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Partitioned iterated function system-semifractals (PIFS-SF) and gener-
alized fractal dimension (D) or f(«) formalism to analysis of amacrine den-
drites of gold fish retina has been applied. The number of codes
(PIFS-SF) has been used as a measure of dendrites complexity in com-
parison with D,/ f(a) behaviour. Some structure-functions (electrophysio-
logical) correlations based on D, negative part have also been shown.

PACS numbers: 61.43 Hr

1. Introduction

Dendrites are the most spectacular part of nerve cells or neurons. They
extend from the cell body like antennae and provide an enlarged surface area
to receive signals from the other nerve cells. Neurons of different functional
classes show an astonishing variety in the patterns of branching of their
dendrites where the most fundamental input—output adaptive processes take
place [1,2]. Quantitative, and effective, analytical description of dendrites
structure is of great importance for interpreting experimental data, or in
other words, for understanding the structure functions relationship. In the
present work we will focus on dendrites of goldfish retina amacrine cells
(see Fig. 1).
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Fig. 1. The structure of retina. The amacrine cells form the middle layer.

Amacrine cells create an interneuronal branching system in retina. One
of their basic functions is to participate in a course of combining information
as well as presenting its image on the retina. The essence of visualisation
process in retina consists of splitting the nerve signal into two ON and
OFF paths, respectively (c¢f. [3]). In accordance with this pattern the inner
plexiform layer (IPL), where amacrine cells receive their synaptic inputs,
has been found to be organised broadly into two halves: OFF pathways
are found in sublamina “a” (distal half), and ON signals are segregated to
sublamina “b” (proximal half). This segregation is directly connected to the
size and structure of the respective sublaminae. The problem is however
to find the “right” measure of the structure in question which will help to
show the structure-functions relation. Traditional approach of measuring
the cross-sectional area of dendrites or the number of their branches gives
no significant difference between sublaminae “a” and “b” [3]. In the present
work we would like to show the application of the generalized dimension (D,)
and f(«a) along the line showed only recently [4] as well as the possibility of
using partional iterated function system — semifractals (PIFS-SF), tested,
so far, only on analysis of the prototype structures [4, 5].

2. Object of analysis

The object of our analysis were the amacrine cells of goldfish retina —
a model of the central nervous system [1,3]|. Retinae were isolated from
dark-adapted goldfish (Carassius auratus).

The final set of cells is shown in Table I.

Note: the last letter indicates the sublamina a and b, other characters
have no particular meaning but are used for discrimination.
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TABLE 1

Amacrine cells of goldfish retinae.

sublaminae a | sublaminae b
ala l\ alb

f%
abla g ablb
ab2a \/ = ab2b

il
ab3a | ab3b
ad3a 7 ad3b
anda %w andb | 47
bla 72% blb
e2a Z«L e2b

3. Tools

Two different tools are going to be used in the present paper i.e. the
generalized dimension (D) and its Legendre transform f(«), and the par-
titioned iterated function system-semifractals (PIFS-SF). Both are new in
analysis of dendritic fields of amacrine cells. The necessity of new approach
has been clearly shown by failure of a traditional one which was based
on measuring the cross-sectional area of dendrites, or the number of their
branches |[8].

3.1. Fractal and generalized dimensions

Due to the well-established symmetry of dendrites in question, with soma
centrally located, we have to alter the classical Box Counting Method (BCM)
to Equal Area Box Counting Method (EABCM) while calculating dr and
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D,. (see Table II)

. InN(e)
dF_gl—]% Inl/e ’

where N (¢) — number of nonempty boxes needed to cover the set
¢ — the current size of the box

N(e) pg
1 In VO pr
D, = lim —2ei=1 Ti (2)
q—1¢e-0 Ine

Results from five different methods i.e. IRRM (increasing radius and
rings method) [6], BCM (box counting method) [6], IAM (increasing angle
methods) [6], MRM (mass radius method) [7] and EABCM (equal-area box
counting method) [3] have been used in fractal analysis of dendritic trees
of amacrine cells. The studies have shown that different methods covered
different aspects of the complex nature of investigated sets, especially if they
are spatially oriented.

