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1. Introduction

In the last two decades the nonexponential relaxation behaviour of com-
plex systems became a problem of topical interest in nonequilibrium statis-
tical physics. It is of importance in the study of a variety of problems from
condensed matter physics [1,2], nuclear physics [3], spectroscopy [4,5], rhe-
ology [6], seismology [7], physical chemistry [8], molecular biophysics [9,10],
cell and and population dynamics [11,12] etc.

The wide-ranging experimental information has led to the conclusion
that the classical phenomenology of relaxation breaks down in complex sys-
tems. It has been found that the pure exponential (Debye) relaxation pat-
tern is hardly ever seen in nature and that deviation from it may be rela-
tively large [1,2,13,14]. Experimental evidence is given usually in terms of
the relaxation function ¢(¢) that indicates the time evolution of an initial
nonequilibrium state imposed on the system in time ¢ = 0. The transition of
the relaxing system at time ¢ > 0 is defined by the change of some physical
parameter that differs the initial and relaxed states. Typically, the experi-
ment probes the ensemble average, in the sense that only the net effect of
a large number of contributions from different sites within a sample is mea-
sured. Regarding the statistical average in the sample volume, one observes
the nonexponential decay pattern of relaxation. Such an ensemble-averaged
relaxation mechanism can be rationalized in two ways [15]. In the dynam-
ically heterogeneous picture, the contributions are assumed to be purely
exponential subject to the distribution of individual relaxation times. In
the other extreme, i.e. in the homogeneous picture, the contributions to the
effective relaxation response are not site specific. On the scale ranging from
the heterogeneous to the homogeneous limit, one has to allow for the case
of certain degree of intrinsic nonexponentiality combined with site-specific
time scales.

Among different empirical relaxation functions suggested in literature
the Kohlrausch-Williams-Watts (KWW) stretched exponential function

dxww (t) = exp [—(t/70)"] (1)

plays an important role. The parameters 79 > 0 and 0 < a < 1 are con-
stants characteristic to the material. Although the stretched exponential
decay law (1) is not universally valid [1], it appears frequently enough to
call attention for the origins of its ubiquity. The wide occurrence of this
relaxation pattern, independently of the particular system properties, has
attracted (and still does) much theoretical attention for the underlying rea-
son of this phenomenon. It has been commonly assumed that the empirical
law (1) corresponds to a kind of universal behaviour which is independent
of the details of examined systems. This idea has stimulated the proposal
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of several relaxation mechanisms (see e.g. [16-27]) that differ mainly in the
mathematical interpretation of the relaxation function. In the framework of
statistical models the fact that the large scale dynamical behaviour of the
complex system is, to some extent, independent of its local nature, comes
as no surprise. Intuitively, one expects averaging principles (like the law of
large numbers) to be in force. It turns out, however, that it is very hard
to make this intuition precise when one deals with stochastic systems. The
crucial point is to find a mathematical language which allows one to relate
the local random characteristics of the complex system (i.e. the site-specific
properties of the time scales) to the deterministic empirical laws. Such a
possibility follows from the general probabilistic formalism of limit theo-
rems [19,21-23,28|. The language of limit theorems, in a natural way, gives
an efficient and strict procedure of averaging the random contributions from
different sites within the sample. It also formulates the statistical conditions
leading to a particular response [22,23].

The objective of this paper is to find the probabilistic scheme underlying
the Rajagopal relaxation-time distribution [29]. This distribution has been
recently proposed [30] as a function describing the effective-relaxation-time
properties of the KWW relaxation pattern well enough in the picture of
exponentially relaxing entities (relaxors). The Rajagopal function, because
of its explicit analytical form, is of great importance from the experimental
point of view, and hence, worth theoretical studies. The paper consists of
two main parts. In the first, we study the relationship between the KWW
and the relaxation function resulting from the Rajagopal distribution in the
originally proposed framework [30]. We show the origins of similarities and
differences in both responses. In the second part we discuss the heteroge-
neous picture within which the Rajagopal distribution leads directly to the
KWW relaxation function.

