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ENIGMA OF SELF-SIMILARITY OF FRACTIONALLÉVY STABLE MOTIONS�Szymon Meriky Karina WeronzInstitute of Physis, Wrolaw University of TehnologyWybrze»e Wyspia«skiego 27, 50-370 Wrolaw, PolandKrzysztof Burneki and Aleksander WeronInstitute of Mathematis, Wrolaw University of TehnologyWybrze»e Wyspia«skiego 27, 50-370 Wrolaw, Poland(Reeived Deember 12, 2002)We show that the most popular estimators of the self-similarity index� the Hurst and the DFA exponents � annot give exat value of theestimated parameter in some ases. The goal of this paper is to provide asimple omputer test by means of whih origins of the self-similarity featureof a partiular time series an be found. We demonstrate that the observedself-similarity an re�et a long-memory (frational Brownian motion ase)or in�nite variane of the proess' inrements (Lévy �-stable motion ase).PACS numbers: 87.17.�d, 87.22.�q, 05.40.+j1. IntrodutionOver the past deade there has been muh interest in the asymptotibehaviour of dynamial systems, in partiular in deteting self-similar har-ater of these systems and testing for the existene of so alled �long mem-ory� or �long-range dependene�. It turns out that the self-similar proessesare very important mathematial objets whih an be used to model manyphysial, geophysial, hydrologial, eonomial and biologial phenomena(see [1�9℄ and referenes there.) After the �rst step made by Einstein andSmoluhowski who explained why the range reahed by a Brownian parti-le is proportional to the square root of the movement duration, there were� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.y E-mail address: merik�rainbow.if.pwr.wro.plz E-mail address: karina�rainbow.if.pwr.wro.pl(3773)



3774 S. Merik et al.onstruted many other self-similar proesses inluding the most prominentexamples: frational Brownian [10℄, Lévy stable, and frational Lévy stablemotions [11, 12℄. The mathematial onstrutions were suessfully used tomodel di�usion on fratals, urreny and stok market pries, ioni urrent�ow through a single hannel in a biologial membrane, turbulenes, ommu-niation and many others. Sine the self-similarity property was observed inmany real phenomena there is a need to build e�ient estimators of the self-similarity index [3,4,13℄. A self-similar stohasti proess is a proess that isinvariant under suitable translations of time and sale. The property is dis-ussed in details in Setion 2. Now we only mention that the self-similarityis desribed by a real positive parameter H > 0 alled self-similarity in-dex whih provides information on the investigated time series struture,orrelations and fratal properties. For example, the Brownian motion isself-similar with H = 1=2; it has no memory and its inrements have �nitevariane. The �rst most known and widely used analysis of parameter His alled the resaled range (R=S) analysis and was developed by Hurst [1℄(disussed in details in Setion 3). The number obtained as a result of theproedure is alled the Hurst exponent. Unfortunately, it is not an estima-tor of the self-similarity index even though it is so ommonly alled. Thevalue of the Hurst exponent H provides information on orrelations in thetime series measured at di�erent time sales. When H = 1=2, the hangesin the values of a time series are random and, therefore, unorrelated witheah other. When 0 < H < 1=2, inreases in the values of a time seriesare likely to be followed by dereases and, onversely, dereases are morelikely to be followed by inreases. Suh a time series is alled antipersistent.When 1=2 < H < 1, inreases in the values of a time series are more likelyto be followed by inreases, and, onversely, dereases are more likely to befollowed by dereases. Suh a time series is alled persistent and it has along-memory property [14℄. So, the estimator gives us information on mem-ory of the investigated proess but it is not the only possible origin of theself-similarity. The problem how to reognise the origins of the self-similarityproperty in a time series reorded from a partiular physial systems stillneeds our attention. It is well-known that if a proess has purely randominrements with in�nite variane then the proess an be self-similar with in-dex of self-similarity di�erent from 1=2. The example of suh a proess is theLévy stable motion with stationary and independent, identially distributedinrements with symmetri �-stable distribution [11, 12℄. When one appliesto that proess the R=S analysis, the obtained Hurst exponent equals 1=2sine the estimator shows a lak of memory. Thus the seond origin of theself-similarity is the proess' inrements distribution what is, to our knowl-edge, negleted by many authors. There is another example of even moreompliated proess � the frational Lévy stable motion [11, 12℄ whih has



