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3718 P. Hetman et al.1. Introdu
tionIn the last two de
ades the nonexponential relaxation behaviour of 
om-plex systems be
ame a problem of topi
al interest in nonequilibrium statis-ti
al physi
s. It is of importan
e in the study of a variety of problems from
ondensed matter physi
s [1, 2℄, nu
lear physi
s [3℄, spe
tros
opy [4, 5℄, rhe-ology [6℄, seismology [7℄, physi
al 
hemistry [8℄, mole
ular biophysi
s [9,10℄,
ell and and population dynami
s [11, 12℄ et
.The wide-ranging experimental information has led to the 
on
lusionthat the 
lassi
al phenomenology of relaxation breaks down in 
omplex sys-tems. It has been found that the pure exponential (Debye) relaxation pat-tern is hardly ever seen in nature and that deviation from it may be rela-tively large [1, 2, 13, 14℄. Experimental eviden
e is given usually in terms ofthe relaxation fun
tion �(t) that indi
ates the time evolution of an initialnonequilibrium state imposed on the system in time t = 0: The transition ofthe relaxing system at time t > 0 is de�ned by the 
hange of some physi
alparameter that di�ers the initial and relaxed states. Typi
ally, the experi-ment probes the ensemble average, in the sense that only the net e�e
t ofa large number of 
ontributions from di�erent sites within a sample is mea-sured. Regarding the statisti
al average in the sample volume, one observesthe nonexponential de
ay pattern of relaxation. Su
h an ensemble-averagedrelaxation me
hanism 
an be rationalized in two ways [15℄. In the dynam-i
ally heterogeneous pi
ture, the 
ontributions are assumed to be purelyexponential subje
t to the distribution of individual relaxation times. Inthe other extreme, i.e. in the homogeneous pi
ture, the 
ontributions to thee�e
tive relaxation response are not site spe
i�
. On the s
ale ranging fromthe heterogeneous to the homogeneous limit, one has to allow for the 
aseof 
ertain degree of intrinsi
 nonexponentiality 
ombined with site-spe
i�
time s
ales.Among di�erent empiri
al relaxation fun
tions suggested in literaturethe Kohlraus
h�Williams�Watts (KWW) stret
hed exponential fun
tion�KWW(t) = exp [�(t=�0)�℄ (1)plays an important role. The parameters �0 > 0 and 0 < � < 1 are 
on-stants 
hara
teristi
 to the material. Although the stret
hed exponentialde
ay law (1) is not universally valid [1℄, it appears frequently enough to
all attention for the origins of its ubiquity. The wide o

urren
e of thisrelaxation pattern, independently of the parti
ular system properties, hasattra
ted (and still does) mu
h theoreti
al attention for the underlying rea-son of this phenomenon. It has been 
ommonly assumed that the empiri
allaw (1) 
orresponds to a kind of universal behaviour whi
h is independentof the details of examined systems. This idea has stimulated the proposal
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hed Exponential Survival Probability and Its. . . 3719of several relaxation me
hanisms (see e.g. [16�27℄) that di�er mainly in themathemati
al interpretation of the relaxation fun
tion. In the framework ofstatisti
al models the fa
t that the large s
ale dynami
al behaviour of the
omplex system is, to some extent, independent of its lo
al nature, 
omesas no surprise. Intuitively, one expe
ts averaging prin
iples (like the law oflarge numbers) to be in for
e. It turns out, however, that it is very hardto make this intuition pre
ise when one deals with sto
hasti
 systems. The
ru
ial point is to �nd a mathemati
al language whi
h allows one to relatethe lo
al random 
hara
teristi
s of the 
omplex system (i.e. the site-spe
i�
properties of the time s
ales) to the deterministi
 empiri
al laws. Su
h apossibility follows from the general probabilisti
 formalism of limit theo-rems [19,21�23,28℄. The language of limit theorems, in a natural way, givesan e�
ient and stri
t pro
edure of averaging the random 
ontributions fromdi�erent sites within the sample. It also formulates the statisti
al 
onditionsleading to a parti
ular response [22, 23℄.The obje
tive of this paper is to �nd the probabilisti
 s
heme underlyingthe Rajagopal relaxation-time distribution [29℄. This distribution has beenre
ently proposed [30℄ as a fun
tion des
ribing the e�e
tive-relaxation-timeproperties of the KWW relaxation pattern well enough in the pi
ture ofexponentially relaxing entities (relaxors). The Rajagopal fun
tion, be
auseof its expli
it analyti
al form, is of great importan
e from the experimentalpoint of view, and hen
e, worth theoreti
al studies. The paper 
onsists oftwo main parts. In the �rst, we study the relationship between the KWWand the relaxation fun
tion resulting from the Rajagopal distribution in theoriginally proposed framework [30℄. We show the origins of similarities anddi�eren
es in both responses. In the se
ond part we dis
uss the heteroge-neous pi
ture within whi
h the Rajagopal distribution leads dire
tly to theKWW relaxation fun
tion.2. Nonexponential relaxation. Probabilisti
 ba
kgroundIt is 
ommonly a

epted that the relaxation fun
tion �(t), repre-senting the e�e
tive nonexponential relaxation pattern, results from a su-perposition of exponential (Debye) pro
esses with di�erent relaxation times.Mathemati
ally, this idea is usually expressed as the weighted average of anexponential de
ay e�t=� with respe
t to the distribution of the relaxationtime � : �(t) = 1Z0 g(�) exp(� t� )d�; (2)where g(�) is the relaxation-time probability density fun
tion. The aboveformula has been used mainly as a formal mathemati
al tool [31, 32℄ 
onve-
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ribe, analyze and transform the data in order to 
ompare themwith the results obtained by di�erent experimental methods. The notion ofthe 
omplex system needs, however, understanding the distribution-fun
tionapproa
h in the framework of probability theory whi
h tools are 
apable ofrelating the lo
al random properties to the e�e
tive representation of thesystem [21, 28℄.It is well-known fa
t of probability theory [33℄ that formula (2), whi
h
on
erns the 
ase when the relaxation time 
annot be limited to any �nitenor 
ountable set of values, or its dis
rete version �(t) = Pi pie� t�i whi
h
on
erns the 
ase when the relaxation time 
an take values from the setf�1; �2; : : :g with the 
orresponding weights p1; p2; : : :, denotes simply theexpe
ted value h�i of the random fun
tion e�t= ~T with respe
t to the distri-bution of the non-negative random variable ~T representing the 
onsideredrelaxation time: �(t) = he� t~T i: (3)Introdu
ing a new variable ~� = 1~T ; representing the 
orresponding relaxationrate, we get equivalent formula�(t) = he�t~�i (4)whi
h assigns the relaxation fun
tion to the Lapla
e transform of the re-laxation-rate probability density fun
tion. It follows from formula (3) thatthe relaxation fun
tion �(t) de�ned in (2), is a fun
tion des
ribing the re-laxation pro
ess of the system as a whole and the formula (2) 
on
erns,in fa
t, the e�e
tive behaviour of the ma
ros
opi
 system represented byone (real or imaginary) obje
t with the value of relaxation time � randomlytaken a

ording to the distribution of the random variable ~T : Hen
e, neitherformula (2) nor its dis
rete version dire
tly 
ontain information on lo
al ran-dom properties of the relaxing system (i.e. on relaxation-time distributionsof individual relaxors). This information is hidden in the expli
it form ofa parti
ular relaxation fun
tion and 
an be brought to light by means oflimit theorems of probability theory, using the fa
t that �(t) has to ful�llthe two-state master equation (see e.g. [24℄)d�(t)dt = �r(t)�(t); �(0) = 1; (5)the solution of whi
