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NO-CHAOS CRITERIA FOR CERTAIN CLASSES OFDRIVEN NONLINEAR OSCILLATORS�Stefan J. LinzInstitut für Theoretishe Physik, Westfälishe Wilhelms-UniversitätWilhelm-Klemm-Str. 9, 48149 Münster, Germany(Reeived Deember 3, 2002)Besides three-dimensional autonomous nonlinear dynamial systems,periodially driven nonlinear osillators onstitute elementary lasses of sys-tems that an potentially exhibit haoti behavior. In this ontribution weinvestigate onditions on the shape of the potential and the funtional formof the periodi driving that are neessary for the ourrene of haoti be-havior in these systems by deriving analytial riteria that exlude haotilong-time solutions.PACS numbers: 05.45.A, 02.30.Hq, 05.90.+m1. IntrodutionSine its outset about three deades ago the systemati investigation ofnonlinear dynamial systems with partiular emphasis on haoti dynamishas been developed in a persistently ative researh area of interdisiplinaryinterest (for reviews f. [1�6℄). Although there is still an ongoing debateabout its rigorous mathematial de�nition (f. [7℄), the haraterization ofhaoti behavior as reurrent, bounded, aperiodi long-time dynamis ap-pearing in nonlinear dynamial systems seems to be ommonly aepted inphysis [6℄. Tightly annexed to suh a behavior is the sensitive dependeneof the orresponding long-time evolution on the initial onditions that man-ifests itself in at least one positive Lyapunov exponent. In spite of the sub-stantial progress that has been aomplished in the last three deades, oururrent understanding of the appearane of haoti behavior in dynamialsystems is far from being omplete. An unresolved hallenge of partiular im-portane is the following problem: Given an autonomous or non-autonomousdynamial system, _x = v(x) or _x = v(x; t) with x(t) = (x1(t); :::; xn(t)) and� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3741)



3742 S.J. Linzn haraterizing the dimension of the orresponding phase spae, an we de-ide only on the basis of the funtional form of the vetor �eld v(x) orv(x; t) and without invoking numerial analysis whether and in what on-trol parameter ranges haoti behavior might exist or not? The elebratedPoinaré�Bendixson theorem provides a partial answer: Basially, the long-time evolution of a two-dimensional autonomous dynamial system an onlyattain �xed points, periodi solutions, divergent solutions or heteroliniyles [5℄ and, therefore, haoti behavior is exluded. As a onsequene,the eventual existene of haoti behavior neessitates, besides some kind ofnonlinearity in the vetor �eld, at least a phase spae dimension of (i) threeor larger in the autonomous ase or (ii) two or larger in the non-autonomousase. As far as ase (i) is onerned, this onstitutes one underlying rea-son why the famous Lorenz model [8℄, Rössler model [9℄ and the minimalhaoti models by Sprott [10℄ an be haoti at all. Reently, systemati in-vestigations by Zhang Fu and Heidel [11℄ for of three-dimensional dynamialsystems with one quadrati nonlinearity and Linz [12℄ for third-order salardi�erential equations :::x= J(x; _x; �x) with an arbitrary nonlinearity in x haverevealed that further exlusion onditions for the ourrene of haoti be-havior exist. In ombination with previous systemati numerial searhesfor elementary haoti systems [10, 13, 14℄ these works have lead to a quitesatisfatory identi�ation of haoti minimal three-dimensional dynamialsystems (for a reent review, f. [15℄).Due to their ubiquity in nature and tehnology [3℄, non-autonomousnonlinear osillators being generially driven by an external time-periodifuntion �x = F (x; _x; t) = �G(x; _x) _x� �xW (x; t) (1)are, from the physial point of