2. Nonexponential relaxation. Probabilistic background

It is commonly accepted that the relaxation function ¢(t), repre-
senting the effective nonexponential relaxation pattern, results from a su-
perposition of exponential (Debye) processes with different relaxation times.
Mathematically, this idea is usually expressed as the weighted average of an

exponential decay e /T with respect to the distribution of the relaxation
time 7:
(o)
t
30 = [ gtr)exp(-2yar, )
0

where g(7) is the relaxation-time probability density function. The above
formula has been used mainly as a formal mathematical tool [31,32] conve-
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nient to describe, analyze and transform the data in order to compare them
with the results obtained by different experimental methods. The notion of
the complex system needs, however, understanding the distribution-function
approach in the framework of probability theory which tools are capable of
relating the local random properties to the effective representation of the
system [21,28|.

It is well-known fact of probability theory [33] that formula (2), which
concerns the case when the relaxation time cannot be limited to any finite

nor countable set of values, or its discrete version ¢(t) = Y. pje = which
concerns the case when the relaxation time can take values from the set
{r1,72,...} with the corresponding weights p1,ps,..., denotes simply the

expected value (-) of the random function e %7 with respect to the distri-

bution of the non-negative random variable T representing the considered

relaxation time:
t

b(t) = (e F). 3)

1

Introducing a new variable B = =, representing the corresponding relaxation

S

rate, we get equivalent formula

(1) = (e ") (4)

which assigns the relaxation function to the Laplace transform of the re-
laxation-rate probability density function. It follows from formula (3) that
the relaxation function ¢(¢) defined in (2), is a function describing the re-
laxation process of the system as a whole and the formula (2) concerns,
in fact, the effective behaviour of the macroscopic system represented by
one (real or imaginary) object with the value of relaxation time 7 randomly
taken according to the distribution of the random variable T'. Hence, neither
formula (2) nor its discrete version directly contain information on local ran-
dom properties of the relaxing system (i.e. on relaxation-time distributions
of individual relaxors). This information is hidden in the explicit form of
a particular relaxation function and can be brought to light by means of
limit theorems of probability theory, using the fact that ¢(¢) has to fulfill
the two-state master equation (see e.g. [24])

WO — s, 9(0) =1. )
the solution of which has the meaning of the survival probability of the
nonequilibrium (imposed) initial state of the relaxing system (i.e. the prob-
ability that the system as a whole will not make a transition out of its
original state for at least time ¢ after entering it at ¢ = 0 [21,25,26]). The
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nonnegative, time-dependent quantity r(¢) is the transition rate of the re-
laxing system. The survival probability of the nonequilibrium state of the
entire system can be related with the site specific properties of individual
relaxors if one considers a system of N independent, exponentially relax-
ing species, each (i-th) characterized by its own random relaxation time 7;
(or the corresponding relaxation rate f; = T) Each relaxor is waiting for
transition for a time 6;; the waiting times of all N relaxors form a sequence
{01, ...0n} of identically distributed, independent nonnegative random vari-
ables. The behaviour of each relaxor is conditioned only by the value taken
by its characteristic relaxation constant. Namely, the probability that the
i-th relaxor has not changed its initial state up to the moment ¢, under the
condition that its relaxation-rate g8; = T% takes the value b = %, is

Pr(6; > t|5; = b) = exp [— <;)] = exp(—bt) fort >0,b6>0. (6)

It has been shown by means of order statistics (see for details [21,28]) that
the above assumptions lead to the relaxation function of the form

N -
H tﬂz/AN — <e_t/BN>’ (7)
i=1
where
_ 1 N
BN = . Z Bi (8)
i=1

is the effective random relaxation rate of an “averaged” relaxor representing
the properties of the system as a whole. Ay denotes a sequence of suitable
normalizing (scaling) constants. On the basis of limit theorems of probability
theory the distribution of Sy in Eq. (8) can be satisfactorily approximated
by the weak limit

3= lim — 9

IB Nooo A N Z IBZ ( )
even if the distribution of £; is known in a relatively limited extent. It is a
strict result that the only possible probability distributions for the effective

~ ~ d
relaxation rate 8 are completely asymmetric Lévy-stable laws 8 2 constS,

(the relation é denotes the equality in distribution) with the parameter
0 < a <1 leading directly to the KWW relaxation function. As a — 1 we
obtain the degenerate case, i.e. the density function of 5 becomes the Dirac-
delta o(b) = 6(b—by), yielding the Debye decay. The necessary and sufficient
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condition for the convergence of the sum (9) is the self-similar property of
the distribution of the individual relaxation rate §; that may be expressed
as:

Pr(B; > xb) =z “Pr(f; >b) as b—oo and z>0. (10)

3. Relationship between the Rajagopal relaxation-time
distribution and the KWW relaxation response

The relaxation function ¢(t), represented by equivalent formulas (3)
and (4) that connect the deterministic response of the relaxing system with
its effective random representation, may be written in the following forms

(1) = / g(r)e—tdr = / h(log T)e~*dlog T = / o(b)e—"db, (1)
0 0 0

where g(7) = CLh(log7) and o(b) = g (3) = $h(log }) is the probability
density function of the random effective relaxation time 7' and the probabil-
ity density function of the random effective relaxation rate 3, respectively.
The constant C equals (In10)~!. As we shall show below, formula (11), that
assigns the relaxation function to the Laplace transform of the relaxation-
rate distribution ¢(t) = L(o(b),t), is very useful in studying the probabilistic
aspects of the empirical relaxation functions.

Let us consider the KWW relaxation function (1). As it was presented
in the preceding section the effective relaxation rate B yielding the KWW
function is distributed according to the completely asymmetric stable law,
more precisely, the effective relaxation rate § is an a-stable (Lévy stable)

_d
non-negative random variable S,; 8 = %Sa [19,27]. The explicit form of

the density of the variable S, exists only in the case of a = % and is known
as Lévy density [33,34]. Therefore only in the case of o = % we can express

o(b) explicitly obtaining the following:

o(b) = 2\/1#70 b=3/2 exp {—L} (12)

The Rajagopal log-relaxation-time density discussed by Gomez and Alegria

in [30] was obtained using the “method of the steepest descents” as an appro-
ximate function to infer the density yielding the KWW response [29]. It is

given as an explicit analytical expression
T ﬁ
—(1-a <oz—) ]
To

2w
hr(logT) = a <a T ) exp
(13)

(Ar(1—a) 2\ 7
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which has the proper probabilistic sense only for 0 < a < 1. It yields the
relaxation-rate probability function in the following form

o) = () ™ oxp [— - () ﬁ] (14

indicating that (13) cannot (excluding the case of o = ) yield the exact
form of the KWW function. There exists, however, a strict connection be-
tween these two functions that allows to compare analytically the asymptotic
behaviour of both the KWW and the corresponding Rajagopal relaxation
function ¢g(¢).

For @ = § there is an equality between the Lévy (Eq. (12)) and Ra-
jagopal densities (Egs (13), (14)), and thus the corresponding relaxation
functions coincide so we exclude this case from the following considerations.

To point out the differences occurring in the remaining cases let us first
focus on the asymptotic behaviour of the stable density function. As we
mentioned above, there are no explicit formulas of the completely asym-
metric stable densities s(b,@) (except for the case @ = 3). Instead, the
asymptotic approximations are well known [34].

We have for b — 0
1 « QN sia) Q\ (ioa)
ba)=-— (= —1-a) (= 15
s(bia) b(w(l_a))lﬂ(b) eXp[ ( a)(b) (15)
and for b — oo
s(b;a) oc b7 (16)

Let us observe that the asymptotic formula (15) for small b is just the Ra-
jagopal density (14). Moreover, formula (14) can be rewritten in the form

(12) with 7o = 1 using the substitution z = 1~ (%Ob)ﬁ This denotes
that the Bg and effective relaxation time 7§ in the Rajagopal case are related
with the %— stable random variable S1 by the following formulas

2

11—

B & S (40-asy) " (17)
Ty & Ta_o (4(1 - a)s;)laa . (18)

Let us note that in the limiting case, when a — 1, the random variable
Br approaches to the degenerate one which is the deterministic case with

~ 1

BR = -, = const generating the Debye response. The corresponding density
function tends to d-Dirac function gr(b) = 6(b — %) (see Fig. 1).
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Fig. 1. Relaxation-rate densities gr(b) (Eq. (14)) for various values of a € (0, 1).