Properties of Dy/f(a) spectra needed for our analysis have been de-
scribed in the previous paper [4].

3.2. PIFS-SF

The technique of Partitioned Iterated Function System takes advantage
of the image intrinsic self-similarities. Rather than being written as a matrix
of points with given value (brightness/darkness), the image is treated as a
set of linear contractive transforms of one fragment of itself into another.

The basic idea of encoding an image in terms of transforms comes from
the work of Barnsley [10] on IFS. Since it is rather uncommon for any real
object (image) to be composed of its own diminished copies, like in the
original Barnsley’s treatment, Jacquin [9] enhanced the concept by allow-
ing parts of the image to be contracted copies of different parts. Indeed a
branching section of the dendrite does not look like a whole dendrite, yet
it may be very similar to other branching sections, possibly seen in differ-
ent scale. In further development Grzywna et al. [5] adopted the notion of
semifractals [11] so that not all transforms need to be contractive. Some
of them may be scale-preserving (theoretically all but one, but in practice
usually much less). It follows from another observation that parts of the
image often resemble other parts of the same size. The encoding algorithm
based on PIFS is widely used as an image compression tool, but compression
issues are not subjects of present study.

The details of the technique are given elsewhere [5], we shall concentrate
here on its application to dendrites. The image is partitioned into “range
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TABLE 11

Methods of calculation dr and D,.

/]
\ .
A
. e .
i
{
BCM -]
EABCM
MRM
/4
IAM
IRRM

blocks” and each block is coded separately — for each block a matching
“domain block” is searched in the image:

N
p=Jmer, - (3)
i=1

Each range block pp, is itself coded by a transform 7 or it is a union of

smaller range blocks

K
MR, =T (MDi) U U MR; ; - (4)
j=1
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Repeating recursively such algorithm on the image of the dendrite shown
in Fig. 2 (subimage abla) produces a sequence of partitions.
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Fig. 2. Sequence of partitions given by Egs. (3) and (4).

Set of codes calculated on each step of encoding (see Fig. 2) may be
decoded to get a corresponding sequence of images with improving quality,
shown in Fig. 3.

Fig.3. Sequence of images corresponding to the sequence of partitions presented
in Fig. 2.

The interesting feature of coding an object as a set of transforms is
that no matter what the initial image looks like (it may even be noise) the
decoding procedure quickly converges to the encoded object. Figure 4 shows
first four steps of decoding and recovering the encoded image of a dendrite.
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s
b

Fig.4. Initial image (a) and four consecutive steps (b)—(e) of decoding procedure
by application of PIFS-SF transforms.

a

4. Results and discussion

4.1. D,

This paper shows five methods: IRRM, TAM, BCM, EABCM and MRM.
IRRM determines dr on the basis of scaling of the object’s mass with its
radius while TAM method uses scaling of the object’s mass with an angle.
Both methods can reveal iso/anisotropy of the object. The relation In M (¢)
versus Ine shows whether:

— the mass of the object is homogeneously distributed along the radius
(IRRM)(see Fig. 5(a));

— the number of branches and their thickness brings about a homoge-
neously distribution of a mass, independently of the direction (IAM)
(see Fig. 5(b)).

10 7

9 6

8 5
c7 g Yz
= S 4
£ 6 i

3
5
4 2
1 2 3 4 5 6 &.5 4 4.5 5 5.5 6
Inr Ina

(a) (b)
Fig.5. Relation In M () versus Ine for IRRM and IAM methods.
In case of anisotropic objects however the value of dr is lowered. While

covering the object by a grid of smaller and smaller size, the methods BCM
and EABCM give information about self-similarity of the object. In the
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BCM method it is a rectangular grid, which does not take into account the
symmetry of the analysed object. The grid used in the method EABCM
consists of rectangles of equal areas, arranged like rings around the geomet-
ric centre of an object. Results from fractal analysis by using BCM and
EABCM methods are given in Tables III to VI. The method MRM (7] is
based on analysing self-similarity according to 12 randomly chosen points
of the objects and successive averaging of obtained results. Only two of
five methods presented here can be applied for determination of D,: BCM
and EABCM. It is possible then to define a probability of finding a part of
analysed object in a given element of a grid. For isotropic, regular objects
for which a self-similarity does not depend either on a radius or on an angle,
the values of dp and D, are the same (see Fig. 6).

