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3718 P. Hetman et al.1. IntrodutionIn the last two deades the nonexponential relaxation behaviour of om-plex systems beame a problem of topial interest in nonequilibrium statis-tial physis. It is of importane in the study of a variety of problems fromondensed matter physis [1, 2℄, nulear physis [3℄, spetrosopy [4, 5℄, rhe-ology [6℄, seismology [7℄, physial hemistry [8℄, moleular biophysis [9,10℄,ell and and population dynamis [11, 12℄ et.The wide-ranging experimental information has led to the onlusionthat the lassial phenomenology of relaxation breaks down in omplex sys-tems. It has been found that the pure exponential (Debye) relaxation pat-tern is hardly ever seen in nature and that deviation from it may be rela-tively large [1, 2, 13, 14℄. Experimental evidene is given usually in terms ofthe relaxation funtion �(t) that indiates the time evolution of an initialnonequilibrium state imposed on the system in time t = 0: The transition ofthe relaxing system at time t > 0 is de�ned by the hange of some physialparameter that di�ers the initial and relaxed states. Typially, the experi-ment probes the ensemble average, in the sense that only the net e�et ofa large number of ontributions from di�erent sites within a sample is mea-sured. Regarding the statistial average in the sample volume, one observesthe nonexponential deay pattern of relaxation. Suh an ensemble-averagedrelaxation mehanism an be rationalized in two ways [15℄. In the dynam-ially heterogeneous piture, the ontributions are assumed to be purelyexponential subjet to the distribution of individual relaxation times. Inthe other extreme, i.e. in the homogeneous piture, the ontributions to thee�etive relaxation response are not site spei�. On the sale ranging fromthe heterogeneous to the homogeneous limit, one has to allow for the aseof ertain degree of intrinsi nonexponentiality ombined with site-spei�time sales.Among di�erent empirial relaxation funtions suggested in literaturethe Kohlraush�Williams�Watts (KWW) strethed exponential funtion�KWW(t) = exp [�(t=�0)�℄ (1)plays an important role. The parameters �0 > 0 and 0 < � < 1 are on-stants harateristi to the material. Although the strethed exponentialdeay law (1) is not universally valid [1℄, it appears frequently enough toall attention for the origins of its ubiquity. The wide ourrene of thisrelaxation pattern, independently of the partiular system properties, hasattrated (and still does) muh theoretial attention for the underlying rea-son of this phenomenon. It has been ommonly assumed that the empiriallaw (1) orresponds to a kind of universal behaviour whih is independentof the details of examined systems. This idea has stimulated the proposal



On the Strethed Exponential Survival Probability and Its. . . 3719of several relaxation mehanisms (see e.g. [16�27℄) that di�er mainly in themathematial interpretation of the relaxation funtion. In the framework ofstatistial models the fat that the large sale dynamial behaviour of theomplex system is, to some extent, independent of its loal nature, omesas no surprise. Intuitively, one expets averaging priniples (like the law oflarge numbers) to be in fore. It turns out, however, that it is very hardto make this intuition preise when one deals with stohasti systems. Theruial point is to �nd a mathematial language whih allows one to relatethe loal random harateristis of the omplex system (i.e. the site-spei�properties of the time sales) to the deterministi empirial laws. Suh apossibility follows from the general probabilisti formalism of limit theo-rems [19,21�23,28℄. The language of limit theorems, in a natural way, givesan e�ient and strit proedure of averaging the random ontributions fromdi�erent sites within the sample. It also formulates the statistial onditionsleading to a partiular response [22, 23℄.The objetive of this paper is to �nd the probabilisti sheme underlyingthe Rajagopal relaxation-time distribution [29℄. This distribution has beenreently proposed [30℄ as a funtion desribing the e�etive-relaxation-timeproperties of the KWW relaxation pattern well enough in the piture ofexponentially relaxing entities (relaxors). The Rajagopal funtion, beauseof its expliit analytial form, is of great importane from the experimentalpoint of view, and hene, worth theoretial studies. The paper onsists oftwo main parts. In the �rst, we study the relationship between the KWWand the relaxation funtion resulting from the Rajagopal distribution in theoriginally proposed framework [30℄. We show the