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Besides three-dimensional autonomous nonlinear dynamical systems,
periodically driven nonlinear oscillators constitute elementary classes of sys-
tems that can potentially exhibit chaotic behavior. In this contribution we
investigate conditions on the shape of the potential and the functional form
of the periodic driving that are necessary for the occurrence of chaotic be-
havior in these systems by deriving analytical criteria that exclude chaotic
long-time solutions.
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1. Introduction

Since its outset about three decades ago the systematic investigation of
nonlinear dynamical systems with particular emphasis on chaotic dynamics
has been developed in a persistently active research area of interdisciplinary
interest (for reviews cf. [1-6]). Although there is still an ongoing debate
about its rigorous mathematical definition (cf. [7]), the characterization of
chaotic behavior as recurrent, bounded, aperiodic long-time dynamics ap-
pearing in nonlinear dynamical systems seems to be commonly accepted in
physics [6]. Tightly annexed to such a behavior is the sensitive dependence
of the corresponding long-time evolution on the initial conditions that man-
ifests itself in at least one positive Lyapunov exponent. In spite of the sub-
stantial progress that has been accomplished in the last three decades, our
current understanding of the appearance of chaotic behavior in dynamical
systems is far from being complete. An unresolved challenge of particular im-
portance is the following problem: Given an autonomous or non-autonomous
dynamical system, € = v(x) or & = v(x,t) with (¢) = (x1(¢), ..., z,(t)) and

* Presented at the XV Marian Smoluchowski Symposium on Statistical Physics,
Zakopane, Poland, September 7-12, 2002.

(3741)



3742 S.J. LiNz

n characterizing the dimension of the corresponding phase space, can we de-
cide only on the basis of the functional form of the vector field v(x) or
v(x,t) and without invoking numerical analysis whether and in what con-
trol parameter ranges chaotic behavior might exist or not? The celebrated
Poincaré-Bendixson theorem provides a partial answer: Basically, the long-
time evolution of a two-dimensional autonomous dynamical system can only
attain fixed points, periodic solutions, divergent solutions or heteroclinic
cycles [5] and, therefore, chaotic behavior is excluded. As a consequence,
the eventual existence of chaotic behavior necessitates, besides some kind of
nonlinearity in the vector field, at least a phase space dimension of (i) three
or larger in the autonomous case or (1) two or larger in the non-autonomous
case. As far as case (1) is concerned, this constitutes one underlying rea-
son why the famous Lorenz model [8], Rossler model [9] and the minimal
chaotic models by Sprott [10] can be chaotic at all. Recently, systematic in-
vestigations by Zhang Fu and Heidel [11] for of three-dimensional dynamical
systems with one quadratic nonlinearity and Linz [12] for third-order scalar
differential equations z= J(z, %, ) with an arbitrary nonlinearity in z have
revealed that further exclusion conditions for the occurrence of chaotic be-
havior exist. In combination with previous systematic numerical searches
for elementary chaotic systems [10,13,14] these works have lead to a quite
satisfactory identification of chaotic minimal three-dimensional dynamical
systems (for a recent review, cf. [15]).

Due to their ubiquity in nature and technology [3], non-autonomous
nonlinear oscillators being generically driven by an external time-periodic
function

G = F(z,i,t) = —G(z,4)i — 9 W (z,1) (1)

are, from the physical point of view, even more appealing elementary classes
of dynamical systems with potential chaotic behavior. Mechanically speak-
ing, such systems represent the Newtonian motion of a particle excited by an
applied force F(z,,t) (reduced by the mass of the particle) that consists of
a friction term G(z, %)% and a term resulting from a time-periodic potential
W (z,t) = W(z,t+T). Since the seminal works of Crutchfield and Huber-
man [16] and Ueda [17] in the late 1970’s, many specific functional forms of
the rich class of dynamical systems (1) are known to exhibit a plethora of
complicated dynamics (including chaos) as function of the entering control
parameters. For a general survey, we refer to Ref. [3].

