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We quantify the concept of ensembles of atoms’ fluctuations for 2D lig-
uids close to and in the two-phase coexistence region, using a probabilistic
method of local structure analysis. Two ensembles are studied: gas-like
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truly solid-like fluctuations (SF) characteristic for a two-dimensional (2D)
triangular solid. For a 2D Lennard-Jones (LJ) system simulated using
Monte Carlo and molecular dynamics methods those ensembles yield a sta-
tistically reliable description of local solid-like structures in the two-phase
region. Both ensembles undergo a spectacular breakdown as the density
changes. A hypothetical relation of this breakdown to the behaviour of the
heat capacity in the two-phase region is proposed.
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1. Outline of the problem

The main object of our study are the fluctuations of the atoms in a
two-dimensional (2D) Lennard-Jones (LJ) liquid. For historical reasons we
interpret the occurring phenomena using the terms of liquidus, solidus and
coexistence region, typical for melting taking place via I-order phase transi-
tions [2]. This by no way excludes the possibility of KTHNY scenario [3-7],
in particular in light of recent simulations of a liquid of hard disks [8].

In a recent paper [1] we have quantified the concept of a sudden crossover
between solid-like and non-solid-like ensembles of the fluctuations of the
solid-like atoms (see below) in a liquid of hard disks and in the 2D liquid
of atoms interacting via LJ potential. Local structure analysis, based on
probabilistic concepts and mathematical statistics methods, has lead to an
interesting physical picture of various 2D liquids (LJ [1,9], hard disks [1,10],
liquid with quantum degrees of freedom [11]) as locally solid-like ordered
systems. Namely, in a liquid close to the coexistence region, some of 7-atom
clusters display structural properties similar to those in a fluctuating 2D
triangular lattice; the central atoms of those clusters are called solid-like.
The concentration of solid-like atoms close to the liquidus line constitutes
approximately 0.5. More details can be found in a review paper [12].

The local solid-like structure of 2D LJ liquid and of a liquid of hard disks
was successfully described using an ensemble of independent gaussian fluctu-
ations (see Section 2.2) in wide temperature/density intervals on the liquid
side of the coexistence regime [1]. Inside the coexistence regime, a spec-
tacular breakdown of the IGF ensemble occurred: statistically independent
fluctuations gave way to more collective fluctuations. However, no further
speculations about the character of those fluctuations were made.

The aim of this paper is to present some preliminary results supporting a
hypothesis that the fluctuations of solid-like atoms in the coexistence regime
of 2D liquids are truly solid-like in nature.

2. Local structure analysis (LSA)

2.1. Probabilistic formalism of structural invariants

Local order in a 2D system in the neighborhood of an atom located at the
point 7 is described by 2D local version of bond-order parameter of Nelson
et al. [9,13,14]:

No
. 1
Qom (T) = No ZYGm(ﬂ'/Qa bi) 5 (1)
i=1
where Y4, (0, ¢) (m = —6,...,6) denotes the spherical harmonic function,

the sum is taken over the Ny nearest—neighbors of the atom located at the
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point 7 and the pair of polar and azimuthal angles, (0;, ¢;), describes the
direction between the central atom # and its i-th nearest neighbor. The
invariant Q(7) for (Np + 1)-atom cluster with central atom at 7 is defined
as [9,14]:

6
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In the spirit of the method of analysis of local 2D structures [1,9-11],
we use two patterns as the candidates for the local structure in the system.
Pattern I'g is a 2D hexagon, i.e. a Ng+1 = 7-atom cluster from 2D triangular
lattice. The nearest-neighbor distance is taken as the unit of length. Pattern
I's is a 7-atom cluster centered around a 5-coordinated atom (disclination
in 2D triangular lattice). Fluctuating patterns I's and I's are described in
terms of the probability density functions (PDF) pg(Q) and p5(Q), which
depend on the choice of an ensemble of the atoms’ fluctuations.

The statistics of invariant ) in the trial configuration is described by
PDF p(Q) which is approximated by the histogram of random variable @,
calculated from the set of data {Q(7)}, i = 1,..., N, where N denotes the
total number of the atoms in the configuration.

The analysis of local structures is done using the methods of math-
ematical statistics [9]. We assume that p(Q) depends linearly on PDFs

Pr(Q) (k = 5,6):

p(Q) = > ckpr(Q). (3)

k=56

The “best” decomposition (3) is obtained by maximizing the significance
level
a(cs; cq), (c5 +c6 =1,¢5,¢6 > 0),

calculated from y2-test (see, e.g., in Ref. [15]) verification of the hypothesis
which states that the data corresponding to the left-hand side and the right-
hand side of (3) are drawn from the same distribution. Very small values
of a (of order of 1076 and smaller) indicate that the decomposition (3) is
statistically not reliable. Significance level «a plays a central role in our
analysis of ensembles of fluctuations. More details the interested reader can
find, e.g., in [1,12,16].