view, even more appealing elementary lassesof dynamial systems with potential haoti behavior. Mehanially speak-ing, suh systems represent the Newtonian motion of a partile exited by anapplied fore F (x; _x; t) (redued by the mass of the partile) that onsists ofa frition term G(x; _x) _x and a term resulting from a time-periodi potentialW (x; t) = W (x; t + T ). Sine the seminal works of Cruth�eld and Huber-man [16℄ and Ueda [17℄ in the late 1970's, many spei� funtional forms ofthe rih lass of dynamial systems (1) are known to exhibit a plethora ofompliated dynamis (inluding haos) as funtion of the entering ontrolparameters. For a general survey, we refer to Ref. [3℄.The fous of this investigation is (i) to determine some general exlu-sion riteria for haoti behavior in ertain funtional forms of periodiallydriven osillators (1) and, by that, (ii) to narrow the subset of potentiallyhaoti forms of (1). As we shall see, the exlusion of haoti behavior byproving that the long-time solution x(t) is either bounded, jx(t)j <1, andapproahing a �xed point or a periodi solution as t ! 1 or unbounded



No-Chaos Criteria for Certain Classes of Driven Nonlinear Osillators 3743jx(t)j ! 1 as t!1 an, to some extent, be ahieved without the expliitknowledge of the system's solution. Sine a general disussion for Eq. (1)does not seem to be feasible, we restrit our investigation to the two phys-ially most important ases where (i) the time-dependent driving f(t) andthe position dependent part of potential V (x) in W (x; t) an be separated,ommonly known as additive and parametri driving [1℄ and (ii) the fritionterm is linear in _x. 2. Basi assumptionsTo keep the disussion as general and the substantiation of the resultsas rigorous as possible, we demand, the following, from the physial point ofview very weak requirements on the driving, the frition and the potential:(i) The periodi driving f(t) = hfi + p(t) onsists of a periodi, boundedand at least pieewise ontinuous funtion p(t) = p(t + T ) with a minimalperiod T 6= 0 and zero mean, hpi = (1=T ) R t+Tt p(t) dt = 0, and has a meanvalue hfi = (1=T ) R t+Tt f(t) dt that might be non-zero. (ii) The fritionoe�ient (x) entering in the frition term (x) _x might generally dependnonlinearly on the position x, but not on _x. Moreover, (x) should be atleast ontinuous in x and bounded exept for x! �1. (iii) The potentialV (x) is supposed to be at least ontinuous. Then, the solutions x(t) of thesubsequently onsidered driven osillators (provided they exist) should beat least di�erentiable one and their derivatives _x(t) at least ontinuous.3. Additive drivingThe term additive driving ommonly refers to situations where the ap-plied fore F (x; _x; t) (and not the potential V (x)) is subjet to external,generially periodi perturbations that ouple additively into the osillatorequation (1). Spei�ally for these systems, an exlusion riterion for haosreads:Theorem 1: An additively driven nonlinear osillator determined by�x+ (x) _x+ �xV (x) = f(t) (2)with a periodi driving f(t) and a frition oe�ient (x) ful�lling the afore-mentioned onditions annot exhibit haoti behavior if the di�erene ofthe mean value of the driving and the slope of the potential V (x) is eitherpositive semide�nite, hfi � �xV (x) � 0, for all x or negative semide�nite,hfi � �xV (x) � 0, for all x.Proof: To demonstrate the statement, we insert the afore-mentioned de-omposition of the driving f(t) = hfi + p(t) into Eq. (2) and obtain, after



