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NO-CHAOS CRITERIA FOR CERTAIN CLASSES OFDRIVEN NONLINEAR OSCILLATORS�Stefan J. LinzInstitut für Theoretis
he Physik, Westfälis
he Wilhelms-UniversitätWilhelm-Klemm-Str. 9, 48149 Münster, Germany(Re
eived De
ember 3, 2002)Besides three-dimensional autonomous nonlinear dynami
al systems,periodi
ally driven nonlinear os
illators 
onstitute elementary 
lasses of sys-tems that 
an potentially exhibit 
haoti
 behavior. In this 
ontribution weinvestigate 
onditions on the shape of the potential and the fun
tional formof the periodi
 driving that are ne
essary for the o

urren
e of 
haoti
 be-havior in these systems by deriving analyti
al 
riteria that ex
lude 
haoti
long-time solutions.PACS numbers: 05.45.A
, 02.30.Hq, 05.90.+m1. Introdu
tionSin
e its outset about three de
ades ago the systemati
 investigation ofnonlinear dynami
al systems with parti
ular emphasis on 
haoti
 dynami
shas been developed in a persistently a
tive resear
h area of interdis
iplinaryinterest (for reviews 
f. [1�6℄). Although there is still an ongoing debateabout its rigorous mathemati
al de�nition (
f. [7℄), the 
hara
terization of
haoti
 behavior as re
urrent, bounded, aperiodi
 long-time dynami
s ap-pearing in nonlinear dynami
al systems seems to be 
ommonly a

epted inphysi
s [6℄. Tightly annexed to su
h a behavior is the sensitive dependen
eof the 
orresponding long-time evolution on the initial 
onditions that man-ifests itself in at least one positive Lyapunov exponent. In spite of the sub-stantial progress that has been a

omplished in the last three de
ades, our
urrent understanding of the appearan
e of 
haoti
 behavior in dynami
alsystems is far from being 
omplete. An unresolved 
hallenge of parti
ular im-portan
e is the following problem: Given an autonomous or non-autonomousdynami
al system, _x = v(x) or _x = v(x; t) with x(t) = (x1(t); :::; xn(t)) and� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.(3741)
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hara
terizing the dimension of the 
orresponding phase spa
e, 
an we de-
ide only on the basis of the fun
tional form of the ve
tor �eld v(x) orv(x; t) and without invoking numeri
al analysis whether and in what 
on-trol parameter ranges 
haoti
 behavior might exist or not? The 
elebratedPoin
aré�Bendixson theorem provides a partial answer: Basi
ally, the long-time evolution of a two-dimensional autonomous dynami
al system 
an onlyattain �xed points, periodi
 solutions, divergent solutions or hetero
lini

y
les [5℄ and, therefore, 
haoti
 behavior is ex
luded. As a 
onsequen
e,the eventual existen
e of 
haoti
 behavior ne
essitates, besides some kind ofnonlinearity in the ve
tor �eld, at least a phase spa
e dimension of (i) threeor larger in the autonomous 
ase or (ii) two or larger in the non-autonomous
ase. As far as 
ase (i) is 
on
erned, this 
onstitutes one underlying rea-son why the famous Lorenz model [8℄, Rössler model [9℄ and the minimal
haoti
 models by Sprott [10℄ 
an be 
haoti
 at all. Re
ently, systemati
 in-vestigations by Zhang Fu and Heidel [11℄ for of three-dimensional dynami
alsystems with one quadrati
 nonlinearity and Linz [12℄ for third-order s
alardi�erential equations :::x= J(x; _x; �x) with an arbitrary nonlinearity in x haverevealed that further ex
lusion 
onditions for the o

urren
e of 
haoti
 be-havior exist. In 
ombination with previous systemati
 numeri
al sear
hesfor elementary 
haoti
 systems [10, 13, 14℄ these works have lead to a quitesatisfa
tory identi�
ation of 
haoti
 minimal three-dimensional dynami
alsystems (for a re
ent review, 
f. [15℄).Due to their ubiquity in nature and te
hnology [3℄, non-autonomousnonlinear os
illators being generi
ally driven by an external time-periodi
fun