The focus of this investigation is (i) to determine some general exclu-
sion criteria for chaotic behavior in certain functional forms of periodically
driven oscillators (1) and, by that, (i7) to narrow the subset of potentially
chaotic forms of (1). As we shall see, the exclusion of chaotic behavior by
proving that the long-time solution z(t) is either bounded, |z(t)| < co, and
approaching a fixed point or a periodic solution as ¢ — oo or unbounded
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|z(t)| — oo as t — oo can, to some extent, be achieved without the explicit
knowledge of the system’s solution. Since a general discussion for Eq. (1)
does not seem to be feasible, we restrict our investigation to the two phys-
ically most important cases where (i) the time-dependent driving f(¢) and
the position dependent part of potential V(x) in W (x,t) can be separated,
commonly known as additive and parametric driving [1] and (%) the friction
term is linear in #.

2. Basic assumptions

To keep the discussion as general and the substantiation of the results
as rigorous as possible, we demand, the following, from the physical point of
view very weak requirements on the driving, the friction and the potential:
(1) The periodic driving f(t) = (f) + p(¢) consists of a periodic, bounded
and at least piecewise continuous function p(t) = p(t + T') with a minimal

period T' # 0 and zero mean, (p) = (1/7") tt+Tp(t) dt = 0, and has a mean

value (f) = (1/T) tHTf(t) dt that might be non-zero. (i1) The friction
coefficient y(z) entering in the friction term 7(xz)Z might generally depend
nonlinearly on the position z, but not on &. Moreover, v(z) should be at
least continuous in z and bounded except for z — +oo. (4ii) The potential
V(z) is supposed to be at least continuous. Then, the solutions z(t) of the
subsequently considered driven oscillators (provided they exist) should be

at least differentiable once and their derivatives 4(t) at least continuous.

3. Additive driving

The term additive driving commonly refers to situations where the ap-
plied force F(z,%,t) (and not the potential V(z)) is subject to external,
generically periodic perturbations that couple additively into the oscillator
equation (1). Specifically for these systems, an exclusion criterion for chaos
reads:

Theorem 1: An additively driven nonlinear oscillator determined by

Z+(x)E + 0.V (z) = f(t) (2)

with a periodic driving f(t) and a friction coefficient ~(z) fulfilling the afore-
mentioned conditions cannot exhibit chaotic behavior if the difference of
the mean value of the driving and the slope of the potential V' (z) is either
positive semidefinite, (f) — 9,V (z) > 0, for all z or negative semidefinite,
(f) — 0.V (z) <0, for all z.

Proof: To demonstrate the statement, we insert the afore-mentioned de-
composition of the driving f(¢) = (f) + p(t) into Eq. (2) and obtain, after
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rearrangement,

i+y(@)z —p(t) = (f) — &LV (2). (3)
Next, we use the elementary fact that the friction term can be interpreted as
the time derivative of a z-dependent function I'(z), i.e. (d/dt)I'(z) = v(z)z
with 9, I'(z) = ~(z) or, equivalently, I'(z) = [*y(z)dz. Similarly, the pe-
riodic part of the driving p(¢) can, under the afore-mentioned assumptions,
always be recast as the time derivative of a function P(t), p(t) = (d/dt)P(t).
Since p(t) is supposed to be periodic with zero mean, it follows from straight-
forward application of Fourier series theory that P(t) is also periodic, albeit
with a generally non-zero mean that depends on the initial conditions. Con-
sequently, we can recast (3) in the form

% li + I(z) — P(1)] = (f) — 8,V (). (4)