TABLE III
Results from BCM method — part1.

cell bla ala e2a ab2a abla anda ab3a
Vog(mV) | 2.13 2.15 3.13 3.53 3.63 431 6.75
D_ 220 2.04 1.88 204 193 197 2.00
D_; 191 1.78 166 1.79 1.71 174 1.74
D_, 1.83 1.70 1.60 1.71 1.65 168 1.67
D_4 1.71 161 1.53 1.61 1.57 159 1.58
Dy 1.61 152 145 152 149 150 1.49
Dy 1.55 147 140 147 144 144 143
Do 1.52 144 137 144 141 140 1.40
D5 1.50 142 135 142 139 138 1.38
D; 140 131 125 128 124 129 1.28

TABLE 1V
Results from BCM method — part2.

cell ablb ab2b alb blb e2b ab3b an4b
Von(mV) | 1.50 2.09 225 244 331 525 6.19
D_ 2.04 201 203 211 2.02 208 1.96
D_; 1.79 177 1.80 185 1.78 184 1.72
D_, 1.73 170 1.73 177 1.72 177 1.65
D_4 1.64 161 1.64 167 1.64 168 1.57

Dy 1.57 1.53 156 158 1.56 1.59 1.49
D, 1.52 148 151 153 1.51 153 1.44
D, 149 145 148 150 148 149 140

Dg 147 143 146 148 1.46 147 1.38
D 1.33 143 135 133 130 136 1.28
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Fig.6. DLA aggregate (a) and In M (¢) versus Ine for all methods (b)—(f) and D,
spectrum for BCM and EABCM methods (g).
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TABLE V
Results from EABCM method — part1.

cell bla ala e2a ab2a abla anda ab3a
Vog(mV) | 2.13 2.15 3.13 3.53 3.63 431 6.75
D_ 1.91 2.03 2.10 2.01 201 207 217
D_; 1.67 1.71 178 1.75 1.76 181 1.88
D_, 1.61 163 1.70 1.68 1.69 174 1.81
D_4 1.54 156 1.60 1.61 1.63 1.67 1.72
Dy 145 148 150 1.53 1.55 1.57 1.63
Dy 143 145 147 151 152 150 1.60
D> 142 142 141 147 148 142 1.58
D5 1.21 136 133 135 141 132 1.36
D; 084 1.15 1.10 1.04 121 1.01 0.98

TABLE VI
Results from EABCM method — part2.

cell ablb ab2b alb blb e2b ab3b andb
Von(mV) | 1.50 2.09 225 244 331 525 6.19
D_ 2.11 222 222 221 224 237 2.46
D_; 1.74 1.78 183 1.84 1.83 1.95 2.04
D_» 1.63 1.66 1.72 1.73 1.72 1.82 1.91
D_; 1.48 153 1.56 1.57 1.58 1.67 1.74
Dy 1.39 145 1.47 147 149 1.57 1.61

D, 1.36 144 140 146 1.46 1.54 1.58
D, 1.35 142 134 140 145 152 1.54
D3 122 125 129 130 133 131 1.37

D, 097 094 1.02 108 1.13 1.00 1.06

Generalized fractal dimension analysis (obtain by EABCM method) sug-
gested that a consistent relationship exists between the fractal dimension
D_5, D_1 and Dy in two functional domains of the IPL, i.e. sublamina a vs.
b [3]. No correlation could be determined for electrophysiological properties
and D, by BCM method; correlation coefficient for drp and V;, is —0.39,
and dr while Vg equals —0.44.

4.2. PIFS

The most important parameter that may be obtained from analysis by
PIFS-SF is a number of codes. It allows for direct comparison between
various analysed dendrites, both in terms of absolute and relative numbers.
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The absolute numbers of codes for dendrites shown in Table I are given in
Table VII.

