
ated by the arrows.The behavior of the order parameter, m = jh ij, is depi
ted in Fig. 8 asa fun
tion of D for the DOD transition (a), and as a fun
tion of � for theODO transition (b).It is important to stress that the approximate mean �eld analysis pre-sented above is qualitatively 
on�rmed by pre
ise 
omputer simulations ofa two-dimensional version of the original model (8), whi
h, on the otherhand, allow us to lo
ate the position of the 
riti
al points and study thedependen
e of the order parameter and the sus
eptibility with the size ofthe system [17℄. Fig. 9 depi
ts the result of a numeri
al simulation of the�eld, 
learly showing the ODO by in
reasing the noise strength �.
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Fig. 8. Behavior of the order parameter: (a) as a fun
tion of D(p+=0:3; �=�0:75,� = 4) for a DOD reentrant transition; (b) as a fun
tion of � (p+ = 0:2, � = 0:75,D = 4) for an ODO reentrant transition.4.2. Pattern formationThe ordering or disordering e�e
t of additive and multipli
ative noiseon the formation and stability of spatially ordered stru
tures in di�erentsystems has attra
ted mu
h interest in the last de
ade [15℄. In parti
ular, forthe Swift�Hohenberg equation (a model to des
ribe the onset of Rayleigh�Bénard 
onve
tion), it has been shown that the presen
e of a multipli
ativenoise in the 
ontrol parameter may advan
e the appearan
e of patterns.However, in this and other models the existen
e of patterns is already inthe deterministi
 version of the equations, and it is interesting to ask for thepossibility of having pure noise-indu
ed patterns, i.e., a sto
hasti
 systemwith patterns that are not present in the deterministi
 situation.To study that possibility we take the following equation [18, 19℄�'�t = �' �1 + '2�2�D �r2 + k20�'+ �1 + '2� � ; (18)where ' (r; t) is a s
alar �eld taking values in a d dimensional spa
e, thespatial 
oupling is of the Swift�Hohenberg type, and � is a noise, white inspa
e and time, with the propertiesh�i(t)i = 0 h�i(t)�j(t0)i = �2Æi;jÆ(t� t0) : (19)The dispersion relation related to the 
oupling operator L=�D �r2+k20�,when applied to a plane wave, isLeikr = ! (k) eikr = h�D �k20 � k2�2i eikr (20)with k0 as the most unstable mode. It is easy to show that if we set � = a,a 
onstant, non sto
hasti
 value, the homogeneous solution is the uniquesteady state of (18).
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Fig. 9. Stationary values of the �eld for in
reasing values of �, from (a) to (f),showing an ODO phase transition.To obtain information on the behavior of the sto
hasti
 system, a mean�eld analysis 
an be performed on a dis
retized version of (18) on a d-dimensional latti
e with latti
e spa
ing �x [18℄. Considering a spe
i�
 site'i = ' (and �i = �), and repla
ing the value of the s
alar variable 'j at thesites 
oupled to 'i by a non-uniform average �eld'j = h'i 
os �k � (r � r0)� : (21)The equation for 'i takes on the following simple form_'i = �'i �1 + '2i �2 + �1 + '2i � � +D!(k)'i �De�('i � h'i) (22)
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tuations in Nonlinear Systems: a Short Review 3677with ! (k) = �D k20 � 2d�x2 + 2�x2 dXi=1 
os (�xki)!2 (23)and De� = D "� 2d�x2 � k20�2 + 2d�x4 + !(k)# : (24)Noti
e that h'i now plays the role of the amplitude of the spatial pat-terns, and that if �x � 1 the dispersion relation (23) redu
es to the 
on-tinuous 
ase ! (k) = �D �k20 � k2�2.Applying now the standard te
hniques of the mean �eld theory [16℄, wemay obtain the points in theD versus �2 plane at whi
h a parti
ular k-ve
torbe
omes unstable. Fig. 10 depi
ts the phase diagram for a two-dimensionalsystem and for some parti
ular 
hoi
es of the parameters.
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Fig. 10. Phase diagram obtained by a mean �eld analysis with k0 = �x = 1.The di�erent 
urves are for distin
t values of the wave ve
tor k (in
reasing fromtop to bottom). The solid line 
orresponds to the most unstable mode, su
h that! (k) = 0.The system shows patterns in the regions above the 
urves, and it 
anbe seen that, for a �xed value of D, and in
reasing the intensity of the noisethe system goes from an homogeneous state to a spatial pattern situation.This spatially ordered state is destroyed by another transition that happenswhen the noise intensity is big enough, although this �nal state is di�er-ent from the one 
orresponding to small noise, sin
e now many modes aredestabilized. Fig. 11 shows the result of a numeri
al simulation of (18) on atwo-dimensional latti
e, illustrating the noise-indu
ed patterns.
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Fig. 11. Numeri
al simulation of a two-dimensional version of Eq. (18), showingthe noise-indu
ed patterns. The values of the parameters are k0 = �x = 1, D = 15,and �2 = 10.At this point it is worth pointing out that the nonlinearities of the modelare not 
ru
ial for the existen
e of a phase transition in our model, as it 
anbe shown that in the limit D !1, the phase transition o