Enigma of Self-Similarity of Frational Lévy Stable Motions 3775the memory property and inrements with in�nite variane. In this ase theself-similarity index arries information on both, on long-memory and inre-ments distribution. Hene studying the proess' self-similarity one needs tohave robust statistial tools and lear algorithms to extrat information onboth of the fators. A simple hint is as follows: If one wants to investigate theself-similarity property, one needs to distinguish between the long-memoryproperty and the proess' inrements distribution properties. Otherwise awrong onlusion an be drawn. In this paper we study in details origins ofthe self-similarity property by employing the rigorous and widely used math-ematial tools. We provide an expliit algorithm distinguishing between theorigins of the self-similarity in the ase of a given time series on the base ofa simple simulation experiment (omputer test). In Setion 2 we introduebasi de�nitions neessary to understand di�erenes between proesses wewould like to disuss. Methods used in numerial simulations of the Brow-nian, frational Brownian, Lévy stable, and frational Lévy stable motionsare shortly desribed in Appendix. We provide in Setion 3 di�erent esti-mators [3, 4, 15℄ used to determine self-similarity exponents or its fators ineah ase. The results of Setion 3 are applied to investigate origins of theself-similarity. We demonstrate in Setion 4 how to use the proposed om-puter test in order to explain origins of the proesses self-similarity. Finally,Setion 5 ontains onlusions.2. Self-similar proessesAs we mentioned above, the self-similar proesses introdued by Lam-perti [16℄ are the ones that are invariant under suitable translations of timeand sale. They are important in probability theory beause of their on-netion to limit theorems and they are of great interest in modelling heavy-tailed and long-memory phenomena. In fat, Lamperti used the term �semi-stable� in order to underline that the role of self-similar proesses amongstohasti proesses is analogous to the role of stable distributions amongall distributions. The term self-similarity was oined by Mandelbrot whihused it also in the ontext of the saling of non-random objets. A proessX = fX(t)gt�0 is alled self-similar [16℄ if for some H > 0,X(at) d= aHX(t) for every a > 0; (1)where d= denotes equality of all �nite-dimensional distributions of the pro-esses on the left and right. X is also alled a H-self-similar proess andthe parameter H is alled the self-similarity index or exponent. If we in-terpret t as �time� and Xt as �spae� then (1) tells us that every hange oftime sale a > 0 orresponds to a hange of spae sale aH . The bigger H,



3776 S. Merik et al.the more dramati is the hange of the spae o-ordinate. Notie that (1),indeed, means a �sale-invariane� of the �nite-dimensional distributions ofX. This property of a self-similar proess does not imply the same for thesample paths. Therefore, pitures trying to explain self-similarity by somezooming in or out on one sample path, are by de�nition misleading. Why?In ontrast to the deterministi self-similarity, the self-similarity of stohas-ti proesses does not mean that the same piture repeats itself exatly aswe go loser. It is rather the general impression that remains the same! Aonvenient mathematial tool to observe self-similarity is provided by so-alled quantile lines [11℄. Many of the interesting self-similar proesses havestationary inrements. A proess X = fX(t)gt�0 is said to have stationaryinrements if for any b > 0,(X(t+ b)�X(b)) d=(X(t)�X(0)) : (2)2.1. Frational Brownian motionSine the funtion fjt1j2H + jt2j2H � jt1 � t2j2H ; t1; t2 2 Rg is positivede�nite for all 0 < H < 1, so one an onstrut a Gaussian proess X =fX(t)gt�0 with mean zero and an autoovariane funtion given byR(t1; t2) = 12 �jt1j2H + jt2j2H � jt1 � t2j2H	Var (X(1)) : (3)where R(t1; t2) � Cov (X(t1);X(t2)) � E (X(t1)X(t2)) and E(�) denotesan expeted value (or mean) of the random variable in the brakets. Theabove properties de�ne a proess alled a frational Brownian motion (fBm)and we denote it by BH = fBH(t)gt�0. It is H-self-similar with stationaryinrements and it is the only Gaussian proess with suh properties for 0 <H < 1 [12℄. IfVarX(1) = 1 we all it a standard frational Brownian motion.The standard frational Brownian motion has the integral representationBH(t)= 1CH0� 0Z�1 (jt� ujH�1=2 � jujH�1=2)B(du) + tZ0 jt� ujH�1=2B(du)1A ;(4)where C2H = R10 �(1 + x)H�1=2 � xH�1=2�2 dx + 12H and B(du) is a sym-metri Gaussian independently sattered random measure [12℄. The las-si Brownian motion B(t), used by Einstein and Smoluhowski, is sim-ply a speial ase of the frational Brownian motion when H = 1=2. Inthis ase B ((s; t℄) = B(t) � B(s) and the above integral with the deter-ministi kernel has to be understood in the It� sense. In modelling of