origins of similarities anddi�erenes in both responses. In the seond part we disuss the heteroge-neous piture within whih the Rajagopal distribution leads diretly to theKWW relaxation funtion.2. Nonexponential relaxation. Probabilisti bakgroundIt is ommonly aepted that the relaxation funtion �(t), repre-senting the e�etive nonexponential relaxation pattern, results from a su-perposition of exponential (Debye) proesses with di�erent relaxation times.Mathematially, this idea is usually expressed as the weighted average of anexponential deay e�t=� with respet to the distribution of the relaxationtime � : �(t) = 1Z0 g(�) exp(� t� )d�; (2)where g(�) is the relaxation-time probability density funtion. The aboveformula has been used mainly as a formal mathematial tool [31, 32℄ onve-



3720 P. Hetman et al.nient to desribe, analyze and transform the data in order to ompare themwith the results obtained by di�erent experimental methods. The notion ofthe omplex system needs, however, understanding the distribution-funtionapproah in the framework of probability theory whih tools are apable ofrelating the loal random properties to the e�etive representation of thesystem [21, 28℄.It is well-known fat of probability theory [33℄ that formula (2), whihonerns the ase when the relaxation time annot be limited to any �nitenor ountable set of values, or its disrete version �(t) = Pi pie� t�i whihonerns the ase when the relaxation time an take values from the setf�1; �2; : : :g with the orresponding weights p1; p2; : : :, denotes simply theexpeted value h�i of the random funtion e�t= ~T with respet to the distri-bution of the non-negative random variable ~T representing the onsideredrelaxation time: �(t) = he� t~T i: (3)Introduing a new variable ~� = 1~T ; representing the orresponding relaxationrate, we get equivalent formula�(t) = he�t~�i (4)whih assigns the relaxation funtion to the Laplae transform of the re-laxation-rate probability density funtion. It follows from formula (3) thatthe relaxation funtion �(t) de�ned in (2), is a funtion desribing the re-laxation proess of the system as a whole and the formula (2) onerns,in fat, the e�etive behaviour of the marosopi system represented byone (real or imaginary) objet with the value of relaxation time � randomlytaken aording to the distribution of the random variable ~T : Hene, neitherformula (2) nor its disrete version diretly ontain information on loal ran-dom properties of the relaxing system (i.e. on relaxation-time distributionsof individual relaxors). This information is hidden in the expliit form ofa partiular relaxation funtion and an be brought to light by means oflimit theorems of probability theory, using the fat that �(t) has to ful�llthe two-state master equation (see e.g. [24℄)d�(t)dt = �r(t)�(t); �(0) = 1; (5)the solution of whih has the meaning of the survival probability of thenonequilibrium (imposed) initial state of the relaxing system (i.e. the prob-ability that the system as a whole will not make a transition out of itsoriginal state for at least time t after entering it at t = 0 [21, 25, 26℄). The



On the Strethed Exponential Survival Probability and Its. . . 3721nonnegative, time-dependent quantity r(t) is the transition rate of the re-laxing system. The survival probability of the nonequilibrium state of theentire system an be related with the site spei� properties of individualrelaxors if one onsiders a system of N independent, exponentially relax-ing speies, eah (i-th) haraterized by its own random relaxation time Ti(or the orresponding relaxation rate �i = 1Ti ). Eah relaxor is waiting fortransition for a time �i; the waiting times of all N relaxors form a sequenef�1; : : : �Ng of identially distributed, independent nonnegative random vari-ables. The behaviour of eah relaxor is onditioned only by the value takenby its harateristi relaxation onstant. Namely, the probability that thei-th relaxor has not hanged its initial state up to the moment t, under theondition that its relaxation-rate �i = 1Ti takes the value b = 1� , isPr(�i � tj�i = b) = exp ��� t��� = exp(�bt) for t � 0; b > 0: (6)It has been shown by means of order statistis (see for details [21, 28℄) thatthe above assumptions lead to the relaxation funtion of the form�(t) = NYi=1 he�t�i=AN i = he�t~�N i; (7)where ~�N = 1AN NXi=1 �i (8)is the e�etive random relaxation rate of an �averaged� relaxor representingthe properties of the system as a whole. AN denotes a sequene of suitablenormalizing (saling) onstants. On the basis of limit theorems of probabilitytheory the distribution of ~�N in Eq. (8) an be satisfatorily approximatedby the weak limit ~� = limN!1 1AN NXi=1 �i (9)even if the distribution of �i is known in a relatively limited extent. It is astrit result that the only possible probability distributions for the e�etiverelaxation rate ~� are ompletely asymmetri Lévy-stable laws ~� d�= onstS�(the relation d�= denotes the equality in distribution) with the parameter0 < � < 1 leading diretly to the KWW relaxation funtion. As � ! 1 weobtain the degenerate ase, i.e. the density funtion of ~� beomes the Dira-delta %(b) = Æ(b�b0), yielding the Debye deay. The neessary and su�ient