Both densities, s(b, @) and pgr(b), coincide for small values b of the re-

laxation rate whereas for b — oo the agreement is no longer maintained as

the Rajagopal density pgr(b) for b — oo is proportional to b M L

or(b) x b 200 ' forb — oo, (19)

The asymptotic behaviour of the relaxation-rate density results in the asymp-
totic behaviour of its Laplace transform i.e. relaxation function. It is due to
the well-known general fact that the properties for z — 0 (z — oc) of a func-
tion f(x) correspond to the properties of its Laplace transform L(f(x),t)
for t — oo (t — 0). The Tauberian theorems [33] imply that the KWW
response function exhibits for ¢ — 0 the following power law

_dpxww(t) a1

frww (t) = o

(20)
which is the direct consequence of the power law s(b;a) oc b=~ ! fulfilled
for b — oo by the stable relaxation-rate density with 0 < a < 1. Analogous
analysis of the Rajagopal density leads from

1

or(b) x b 0w L for b — oo (21)

to

fr(t) = —dg%(t) oc T

" for t—o0. (22)
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In this case the Tauberian theorems imply the constraint 0 < Q(ffa) <1

(i.e. 0 < a < 2) on the power-law exponent in formula (21). This mathe-
matical result is in agreement with the empirical data, 7.e. with the general
observation [13] that all types of the empirical functions used to fit the di-
electric data exhibit a fractional-power dependence of the dielectric response
f(t) in the short-time limit:

f(t) ~ (wpt)™" for t<w,™ ", (23)

where the parameter n falls in the range (0,1) and w, denotes the loss peak
frequency. Thus, using the Rajagopal density function, only in the case of
« falling in the range (0, %) we get the proper power law of the response
function. In the limiting case of a = % we get n = 0 what denotes that
the response function fg(¢) becomes a constant for ¢ — 0. Concluding,
in the framework of the dynamically heterogeneous picture expressed by
exponential integral kernel in the definition of ¢(¢), the Rajagopal relaxation
function and the KWW function coincide in the region of long times ¢ — oo
whereas they exhibit dissimilar power laws for t — 0: fr(t) > fxww(t) for
a € (0,1), fr(t) < frww(t) for @ € (3,1) and fr(t) = fxww(t) for a =1
(see Fig. 2).

2 o ]
2 [ —— kww «=0.33 .
S | ——KWW 0=0.5

Y KWW 0=0.66 ]

-~ Rajagopal =0.33
Rajagopal a=0.5
- Rajagopal 0=0.66

1 1 1 1 1 1 1 1 1 1 1 1
-5 -4 -3 -2 -1 0 1 2
Log, 0[ t]

Fig. 2. Relationship between the Rajagopal and the KWW response functions. For
long time t both functions coincide.
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4. Nonexponential integral kernel. On the relationship
with the Rajagopal density function

A more general approach to the response pattern [15,35| can be
obtained by changing the exponential integral kernel in (2) and rewriting
the definition of the relaxation function as

/ glr)exp [ (t/)dr = (exp[-(t/T)>]) . (24)
0

The positive parameter ajnt, 7 1 in the integral kernel introduces various
degrees of heterogeneity by changing the extent of the intrinsic nonexponen-
tiality; g(7), as in the former case, is the probability density function of the
effective relaxation-time T (not attributed to any particular object chosen
from the entities forming the system).

To present the stochastic scheme leading to (24) we have to assume that
each relaxor undergoes the nonexponential relaxation. Then the conditional
site-dependent probability that the relaxor has not changed its initial state
up to the moment % is

t
Pr(6; > t|5; = b) = exp(—(=)*"*) = exp(—bt"ntr) fort > 0,6 > 0.
T
(25)
The analogous analysis, as presented in Sect. 2, yields the relaxation func-
tion of the form

N
¢(t) — <eXp(_taintr Z IBZ./A?&Vincr)> — <exp(_taintrﬁN)> (26)
i=1
with the effective relaxation rate

N
By = Zﬂi/A}lvi“"; Qingr > 0, Qingr # 1 (27)

i=1

The case ity = 1 corresponds to the classical approach (6) with each object
relaxing exponentially.