2.2. Model ensembles of fluctuations

In this paper two ensembles of atoms’ fluctuations are studied. The
first one [1,9-11] uses independent gaussian fluctuations for the modeling
of the fluctuations of the atoms. Each of the six neighbors of the central
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particle fluctuates independently of the other atoms, according to a gaussian
distribution

1 (57«)2]
Plorse) = = exn| - . (@)
with random displacement vectors dr and root-mean-square (r.m.s.) dis-
placement £. The resulting PDFs pg(Q, &) and p5(Q, &) for I's and I5, re-
spectively, are dependent on the amplitude £ of the fluctuations.

The second ensemble accounts for solid-like fluctuations (SF) present in
a 2D solid with triangular lattice. Their characteristic feature are strongly
developed long-wavelength fluctuations, leading to collective movements of
small parts of a system as a whole (the role of long-range fluctuations in
restoring, in the thermodynamic limit, of translational symmetry in 2D solids
was established long ago by Peierls [17] and Landau [18]; see also in [19]).
In the present study we calculate the corresponding PDFs pg(Q) from the
simulations in the solid phase, see next Section. Those functions depend on
the temperature and density: pg(Q) = ps(Q; T, p).

3. Two-dimensional Lennard—Jones liquid

3.1. Simulations

We have simulated a 2D system of N = 2500 atoms interacting via
Lennard-Jones potential vrj(r)

o =ac[(2)" - (2)] g

at T* = kpT/e = 0.7. Here kg stands for Boltzmann constant and T' for
temperature. A standard NVT molecular dynamics (MD) method [20] with
velocity Verlet algorithm was used; the time step was ty = 0.0647, where
the time unit 7 = 0.3113 ps. Long-range corrections for potential energy
and pressure were calculated; potential cutoff was chosen to be 2.5 o. The
equilibrium characteristics were sampled after 5000 equilibration steps. The
local structure parameters were averaged over 20 configurations.

Melting at T* = 0.7 was also studied via a standard NVT Monte Carlo
method [20,21] for a system of 1024 atoms. For thermalization 2x 105 Monte
Carlo steps (MCS) (1 MCS corresponds to one sweep over all particles)
were used and the equilibrium parameters were calculated using 2 x 10°
MCS. In Fig. 1 we present the plot d(p*) of the dependence of the distance
d between two chosen particles, being initially nearest neighbours, on the
reduced density p* = 02 p. The data were averaged over 2000 configurations
after equilibration. We find that a dramatic increase of d occurs close to
the density p* = 0.87, in agreement with MD results [1]. Thus, we assume
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that the density p* = 0.87 corresponds to the solidus line at T* = 0.7. A
short discussion of this topic is given in Section 4. The PDFs pg(Q,T*, p*)
for T* = 0.7 and p* > 0.87 (i.e., for a solid) were calculated from MC
simulations.

20 : . .
18 -
16 +
14 + +
12 +
= 10+
o| }
6,
AR
2r +.’ ° ° |
0 L

08 08 08 08 08 09 092
reduced density

Fig.1. Plot of an average distance between two atoms (see text) against reduced
density for a 2D LJ system at T* = 0.7 close to the two-phase region.

3.2. Local structure analysis

A typical PDF p(Q) calculated from MD simulations at 7% = 0.7,
p* = 0.82 is shown in Fig. 2. The results of the decomposition (c¢f. (3))
of p(Q) into patterns fluctuating according to IGF [1] and SF ensembles are
shown in Fig. 3. In the latter case, we have used the function pg(Q;T*, p*)
calculated at p* = 0.87, i.e., at the lowest density corresponding to the solid
phase. In both cases the non-solid-like component of local structure was de-
scribed by p5(Q,&). The vertical lines denote the boundaries (liquidus and
solidus) of the coexistence region found via LSA in [1].

The results are as follows. Similarly as in the case of IGF ensemble [1],
the reliability of the decomposition using SF ensemble undergoes a dramatic
change. This time, however, the decomposition is not reliable on the liquidus
line (p* = 0.825), where the significance level is low: a < 1076, This means
that the fluctuations of the atoms forming local solid-like structures (i.e.,
solid-like atoms) cannot be described in a satisfactory way via solid-like SF
ensemble; IGF ensemble, on the contrary, can be safely used. On the other
hand, close to the solidus line (p* = 0.87) the significance level a takes
values larger than 0.1, which implies that SF ensemble is a good candidate
for the description of the fluctuations of solid-like atoms. This time, IGF
ensemble is not reliable since the corresponding significance level drops below
107%. We conclude that in the coexistence region a crossover between IGF
and SF ensembles takes place. Some comments on the size-dependence of
significance analysis are given in the next section.
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Fig.2. A typical PDF p(Q) calculated from one configuration of a 2D LJ system of
2500 atoms at T* = 0.7, p* = 0.82. Solid line (fourth-order polynomial fit) serves
as a guide for an eye.
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Fig.3. Plot of the significance level loga against reduced density p* for a 2D LJ
system of 2500 atoms at T* = 0.7 close to the two-phase region. Squares and
diamonds denote, respectively, the results obtained from decomposition (3) using
IGF [1] and SF ensembles for PDF pg(Q). Vertical lines mark the coexistence
region found in [1].