h has the meaning of the survival probability of thenonequilibrium (imposed) initial state of the relaxing system (i.e. the prob-ability that the system as a whole will not make a transition out of itsoriginal state for at least time t after entering it at t = 0 [21, 25, 26℄). The



On the Stret
hed Exponential Survival Probability and Its. . . 3721nonnegative, time-dependent quantity r(t) is the transition rate of the re-laxing system. The survival probability of the nonequilibrium state of theentire system 
an be related with the site spe
i�
 properties of individualrelaxors if one 
onsiders a system of N independent, exponentially relax-ing spe
ies, ea
h (i-th) 
hara
terized by its own random relaxation time Ti(or the 
orresponding relaxation rate �i = 1Ti ). Ea
h relaxor is waiting fortransition for a time �i; the waiting times of all N relaxors form a sequen
ef�1; : : : �Ng of identi
ally distributed, independent nonnegative random vari-ables. The behaviour of ea
h relaxor is 
onditioned only by the value takenby its 
hara
teristi
 relaxation 
onstant. Namely, the probability that thei-th relaxor has not 
hanged its initial state up to the moment t, under the
ondition that its relaxation-rate �i = 1Ti takes the value b = 1� , isPr(�i � tj�i = b) = exp ��� t��� = exp(�bt) for t � 0; b > 0: (6)It has been shown by means of order statisti
s (see for details [21, 28℄) thatthe above assumptions lead to the relaxation fun
tion of the form�(t) = NYi=1 he�t�i=AN i = he�t~�N i; (7)where ~�N = 1AN NXi=1 �i (8)is the e�e
tive random relaxation rate of an �averaged� relaxor representingthe properties of the system as a whole. AN denotes a sequen
e of suitablenormalizing (s
aling) 
onstants. On the basis of limit theorems of probabilitytheory the distribution of ~�N in Eq. (8) 
an be satisfa
torily approximatedby the weak limit ~� = limN!1 1AN NXi=1 �i (9)even if the distribution of �i is known in a relatively limited extent. It is astri
t result that the only possible probability distributions for the e�e
tiverelaxation rate ~� are 
ompletely asymmetri
 Lévy-stable laws ~� d�= 
onstS�(the relation d�= denotes the equality in distribution) with the parameter0 < � < 1 leading dire
tly to the KWW relaxation fun
tion. As � ! 1 weobtain the degenerate 
ase, i.e. the density fun
tion of ~� be
omes the Dira
-delta %(b) = Æ(b�b0), yielding the Debye de
ay. The ne
essary and su�
ient
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ondition for the 
onvergen
e of the sum (9) is the self-similar property ofthe distribution of the individual relaxation rate �i that may be expressedas: Pr(�i � xb) � x��Pr(�i � b) as b!1 and x > 0: (10)3. Relationship between the Rajagopal relaxation-timedistribution and the KWW relaxation responseThe relaxation fun
tion �(t), represented by equivalent formulas (3)and (4) that 
onne
t the deterministi
 response of the relaxing system withits e�e
tive random representation, may be written in the following forms�(t) = 1Z0 g(�)e� t� d� = 1Z0 h(log �)e� t� d log � = 1Z0 %(b)e�tbdb; (11)where g(�) = C 1� h(log �) and %(b) = 1b2 g �1b� = Cb h(log 1b ) is the probabilitydensity fun
tion of the random e�e
tive relaxation time ~T and the probabil-ity density fun
tion of the random e�e
tive relaxation rate ~�, respe
tively.The 
onstant C equals (ln 10)�1: As we shall show below, formula (11), thatassigns the relaxation fun
tion to the Lapla
e transform of the relaxation-rate distribution �(t) = L(%(b); t), is very useful in studying the probabilisti
aspe
ts of the empiri
al relaxation fun
tions.Let us 
onsider the KWW relaxation fun
tion (1). As it was presentedin the pre
eding se
tion the e�e
tive relaxation rate ~� yielding the KWWfun
tion is distributed a

ording to the 
ompletely asymmetri
 stable law,more pre
isely, the e�e
tive relaxation rate ~� is an �-stable (Lévy stable)non-negative random variable S�; ~� d�= 1�0S� [19, 27℄. The expli