tion �x = F (x; _x; t) = �G(x; _x) _x� �xW (x; t) (1)are, from the physi
al point of view, even more appealing elementary 
lassesof dynami
al systems with potential 
haoti
 behavior. Me
hani
ally speak-ing, su
h systems represent the Newtonian motion of a parti
le ex
ited by anapplied for
e F (x; _x; t) (redu
ed by the mass of the parti
le) that 
onsists ofa fri
tion term G(x; _x) _x and a term resulting from a time-periodi
 potentialW (x; t) = W (x; t + T ). Sin
e the seminal works of Crut
h�eld and Huber-man [16℄ and Ueda [17℄ in the late 1970's, many spe
i�
 fun
tional forms ofthe ri
h 
lass of dynami
al systems (1) are known to exhibit a plethora of
ompli
ated dynami
s (in
luding 
haos) as fun
tion of the entering 
ontrolparameters. For a general survey, we refer to Ref. [3℄.The fo
us of this investigation is (i) to determine some general ex
lu-sion 
riteria for 
haoti
 behavior in 
ertain fun
tional forms of periodi
allydriven os
illators (1) and, by that, (ii) to narrow the subset of potentially
haoti
 forms of (1). As we shall see, the ex
lusion of 
haoti
 behavior byproving that the long-time solution x(t) is either bounded, jx(t)j <1, andapproa
hing a �xed point or a periodi
 solution as t ! 1 or unbounded
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illators 3743jx(t)j ! 1 as t!1 
an, to some extent, be a
hieved without the expli
itknowledge of the system's solution. Sin
e a general dis
ussion for Eq. (1)does not seem to be feasible, we restri
t our investigation to the two phys-i
ally most important 
ases where (i) the time-dependent driving f(t) andthe position dependent part of potential V (x) in W (x; t) 
an be separated,
ommonly known as additive and parametri
 driving [1℄ and (ii) the fri
tionterm is linear in _x. 2. Basi
 assumptionsTo keep the dis
ussion as general and the substantiation of the resultsas rigorous as possible, we demand, the following, from the physi
al point ofview very weak requirements on the driving, the fri
tion and the potential:(i) The periodi
 driving f(t) = hfi + p(t) 
onsists of a periodi
, boundedand at least pie
ewise 
ontinuous fun
tion p(t) = p(t + T ) with a minimalperiod T 6= 0 and zero mean, hpi = (1=T ) R t+Tt p(t) dt = 0, and has a meanvalue hfi = (1=T ) R t+Tt f(t) dt that might be non-zero. (ii) The fri
tion
oe�
ient 
(x) entering in the fri
tion term 
(x) _x might generally dependnonlinearly on the position x, but not on _x. Moreover, 
(x) should be atleast 
ontinuous in x and bounded ex
ept for x! �1. (iii) The potentialV (x) is supposed to be at least 
ontinuous. Then, the solutions x(t) of thesubsequently 
onsidered driven os
illators (provided they exist) should beat least di�erentiable on
e and their derivatives _x(t) at least 
ontinuous.3. Additive drivingThe term additive driving 
ommonly refers to situations where the ap-plied for
e F (x; _x; t) (and not the potential V (x)) is subje
t to external,generi
ally periodi
 perturbations that 
ouple additively into the os
illatorequation (1). Spe
i�
ally for these systems, an ex
lusion 
riterion for 
haosreads:Theorem 1: An additively driven nonlinear os
illator determined by�x+ 
(x) _x+ �xV (x) = f(t) (2)with a periodi
 driving f(t) and a fri
tion 
oe�
ient 
(x) ful�lling the afore-mentioned 
onditions 
annot exhibit 
haoti
 behavior if the di�eren
e ofthe mean value of the driving and the slope of the potential V (x) is eitherpositive semide�nite, hfi � �xV (x) � 0, for all x or negative semide�nite,hfi � �xV (x) � 0, for all x.Proof: To demonstrate the statement, we insert the afore-mentioned de-
omposition of the driving f(t) = hfi + p(t) into Eq. (2) and obtain, after
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(x) _x� p(t) = hfi � �xV (x): (3)Next, we use the elementary fa
t that the fri
tion term 
an be interpreted asthe time derivative of a x-dependent fun