3744 S.J. Linzrearrangement, �x+ (x) _x� p(t) = hfi � �xV (x): (3)Next, we use the elementary fat that the frition term an be interpreted asthe time derivative of a x-dependent funtion � (x), i.e. (d=dt)� (x) = (x) _xwith �x� (x) = (x) or, equivalently, � (x) = R x (x) dx. Similarly, the pe-riodi part of the driving p(t) an, under the afore-mentioned assumptions,always be reast as the time derivative of a funtion P (t), p(t) = (d=dt)P (t).Sine p(t) is supposed to be periodi with zero mean, it follows from straight-forward appliation of Fourier series theory that P (t) is also periodi, albeitwith a generally non-zero mean that depends on the initial onditions. Con-sequently, we an reast (3) in the formddt [ _x+ � (x)� P (t)℄ = hfi � �xV (x): (4)Integrating Eq. (4) one with respet to time t yields_x+ � (x)� P (t) = tZ [hfi � �xV (x)℄ dt+ C ; (5)where the �nite integration onstant C omprises the initial values of left-hand side of (5). If now, as we suppose, the integrand on the right-hand sideof (5) is either positive semide�nite, hfi � �xV (x) � 0, for all x or negativesemide�nite, hfi � �xV (x) � 0, for all x, the integral on the right-hand sideof (5) must monotonially grow with time t or saturate. As a onsequene,the long-time limit of the right-hand side of (5) an only attain a onstantvalue (inluding zero) or diverge to plus or minus in�nity,_x+ � (x)� P (t) � K as t!1 (6)with K = �+C, � being the asymptoti limit of the integral of hfi��xV (x)for large t, and K being either a �nite onstant or �1. For the latteroption, one obtains by balaning the long-time limit of the left and right-hand side of (6) that also the left-hand side must diverge. Sine, however,P (t) and � (x) (at least for �nite x) are bounded this is an only happenif either x or _x or both together diverge. In any of these ases the long-time solution of (2) beomes unbounded and, therefore, annot be haoti.The other feasible option is that the right-hand side saturates to the �niteonstant K in the long time limit. Then, however, the long time limit of (6)redues to a periodially driven nonlinear relaxator _x � K � � (x) +P (t) =h(x; t). The �nal ingredient is the appliation of an analogue of the Poinaré�Bendixson theorem for non-autonomous dynamial systems as, for example,provided by Hale and Koçak [Ref. [5℄, p.118℄: A non-autonomous �rst order



No-Chaos Criteria for Certain Classes of Driven Nonlinear Osillators 3745di�erential equation _x = h(x; t), with h(x; t) being periodi with a period T ,ontinuous in t, and at least di�erentiable one in x an only have divergingor periodi solutions. This results from the following simple arguments:Consider the strobosopi sequene xn = x(t + nT; t0; x0) that labels thesuessive values of the solution x(t; t0; x0) [started with the initial onditionx(t0) = x0℄ at times t + nT with n = 0; 1; 2; 3:::. As a onsequene ofthe uniqueness and the ontinuity of the solutions x(t; t0; x0), this sequenemust be monotoni, i.e. either approah a limit funtion (orrespondingto a limit yle for x(t)) or beoming unbounded (x(t) ! �1). Sine(x) = �x� (x) = ��xh(x; t) is assumed to be at least ontinuous and p(t) =�tP (t) = �th(x; t) at least pieewise ontinuous, � (x) and P (t) in Eq. (6)ful�ll the neessary requirements on h(x; t), and, therefore, aperiodi orhaoti solutions in (2) are exluded. This onludes the proof.Several remarks are in order. (i) Obviously, a potential V (x) being lin-ear in x, or equivalently, possessing a onstant slope annot lead to haotibehavior in Eq. (2) independent of the spei� nonlinearity entering in thefrition term (x) _x. (ii) The no-haos riterion is independent of the spe-i� time-dependene of the foring f(t) and the sign and the magnitudeof the frition oe�ient (x) and, therefore, applies to (x) =onst. orzero as well. (iii) For additive driving with zero mean, hfi = 0, theorem 1states that haoti behavior in Eq. (2) annot our