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ON QUANTUM CORRELATIONS FOR STOCHASTIC
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The evolution of quantum correlations for X X Z model is studied. It is
shown that the simplified entanglement measure which follows from entan-
glement of formation can be used as an efficient tool in investigating the
properties of the dynamics in question. In particular, the behavior of this
measure for pure states gives us information about decoherence or entangle-
ment that can occur during the time evolution for the system. We present
some numerical results which confirm that the generalized conditional ex-
pectation defining the stochastic dynamics for X X Z model contains the
proper (i.e. genuine quantum) interactions between subsystem and its en-
vironment.

PACS numbers: 05.30.—d, 03.65.Yz

1. Introduction

It is widely accepted that quantum entanglement is the essential prop-
erty of states of composite quantum system. It manifests itself in correlations
that are stronger than those attainable in any classical systems. This leads
to surmise that genuine quantum maps should produce true quantum cor-
relations [8] besides being well defined on non-commutative structures. In
other words, quantum dynamics should imply the production and evolution
of entanglement.

Quite recently, it has been realized that there is a general scheme for
a quantization of stochastic dynamics which describe interacting classical
particles [3—6]. In particular, in that scheme a general recipe for quantum
stochastic dynamics of jump type was given. In our recent paper [2]| we
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have studied two particular models of quantum stochastic dynamics which
can be considered as examples of quantum generalizations of Glauber dy-
namics. In the first example, based on one dimensional Ising model with
nearest neighbor interactions, our analysis showed that this particular case
of quantum stochastic dynamics does not exhibit quantum features in the
sense that there is no production of quantum correlations. The second ex-
ample of dynamics studied in [2] was based on quantum X X Z model and we
have shown that there are signatures of quantum correlations in this case.

In the present paper we continue our analysis of the jump type quantum
stochastic dynamics based on X X7 model. Namely, to get more cogent
evidence in support of production of quantum correlations for that example
of quantum maps we will examine a (simplified) measure of entanglement.
More precisely, although there are meaningful measures of entanglement
(cf. |7] and references therein), efficient criteria for entanglement of com-
plex quantum systems are still lacking (complex systems are understood as
systems more involved than a pair of qubits).

Therefore, to carry out our analysis of time evolution of entanglement
we derive an interesting formula for time evolution of simplified version of
entanglement of formation. Then, numerical results that concern the evo-
lution of entanglement are given. Finally, we would like to emphasize that,
contrary to the analysis given in [2], we shall not use a high-temperature ex-
pansion, i.e. we will not use any approximation for description of considered
dynamical maps.

2. Jump-type dynamics for quantum X X Z model

Consider a composite system I+11 associated with a region 4 = A;UA y,
where Ay, Ajp C Z¢. The system A is described by H1 ® Ha, S1 ® S and
B(H1) ® B(H2) =2 B(H1 ® Hz), where Hq (Hz) are the finite dimensional
Hilbert spaces associated with Ay (A7), S1 (S2) — respective sets of den-
sity matrices - are the spaces of mixed states, B(H1) (B(Hz2)) — the sets
of all bounded linear operators — are the algebras of observables. Interact-
ing system are described by interaction potentials associated with region A
(A, Ajpg, respectively). This leads to the corresponding Hamiltonians H 4

e~ BHA
Tr (e AHx)
erator, i.e. p - exists). In this work we study a concrete kind of the jump
process, i.e. exchange type dynamics (for general description see [6]). This
kind of dynamics is induced by a local symmetry. Consider a symmetry
transformation (local automorphism) 1 on B(H; ® Hs) such that

(Ha,, Hy,,) and to Gibbs state pg =
1

= p (p is an invertible op-

P(A)=A for AcB(H), *=1.
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Note that if dim(#1), dim(Hs) < oo, the above properties imply Tr (¢(-)) =
Tr (). We shall consider a particular type of symmetries, which are imple-
mented by exchanges of observables between sites of the spin chain. Using
transformation 1 one can define a projection 7 on B(H; ® Hs) as follows

() =31 +9)().