tion � (x), i.e. (d=dt)� (x) = 
(x) _xwith �x� (x) = 
(x) or, equivalently, � (x) = R x 
(x) dx. Similarly, the pe-riodi
 part of the driving p(t) 
an, under the afore-mentioned assumptions,always be re
ast as the time derivative of a fun
tion P (t), p(t) = (d=dt)P (t).Sin
e p(t) is supposed to be periodi
 with zero mean, it follows from straight-forward appli
ation of Fourier series theory that P (t) is also periodi
, albeitwith a generally non-zero mean that depends on the initial 
onditions. Con-sequently, we 
an re
ast (3) in the formddt [ _x+ � (x)� P (t)℄ = hfi � �xV (x): (4)Integrating Eq. (4) on
e with respe
t to time t yields_x+ � (x)� P (t) = tZ [hfi � �xV (x)℄ dt+ C ; (5)where the �nite integration 
onstant C 
omprises the initial values of left-hand side of (5). If now, as we suppose, the integrand on the right-hand sideof (5) is either positive semide�nite, hfi � �xV (x) � 0, for all x or negativesemide�nite, hfi � �xV (x) � 0, for all x, the integral on the right-hand sideof (5) must monotoni
ally grow with time t or saturate. As a 
onsequen
e,the long-time limit of the right-hand side of (5) 
an only attain a 
onstantvalue (in
luding zero) or diverge to plus or minus in�nity,_x+ � (x)� P (t) � K as t!1 (6)with K = �+C, � being the asymptoti
 limit of the integral of hfi��xV (x)for large t, and K being either a �nite 
onstant or �1. For the latteroption, one obtains by balan
ing the long-time limit of the left and right-hand side of (6) that also the left-hand side must diverge. Sin
e, however,P (t) and � (x) (at least for �nite x) are bounded this is 
an only happenif either x or _x or both together diverge. In any of these 
ases the long-time solution of (2) be
omes unbounded and, therefore, 
annot be 
haoti
.The other feasible option is that the right-hand side saturates to the �nite
onstant K in the long time limit. Then, however, the long time limit of (6)redu
es to a periodi
ally driven nonlinear relaxator _x � K � � (x) +P (t) =h(x; t). The �nal ingredient is the appli
ation of an analogue of the Poin
aré�Bendixson theorem for non-autonomous dynami
al systems as, for example,provided by Hale and Koçak [Ref. [5℄, p.118℄: A non-autonomous �rst order
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illators 3745di�erential equation _x = h(x; t), with h(x; t) being periodi
 with a period T ,
ontinuous in t, and at least di�erentiable on
e in x 
an only have divergingor periodi
 solutions. This results from the following simple arguments:Consider the strobos
opi
 sequen
e xn = x(t + nT; t0; x0) that labels thesu

essive values of the solution x(t; t0; x0) [started with the initial 
onditionx(t0) = x0℄ at times t + nT with n = 0; 1; 2; 3:::. As a 
onsequen
e ofthe uniqueness and the 
ontinuity of the solutions x(t; t0; x0), this sequen
emust be monotoni
, i.e. either approa
h a limit fun
tion (
orrespondingto a limit 
y
le for x(t)) or be
oming unbounded (x(t) ! �1). Sin
e
(x) = �x� (x) = ��xh(x; t) is assumed to be at least 
ontinuous and p(t) =�tP (t) = �th(x; t) at least pie
ewise 
ontinuous, � (x) and P (t) in Eq. (6)ful�ll the ne
essary requirements on h(x; t), and, therefore, aperiodi
 or
haoti
 solutions in (2) are ex
luded. This 
on
ludes the proof.Several remarks are in order. (i) Obviously, a potential V (x) being lin-ear in x, or equivalently, possessing a 
onstant slope 
annot lead to 
haoti
behavior in Eq. (2) independent of the spe
i�
 nonlinearity entering in thefri
tion term 
(x) _x. (ii) The no-
haos 
riterion is independent of the spe-
i�
 time-dependen
e of the for
ing f(t) and the sign and the magnitudeof the fri
tion 
oe�
ient 
(x) and, therefore, applies to 
(x) =
onst. orzero as well. (iii) For additive driving with zero mean, hfi = 0, theorem 1states that 
haoti
 behavior in Eq. (2) 
annot o