urs at the pointwhere the 
oe�
ient of the linear term, in
luding the noise 
ontributionresulting from the Stratonovi
h interpretation, vanishes [16℄.Finally, it is interesting to mention that a novel me
hanism for patternformation, in systems with alternating dynami
s, has been re
ently proposed[20℄, opening new possibilities in this important �eld.5. Con
lusionsIn this paper we have presented several examples showing 
onvin
ing ev-iden
e of the 
onstru
tive role of noise. As illustrated in the quite di�erent
ases 
onsidered, the noise may lead to a better lo
alization of orbits in pe-riodi
 systems, drive the system almost deterministi
ally through su

essivebifur
ations, and promote ordered phases and spatial patterns not present inthe deterministi
 
ounterpart. It seems 
lear that one should get rid of theidea that the presen
e of noise in nonlinear systems is merely a disturban
eover a 
onvenient regular (deterministi
) behavior. The evolution of a
tualnonlinear systems should be 
onsidered as a 
ombination of deterministi
laws and �u
tuations.This work has been supported by Dire

ión General de Investiga
ión(Spain) Proje
t No. BFM2001-0291. JB also a
knowledges �nan
ial supportby MECD (Spain) Grant No. EX2001-02880680.



Flu
tuations in Nonlinear Systems: a Short Review 3679REFERENCES[1℄ R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A14, L453 (1981); C. Ni
olis,G. Ni
olis, Tellus 33, 225 (1981).[2℄ L. Gammaitoni, P. Hänggi, P. Jung, F. Mar
hesoni, Rev. Mod. Phys. 70, 223(1998).[3℄ I. Hidaka, D. Nozaki, Y. Yamamoto, Phys. Rev. Lett. 85, 3740 (2000);F. Marino, M. Giudi
i, S. Barland, S. Balle, Phys. Rev. Lett. 88, 040601(2002); T. Mori, S. Kai, Phys. Rev. Lett. 88, 218101 (2002).[4℄ J.L. Cabrera, J. Gorroñogoitia, F.J. de la Rubia, Phys. Rev. Lett., 82, 2816(1999).[5℄ E.E. Sel'kov, Eur. J. Bio
hem. 4, 79 (1968).[6℄ L. Fronzoni, R. Mannella, P.V.E. M
Clinto
k, F. Moss, Phys. Rev. A36, 834(1987).[7℄ H. Gang, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993).[8℄ M.N. Lorenzo, V. Pérez-Muñuzuri, R. Deza, J.L. Cabrera, Int. J. Bif. andChaos 11, 2663 (2001).[9℄ W. Horsthemke, R. Lefever, Noise-Indu
ed Transitions, Springer-Verlag,Berlin 1984.[10℄ L. Arnold, W. Kliemann, Qualitative Theory of Sto
hasti
 Systems, in Proba-bilisti
 Analysis and Related Topi
s, edited by A.T. Bharu
ha-Reid, A
ademi
Press, New York 1983, Vol.3.[11℄ L. Arnold, Lyapunov Exponents of Nonlinear Sto
hasti
 Systems, in Non-linear Sto
hasti
 Dynami
 Engineering Systems, edited by F. Ziegler andG.I. S
hueller, Springer-Verlag, Berlin 1988.[12℄ J. Olarrea, J.M.R. Parrondo, F.J. de la Rubia, J. Stat. Phys. 79, 669 and 683(1995).[13℄ J.C. Nuño, F. Montero, F.J. de la Rubia, J. Theor. Biol. 165, 553 (1993).[14℄ F. Colonius, W. Kliemann, Nonl. Dyn. 5, 353 (1994).[15℄ J. Gar
ía-Ojalvo, J.M. San
ho, Noise in Spatially Extended Systems, Springer,New York 1999.[16℄ C. Van den Broe
k, J.M.R. Parrondo, R. Toral, R. Kawai, Phys. Rev. E55,4084 (1997).[17℄ J. Bu
eta, J.M.R. Parrondo, F.J. de la Rubia, Phys. Rev. E63, 031103 (2001).[18℄ J.M.R. Parrondo, C. Van den Broe
k, J. Bu
eta, F.J. de la Rubia, Physi
aA224, 153 (1996).[19℄ This parti
ular 
hoi
e is di
tated by the fa
t that its simple di�usive versionis a paradigmati
 example of pure noise-indu
ed phase transitions (see [16℄ fordetails).[20℄ J. Bu
eta, K. Lindenberg, J.M.R. Parrondo, Phys. Rev. Lett. 88, 024103(2002).


