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ON QUANTUM CORRELATIONS FOR STOCHASTICDYNAMICS OF XXZ TYPE�Sªawomir Kozieªy and Wªadysªaw A. MajewskizInstitute of Theoreti
al Physi
s and Astrophysi
s, Gda«sk UniversityWita Stwosza 57, 80-952 Gda«sk, Poland(Re
eived De
ember 3, 2002)The evolution of quantum 
orrelations for XXZ model is studied. It isshown that the simpli�ed entanglement measure whi
h follows from entan-glement of formation 
an be used as an e�
ient tool in investigating theproperties of the dynami
s in question. In parti
ular, the behavior of thismeasure for pure states gives us information about de
oheren
e or entangle-ment that 
an o

ur during the time evolution for the system. We presentsome numeri
al results whi
h 
on�rm that the generalized 
onditional ex-pe
tation de�ning the sto
hasti
 dynami
s for XXZ model 
ontains theproper (i.e. genuine quantum) intera
tions between subsystem and its en-vironment.PACS numbers: 05.30.�d, 03.65.Yz1. Introdu
tionIt is widely a

epted that quantum entanglement is the essential prop-erty of states of 
omposite quantum system. It manifests itself in 
orrelationsthat are stronger than those attainable in any 
lassi
al systems. This leadsto surmise that genuine quantum maps should produ
e true quantum 
or-relations [8℄ besides being well de�ned on non-
ommutative stru
tures. Inother words, quantum dynami
s should imply the produ
tion and evolutionof entanglement.Quite re
ently, it has been realized that there is a general s
heme fora quantization of sto
hasti
 dynami
s whi
h des
ribe intera
ting 
lassi
alparti
les [3�6℄. In parti
ular, in that s
heme a general re
ipe for quantumsto
hasti
 dynami
s of jump type was given. In our re
ent paper [2℄ we� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.y e-mail: koziel�iftia9.univ.gda.plz e-mail: fizwam�univ.gda.pl (3731)



3732 S. Kozieª, W.A. Majewskihave studied two parti
ular models of quantum sto
hasti
 dynami
s whi
h
an be 
onsidered as examples of quantum generalizations of Glauber dy-nami
s. In the �rst example, based on one dimensional Ising model withnearest neighbor intera
tions, our analysis showed that this parti
ular 
aseof quantum sto
hasti
 dynami
s does not exhibit quantum features in thesense that there is no produ
tion of quantum 
orrelations. The se
ond ex-ample of dynami
s studied in [2℄ was based on quantum XXZ model and wehave shown that there are signatures of quantum 
orrelations in this 
ase.In the present paper we 
ontinue our analysis of the jump type quantumsto
hasti
 dynami
s based on XXZ model. Namely, to get more 
ogenteviden
e in support of produ
tion of quantum 
orrelations for that exampleof quantum maps we will examine a (simpli�ed) measure of entanglement.More pre
isely, although there are meaningful measures of entanglement(
f. [7℄ and referen
es therein), e�
ient 
riteria for entanglement of 
om-plex quantum systems are still la
king (
omplex systems are understood assystems more involved than a pair of qubits).Therefore, to 
arry out our analysis of time evolution of entanglementwe derive an interesting formula for time evolution of simpli�ed version ofentanglement of formation. Then, numeri
al results that 
on
ern the evo-lution of entanglement are given. Finally, we would like to emphasize that,
ontrary to the analysis given in [2℄, we shall not use a high-temperature ex-pansion, i.e. we will not use any approximation for des
ription of 
onsidereddynami
al maps.2. Jump-type dynami
s for quantum XXZ modelConsider a 
omposite system I+II asso
iated with a region � = �I[�II ,where �I ;�II � Zd. The system � is des
ribed by H1 
H2, S1 
 S2 andB(H1) 
 B(H2) �= B(H1 
 H2), where H1 (H2) are the �nite dimensionalHilbert spa
es asso
iated with �I (�II), S1 (S2) � respe
tive sets of den-sity matri
es - are the spa
es of mixed states, B(H1) (B(H2)) � the setsof all bounded linear operators � are the algebras of observables. Intera
t-ing system are des
ribed by intera
tion potentials asso
iated with region �(�I , �II , respe
tively). This leads to the 
orresponding Hamiltonians H�(H�I , H�II ) and to Gibbs state �� = e��H�Tr (e��H�) � � (� is an invertible op-erator, i.e. ��1 exists). In this work we study a 
on
rete kind of the jumppro
ess, i.e. ex
hange type dynami
s (for general des
ription see [6℄). Thiskind of dynami
s is indu
ed by a lo
al symmetry. Consider a symmetrytransformation (lo
al automorphism)  on B(H1 
H2) su
h that (A) = A for A 2 B(H1) ;  2 = 1 :
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hasti
 Dynami
s of XXZ Type 3733Note that if dim(H1);dim(H2) <1, the above properties imply Tr ( (�)) =Tr (�). We shall 
onsider a parti
ular type of symmetries, whi
h are imple-mented by ex
hanges of observables between sites of the spin 
hain. Usingtransformation  one 
an de�ne a proje
tion � on B(H1 
H2) as follows�(�) � 12(1+  )(�) :We observe that � is not a morphism. A