4. Discussion

In this paper we have presented some preliminary results concerning the
quantification of the concept of fluctuations in a two-phase region of 2D
liquids.

First of all let us comment on a simulation of 2D systems in this re-
gion. It has been pointed out [22,23] that standard simulations may lead
to discrepancies of results due to possible overheating of simulated systems,
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originated by a slow nucleation in computer experiments. This is probably
not true in the 2D case. Melting/freezing of hard disks takes place either
via two continuous phase transitions (KTHNY) or is a very weak I-order
transition [8]. In the first case there are no hysteresis effects (overheating,
supercooling) at all, in the second — they are very small. We believe that
this is also true for 2D LJ system.

In this context, we report the following unexpected observation. The
2D LJ system at the temperature T* = 0.7 and at the density p* = 0.86,
1.e. in the two-phase region very close to the solidus line, displays nearly
perfect instantaneous local solid-like structure; nevertheless the atoms are
not bound to fixed positions in space, as seen from Fig. 1. Whether this
effect has any relation to the hypothetical hexatic phase of KTHNY theory,
where the orientational correlations are much stronger (power law) than the
spatial correlations (exponential law), is an interesting question.

The main methodological result of the paper is an introduction of a re-
liable (in a probabilistic sense) ensemble of fluctuations of solid-like atoms
in a two-phase region of a 2D LJ liquid. This SF ensemble is truly solid-like
in nature; actually, we have used simulations of a 2D triangular solid to
calculate the fluctuations of patterns of local solid-like structure. We point
out that a priori it is by no way a trivial result in spite of its apparent sim-
plicity. Together with earlier introduced ensemble of independent gaussian
fluctuations IGF [1,9-11] those two ensembles yield a statistically reliable
description of local solid-like structures in the two-phase region of a 2D LlJ
liquid. Both ensembles undergo a spectacular breakdown in this regime;
on the liquidus line IGF ensemble yields reliable results while SF ensemble
does not. Close to the solidus line the situation changes: SF are acceptable
while IGF are not. Let us point out, in this context, that the results of the
statistical analysis are strongly dependent on the size of the system [1]. In
the light of this observation we expect that for larger systems the breakdown
of the ensembles will be more spectacular, i.e., the intervals of the densities
where IGF and SF ensembles become non-reliable will be narrower.

The next remark concerns the fact that we have used the PDF pg(Q,T* =
0.7, p* = 0.87) for a solid-like pattern under SF fluctuations. We have
repeated an analysis using patterns fluctuating at higher densities, e.g.
p6(Q, T* = 0.7, p* = 0.88). The results were also reliable, but the sig-
nificance level, see Fig. 3, was smaller. Still higher densities gave no sta-
tistically acceptable results. We point out in this context that two PDFs,
p6(Q, T = 0.7, p*) and pe(Q, T* = 0.7, p* + Ap*), with Ap* = 0.01 were
identical in the sense of Kolmogorow—Smirnow test [15], while it was not the
case for Ap* > 0.02.

The results presented in the paper provide further quantification of the
physical picture of 2D liquids close to the two-phase region, formulated re-
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cently in Ref. [1]. Namely, those liquids have both solid-like features (large
concentration of local solid-like structures) and gas-like features (IGF ensem-
ble). The onset of freezing is accompanied by a disappearance of gas-like
features in local solid-like component of a liquid; the fluctuations become
solid-like in nature (ensemble crossover). Those statements quantify quali-
tative concepts formulated earlier [24-26].

Finally, let us note that the quantification of the concept of ensembles of
fluctuations might be important in view of the behaviour of heat capacity
at constant volume cy in 2D systems. Namely, the maximum of the heat
capacity at p* = 0.833 appeared at T ~ (.65, well below the temperature
interval T* = 0.72 — 0.75 where the two-phase region starts [1]. Similar
observations were made for 7% = 0.7. In Fig. 4 we present the plot of
cy (p*) for a 2D LJ system of 1024 atoms, calculated from MC simulations
described in Section 3. Its maximum is located at p* ~ 0.85, close to the
density where the two significance plots in Fig. 3 intersect. The energy
relations in the system are determined by fluctuations both of local solid-
like and of non solid-like components of local structure. Ensemble crossover
from IGF to SF may be of a noticeable interest in this context.
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Fig.4. Plot of the heat capacity cy against reduced density for a 2D LJ system of
1024 atoms at 7" = 0.7 close to the two-phase region.
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