Integrating Eq. (4) once with respect to time ¢ yields

t

i+ I(x) - P(t) = / () - 0.V (z)] i+ C, (5)

where the finite integration constant C' comprises the initial values of left-
hand side of (5). If now, as we suppose, the integrand on the right-hand side
of (5) is either positive semidefinite, (f) — 9,V (z) > 0, for all x or negative
semidefinite, (f) — 9,V (z) > 0, for all z, the integral on the right-hand side
of (5) must monotonically grow with time ¢ or saturate. As a consequence,
the long-time limit of the right-hand side of (5) can only attain a constant
value (including zero) or diverge to plus or minus infinity,

t+I(z)—P(t)~K ast— oo (6)

with K = k+C, k being the asymptotic limit of the integral of (f) — 0,V (x)
for large t, and K being either a finite constant or d+oco. For the latter
option, one obtains by balancing the long-time limit of the left and right-
hand side of (6) that also the left-hand side must diverge. Since, however,
P(t) and I'(z) (at least for finite ) are bounded this is can only happen
if either x or & or both together diverge. In any of these cases the long-
time solution of (2) becomes unbounded and, therefore, cannot be chaotic.
The other feasible option is that the right-hand side saturates to the finite
constant K in the long time limit. Then, however, the long time limit of (6)
reduces to a periodically driven nonlinear relaxator © ~ K — I'(z) + P(t) =
h(z,t). The final ingredient is the application of an analogue of the Poincaré—
Bendixson theorem for non-autonomous dynamical systems as, for example,
provided by Hale and Kogak [Ref. [5], p.118]: A non-autonomous first order
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differential equation & = h(x,t), with h(z,t) being periodic with a period T,
continuous in ¢, and at least differentiable once in x can only have diverging
or periodic solutions. This results from the following simple arguments:
Consider the stroboscopic sequence z, = z(t + nT,tg,zo) that labels the
successive values of the solution (¢, tg, o) [started with the initial condition
z(ty) = =mo| at times ¢ + nT with n = 0,1,2,3.... As a consequence of
the uniqueness and the continuity of the solutions z(t, tg, z¢), this sequence
must be monotonic, i.e. either approach a limit function (corresponding
to a limit cycle for z(¢)) or becoming unbounded (z(t) — +oo). Since
v(z) = 0, ' () = —0yh(z,1) is assumed to be at least continuous and p(t) =
Oy P(t) = Oih(z,t) at least piecewise continuous, I'(z) and P(t) in Eq. (6)
fulfill the necessary requirements on h(z,t), and, therefore, aperiodic or
chaotic solutions in (2) are excluded. This concludes the proof.

Several remarks are in order. () Obviously, a potential V(z) being lin-
ear in z, or equivalently, possessing a constant slope cannot lead to chaotic
behavior in Eq. (2) independent of the specific nonlinearity entering in the
friction term ~y(x)#. (i) The no-chaos criterion is independent of the spe-
cific time-dependence of the forcing f(¢) and the sign and the magnitude
of the friction coefficient «(z) and, therefore, applies to y(x) =const. or
zero as well. (117) For additive driving with zero mean, (f) = 0, theorem 1
states that chaotic behavior in Eq. (2) cannot occur if the potential V' (z)
is either strictly monotonic in z or monotonic with some possible saddle
points or plateaus. This implies that potentials such as V(z) = az™ or
V(z) = max(0; ax™) (m positive and odd), V(x) = a@(z)z™ (m positive,
odd or even and @(z) Heaviside’s unit step function), or V(z) = a tanh(z+1)
and V(z) = asinh(z+1) with @ and / being constants cannot lead to chaotic
behavior. (i) In turn, one can also read off a necessary condition for the
potential appearance of chaotic behavior in Eq. (2): If (f) = 0 the poten-
tial must have at least one maximum or minimum. The latter is commonly
used as an intuitive explanation why chaotic behavior might appear: An
undriven oscillator in a potential with at least one well can typically exhibit
(damped) periodic oscillations. Additional external driving might then trig-
ger chaotic motion. For a highly interesting theoretical investigation of this
point, we refer to the work by Eilenberger and Schmidt [18]. (v) For ad-
ditive driving with non-zero mean (f) # 0, chaotic behavior is excluded if
9:[(f)x — V(z)] has no zero-crossings for any z and ¢t implying that the
boundedness of 9,V (z) is essential for ruling out chaotic behavior. Assum-
ing that —By < 0,V (z) < Bs for all z (By, By > 0), then the conditions
(f) > By or (f) < —Bj enforce non-chaoticity. As an example, consider
the multi-well potential V() = Asin(z) with A > 0: Chaotic behavior in
(2) can be ruled out if (f) > A or (f) < —A. (vi) A recent interesting nu-
merical search by Gottlieb and Sprott [19] for the most elementary, chaotic,
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conservative, additively driven oscillators with one single control parame-
ter has revealed that the functional forms % + g(z) = sin(wt) with g(z) €
{sin(z),sinh(z), tanh(x), z"(n = 3,5,7,9,11), 2° —z, z|z|, z|z|*, z|x| "/} all
exhibit chaotic behavior for certain ranges of w. Here, it is interesting to
observe that the violation of our no-chaos criterion (all potentials V' (z) have
a minimum) directly enforces chaotic behavior for certain parameters w.