3722 P. Hetman et al.ondition for the onvergene of the sum (9) is the self-similar property ofthe distribution of the individual relaxation rate �i that may be expressedas: Pr(�i � xb) � x��Pr(�i � b) as b!1 and x > 0: (10)3. Relationship between the Rajagopal relaxation-timedistribution and the KWW relaxation responseThe relaxation funtion �(t), represented by equivalent formulas (3)and (4) that onnet the deterministi response of the relaxing system withits e�etive random representation, may be written in the following forms�(t) = 1Z0 g(�)e� t� d� = 1Z0 h(log �)e� t� d log � = 1Z0 %(b)e�tbdb; (11)where g(�) = C 1� h(log �) and %(b) = 1b2 g �1b� = Cb h(log 1b ) is the probabilitydensity funtion of the random e�etive relaxation time ~T and the probabil-ity density funtion of the random e�etive relaxation rate ~�, respetively.The onstant C equals (ln 10)�1: As we shall show below, formula (11), thatassigns the relaxation funtion to the Laplae transform of the relaxation-rate distribution �(t) = L(%(b); t), is very useful in studying the probabilistiaspets of the empirial relaxation funtions.Let us onsider the KWW relaxation funtion (1). As it was presentedin the preeding setion the e�etive relaxation rate ~� yielding the KWWfuntion is distributed aording to the ompletely asymmetri stable law,more preisely, the e�etive relaxation rate ~� is an �-stable (Lévy stable)non-negative random variable S�; ~� d�= 1�0S� [19, 27℄. The expliit form ofthe density of the variable S� exists only in the ase of � = 12 and is knownas Lévy density [33,34℄. Therefore only in the ase of � = 12 we an express%(b) expliitly obtaining the following:%(b) = 12p��0 b�3=2 exp�� 14�0b� : (12)The Rajagopal log-relaxation-time density disussed by Gomez and Alegriain [30℄ was obtained using the �method of the steepest desents� as an appro-ximate funtion to infer the density yielding the KWW response [29℄. It isgiven as an expliit analytial expressionhR(log �) = �(A� (1� �))1=2 �� ��0� �2(1��) exp"� (1� �)�� ��0� �(1��)#(13)



On the Strethed Exponential Survival Probability and Its. . . 3723whih has the proper probabilisti sense only for 0 < � < 1: It yields therelaxation-rate probability funtion in the following form%R(b) = 1b �(� (1� �))1=2 � ��0b� �2(1��) exp"� (1� �)� ��0b� �(1��)# (14)indiating that (13) annot (exluding the ase of � = 12) yield the exatform of the KWW funtion. There exists, however, a strit onnetion be-tween these two funtions that allows to ompare analytially the asymptotibehaviour of both the KWW and the orresponding Rajagopal relaxationfuntion �R(t):For � = 12 there is an equality between the Lévy (Eq. (12)) and Ra-jagopal densities (Eqs (13), (14)), and thus the orresponding relaxationfuntions oinide so we exlude this ase from the following onsiderations.To point out the di�erenes ourring in the remaining ases let us �rstfous on the asymptoti behaviour of the stable density funtion. As wementioned above, there are no expliit formulas of the ompletely asym-metri stable densities s(b; �) (exept for the ase � = 12). Instead, theasymptoti approximations are well known [34℄.We have for b! 0s(b;�) = 1b �(� (1� �))1=2 ��b � �2(1��) exp �� (1� �)��b � �(1��)� (15)and for b!1 s(b;�) / b���1: (16)Let us observe that the asymptoti formula (15) for small b is just the Ra-jagopal density (14). Moreover, formula (14) an be rewritten in the form(12) with �0 = 1 using the substitution z = 14 11�� � �0� b� �1�� . This denotesthat the ~�R and e�etive relaxation time ~TR in the Rajagopal ase are relatedwith the 12 - stable random variable S 12 by the following formulas~�R d�= ��0 �4(1� �)S 12� 1��� ; (17)~TR d�= �0� �4(1� �)S 12�� 1��� : (18)Let us note that in the limiting ase, when � ! 1, the random variable~�R approahes to the degenerate one whih is the deterministi ase with~�R d�= 1�0 = onst generating the Debye response. The orresponding densityfuntion tends to Æ-Dira funtion %R(b) = Æ(b � 1�0 ) (see Fig. 1).