TABLE VII

Number of codes needed to encode dendrites listed in Table I with the same accu-
racy.

sublaminae a sublaminae b
name No. of codes | name No. of codes
e2a 430 an4b 1225
abla 1669 ab2b 1990
ab3a 1672 e2b 2014
anda 1687 alb 2269
ala 1999 ablb 2302
ab2a 2002 ab3b 2506
bla 3064 blb 2680

These results may be easily compared with fractal dimension calculated
by methods given in section 3.1. Correlation coefficients between the number
of codes and box counting fractal dimension are listed in Table VIII.

TABLE VIII

Correlation coefficients between number of PIFS-SF codes and fractal dimension
calculated by box-counting. “a” refers to sublaminae a, “b” to sublaminae b, re-

spectively. “ab” stands for the whole set of dendrites.

p(PIFS,dr) | value
Pa 0.952
b 0.950
Pab 0.935

It appears that the correlation between results from these two techniques
of analysis is very good, disrespective of the particular type of dendrites
in question. More insight may be obtained by inspecting relative results
(relative with respect to the highest value in each group, i.e. number of
codes and fractal dimension). These values have been collected in Table IX.

The results given in Table IX show that PIFS-SF seems to be far more
sensitive. Number of codes changes five-fold while the fractal dimension
varies between dendrites only by about 10%. The difference stems from the
partitions that both methods use to cover the image. While fractal dimen-
sion always uses rectangular lattice (see Fig. 7(a)), PIFS on each stage of
encoding automatically adjusts itself to the image (Fig. 7(b)). Only relevant
“blocks” are further divided and become encoded with better accuracy.
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TABLE IX

Relative numbers of codes and fractal dimension for dendrites of amacrine cells
shown in Table I.

sublaminae a sublaminae b
name n/Nmax  dF/dFmax | DamMe  n/Mmax  dr/dEmax
e2a 0.14 0.90 andb 0.40 0.93
abla 0.54 0.93 ab2b 0.65 0.95
ab3a 0.55 0.93 e2b 0.66 0.97
anda 0.55 0.93 alb 0.74 0.97
ala 0.66 0.94 ablb 0.75 0.98
ab2a 0.66 0.94 ab3b 0.82 0.99
bla 1.00 1.00 blb 0.87 0.98
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Fig. 7. Comparison of coverages used by box counting (a) and PIFS-SF (b).

Similarly to results for fractal analysis obtained by BCM method, the
number of PIFS-SF codes weakly anticorrelates (p(PIFS,Vog) = —0.48,
p(PIFS, Vo) = —0.52) with electrophysiological responses of the cells. This
is an expected result, as drp and the number of codes correlate very well.

5. Concluding remarks

The images of dendrites exhibit an interesting type of self-similarity.
Firstly there is this system of thinning branches with repetitive branching
sections. On the other hand due to its branches extending irregularly from
a distinguished centre, one can analyse scaling of mass or other properties
with central symmetry. Therefore special tools are needed to provide an ad-
equate description of the structure and morphology of the dendrites. Fractal
analysis offers several methods to address this problem, however not all of
them are equally well handling it. Methods like TAM, IRRM or EABCM,
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which take into account the geometric centre of the dendrite and analyse
irregularities in the branches give an insight into iso/anisotropy of the cell
structure. Others, like BCM, allow to investigate the branching (frequency,
number of subbranches, thinning of the branches) rather than the aspects
of symmetry.

PIFS-SF seems to be more sensitive than BCM, but in general, these two
techniques are rather similar. They both reflect the visual complexity of the
image and their results are well correlated with each other (see Table VIII).
Moreover their results anticorrelate with electrophysiological responses of
the cells. The values of correlation coefficient are, however, too low to state
that the anticorrelation is meaningful.

More promising results are obtained for the first group of the fractal
methods (TAM, IRRM, EABCM). It may suggest that the electrophysio-
logical properties of amacrine cells depend more on the mass scaling and
central symmetries (which are neglected by BCM and PIFS-SF) rather than
branching and space-filling aspects. However, this conjecture needs further
experimental and theoretical investigations.
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