4. Parametric driving

A distinct way of forcing nonlinear oscillators is determined by a multi-
plicative (or parametric) coupling of the periodic forcing f(¢) to the potential
V(z) or, equivalently, to the part of the applied force F(xz,%,t) that does
not depend on the velocity © . For these systems, a no-chaos criterion is
given by
Theorem 2: A parametrically driven nonlinear oscillator determined by

Z+y(x)+ f(t)0,V(z) =0 (7)

with a periodic driving f(t) and a friction coefficient ~(z) fulfilling the afore-
mentioned conditions cannot exhibit chaotic behavior if the product of the
driving and the slope of the potential V (z) is either positive semidefinite,
f@)0,V(x) > 0, for all z and ¢ or negative semidefinite, f(¢)0,V (x) < 0,
for all z and t.

Proof: The demonstration of the statement follows very closely the argu-
ments in the proof of theorem 1. Using again (d/dt)I'(z) = ~y(z)Z, or equiv-
alently, I'(z) = [* y(z) dz, (7) can be recast in the form

d ..
yn [+ I'(z)] = —f(t)0.V () (8)

and a subsequent integration of (8) with respect to time yields

t
i+ T(z) = —/f(t)amV(x)dt+C ()

with initial value terms of the left-hand side absorbed in the constant C'. If
the integrand f(¢)0,V (z) is either positive semidefinite or negative semidef-
inite for all £ and ¢ the integral on the right-hand side can only diverge or
saturate into a constant in the long-time limit. If the right-hand side of (9)
diverges, balancing both sides of (9) necessitates that x and/or # also di-
verge in the long-time limit. On the other hand, if the right-hand side of (9)
approaches a constant, one obtains asymptotically a first order autonomous
differential equation, &+ I'(x) ~const., that can only approach a fixed point
or diverge to +oo. This concludes the proof.
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Several remarks are in order. (i) As major difference between additive
and parametric forcing, ruling out chaotic behavior here requires that neither
f(t) nor the slope of V(z) have zero crossings as function of ¢ or z, respec-
tively. (4i) In turn, chaotic behavior can already appear if the potential V' (x)
is monotonic. A striking example for this case is the radial motion (z(t) > 0)
of an ion in the so-called dynamic Kingdon trap invented by Bliimel [20],
Z+ v + f(t)/x = 0, where the reverse Feigenbaum route to chaos appears
as function of the increasing amplitude A in f(¢t) = (f) — Acos(t). (iii)
In principle, also the opposite case, a periodic driving f(t) that is either
positive or negative for all times and a derivative of the potential 0,V (x)
that appropriately oscillates about zero might potentially lead to a chaotic
dynamics. To our knowledge, however, no such example has been identified
so far. (iv) As can be observed from the proof of theorem 2, the no-chaos
criterion also excludes any periodic long time solution.