it form ofthe density of the variable S� exists only in the 
ase of � = 12 and is knownas Lévy density [33,34℄. Therefore only in the 
ase of � = 12 we 
an express%(b) expli
itly obtaining the following:%(b) = 12p��0 b�3=2 exp�� 14�0b� : (12)The Rajagopal log-relaxation-time density dis
ussed by Gomez and Alegriain [30℄ was obtained using the �method of the steepest des
ents� as an appro-ximate fun
tion to infer the density yielding the KWW response [29℄. It isgiven as an expli
it analyti
al expressionhR(log �) = �(A� (1� �))1=2 �� ��0� �2(1��) exp"� (1� �)�� ��0� �(1��)#(13)



On the Stret
hed Exponential Survival Probability and Its. . . 3723whi
h has the proper probabilisti
 sense only for 0 < � < 1: It yields therelaxation-rate probability fun
tion in the following form%R(b) = 1b �(� (1� �))1=2 � ��0b� �2(1��) exp"� (1� �)� ��0b� �(1��)# (14)indi
ating that (13) 
annot (ex
luding the 
ase of � = 12) yield the exa
tform of the KWW fun
tion. There exists, however, a stri
t 
onne
tion be-tween these two fun
tions that allows to 
ompare analyti
ally the asymptoti
behaviour of both the KWW and the 
orresponding Rajagopal relaxationfun
tion �R(t):For � = 12 there is an equality between the Lévy (Eq. (12)) and Ra-jagopal densities (Eqs (13), (14)), and thus the 
orresponding relaxationfun
tions 
oin
ide so we ex
lude this 
ase from the following 
onsiderations.To point out the di�eren
es o

urring in the remaining 
ases let us �rstfo
us on the asymptoti
 behaviour of the stable density fun
tion. As wementioned above, there are no expli
it formulas of the 
ompletely asym-metri
 stable densities s(b; �) (ex
ept for the 
ase � = 12). Instead, theasymptoti
 approximations are well known [34℄.We have for b! 0s(b;�) = 1b �(� (1� �))1=2 ��b � �2(1��) exp �� (1� �)��b � �(1��)� (15)and for b!1 s(b;�) / b���1: (16)Let us observe that the asymptoti
 formula (15) for small b is just the Ra-jagopal density (14). Moreover, formula (14) 
an be rewritten in the form(12) with �0 = 1 using the substitution z = 14 11�� � �0� b� �1�� . This denotesthat the ~�R and e�e
tive relaxation time ~TR in the Rajagopal 
ase are relatedwith the 12 - stable random variable S 12 by the following formulas~�R d�= ��0 �4(1� �)S 12� 1��� ; (17)~TR d�= �0� �4(1� �)S 12�� 1��� : (18)Let us note that in the limiting 
ase, when � ! 1, the random variable~�R approa
hes to the degenerate one whi
h is the deterministi
 
ase with~�R d�= 1�0 = 
onst generating the Debye response. The 
orresponding densityfun
tion tends to Æ-Dira
 fun
tion %R(b) = Æ(b � 1�0 ) (see Fig. 1).
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bFig. 1. Relaxation-rate densities %R(b) (Eq. (14)) for various values of � 2 (0; 1):Both densities, s(b; �) and %R(b); 
oin
ide for small values b of the re-laxation rate whereas for b ! 1 the agreement is no longer maintained asthe Rajagopal density %R(b) for b!1 is proportional to b� �2(1��)�1:%R(b) / b� �2(1��)�1 for b!1: (19)The asymptoti
 behaviour of the relaxation-rate density results in the asymp-toti
 behaviour of its Lapla
e transform i.e. relaxation fun
tion. It is due tothe well-known general fa
t that the properties for x! 0 (x!1) of a fun
-tion f(x) 
orrespond to the properties of its Lapla
e transform L(f(x); t)for t ! 1 (t ! 0). The Tauberian theorems [33℄ imply that the KWWresponse fun
tion exhibits for t! 0 the following power lawfKWW(t) = �d�KWW(t)dt / t��1 (20)whi
h is the dire
t 
onsequen
e of the power law s(b;�) / b���1 ful�lledfor b!1 by the stable relaxation-rate density with 0 < � < 1. Analogousanalysis of the Rajagopal density leads from%R(b) / b� �2(1��)�1 for b!1 (21)to fR(t) = �d�R(t)dt / t �2(1��)�1 for t! 0: (22)
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hed Exponential Survival Probability and Its. . . 3725In this 