if the potential V (x)is either stritly monotoni in x or monotoni with some possible saddlepoints or plateaus. This implies that potentials suh as V (x) = �xm orV (x) = max(0;�xm) (m positive and odd), V (x) = ��(x)xm (m positive,odd or even and �(x) Heaviside's unit step funtion), or V (x) = � tanh(x+l)and V (x) = � sinh(x+l) with � and l being onstants annot lead to haotibehavior. (iv) In turn, one an also read o� a neessary ondition for thepotential appearane of haoti behavior in Eq. (2): If hfi = 0 the poten-tial must have at least one maximum or minimum. The latter is ommonlyused as an intuitive explanation why haoti behavior might appear: Anundriven osillator in a potential with at least one well an typially exhibit(damped) periodi osillations. Additional external driving might then trig-ger haoti motion. For a highly interesting theoretial investigation of thispoint, we refer to the work by Eilenberger and Shmidt [18℄. (v) For ad-ditive driving with non-zero mean hfi 6= 0, haoti behavior is exluded if�x[hfix � V (x)℄ has no zero-rossings for any x and t implying that theboundedness of �xV (x) is essential for ruling out haoti behavior. Assum-ing that �B1 � �xV (x) � B2 for all x (B1; B2 > 0), then the onditionshfi � B2 or hfi � �B1 enfore non-haotiity. As an example, onsiderthe multi-well potential V (x) = A sin(x) with A > 0: Chaoti behavior in(2) an be ruled out if hfi � A or hfi � �A. (vi) A reent interesting nu-merial searh by Gottlieb and Sprott [19℄ for the most elementary, haoti,



3746 S.J. Linzonservative, additively driven osillators with one single ontrol parame-ter has revealed that the funtional forms �x + g(x) = sin(!t) with g(x) 2fsin(x); sinh(x); tanh(x); xn(n = 3; 5; 7; 9; 11); x3�x; xjxj; xjxj3; xjxj�1=2g allexhibit haoti behavior for ertain ranges of !. Here, it is interesting toobserve that the violation of our no-haos riterion (all potentials V (x) havea minimum) diretly enfores haoti behavior for ertain parameters !.4. Parametri drivingA distint way of foring nonlinear osillators is determined by a multi-pliative (or parametri) oupling of the periodi foring f(t) to the potentialV (x) or, equivalently, to the part of the applied fore F (x; _x; t) that doesnot depend on the veloity _x . For these systems, a no-haos riterion isgiven byTheorem 2: A parametrially driven nonlinear osillator determined by�x+ (x) _x+ f(t)�xV (x) = 0 (7)with a periodi driving f(t) and a frition oe�ient (x) ful�lling the afore-mentioned onditions annot exhibit haoti behavior if the produt of thedriving and the slope of the potential V (x) is either positive semide�nite,f(t)�xV (x) � 0, for all x and t or negative semide�nite, f(t)�xV (x) � 0,for all x and t.Proof: The demonstration of the statement follows very losely the argu-ments in the proof of theorem 1. Using again (d=dt)� (x) = (x) _x, or equiv-alently, � (x) = R x (x) dx, (7) an be reast in the formddt [ _x+ � (x)℄ = �f(t)�xV (x) (8)and a subsequent integration of (8) with respet to time yields_x+ � (x) = � tZ f(t)�xV (x)dt+ C (9)with initial value terms of the left-hand side absorbed in the onstant C. Ifthe integrand f(t)�xV (x) is either positive semide�nite or negative semidef-inite for all x and t the integral on the right-hand side an only diverge orsaturate into a onstant in the long-time limit. If the right-hand side of (9)diverges, balaning both sides of (9) neessitates that x and/or _x also di-verge in the long-time limit. On the other hand, if the right-hand side of (9)approahes a onstant, one obtains asymptotially a �rst order autonomousdi�erential equation, _x+� (x) �onst., that an only approah a �xed pointor diverge to �1. This onludes the proof.