As a straightforward generalization, the afore-mentioned argument can
also be applied if the potential V() consists of two parts

V(z) = Vi(z) + f(H)Va(z), (10)

where only one part is parametrically modulated. In this case, one obtains
as no-chaos condition that

O Vi(z) + f(1)0:Va(x) = Ou[Vi(z) + (f)Va(z)] + p(t)0:Va(z) (11)

must be either positive or negative semidefinite for £ and ¢. As an example,
consider V(x) = Agz + Ay cos(liz) — Ag cos(2nt) sin(loz) with Ag, Ay, Ao
and [y, [y positive. Chaotic behavior is excluded if Ay > I1 A1 + 9 As.

5. Additive and parametric driving

To discuss the combined action of additive and parametric driving, f,
and fp, in a nonlinear oscillator, we suppose that f,(t) and fj(¢) might be
functionally different and might even possess different periods; both driv-
ing, however, should obey the afore-mentioned conditions. Combining the
strategies being used to substantiate theorem 1 and 2, an additively and
parametrically driven oscillator

Z+y(x)t + fp(t)0.V(z) = fo(t) (12)
can be directly recast in the form

(d/dt) [& + I'(z) = Pa(t)] = (fa) = [ (£)0:V () (13)
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or, after carrying out one integration with respect to time in (13), as

t

b4 (@) = Palt) = [ )~ f0QV @] div O (1)

As a consequence, chaotic behavior in Eq. (12) can be ruled out if the in-
tegrand on the right-hand side of (14) (f,) — fp(t)9;V (x) is either positive
semidefinite for all z and ¢ or negative semidefinite for all z and ¢. If (f,) =0,
then chaotic behavior can only be excluded if the no-chaos condition for para-
metric driving holds. If (f,) # 0, however, suppression of chaotic behavior
in a system that can be chaotic for f,(t) = 0 can be achieved if f,(¢)0,V (z)
is bounded. As an example, consider the magnetic oscillator by Kim [21]
with () =const. and fp(¢)0,V (z) = —Acos(2nt) sin(27z). If one couples
an additional additive driving to this system with (f,) > |A|, the system
can no longer be chaotic for any parameter range.

6. Discussion and conclusion

We have shown by comparatively elementary and nevertheless rigorous
arguments that chaotic behavior can be ruled out in certain functional forms
of additively and/or parametrically driven nonlinear oscillators. Our ap-
proach is based on recasting these evolution equations in the form of integro-
differential equations that allow for formal manipulations in the integrand
without the need of explicitly knowing the solution. In turn, functional
forms of driven nonlinear oscillators that do not fulfill any of the presented
no-chaos criteria are potentially chaotic, at least in some ranges of the en-
tering parameters and specific initial conditions. A violation of the no-chaos
criteria derived above can be considered as a necessary, albeit not suffi-
cient condition for the appearance of chaos. In fact, considering the proofs
of both theorems, a far stronger, albeit very implicite necessary condition
for appearance of chaos can be conjectured: the integrands on the rhs of
Egs. (5), (9), or (14) have to oscillate in time about zero with a zero av-
erage in order to guarantee that the corresponding integrals conspire to an
effective self feedback. Since, however, the actual dynamics z(¢) entering
into the potential V(z) = V(z(t)) needs to be known, it seems unlikely to
achieve further refinements for chaotic dynamics in the considered systems
on the general level discussed here.

Speculatively, one might ask what the most elementary functional form of
a quasi-linear oscillator is that might be chaotic for some control parameter
ranges. Based on our necessary conditions, the equation

Z 4+ vi + Bsgn(z) = asgn[sin(wt)] (15)
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describing the motion in a piecewise linear (and, therefore, nonlinear) po-
tential V(x) = f|z| subject to a piecewise constant switching between +a«
and —a at fixed times T = nn/w (n € N) has the necessary ingredients to
be potentially chaotic in some ranges of the parameters «a, 3,7 and w and,
therefore, deserves further investigations.

I am grateful to J.C. Sprott for useful discussions and making his results
(Ref. [19]) available to me prior publication.
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