We observe that 7 is not a morphism. According to the general theory of
semigroups [1] the dynamic T; induced by the local transformation v on the
set of observables is of the form

Ti() = exp(tL(")) , (1)
with
L=E-1,

where € : B(H1 ® Ha) — B(H1 ® Ha) is a generalized conditional expecta-
tion in the Accardi-Cechini sense. Performing calculations similar as in the
appendix of [6] one can show that for the considered dynamics operator £
takes the following form

E(A) =1(v" Ay), (2)
where
y=p"(p)"”. (3)

An application of the relation between Schrodinger and Heisenberg picture
leads to the evolution T of a state o:

Tr (T{(0)) A = TroTy(A)
for any state o and any observable A. Moreover, one has
Tr (E4(0)A) = TroE(A).
Consequently

T (£%(0) 4)

Tr (o7(v" A7)
= Tr7(o)y" Ay = Tryr(o)y*A.

This results in
£4(o) = yr(0)7"



3734 S. Kozier, W.A. MAJEWSKI

Let us add, that the presented construction has a straightforward general-
ization to the infinite dimensional case, thus, thermodynamic limit can be
performed [3,5]. Again, as a result we get uniformly continuous semigroup
T;.

In this work we analyze a one dimensional quantum X X7 model. In
particular we will consider a one-dimensional finite %—spin chain with N +1
sites indexed from 0 to N and the corresponding algebra of observables
generated by _ _ _

"R RQ...Q00"N,
where iy, € {0,1,2,3}, k=0,... N, and o7, j = 0,1,2,3 are Pauli matrices.

Here, A = {0,1,...,N} and Ap, A;r C A, Ay U A = A, Ay Arp = ¢,
while B(H;) and B(Hs) are 21411 — and 214711 — dimensional Hilbert spaces,
respectively. As an example consider a local transformation 1)y, defined as
follows

Pei(A1®.. . QA®...QA®...QAN) = A18...QA4|R...QAr®...QAN (4)

which describes the exchange between the sites. In particular, one can choose
I = k + 1 which is related to a description of transport properties in the
considered model.

The Hamiltonian of the X X Z system has the form:

_ 1 1 2 2 3 3
H=- E :(Un—lo-n + Op—10p + Agn—lan) )

n=1

where 7, j = 1,2,3 are Pauli matrices. Recall that A # 1 is responsible for
anisotropy of the model. The corresponding Gibbs state is represented by
the density matrix

p=2"exp(—pH),

where Z = Tr (e=PH).

3. Entanglement measure

It was shown in [7] that EoF can serve as a well defined measure of
entanglement. Moreover, it was indicated that to get other well defined
measure of entanglement it is enough to replace the von Neumann entropy
function in the original definition of EoF by a concave, positive continuous
function vanishing only on pure states. It is an easy observation that the so
called linear entropy St.(p) = —Tr (p(p — 1)) satisfies the above conditions.
Therefore

M(e)= _inf Z ATr [(Trio) — (Tri0)?], (5)
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where infinum is taken over all decompositions of o, provides a well defined
measure of entanglement. Further, we note (cf. [7]) that in (5) it is enough
to restrict oneself to decomposition of ¢ into a convex combination of pure
states. The main difficulty in calculation of (5) is to carry out inf over all
prescribed decompositions.

To overcome that problem we begin with the simplified version of (5):

M%o) =Tro [(Tri0) — (Tri0)?], (6)

where again, ¢ is the density matrix determining the considered state.
Clearly
M(o) < M*(0). (7)

We shall use M“(o) for the following definition of entanglement production:
Ba(Tip) = M*(Tp) — M*(p). (8)

This measure, applied to small ¢ and a pure state p, leads to
Eo(T{'p) = M((1 = )p + t€%(p)) — M(p) (9)
where we have used: Tfp = (1—t)p+tE%(p)+ao(t?) (o(tF) = arth +asth+'+

..) and the obvious fact that M (p) = M“(p) for a pure state.
Equation (9) can be rewritten as

Eo(T{'p) = ~t [Try ({Tr1p, Tra€%p)}) + 2Tr5(Te1p)?] +o(?),  (10)
where {-,-} denotes anticommutator. Obviously, one has
E(T{'p) = M(T{'p) — M(p) < Eo(T{p). (11)

Let us consider the following case: p is a pure nonseparable state such that,
for small ¢,

E, (T}
M <0. (12)
Therefore, E(Tfp) < 0 and M(Tfp) < M(p). Consequently, the negative
d
sign of w implies a decrease of entanglement (so there is a signature of
decoherence).