ur if the potential V (x)is either stri
tly monotoni
 in x or monotoni
 with some possible saddlepoints or plateaus. This implies that potentials su
h as V (x) = �xm orV (x) = max(0;�xm) (m positive and odd), V (x) = ��(x)xm (m positive,odd or even and �(x) Heaviside's unit step fun
tion), or V (x) = � tanh(x+l)and V (x) = � sinh(x+l) with � and l being 
onstants 
annot lead to 
haoti
behavior. (iv) In turn, one 
an also read o� a ne
essary 
ondition for thepotential appearan
e of 
haoti
 behavior in Eq. (2): If hfi = 0 the poten-tial must have at least one maximum or minimum. The latter is 
ommonlyused as an intuitive explanation why 
haoti
 behavior might appear: Anundriven os
illator in a potential with at least one well 
an typi
ally exhibit(damped) periodi
 os
illations. Additional external driving might then trig-ger 
haoti
 motion. For a highly interesting theoreti
al investigation of thispoint, we refer to the work by Eilenberger and S
hmidt [18℄. (v) For ad-ditive driving with non-zero mean hfi 6= 0, 
haoti
 behavior is ex
luded if�x[hfix � V (x)℄ has no zero-
rossings for any x and t implying that theboundedness of �xV (x) is essential for ruling out 
haoti
 behavior. Assum-ing that �B1 � �xV (x) � B2 for all x (B1; B2 > 0), then the 
onditionshfi � B2 or hfi � �B1 enfor
e non-
haoti
ity. As an example, 
onsiderthe multi-well potential V (x) = A sin(x) with A > 0: Chaoti
 behavior in(2) 
an be ruled out if hfi � A or hfi � �A. (vi) A re
ent interesting nu-meri
al sear
h by Gottlieb and Sprott [19℄ for the most elementary, 
haoti
,
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onservative, additively driven os
illators with one single 
ontrol parame-ter has revealed that the fun
tional forms �x + g(x) = sin(!t) with g(x) 2fsin(x); sinh(x); tanh(x); xn(n = 3; 5; 7; 9; 11); x3�x; xjxj; xjxj3; xjxj�1=2g allexhibit 
haoti
 behavior for 
ertain ranges of !. Here, it is interesting toobserve that the violation of our no-
haos 
riterion (all potentials V (x) havea minimum) dire
tly enfor
es 
haoti
 behavior for 
ertain parameters !.4. Parametri
 drivingA distin
t way of for
ing nonlinear os
illators is determined by a multi-pli
ative (or parametri
) 
oupling of the periodi
 for
ing f(t) to the potentialV (x) or, equivalently, to the part of the applied for
e F (x; _x; t) that doesnot depend on the velo
ity _x . For these systems, a no-
haos 
riterion isgiven byTheorem 2: A parametri
ally driven nonlinear os
illator determined by�x+ 
(x) _x+ f(t)�xV (x) = 0 (7)with a periodi
 driving f(t) and a fri
tion 
oe�
ient 
(x) ful�lling the afore-mentioned 
onditions 
annot exhibit 
haoti
 behavior if the produ
t of thedriving and the slope of the potential V (x) is either positive semide�nite,f(t)�xV (x) � 0, for all x and t or negative semide�nite, f(t)�xV (x) � 0,for all x and t.Proof: The demonstration of the statement follows very 
losely the argu-ments in the proof of theorem 1. Using again (d=dt)� (x) = 
(x) _x, or equiv-alently, � (x) = R x 
(x) dx, (7) 
an be re
ast in the formddt [ _x+ � (x)℄ = �f(t)�xV (x) (8)and a subsequent integration of (8) with respe
t to time yields_x+ � (x) = � tZ f(t)�xV (x)dt+ C (9)with initial value terms of the left-hand side absorbed in the 
onstant C. Ifthe integrand f(t)�xV (x) is either positive semide�nite or negative semidef-inite for all x and t the integral on the right-hand side 
an only diverge orsaturate into a 
onstant in the long-time limit. If the right-hand side of (9)diverges, balan
ing both sides of (9) ne
essitates that x and/or _x also di-verge in the long-time limit. On the other hand, if the right-hand side of (9)approa
hes a 
onstant, one obtains asymptoti
ally a �rst order autonomousdi�erential equation, _x+� (x) �
onst., that 
an only approa
h a �xed pointor diverge to �1. This 
on
ludes the proof.
