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ON QUANTUM CORRELATIONS FOR STOCHASTICDYNAMICS OF XXZ TYPE�Sªawomir Kozieªy and Wªadysªaw A. MajewskizInstitute of Theoretial Physis and Astrophysis, Gda«sk UniversityWita Stwosza 57, 80-952 Gda«sk, Poland(Reeived Deember 3, 2002)The evolution of quantum orrelations for XXZ model is studied. It isshown that the simpli�ed entanglement measure whih follows from entan-glement of formation an be used as an e�ient tool in investigating theproperties of the dynamis in question. In partiular, the behavior of thismeasure for pure states gives us information about deoherene or entangle-ment that an our during the time evolution for the system. We presentsome numerial results whih on�rm that the generalized onditional ex-petation de�ning the stohasti dynamis for XXZ model ontains theproper (i.e. genuine quantum) interations between subsystem and its en-vironment.PACS numbers: 05.30.�d, 03.65.Yz1. IntrodutionIt is widely aepted that quantum entanglement is the essential prop-erty of states of omposite quantum system. It manifests itself in orrelationsthat are stronger than those attainable in any lassial systems. This leadsto surmise that genuine quantum maps should produe true quantum or-relations [8℄ besides being well de�ned on non-ommutative strutures. Inother words, quantum dynamis should imply the prodution and evolutionof entanglement.Quite reently, it has been realized that there is a general sheme fora quantization of stohasti dynamis whih desribe interating lassialpartiles [3�6℄. In partiular, in that sheme a general reipe for quantumstohasti dynamis of jump type was given. In our reent paper [2℄ we� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.y e-mail: koziel�iftia9.univ.gda.plz e-mail: fizwam�univ.gda.pl (3731)



3732 S. Kozieª, W.A. Majewskihave studied two partiular models of quantum stohasti dynamis whihan be onsidered as examples of quantum generalizations of Glauber dy-namis. In the �rst example, based on one dimensional Ising model withnearest neighbor interations, our analysis showed that this partiular aseof quantum stohasti dynamis does not exhibit quantum features in thesense that there is no prodution of quantum orrelations. The seond ex-ample of dynamis studied in [2℄ was based on quantum XXZ model and wehave shown that there are signatures of quantum orrelations in this ase.In the present paper we ontinue our analysis of the jump type quantumstohasti dynamis based on XXZ model. Namely, to get more ogentevidene in support of prodution of quantum orrelations for that exampleof quantum maps we will examine a (simpli�ed) measure of entanglement.More preisely, although there are meaningful measures of entanglement(f. [7℄ and referenes therein), e�ient riteria for entanglement of om-plex quantum systems are still laking (omplex systems are understood assystems more involved than a pair of qubits).Therefore, to arry out our analysis of time evolution of entanglementwe derive an interesting formula for time evolution of simpli�ed version ofentanglement of formation. Then, numerial results that onern the evo-lution of entanglement are given. Finally, we would like to emphasize that,ontrary to the analysis given in [2℄, we shall not use a high-temperature ex-pansion, i.e. we will not use any approximation for desription of onsidereddynamial maps.2. Jump-type dynamis for quantum XXZ modelConsider a omposite system I+II assoiated with a region � = �I[�II ,where �I ;�II � Zd. The system � is desribed by H1 
H2, S1 
 S2 andB(H1) 
 B(H2) �= B(H1 
 H2), where H1 (H2) are the �nite dimensionalHilbert spaes assoiated with �I (�II), S1 (S2) � respetive sets of den-sity matries - are the spaes of mixed states, B(H1) (B(H2)) � the setsof all bounded linear operators � are the algebras of observables. Interat-ing system are desribed by interation potentials assoiated with region �(�I , �II , respetively). This leads to the orresponding Hamiltonians H�(H�I , H�II ) and to Gibbs state �� = e��H�Tr (e��H�) � � (� is an invertible op-erator, i.e. ��1 exists). In this work we study a onrete kind of the jumpproess, i.e. exhange type dynamis (for general desription see [6℄). Thiskind of dynamis is indued by a loal symmetry. Consider a symmetrytransformation (loal automorphism)  on B(H1 
H2) suh that (A) = A for A 2 B(H1) ;  2 = 1 :