As a next case let us consider again pure nonseparable state p such that,
d
for small ¢, w > 0. To state something about E(Tjp) for that case we

should discuss the difference between M (Tfp) and M?((1 — t)p + tE%p)),
again for small ¢.
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To this end, let us consider a (convex) decomposition Y \; P; of Tfp into
pure states. Clearly

HZ Al —((1=t)p+ ted(p))H < Ao(t?),

where A > 0 is a constant. As Try is a linear projection, the linear entropy
S, is a continuous function then

(S A) 0 - ) < ot

for some positive constant A’. On the other hand, as Sy, is continuously
(strongly) differentiable and S} exists then

M (DO NR) = M%(p+ HEX(p) — p) = M°(p) + Ea(T{'p).

Hence
Bu(Tfp) > 3" MM (P) — M*(p).
Furthermore
Eu(T{'p) > M(T{'p) — M*(p) = M(T{p) — M(p)
and

Me (Z >\Z~PZ-> = M%(p) + ot).

Thus, positivity of F,(Tfp) allows a production of entanglement.

Finally, let us consider the case of p being pure separable state. We recall
that £%(p) = y7(p)y* where 7 = 1(1 + ), while 9 is an automorphism
of order 2. As we consider finite dimensional case, each automorphism is
implemented by a unitary operator. Thus, there are such pure states —
projectors that 7(projector) is a projector. Then

MO(EXp)) = M(EX(p)) = Tra (Tr1 (EX0)) (1~ Tro(€%(p)))) -

Clearly M(£%(p)) > 0 shows that £%(p) is entangled, hence (1—t)p+tE%(p)
is entangled. Consequently, for the map p — T¢(p) (for small ) one has
entanglement production.

4. Numerical results

In this section we show the results of numerical evaluation of entangle-
ment coefficient Fy = lim;_,o E,(T¢p)/t. All the results have been obtained
assuming the length of spin chain equal to 5 and local automorphism
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defined by (4) with & = 1 and | = 2. Fig. 1 shows the value of Ey versus
inverse temperature 3 and anisotropy parameter A for four randomly chosen
pure states. In fact, we have examined a lot of pure states and the quali-
tative behavior for most of them is similar, so we can treat the presented
ones as good representatives. It is seen that clearly distinguished domains
of positive and negative value of Ej coefficient occur on the (3, A) plane.

Fig. 1. Entanglement coefficient Ey = lim;_,o E,(Tfp)/t versus 3 and A for four
randomly chosen pure states

On the other hand, Fig. 2 shows the value of Fy wversus inverse tem-
perature 8 and anisotropy parameter A for two examples of separable pure
states. Similarly as before the presented results provide us with a good ex-
emplification of the general rule. We can observe that, in contrast to the
previous case, there is only one stable domain of positive value of Fy co-
efficient (stability is understood here as a strict monotonicity with respect
to both variables  and A). Note that the logarithmic scale has been used
in Fig. 2.

5. Conclusions

Our analysis of the model of quantum stochastic dynamics of X X7
type strongly supports the conjecture (cf. [9-12]) that entanglement, as a
“non-local” property, is fragile under the influence of the environment, here
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Fig.2. Entanglement coefficient Eq = lim;_,o E,(T{p)/t versus 8 and A for two
randomly chosen separable pure states

with respect to the change of inverse temperature § and the “measure” of
anisotropy (cf. Fig. 1).

As the case of positivity of Fy has not a decisive interpretation, we
present supplementary results concerning the entanglement of £%(p) for pure
separable state. Again, the main difficulty in carrying out this analysis fol-
lows from the operation inf over all convex decompositions into pure states.
However, for the considered type of dynamics (c¢f. the end of Section 3), 7(p)
is a separable state provided that p has that property. On the other hand,
the X X Z Hamiltonian implies “entangled” form of v. Consequently, one can
expect that entanglement coefficient Ey of £%(p) is positive apart from these
states which are fixed points of evolution. Our numerical results support
that conjecture and clearly show the production of entanglement for pure
separable states. Finally, we would like to point out that non-negativity of
FEy for that case follows from the fact that the measure of entanglement has
that property.
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