Enigma of Self-Similarity of Frational Lévy Stable Motions 3777long-memory phenomena, the stationary inrements of H-self-similar pro-esses are of interest. Any H-self-similar proess with stationary inre-ments X = fX(t)gt2R indues a stationary sequene Y = fYjgj2Z whereYj = X(j + 1)�X(j); j = : : : ;�1; 0; 1; : : :. The sequene orresponding tothe frational Brownian motion is alled frational Gaussian noise (fGn) (seeTable I). It is alled a standard frational Gaussian noise if VarYj = 1 forevery j 2 Z. The frational Gaussian noise has some remarkable properties.If H = 1=2, then its autoovariane funtion r(k) = R(0; k) = 0 for k 6= 0and hene it is the sequene of independent identially distributed (i.i.d)Gaussian random variables. The situation is quite di�erent when H 6= 1=2,namely the Yj 's are dependent and the time series has the autoovarianefuntion of the formr(k) � VarY1H(2H � 1)k2H�2; as k !1: (5)The autoovariane funtion r(k) tends to 0 as k !1 for all 0 < H < 1, butwhen 1=2 < H < 1 it tends to zero so slowly that the sum P1k=�1 r(k) di-verges. We say that in this ase the inrement proess exhibits long-memoryor �long-range dependene� [3℄. Moreover, formula (5) by the Wiener Taube-rian theorem (see [17℄ Chapt. V.2) implies that the spetral density h(�) ofthe stationary proess fGn has a pole at zero. A phenomenon often referredto as �1=f noise�. If 0 < H < 1=2, then P1k=�1 r(k) = 0 and the spetraldensity tends to zero as j�j ! 0. We say in that ase that the sequene dis-plays a short-memory. Furthermore, as the oe�ient H(2H�1) is negative,the r(j)'s are negative for all large j, a behaviour referred to as �negativedependene�. 2.2. Frational Lévy stable motionThe most ommonly used extension of the frational Brownian motionto the �-stable ase is the frational Lévy stable motion (fsm) [18�20℄. Theproess ZH� = �ZH� (t)	t2R is de�ned by the following integral representationZH� (t) = 0Z�1 �jt� ujH� 1� � jujH� 1��Z�(du) + tZ0 jt� ujH� 1�Z�(du); (6)where Z� is a symmetri Lévy �-stable independently sattered randommeasure [11, 12℄. The integral is well de�ned for 0 < H < 1 and 0 < � � 2as a weighted average of the Lévy stable motion Z�(u) over the in�nite pastwith the weight given by the above kernel denoted by kH;�(t; u). The kernelis �rst approximated by a sequene of step funtions fm = Pmj j1[uj�1; uj ℄



3778 S. Merik et al.and then the above integral an be understood as the limit in the Lp norm,where p < �.tZ�1 kH;�(t; u)Z�(du) = limm mXj j [Z�(uj)� Z�(uj�1)℄ : (7)This proess is H-self-similar and has stationary inrements [18℄. Let usobserve that H-self-similarity follows from the above integral representationand the fat that the kernel kH;�(t; u) is d-self-similar with d = H � 1=�,when the integrator Z�(du) is 1=�-self-similar. This implies the followingimportant relation H = d+ 1=�: (8)The representation of fsm is similar to the representation (4) of the frationalBrownian motion. Therefore fsm redues to the frational Brownian motionif one sets � = 2. When we putH = 1=� we obtain the Lévy �-stable motionwhih is an extension of the Brownian motion to the �-stable ase (seeTable I). We note, that ontrary to the Gaussian ase (� = 2) the Lévy�-stable motion is not the only 1=�-self-similar Lévy �-stable proess withstationary inrements (this is true for 0 < � < 1 only).The inrement proess orresponding to the frational Lévy stable pro-ess is alled a frational stable noise (fsn). By analogy with the ase � = 2,we say that fsn has the long-range dependene when H > 1=� and the neg-ative dependene when H < 1=�. If H = 1=� the inrements of fsm arei.i.d. symmetri �-stable variables. The asymptoti dependene strutureof the frational Brownian noise is studied by virtue of the autoovarianeTABLE ISpeial ases of the frational stable motion and the orresponding noises.0 < � < 2 � = 2frat. stable motion frat. Brownian motionH 6= 1=� + +frat. stable noise frat. Gaussian noiseLèvy motion Brownian motionH = 1=� + +stable noise �white noise�



Enigma of Self-Similarity of Frational Lévy Stable Motions 3779funtion. Sine in the �-stable ase the seond moment is in�nite one has touse another measure of dependene, e.g. the odi�erene �(j) whih equalsthe ovariane when � = 2 [12℄. For most, but not all, values of � and H,� dereases as j�H�� for large j. This is analogous to the behaviour of theautoovariane funtion in the Gaussian ase � = 2. Finally, we note thatthere is no long-range dependene when 0 < � 6 1 beause H is onstrainedto lie in the interval (0; 1). For simulations of the above self-similar proesseswe will need later spei� omputer generators. Two of suh algorithms forgeneration of frational Gaussian noise (fGn) and frational stable noise (fsn)are desribed with details in Appendix.3. Estimators and methodsThe estimation methods we onsider in this paper are:1. The Hurst R=S analysis,2. the Detrended Flutuation Analysis (DFA),3. the Orey analysis4. the Absolute Value method.Two of the applied estimators � the Hurst (HH) and the DFA (HDFA)exponents � are well-known and widely used [3, 13, 15℄ and so we do notonentrate here on an exat reipe how to alulate them. For the sake ofompleteness we inlude a rough desription only.3.1. Hurst and DFA exponentsThe Hurst analysis of a series fXkgNk=1 is based on division of the seriesinto nonoverlaping segments of length n. Then for every m-th segment ofthe original reord one should alulate the standard deviation Sm and buildthe umulative series with mean zero for whih the range Rm is de�ned asdi�erene between maximum and minimum value reahed by it. For thewhole time series the mean value of the resaled range equalshR=Si (n) = �R(n)S(n)� ;where h�i denotes mean value, and is proportional to HH -th power of thewindow n hR=Si (n) / (n)HH ; 0 < HH < 1: (9)The number HH is alled Hurst exponent and its interpretation was givenin Introdution. An alternative method of testing saling and orrelation



3780 S. Merik et al.properties of a time series is the DFA [15,21,22℄. It onsists of two main steps:the �rst step is to divide the entire series of length N into N=l nonoverlappingfragments of l observations and determine a loal trend of the subseries.Next, one has to de�ne the detrended proess in every fragment denoted byyl(n) as the di�erene between the original value of the series and the loaltrend. The desired statisti is the mean variane of the detrended proessF 2d (l), where mean is taken over all the fragments of size lF 2d (l) = 1N N=lXl=1 lXn=1 y2l (n);and it sales power with the window size lFd(l) / lHDFA;where HDFA is alled DFA exponent. The interpretation of the DFA expo-nent is very similar to the Hurst exponent: if only short-range orrelations(or no orrelations at all) exist in the studied series then HDFA = 1=2; ifthere is a orrelation then HDFA 6= 1=2. Moreover, if the exponent HDFA isgreater than 1=2, the time series is persistent and if HDFA < 1=2 then thetime series is not persistent. Note that both estimators give an informationon memory and not on distribution of the proess inrements. Moreover,both estimators are based on a variane or standard deviation of the proessor its inrements, but even if the variane (or standard deviation) is in�niteboth estimators work orretly [4℄. So if one apply them to the Brownianand Lévy motions whih both have no memory and di�erent self-similarityone gets 1/2 in both ases. 3.2. Orey indexThe Orey analysis is a method of investigating the Gaussian time se-ries data [23℄. The Orey index  estimates the self-similarity index H ofstationary Gaussian stohasti proesses. The equivalene of the Orey in-dex with the Hurst and DFA exponents suggests the Gaussian nature ofthe investigated proess. The advantage of the Orey index is that it is ob-tained with one ompat formula and one does not need additional tools(like linear regression and the log-log plot) to estimate the self-similarityindex of a Gaussian proess. The Orey index  an be estimated [23, 24℄by means of an ordinary least squares estimator b. For a given time seriesf�Xi; i = 1; 2; : : : 2mg onsisting of 2m observations we have to alulatea umulative series nXj =Pji=1�Xi; j = 1; 2; : : : 2mo and an inremental