No-Chaos Criteria for Certain Classes of Driven Nonlinear Osillators 3747Several remarks are in order. (i) As major di�erene between additiveand parametri foring, ruling out haoti behavior here requires that neitherf(t) nor the slope of V (x) have zero rossings as funtion of t or x, respe-tively. (ii) In turn, haoti behavior an already appear if the potential V (x)is monotoni. A striking example for this ase is the radial motion (x(t) > 0)of an ion in the so-alled dynami Kingdon trap invented by Blümel [20℄,�x+  _x+ f(t)=x = 0, where the reverse Feigenbaum route to haos appearsas funtion of the inreasing amplitude � in f(t) = hfi � �os(t). (iii)In priniple, also the opposite ase, a periodi driving f(t) that is eitherpositive or negative for all times and a derivative of the potential �xV (x)that appropriately osillates about zero might potentially lead to a haotidynamis. To our knowledge, however, no suh example has been identi�edso far. (iv) As an be observed from the proof of theorem 2, the no-haosriterion also exludes any periodi long time solution.As a straightforward generalization, the afore-mentioned argument analso be applied if the potential V (x) onsists of two partsV (x) = V1(x) + f(t)V2(x) ; (10)where only one part is parametrially modulated. In this ase, one obtainsas no-haos ondition that�xV1(x) + f(t)�xV2(x) = �x[V1(x) + hfiV2(x)℄ + p(t)�xV2(x) (11)must be either positive or negative semide�nite for x and t. As an example,onsider V (x) = A0x + A1 os(l1x) � A2 os(2�t) sin(l2x) with A0; A1; A2and l1; l2 positive. Chaoti behavior is exluded if A0 > l1A1 + l2A2.5. Additive and parametri drivingTo disuss the ombined ation of additive and parametri driving, faand fp, in a nonlinear osillator, we suppose that fa(t) and fp(t) might befuntionally di�erent and might even possess di�erent periods; both driv-ing, however, should obey the afore-mentioned onditions. Combining thestrategies being used to substantiate theorem 1 and 2, an additively andparametrially driven osillator�x+ (x) _x+ fp(t)�xV (x) = fa(t) (12)an be diretly reast in the form(d=dt) [ _x+ � (x)� Pa(t)℄ = hfai � fp(t)�xV (x) (13)



3748 S.J. Linzor, after arrying out one integration with respet to time in (13), as_x+ � (x)� Pa(t) = tZ [hfai � fp(t)�xV (x)℄ dt+C : (14)As a onsequene, haoti behavior in Eq. (12) an be ruled out if the in-tegrand on the right-hand side of (14) hfai � fp(t)�xV (x) is either positivesemide�nite for all x and t or negative semide�nite for all x and t. If hfai = 0,then haoti behavior an only be exluded if the no-haos ondition for para-metri driving holds. If hfai 6= 0, however, suppression of haoti behaviorin a system that an be haoti for fa(t) = 0 an be ahieved if fp(t)�xV (x)is bounded. As an example, onsider the magneti osillator by Kim [21℄with (x) =onst. and fp(t)�xV (x) = �A os(2�t) sin(2�x). If one ouplesan additional additive driving to this system with hfai � jAj, the systeman no longer be haoti for any parameter range.6. Disussion and onlusionWe have shown by omparatively elementary and nevertheless rigorousarguments that haoti behavior an be ruled out in ertain funtional formsof additively and/or parametrially driven nonlinear osillators. Our ap-proah is based on reasting these evolution equations in the form of integro-di�erential equations that allow for formal manipulations in the integrandwithout the need of expliitly knowing the solution. In turn, funtionalforms of driven nonlinear osillators that do not ful�ll any of the presentedno-haos riteria are potentially haoti, at least in some ranges of the en-tering parameters and spei� initial onditions. A violation of the no-haosriteria derived above an be onsidered as a neessary, albeit not su�-ient ondition for the appearane of haos. In fat, onsidering the proofsof both theorems, a far stronger, albeit very impliite neessary onditionfor appearane of haos an be onjetured: the integrands on the rhs ofEqs. (5), (9), or (14) have to osillate in time about zero with a zero av-erage in order to guarantee that the orresponding integrals onspire to ane�etive self feedbak. Sine, however, the atual dynamis x(t) enteringinto the potential V (x) = V (x(t)) needs to be known, it seems unlikely toahieve further re�nements for haoti dynamis in the onsidered systemson the general level disussed here.Speulatively, one might ask what the most elementary funtional form ofa quasi-linear osillator is that might be haoti for some ontrol parameterranges. Based on our neessary onditions, the equation�x+  _x+ � sgn(x) = � sgn[sin(!t)℄ (15)
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