ording to the general theory ofsemigroups [1℄ the dynami
 Tt indu
ed by the lo
al transformation  on theset of observables is of the formTt(�) = exp(tL(�)) ; (1)with L = E � 1 ;where E : B(H1 
H2) ! B(H1 
H2) is a generalized 
onditional expe
ta-tion in the A

ardi�Ce
hini sense. Performing 
al
ulations similar as in theappendix of [6℄ one 
an show that for the 
onsidered dynami
s operator Etakes the following form E(A) = �(
�A
) ; (2)where 
 = �1=2(��)1=2 : (3)An appli
ation of the relation between S
hr�odinger and Heisenberg pi
tureleads to the evolution T dt of a state �:Tr (T dt (�))A = Tr�Tt(A)for any state � and any observable A. Moreover, one hasTr (Ed(�)A) = Tr�E(A) :Consequently Tr (Ed(�)A) = Tr (��(
�A
))= Tr �(�)
�A
 = Tr 
�(�)
�A :This results in Ed(�) = 
�(�)
� :



3734 S. Kozieª, W.A. MajewskiLet us add, that the presented 
onstru
tion has a straightforward general-ization to the in�nite dimensional 
ase, thus, thermodynami
 limit 
an beperformed [3, 5℄. Again, as a result we get uniformly 
ontinuous semigroupTt. In this work we analyze a one dimensional quantum XXZ model. Inparti
ular we will 
onsider a one-dimensional �nite 12 -spin 
hain with N +1sites indexed from 0 to N and the 
orresponding algebra of observablesgenerated by �i0 
 �i1 
 : : :
 �iN ;where ik 2 f0; 1; 2; 3g, k = 0; : : : N , and �j , j = 0; 1; 2; 3 are Pauli matri
es.Here, � = f0; 1; : : : ; Ng and �I ;�II � �, �I [ �II = �, �I \ �II = �,while B(H1) and B(H2) are 2j�I j � and 2j�II j � dimensional Hilbert spa
es,respe
tively. As an example 
onsider a lo
al transformation  kl de�ned asfollows kl(A1
: : :
Ak
: : :
Al
: : :
AN ) = A1
: : :
Al
: : :
Ak
: : :
AN (4)whi
h des
ribes the ex
hange between the sites. In parti
ular, one 
an 
hoosel = k + 1 whi
h is related to a des
ription of transport properties in the
onsidered model.The Hamiltonian of the XXZ system has the form:H = � NXn=1(�1n�1�1n + �2n�1�2n +��3n�1�3n) ;where �j , j = 1; 2; 3 are Pauli matri
es. Re
all that � 6= 1 is responsible foranisotropy of the model. The 
orresponding Gibbs state is represented bythe density matrix � = Z�1 exp(��H) ;where Z = Tr (e��H). 3. Entanglement measureIt was shown in [7℄ that EoF 
an serve as a well de�ned measure ofentanglement. Moreover, it was indi
ated that to get other well de�nedmeasure of entanglement it is enough to repla
e the von Neumann entropyfun
tion in the original de�nition of EoF by a 
on
ave, positive 
ontinuousfun
tion vanishing only on pure states. It is an easy observation that the so
alled linear entropy SL(�) = �Tr (�(� � 1)) satis�es the above 
onditions.Therefore M(�) = inf�=Pi �i�iXi �iTr 2 �(Tr 1�)� (Tr 1�)2� ; (5)
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hasti
 Dynami
s of XXZ Type 3735where in�num is taken over all de
ompositions of �, provides a well de�nedmeasure of entanglement. Further, we note (
f. [7℄) that in (5) it is enoughto restri
t oneself to de
omposition of � into a 
onvex 
ombination of purestates. The main di�
ulty in 
al
ulation of (5) is to 
arry out inf over allpres
ribed de
ompositions.To over
ome that problem we begin with the simpli�ed version of (5):Ma(�) = Tr 2 �(Tr 1�)� (Tr 1�)2� ; (6)where again, � is the density matrix determining the 
onsidered state.Clearly M(�) �Ma(�) : (7)We shall use Ma(�) for the following de�nition of entanglement produ
tion:Ea(T dt �) =Ma(T dt �)�Ma(�) : (8)This measure, applied to small t and a pure state �, leads toEa(T dt �) =Ma((1� t)�+ tEd(�)) �M(�) ; (9)where we have used: T dt � = (1�t)�+tEd(�)+ao(t2) (o(tk) = a1tk+a2tk+1+: : :) and the obvious fa
t that M(�) =Ma(�) for a pure state.Equation (9) 
an be rewritten asEa(T dt �) = �t hTr 2 �fTr 1�;Tr 1Ed(�)g� + 2Tr 2(Tr 1�)2i+ o(t2) ; (10)where f�; �g denotes anti
ommutator. Obviously, one hasE(T dt �) =M(T dt �)�M(�) � Ea(T dt �) : (11)Let us 
onsider the following 
ase: � is a pure nonseparable state su
h that,for small t, Ea(T dt �)t � 0 : (12)Therefore, E(T dt �) � 0 and M(T dt �) � M(�). Consequently, the negativesign of Ea(T dt �)t implies a de
rease of entanglement (so there is a signature ofde
oheren
e).As a next 
ase let us 
onsider again pure nonseparable state � su
h that,for small t, Ea(T dt �)t � 0. To state something about E(T dt �) for that 
ase weshould dis
uss the di�eren
e between M(T dt �) and Ma((1 � t)� + tEd(�)),again for small t.