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bFig. 1. Relaxation-rate densities %R(b) (Eq. (14)) for various values of � 2 (0; 1):Both densities, s(b; �) and %R(b); oinide for small values b of the re-laxation rate whereas for b ! 1 the agreement is no longer maintained asthe Rajagopal density %R(b) for b!1 is proportional to b� �2(1��)�1:%R(b) / b� �2(1��)�1 for b!1: (19)The asymptoti behaviour of the relaxation-rate density results in the asymp-toti behaviour of its Laplae transform i.e. relaxation funtion. It is due tothe well-known general fat that the properties for x! 0 (x!1) of a fun-tion f(x) orrespond to the properties of its Laplae transform L(f(x); t)for t ! 1 (t ! 0). The Tauberian theorems [33℄ imply that the KWWresponse funtion exhibits for t! 0 the following power lawfKWW(t) = �d�KWW(t)dt / t��1 (20)whih is the diret onsequene of the power law s(b;�) / b���1 ful�lledfor b!1 by the stable relaxation-rate density with 0 < � < 1. Analogousanalysis of the Rajagopal density leads from%R(b) / b� �2(1��)�1 for b!1 (21)to fR(t) = �d�R(t)dt / t �2(1��)�1 for t! 0: (22)



On the Strethed Exponential Survival Probability and Its. . . 3725In this ase the Tauberian theorems imply the onstraint 0 < �2(1��) < 1(i.e. 0 < � < 23) on the power-law exponent in formula (21). This mathe-matial result is in agreement with the empirial data, i.e. with the generalobservation [13℄ that all types of the empirial funtions used to �t the di-eletri data exhibit a frational-power dependene of the dieletri responsef(t) in the short-time limit:f(t) � (!pt)�n for t� !p�1; (23)where the parameter n falls in the range (0; 1) and !p denotes the loss peakfrequeny. Thus, using the Rajagopal density funtion, only in the ase of� falling in the range (0; 23 ) we get the proper power law of the responsefuntion. In the limiting ase of � = 23 we get n = 0 what denotes thatthe response funtion fR(t) beomes a onstant for t ! 0. Conluding,in the framework of the dynamially heterogeneous piture expressed byexponential integral kernel in the de�nition of �(t), the Rajagopal relaxationfuntion and the KWW funtion oinide in the region of long times t!1whereas they exhibit dissimilar power laws for t! 0: fR(t) > fKWW(t) for� 2 (0; 12 ), fR(t) < fKWW(t) for � 2 (12 ; 1) and fR(t) = fKWW(t) for � = 12(see Fig. 2).
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3726 P. Hetman et al.4. Nonexponential integral kernel. On the relationshipwith the Rajagopal density funtionA more general approah to the response pattern [15, 35℄ an beobtained by hanging the exponential integral kernel in (2) and rewritingthe de�nition of the relaxation funtion as�(t) = 1Z0 g(�) exp [�(t=�)�intr ℄d� = Dexp[�(t= ~T )�intr ℄E : (24)The positive parameter �intr 6= 1 in the integral kernel introdues variousdegrees of heterogeneity by hanging the extent of the intrinsi nonexponen-tiality; g(�), as in the former ase, is the probability density funtion of thee�etive relaxation-time ~T (not attributed to any partiular objet hosenfrom the entities forming the system).To present the stohasti sheme leading to (24) we have to assume thateah relaxor undergoes the nonexponential relaxation. Then the onditionalsite-dependent probability that the relaxor has not hanged its initial stateup to the moment t isPr(�i � tj�i = b) = exp(�( t� )�intr) = exp(�bt�intr) for t � 0; b > 0:(25)The analogous analysis, as presented in Set. 2, yields the relaxation fun-tion of the form�(t) = *exp(�t�intr NXi=1 �i=A�intrN )+ = Dexp(�t�intr ~�N )E (26)with the e�etive relaxation rate~�N = NXi=1 �i=A�intrN ; �intr > 0; �intr 6= 1 (27)The ase �intr = 1 orresponds to the lassial approah (6) with eah objetrelaxing exponentially.As the same limit theory is in fore, we onlude that asymptotially asN ! 1 (for large number of individual relaxors) the only possible prob-ability distribution for the e�etive relaxation rate ~� = limN!1 ~�N is theompletely asymmetri Lévy-stable law S with  2 (0; 1): In this ase �(t)is of the form