On Quantum Correlations for Stohasti Dynamis of XXZ Type 3733Note that if dim(H1);dim(H2) <1, the above properties imply Tr ( (�)) =Tr (�). We shall onsider a partiular type of symmetries, whih are imple-mented by exhanges of observables between sites of the spin hain. Usingtransformation  one an de�ne a projetion � on B(H1 
H2) as follows�(�) � 12(1+  )(�) :We observe that � is not a morphism. Aording to the general theory ofsemigroups [1℄ the dynami Tt indued by the loal transformation  on theset of observables is of the formTt(�) = exp(tL(�)) ; (1)with L = E � 1 ;where E : B(H1 
H2) ! B(H1 
H2) is a generalized onditional expeta-tion in the Aardi�Cehini sense. Performing alulations similar as in theappendix of [6℄ one an show that for the onsidered dynamis operator Etakes the following form E(A) = �(�A) ; (2)where  = �1=2(��)1=2 : (3)An appliation of the relation between Shr�odinger and Heisenberg pitureleads to the evolution T dt of a state �:Tr (T dt (�))A = Tr�Tt(A)for any state � and any observable A. Moreover, one hasTr (Ed(�)A) = Tr�E(A) :Consequently Tr (Ed(�)A) = Tr (��(�A))= Tr �(�)�A = Tr �(�)�A :This results in Ed(�) = �(�)� :



3734 S. Kozieª, W.A. MajewskiLet us add, that the presented onstrution has a straightforward general-ization to the in�nite dimensional ase, thus, thermodynami limit an beperformed [3, 5℄. Again, as a result we get uniformly ontinuous semigroupTt. In this work we analyze a one dimensional quantum XXZ model. Inpartiular we will onsider a one-dimensional �nite 12 -spin hain with N +1sites indexed from 0 to N and the orresponding algebra of observablesgenerated by �i0 
 �i1 
 : : :
 �iN ;where ik 2 f0; 1; 2; 3g, k = 0; : : : N , and �j , j = 0; 1; 2; 3 are Pauli matries.Here, � = f0; 1; : : : ; Ng and �I ;�II � �, �I [ �II = �, �I \ �II = �,while B(H1) and B(H2) are 2j�I j � and 2j�II j � dimensional Hilbert spaes,respetively. As an example onsider a loal transformation  kl de�ned asfollows kl(A1
: : :
Ak
: : :
Al
: : :
AN ) = A1
: : :
Al
: : :
Ak
: : :
AN (4)whih desribes the exhange between the sites. In partiular, one an hoosel = k + 1 whih is related to a desription of transport properties in theonsidered model.The Hamiltonian of the XXZ system has the form:H = � NXn=1(�1n�1�1n + �2n�1�2n +��3n�1�3n) ;where �j , j = 1; 2; 3 are Pauli matries. Reall that � 6= 1 is responsible foranisotropy of the model. The orresponding Gibbs state is represented bythe density matrix � = Z�1 exp(��H) ;where Z = Tr (e��H). 3. Entanglement measureIt was shown in [7℄ that EoF an serve as a well de�ned measure ofentanglement. Moreover, it was indiated that to get other well de�nedmeasure of entanglement it is enough to replae the von Neumann entropyfuntion in the original de�nition of EoF by a onave, positive ontinuousfuntion vanishing only on pure states. It is an easy observation that the soalled linear entropy SL(�) = �Tr (�(� � 1)) satis�es the above onditions.Therefore M(�) = inf�=Pi �i�iXi �iTr 2 �(Tr 1�)� (Tr 1�)2� ; (5)