3736 S. Kozieª, W.A. MajewskiTo this end, let us 
onsider a (
onvex) de
omposition P�iPi of T dt � intopure states. Clearly������X �iPi � ((1� t)�+ tEd(�))������ � Ao(t2) ;where A � 0 is a 
onstant. As Tr 1 is a linear proje
tion, the linear entropySL is a 
ontinuous fun
tion then���Ma �X �iPi��Ma((1� t)�+ tEd(�))��� < A0o(t2)for some positive 
onstant A0. On the other hand, as SL is 
ontinuously(strongly) di�erentiable and S00L exists thenMa �X �iPi� =Ma(�+ t(Ed(�)� �)) =Ma(�) +Ea(T dt �) :Hen
e Ea(T dt �) �X�iMa(Pi)�Ma(�) :Furthermore Ea(T dt �) �M(T dt �)�Ma(�) �M(T dt �)�M(�)and Ma �X�iPi� =Ma(�) + o(t) :Thus, positivity of Ea(T dt �) allows a produ
tion of entanglement.Finally, let us 
onsider the 
ase of � being pure separable state. We re
allthat Ed(�) = 
�(�)
� where � = 12 (1 +  ), while  is an automorphismof order 2. As we 
onsider �nite dimensional 
ase, ea
h automorphism isimplemented by a unitary operator. Thus, there are su
h pure states �proje
tors that �(proje
tor) is a proje
tor. ThenMa(Ed(�)) =M(Ed(�)) = Tr 2 �Tr 1(Ed(�))(1 � Tr 1(Ed(�)))� :ClearlyMa(Ed(�)) > 0 shows that Ed(�) is entangled, hen
e (1�t)�+tEd(�)is entangled. Consequently, for the map � ! T dt (�) (for small t) one hasentanglement produ
tion. 4. Numeri
al resultsIn this se
tion we show the results of numeri
al evaluation of entangle-ment 
oe�
ient E0 = limt!0Ea(T dt �)=t. All the results have been obtainedassuming the length of spin 
hain equal to 5 and lo
al automorphism  



On Quantum Correlations for Sto
hasti
 Dynami
s of XXZ Type 3737de�ned by (4) with k = 1 and l = 2. Fig. 1 shows the value of E0 versusinverse temperature � and anisotropy parameter � for four randomly 
hosenpure states. In fa
t, we have examined a lot of pure states and the quali-tative behavior for most of them is similar, so we 
an treat the presentedones as good representatives. It is seen that 
learly distinguished domainsof positive and negative value of E0 
oe�
ient o

ur on the (�;�) plane.
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∆ βFig. 1. Entanglement 
oe�
ient E0 = limt!0 Ea(T dt �)=t versus � and � for fourrandomly 
hosen pure statesOn the other hand, Fig. 2 shows the value of E0 versus inverse tem-perature � and anisotropy parameter � for two examples of separable purestates. Similarly as before the presented results provide us with a good ex-empli�
ation of the general rule. We 
an observe that, in 
ontrast to theprevious 
ase, there is only one stable domain of positive value of E0 
o-e�
ient (stability is understood here as a stri
t monotoni
ity with respe
tto both variables � and �). Note that the logarithmi
 s
ale has been usedin Fig. 2. 5. Con
lusionsOur analysis of the model of quantum sto
hasti
 dynami
s of XXZtype strongly supports the 
onje
ture (
f. [9�12℄) that entanglement, as a�non-lo
al� property, is fragile under the in�uen
e of the environment, here
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∆ βFig. 2. Entanglement 
oe�
ient E0 = limt!0Ea(T dt �)=t versus � and � for tworandomly 
hosen separable pure stateswith respe
t to the 
hange of inverse temperature � and the �measure� ofanisotropy (
f. Fig. 1).As the 
ase of positivity of E0 has not a de
isive interpretation, wepresent supplementary results 
on
erning the entanglement of Ed(�) for pureseparable state. Again, the main di�
ulty in 
arrying out this analysis fol-lows from the operation inf over all 
onvex de
ompositions into pure states.However, for the 
onsidered type of dynami
s (
f. the end of Se
tion 3), �(�)is a separable state provided that � has that property. On the other hand,the XXZ Hamiltonian implies �entangled� form of 
. Consequently, one 
anexpe
t that entanglement 
oe�
ient E0 of Ed(�) is positive apart from thesestates whi
h are �xed points of evolution. Our numeri
al results supportthat 
onje
ture and 
learly show the produ
tion of entanglement for pureseparable states. Finally, we would like to point out that non-negativity ofE0 for that 
ase follows from the fa
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