As the same limit theory is in force, we conclude that asymptotically as
N — oo (for large number of individual relaxors) the only possible prob-
ability distribution for the effective relaxation rate 8 = limy_yo0 By is the
completely asymmetric Lévy-stable law S, with v € (0,1). In this case ¢(t)
is of the form
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¢(t) = exp [—(At%r)7], (28)

and

~ d
T — ﬁfl/aintr ~ Ail/aintr(sfy)fl/aintr’ (29)

where A is a positive constant. To obtain the convergence the sequence of
normalizing constants A{™" has to be proportional to N 1/7 and f3; have
to belong to the domain of attraction of the Lévy-stable law. Again, it
is not necessary to know the detailed nature of the relaxation time (rate)
of an individual relaxor. The considered convergence is determined by the
behaviour of the tail of Fj(b) for large b, or equivalently by the behaviour of
the distribution function of the individual relaxation time Frp(7) for small 7.
Namely, the necessary and sufficient condition for the relaxation time to
obtain the limit in (27) is

Fr.(ya) = Pr(T; < ya) = y " Fr.(a) fora — 0 andy > 0. (30)

Let us observe that as a result we obtain three types of the relaxation
response (28). Provided that yain, < 1 we get the stretched exponential
decay i.e. exp(—t/79)**WW with axww = YQntr and 79 = A~V For
Yaipgy = 1 we have the Debye response, whereas yajpgy > 1 yields the com-
pressed exponential one.

The relationship (29) helps us to find the stochastic relaxation scheme
hidden behind the Rajagopal effective-relaxation-time distribution. Let us
recall that the corresponding effective relaxation time has been derived in

_l-a

. d
Sect. 3 to be distributed as Ty = const(S%) "o (see (18)), which is exactly

of the form (29). We conclude hence that the Rajagopal effective-relaxation-
time distribution results in a heterogeneous system of relaxors exhibiting the
intrinsically nonexponential decay (with the index @iy = $%;) combined

with the site-dependent rates f; = T;E belonging to the domain of at-

traction of 1-stable law. Due to (10) the distribution of individual 7; has to

obey Pr(T; < ya) = y%ﬁ Pr(T; < a) for all y > 0 and a — 0. For ajp < 2
(a < %) we obtain the stretched exponential response whereas for ajny = 2
(@ = %) and qiper > 2 (o > 2) respectively the Debye and compressed cases.

The response function f(¢) derived from (28) is for small ¢ proportional
to ¢20-a ' therefore for a < 2 exhibits the same power law as fr(t) (recall
Eq. (22)). Both functions (with the constant A chosen properly) coincide for
small values of ¢ whereas as t — oo, fr(t) differs from the KWW response
function (see Fig. 3).
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Fig. 3. Relationship between the Rajagopal response functions in the case of ex-
ponential (see (3)) and nonexponential integral kernel, characterized by the value
of aintr (see (24)). For a = £ both functions coincide. In the remaining cases the
coincidence occurs only in the region of small ¢.

5. Conclusions

In this work, aiming to find a probabilistic scheme of relaxation, a de-
tailed analysis of properties of the response function generated by the Ra-
jagopal analytical relaxation-time distribution has been presented. This dis-
tribution has been proposed as an aproximate function to infer the relaxation-
time density yielding the KWW-type relaxation response. In contrast, the
well-known KWW empirical relaxation function is related to the relaxation-
time density which cannot be represented by an analytical formula. Al-
though the relaxation-time density can be given in the series representa-
tion only, the probabilistic scheme establishing the spatio-temporal scaling
properties leading to the stretched exponential response has been already
recognized.

In our approach, instead of representing the relaxation function as the
weighted average of an exponential decay with respect to the distribution of
the effective relaxation time (2), we have used the possibility of represent-
ing the relaxation function as the Laplace transform of the relaxation-rate
density (4). This substitution allowed us to use the Tauberian theorems
to find the condition under which the properties of both the KWW and
Rajagopal responses can be compared. As a result we have obtained that
both functions coincide for ¢ — 0o, whereas they exhibit dissimilar power
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laws for t — 0. We have also shown that behind the KWW response there
is hidden the effective relaxation rate with properties of the Lévy-stable
non-negative random variable whereas behind the Rajagopal response the
effective relaxation rate is a power function of the % - stable non-negative
random variable.

Using the idea of intrinsic nonexponentiality we have shown the stochas-

tic scheme connecting directly the Rajagopal and the KWW functions. This
approach allows one to obtain the broader class of nonexponential responses
(the stretched, as well as, the compressed ones).
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