ase the Tauberian theorems imply the 
onstraint 0 < �2(1��) < 1(i.e. 0 < � < 23) on the power-law exponent in formula (21). This mathe-mati
al result is in agreement with the empiri
al data, i.e. with the generalobservation [13℄ that all types of the empiri
al fun
tions used to �t the di-ele
tri
 data exhibit a fra
tional-power dependen
e of the diele
tri
 responsef(t) in the short-time limit:f(t) � (!pt)�n for t� !p�1; (23)where the parameter n falls in the range (0; 1) and !p denotes the loss peakfrequen
y. Thus, using the Rajagopal density fun
tion, only in the 
ase of� falling in the range (0; 23 ) we get the proper power law of the responsefun
tion. In the limiting 
ase of � = 23 we get n = 0 what denotes thatthe response fun
tion fR(t) be
omes a 
onstant for t ! 0. Con
luding,in the framework of the dynami
ally heterogeneous pi
ture expressed byexponential integral kernel in the de�nition of �(t), the Rajagopal relaxationfun
tion and the KWW fun
tion 
oin
ide in the region of long times t!1whereas they exhibit dissimilar power laws for t! 0: fR(t) > fKWW(t) for� 2 (0; 12 ), fR(t) < fKWW(t) for � 2 (12 ; 1) and fR(t) = fKWW(t) for � = 12(see Fig. 2).
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3726 P. Hetman et al.4. Nonexponential integral kernel. On the relationshipwith the Rajagopal density fun
tionA more general approa
h to the response pattern [15, 35℄ 
an beobtained by 
hanging the exponential integral kernel in (2) and rewritingthe de�nition of the relaxation fun
tion as�(t) = 1Z0 g(�) exp [�(t=�)�intr ℄d� = Dexp[�(t= ~T )�intr ℄E : (24)The positive parameter �intr 6= 1 in the integral kernel introdu
es variousdegrees of heterogeneity by 
hanging the extent of the intrinsi
 nonexponen-tiality; g(�), as in the former 
ase, is the probability density fun
tion of thee�e
tive relaxation-time ~T (not attributed to any parti
ular obje
t 
hosenfrom the entities forming the system).To present the sto
hasti
 s
heme leading to (24) we have to assume thatea
h relaxor undergoes the nonexponential relaxation. Then the 
onditionalsite-dependent probability that the relaxor has not 
hanged its initial stateup to the moment t isPr(�i � tj�i = b) = exp(�( t� )�intr) = exp(�bt�intr) for t � 0; b > 0:(25)The analogous analysis, as presented in Se
t. 2, yields the relaxation fun
-tion of the form�(t) = *exp(�t�intr NXi=1 �i=A�intrN )+ = Dexp(�t�intr ~�N )E (26)with the e�e
tive relaxation rate~�N = NXi=1 �i=A�intrN ; �intr > 0; �intr 6= 1 (27)The 
ase �intr = 1 
orresponds to the 
lassi
al approa
h (6) with ea
h obje
trelaxing exponentially.As the same limit theory is in for
e, we 
on
lude that asymptoti
ally asN ! 1 (for large number of individual relaxors) the only possible prob-ability distribution for the e�e
tive relaxation rate ~� = limN!1 ~�N is the
ompletely asymmetri
 Lévy-stable law S
 with 
 2 (0; 1): In this 
ase �(t)is of the form
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hed Exponential Survival Probability and Its. . . 3727�(t) = exp [�(At�intr)
 ℄ ; (28)and ~T = ~��1=�intr d�= A�1=�intr(S
)�1=�intr ; (29)where A is a positive 
onstant. To obtain the 
onvergen
e the sequen
e ofnormalizing 
onstants A�intrN has to be proportional to N1=
 and �i haveto belong to the domain of attra
tion of the Lévy-stable law. Again, itis not ne
essary to know the detailed nature of the relaxation time (rate)of an individual relaxor. The 
onsidered 
onvergen
e is determined by thebehaviour of the tail of F�(b) for large b, or equivalently by the behaviour ofthe distribution fun
tion of the individual relaxation time FT (�) for small �:Namely, the ne
essary and su�
ient 
ondition for the relaxation time toobtain the limit in (27) isFTi(ya) = Pr(Ti < ya) � y
�intrFTi(a) for a! 0 and y > 0: (30)Let us observe that as a result we obtain three types of the relaxationresponse (28). Provided that 