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illators 3747Several remarks are in order. (i) As major di�eren
e between additiveand parametri
 for
ing, ruling out 
haoti
 behavior here requires that neitherf(t) nor the slope of V (x) have zero 
rossings as fun
tion of t or x, respe
-tively. (ii) In turn, 
haoti
 behavior 
an already appear if the potential V (x)is monotoni
. A striking example for this 
ase is the radial motion (x(t) > 0)of an ion in the so-
alled dynami
 Kingdon trap invented by Blümel [20℄,�x+ 
 _x+ f(t)=x = 0, where the reverse Feigenbaum route to 
haos appearsas fun
tion of the in
reasing amplitude � in f(t) = hfi � �
os(t). (iii)In prin
iple, also the opposite 
ase, a periodi
 driving f(t) that is eitherpositive or negative for all times and a derivative of the potential �xV (x)that appropriately os
illates about zero might potentially lead to a 
haoti
dynami
s. To our knowledge, however, no su
h example has been identi�edso far. (iv) As 
an be observed from the proof of theorem 2, the no-
haos
riterion also ex
ludes any periodi
 long time solution.As a straightforward generalization, the afore-mentioned argument 
analso be applied if the potential V (x) 
onsists of two partsV (x) = V1(x) + f(t)V2(x) ; (10)where only one part is parametri
ally modulated. In this 
ase, one obtainsas no-
haos 
ondition that�xV1(x) + f(t)�xV2(x) = �x[V1(x) + hfiV2(x)℄ + p(t)�xV2(x) (11)must be either positive or negative semide�nite for x and t. As an example,
onsider V (x) = A0x + A1 
os(l1x) � A2 
os(2�t) sin(l2x) with A0; A1; A2and l1; l2 positive. Chaoti
 behavior is ex
luded if A0 > l1A1 + l2A2.5. Additive and parametri
 drivingTo dis
uss the 
ombined a
tion of additive and parametri
 driving, faand fp, in a nonlinear os
illator, we suppose that fa(t) and fp(t) might befun
tionally di�erent and might even possess di�erent periods; both driv-ing, however, should obey the afore-mentioned 
onditions. Combining thestrategies being used to substantiate theorem 1 and 2, an additively andparametri
ally driven os
illator�x+ 
(x) _x+ fp(t)�xV (x) = fa(t) (12)
an be dire
tly re
ast in the form(d=dt) [ _x+ � (x)� Pa(t)℄ = hfai � fp(t)�xV (x) (13)
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arrying out one integration with respe
t to time in (13), as_x+ � (x)� Pa(t) = tZ [hfai � fp(t)�xV (x)℄ dt+C : (14)As a 
onsequen
e, 
haoti
 behavior in Eq. (12) 
an be ruled out if the in-tegrand on the right-hand side of (14) hfai � fp(t)�xV (x) is either positivesemide�nite for all x and t or negative semide�nite for all x and t. If hfai = 0,then 
haoti
 behavior 
an only be ex
luded if the no-
haos 
ondition for para-metri
 driving holds. If hfai 6= 0, however, suppression of 
haoti
 behaviorin a system that 
an be 
haoti
 for fa(t) = 0 
an be a
hieved if fp(t)�xV (x)is bounded. As an example, 
onsider the magneti
 os
illator by Kim [21℄with 
(x) =
onst. and fp(t)�xV (x) = �A 
os(2�t) sin(2�x). If one 
ouplesan additional additive driving to this system with hfai � jAj, the system
an no longer be 
haoti
 for any parameter range.6. Dis
ussion and 
on
lusionWe have shown by 
omparatively elementary and nevertheless rigorousarguments that 
haoti
 behavior 
an be ruled out in 
ertain fun
tional formsof additively and/or parametri
ally driven nonlinear os
illators. Our ap-proa
h is based on re
asting these evolution equations in the form of integro-di�erential equations that allow for formal manipulations in the integrandwithout the need of expli
itly knowing the solution. In turn, fun
tionalforms of driven nonlinear os
illators that do not ful�ll any of the presentedno-
haos 
riteria are potentially 
haoti
, at least in some ranges of the en-tering parameters and spe
i�
 initial 
onditions. A violation of the no-
haos
riteria derived above 
an be 
onsidered as a ne
essary, albeit not su�-
ient 
ondition for the appearan
e of 
haos. In fa
t, 
onsidering the proofsof both theorems, a far stronger, albeit very impli
ite ne
essary 
onditionfor appearan
e of 
haos 
an be 
onje
tured: the integrands on the rhs ofEqs. (5), (9), or (14) have to os
illate in time about zero with a zero av-erage in order to guarantee that the 
orresponding integrals 
onspire to ane�e
tive self feedba
k. Sin
e, however, the a
tual dynami
s x(t) enteringinto the potential V (x) = V (x(t)) needs to be known, it seems unlikely toa
hieve further re�nements for 
haoti
 dynami
s in the 
onsidered systemson the general level dis
ussed here.Spe
ulatively, one might ask what the most elementary fun
tional form ofa quasi-linear os
illator is that might be 
haoti
 for some 
ontrol parameterranges. Based on our ne
essary 
onditions, the equation�x+ 
 _x+ � sgn(x) = � sgn[sin(!t)℄ (15)
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illators 3749des
ribing the motion in a pie
ewise linear (and, therefore, nonlinear) po-tential V (x) = �jxj subje
t to a pie
ewise 
onstant swit
hing between +�and �� at �xed times T = �n=! (n 2 N) has the ne
essary ingredients tobe potentially 
haoti
 in some ranges of the parameters �; �; 
 and ! and,therefore, deserves further investigations.I am grateful to J.C. Sprott for useful dis
ussions and making his results(Ref. [19℄) available to me prior publi
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