On the Strethed Exponential Survival Probability and Its. . . 3727�(t) = exp [�(At�intr) ℄ ; (28)and ~T = ~��1=�intr d�= A�1=�intr(S)�1=�intr ; (29)where A is a positive onstant. To obtain the onvergene the sequene ofnormalizing onstants A�intrN has to be proportional to N1= and �i haveto belong to the domain of attration of the Lévy-stable law. Again, itis not neessary to know the detailed nature of the relaxation time (rate)of an individual relaxor. The onsidered onvergene is determined by thebehaviour of the tail of F�(b) for large b, or equivalently by the behaviour ofthe distribution funtion of the individual relaxation time FT (�) for small �:Namely, the neessary and su�ient ondition for the relaxation time toobtain the limit in (27) isFTi(ya) = Pr(Ti < ya) � y�intrFTi(a) for a! 0 and y > 0: (30)Let us observe that as a result we obtain three types of the relaxationresponse (28). Provided that �intr < 1 we get the strethed exponentialdeay i.e. exp(�t=�0)�KWW with �KWW = �intr and �0 = A�1=�intr : For�intr = 1 we have the Debye response, whereas �intr > 1 yields the om-pressed exponential one.The relationship (29) helps us to �nd the stohasti relaxation shemehidden behind the Rajagopal e�etive-relaxation-time distribution. Let usreall that the orresponding e�etive relaxation time has been derived inSet. 3 to be distributed as ~TR d�= onst(S 12 )� 1��� (see (18)), whih is exatlyof the form (29). We onlude hene that the Rajagopal e�etive-relaxation-time distribution results in a heterogeneous system of relaxors exhibiting theintrinsially nonexponential deay (with the index �intr = �1��) ombinedwith the site-dependent rates �i = T� �1��i belonging to the domain of at-tration of 12 -stable law. Due to (10) the distribution of individual Ti has toobey Pr(Ti < ya) � y 12 �1�� Pr(Ti < a) for all y > 0 and a! 0: For �intr < 2(� < 23 ) we obtain the strethed exponential response whereas for �intr = 2(� = 23) and �intr > 2 (� > 23 ) respetively the Debye and ompressed ases.The response funtion f(t) derived from (28) is for small t proportionalto t �2(1��)�1 therefore for � < 23 exhibits the same power law as fR(t) (reallEq. (22)). Both funtions (with the onstant A hosen properly) oinide forsmall values of t whereas as t ! 1; fR(t) di�ers from the KWW responsefuntion (see Fig. 3).
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Fig. 3. Relationship between the Rajagopal response funtions in the ase of ex-ponential (see (3)) and nonexponential integral kernel, haraterized by the valueof �intr (see (24)). For � = 12 both funtions oinide. In the remaining ases theoinidene ours only in the region of small t:5. ConlusionsIn this work, aiming to �nd a probabilisti sheme of relaxation, a de-tailed analysis of properties of the response funtion generated by the Ra-jagopal analytial relaxation-time distribution has been presented. This dis-tribution has been proposed as an aproximate funtion to infer the relaxation-time density yielding the KWW-type relaxation response. In ontrast, thewell-known KWW empirial relaxation funtion is related to the relaxation-time density whih annot be represented by an analytial formula. Al-though the relaxation-time density an be given in the series representa-tion only, the probabilisti sheme establishing the spatio-temporal salingproperties leading to the strethed exponential response has been alreadyreognized.In our approah, instead of representing the relaxation funtion as theweighted average of an exponential deay with respet to the distribution ofthe e�etive relaxation time (2), we have used the possibility of represent-ing the relaxation funtion as the Laplae transform of the relaxation-ratedensity (4). This substitution allowed us to use the Tauberian theoremsto �nd the ondition under whih the properties of both the KWW andRajagopal responses an be ompared. As a result we have obtained thatboth funtions oinide for t ! 1, whereas they exhibit dissimilar power
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