�intr < 1 we get the stret
hed exponentialde
ay i.e. exp(�t=�0)�KWW with �KWW = 
�intr and �0 = A�1=�intr : For
�intr = 1 we have the Debye response, whereas 
�intr > 1 yields the 
om-pressed exponential one.The relationship (29) helps us to �nd the sto
hasti
 relaxation s
hemehidden behind the Rajagopal e�e
tive-relaxation-time distribution. Let usre
all that the 
orresponding e�e
tive relaxation time has been derived inSe
t. 3 to be distributed as ~TR d�= 
onst(S 12 )� 1��� (see (18)), whi
h is exa
tlyof the form (29). We 
on
lude hen
e that the Rajagopal e�e
tive-relaxation-time distribution results in a heterogeneous system of relaxors exhibiting theintrinsi
ally nonexponential de
ay (with the index �intr = �1��) 
ombinedwith the site-dependent rates �i = T� �1��i belonging to the domain of at-tra
tion of 12 -stable law. Due to (10) the distribution of individual Ti has toobey Pr(Ti < ya) � y 12 �1�� Pr(Ti < a) for all y > 0 and a! 0: For �intr < 2(� < 23 ) we obtain the stret
hed exponential response whereas for �intr = 2(� = 23) and �intr > 2 (� > 23 ) respe
tively the Debye and 
ompressed 
ases.The response fun
tion f(t) derived from (28) is for small t proportionalto t �2(1��)�1 therefore for � < 23 exhibits the same power law as fR(t) (re
allEq. (22)). Both fun
tions (with the 
onstant A 
hosen properly) 
oin
ide forsmall values of t whereas as t ! 1; fR(t) di�ers from the KWW responsefun
tion (see Fig. 3).
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Fig. 3. Relationship between the Rajagopal response fun
tions in the 
ase of ex-ponential (see (3)) and nonexponential integral kernel, 
hara
terized by the valueof �intr (see (24)). For � = 12 both fun
tions 
oin
ide. In the remaining 
ases the
oin
iden
e o

urs only in the region of small t:5. Con
lusionsIn this work, aiming to �nd a probabilisti
 s
heme of relaxation, a de-tailed analysis of properties of the response fun
tion generated by the Ra-jagopal analyti
al relaxation-time distribution has been presented. This dis-tribution has been proposed as an aproximate fun
tion to infer the relaxation-time density yielding the KWW-type relaxation response. In 
ontrast, thewell-known KWW empiri
al relaxation fun
tion is related to the relaxation-time density whi
h 
annot be represented by an analyti
al formula. Al-though the relaxation-time density 
an be given in the series representa-tion only, the probabilisti
 s
heme establishing the spatio-temporal s
alingproperties leading to the stret
hed exponential response has been alreadyre
ognized.In our approa
h, instead of representing the relaxation fun
tion as theweighted average of an exponential de
ay with respe
t to the distribution ofthe e�e
tive relaxation time (2), we have used the possibility of represent-ing the relaxation fun
tion as the Lapla
e transform of the relaxation-ratedensity (4). This substitution allowed us to use the Tauberian theoremsto �nd the 
ondition under whi
h the properties of both the KWW andRajagopal responses 
an be 
ompared. As a result we have obtained thatboth fun
tions 
oin
ide for t ! 1, whereas they exhibit dissimilar power
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hed Exponential Survival Probability and Its. . . 3729laws for t ! 0: We have also shown that behind the KWW response thereis hidden the e�e
tive relaxation rate with properties of the Lévy-stablenon-negative random variable whereas behind the Rajagopal response thee�e
tive relaxation rate is a power fun
tion of the 12 - stable non-negativerandom variable.Using the idea of intrinsi
 nonexponentiality we have shown the sto
has-ti
 s
heme 
onne
ting dire
tly the Rajagopal and the KWW fun
tions. Thisapproa
h allows one to obtain the broader 
lass of nonexponential responses(the stret
hed, as well as, the 
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