On Quantum Correlations for Stohasti Dynamis of XXZ Type 3735where in�num is taken over all deompositions of �, provides a well de�nedmeasure of entanglement. Further, we note (f. [7℄) that in (5) it is enoughto restrit oneself to deomposition of � into a onvex ombination of purestates. The main di�ulty in alulation of (5) is to arry out inf over allpresribed deompositions.To overome that problem we begin with the simpli�ed version of (5):Ma(�) = Tr 2 �(Tr 1�)� (Tr 1�)2� ; (6)where again, � is the density matrix determining the onsidered state.Clearly M(�) �Ma(�) : (7)We shall use Ma(�) for the following de�nition of entanglement prodution:Ea(T dt �) =Ma(T dt �)�Ma(�) : (8)This measure, applied to small t and a pure state �, leads toEa(T dt �) =Ma((1� t)�+ tEd(�)) �M(�) ; (9)where we have used: T dt � = (1�t)�+tEd(�)+ao(t2) (o(tk) = a1tk+a2tk+1+: : :) and the obvious fat that M(�) =Ma(�) for a pure state.Equation (9) an be rewritten asEa(T dt �) = �t hTr 2 �fTr 1�;Tr 1Ed(�)g� + 2Tr 2(Tr 1�)2i+ o(t2) ; (10)where f�; �g denotes antiommutator. Obviously, one hasE(T dt �) =M(T dt �)�M(�) � Ea(T dt �) : (11)Let us onsider the following ase: � is a pure nonseparable state suh that,for small t, Ea(T dt �)t � 0 : (12)Therefore, E(T dt �) � 0 and M(T dt �) � M(�). Consequently, the negativesign of Ea(T dt �)t implies a derease of entanglement (so there is a signature ofdeoherene).As a next ase let us onsider again pure nonseparable state � suh that,for small t, Ea(T dt �)t � 0. To state something about E(T dt �) for that ase weshould disuss the di�erene between M(T dt �) and Ma((1 � t)� + tEd(�)),again for small t.



3736 S. Kozieª, W.A. MajewskiTo this end, let us onsider a (onvex) deomposition P�iPi of T dt � intopure states. Clearly������X �iPi � ((1� t)�+ tEd(�))������ � Ao(t2) ;where A � 0 is a onstant. As Tr 1 is a linear projetion, the linear entropySL is a ontinuous funtion then���Ma �X �iPi��Ma((1� t)�+ tEd(�))��� < A0o(t2)for some positive onstant A0. On the other hand, as SL is ontinuously(strongly) di�erentiable and S00L exists thenMa �X �iPi� =Ma(�+ t(Ed(�)� �)) =Ma(�) +Ea(T dt �) :Hene Ea(T dt �) �X�iMa(Pi)�Ma(�) :Furthermore Ea(T dt �) �M(T dt �)�Ma(�) �M(T dt �)�M(�)and Ma �X�iPi� =Ma(�) + o(t) :Thus, positivity of Ea(T dt �) allows a prodution of entanglement.Finally, let us onsider the ase of � being pure separable state. We reallthat Ed(�) = �(�)� where � = 12 (1 +  ), while  is an automorphismof order 2. As we onsider �nite dimensional ase, eah automorphism isimplemented by a unitary operator. Thus, there are suh pure states �projetors that �(projetor) is a projetor. ThenMa(Ed(�)) =M(Ed(�)) = Tr 2 �Tr 1(Ed(�))(1 � Tr 1(Ed(�)))� :ClearlyMa(Ed(�)) > 0 shows that Ed(�) is entangled, hene (1�t)�+tEd(�)is entangled. Consequently, for the map � ! T dt (�) (for small t) one hasentanglement prodution. 4. Numerial resultsIn this setion we show the results of numerial evaluation of entangle-ment oe�ient E0 = limt!0Ea(T dt �)=t. All the results have been obtainedassuming the length of spin hain equal to 5 and loal automorphism  



On Quantum Correlations for Stohasti Dynamis of XXZ Type 3737de�ned by (4) with k = 1 and l = 2. Fig. 1 shows the value of E0 versusinverse temperature � and anisotropy parameter � for four randomly hosenpure states. In fat, we have examined a lot of pure states and the quali-tative behavior for most of them is similar, so we an treat the presentedones as good representatives. It is seen that learly distinguished domainsof positive and negative value of E0 oe�ient our on the (�;�) plane.
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