Enigma of Self-Similarity of Frational Lévy Stable Motions 3781variane u(n)2 = 12n 2nXj=1 (Xj �Xj�1)2;where X0 = 0 and n = 1; 2; : : : m. Then the Orey index estimator is givenby b = mXj=1 yj log2 u(j);where yj = (xj � �x)=Pmj=1 (xj � �x)2 and xj = log2 1=2j = �j for j =1; 2; : : : m. This estimator b is strongly onsistent with the Orey index (for details see [23℄). 3.3. Absolute Value exponentThe method is based on alulating mean value Æ from the proess re-alisations and studying its saling with a sample length [4℄. A time seriesof length N one divides into subseries of length m and alulates the �rstabsolute moment Æ(m) = 1N=m N=mXk=1 ���X(m)(k)� hXi��� ; (10)where X(m) is an m-th subseries and hXi is the overall series mean. Theobtained statistis Æ(m) sales with the window size m and the power expo-nent equals HAV � 1, where HAV is the self-similarity index estimator (theAbsolute Value exponent) Æ(m) / mHAV�1:Notie, that this estimator gives an information on the self-similarity index.If the variane of the time series is in�nite the estimator also works orretly,so it an be used to investigate, for example, the Lévy motion.3.4. Surrogate dataThe onept of surrogate data has been proposed by Chang et al. [25,26℄.Surrogate data refers to data that preserve ertain linear statisti propertiesof the experimental time series, without the deterministi omponent [25℄.It is ommonly used to determine the memory of a proess by means of theloal dispersion and nonlinear predition methods. The surrogate data anbe obtained by several di�erent ways [25, 26℄. In this paper we obtain it byrandom shu�ing of the original data positions. To investigate memory of a



3782 S. Merik et al.studied proess we apply the above mentioned estimators to an original dataset obtained as a realisation of the given proess. If the self-similarity resultsfrom the proess memory only than the values of the applied estimatorsshould hange to 1/2 for the surrogate data independently on the initialvalues. If the self-similarity results only from the proess' inrements in�nitevariane than the estimators values should be the same for the original andsurrogate data. The self-similarity resulting from both origins should beobserved as a partial hange in the estimators values.4. Computer test � the behaviour of the estimatorsThe behaviour of the estimators was investigated on simulated time se-ries. The alulations were performed for:� Frational Brownian motion with self-similarity index H of valuesf0:001; 0:05; 0:10; : : : ; 0:90; 0:95; 0:999g, see �gures 1 and 2 for a samplepath.� Lévy motion with distribution of inrements given by �-stable distri-bution [11℄ with � of values f1:00; 1:05; : : : ; 1:90; 1:95g, see Figures 1and 2 for a sample path. As presented in Setion 2 the self-similarityindex reads in this ase H = 1=� and ranges from H = 1 for � = 1:00to H = 0:51 for � = 1:95. The ase � = 2:00 orresponds to Brownianmotion with H = 0:5.
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Fig. 1. A sample paths of the frational Brownian motion with the self-similarityindex H = 0:8 (d=0.3 and � = 2; top) and of the Lévy motion with the theself-similarity index H = 0:8 (d=0 and � = 1:25; bottom).



Enigma of Self-Similarity of Frational Lévy Stable Motions 3783
0 100 200 300 400 500 600 700 800 900 1000

−5

0

5

∆ 
X

(t
)

t

0 100 200 300 400 500 600 700 800 900 1000

−60

−40

−20

0

20

40

60

t

∆ 
X

(t
)

Fig. 2. Noises orresponding to the sample paths of the frational Brownian (top)and Lévy (bottom) motions presented in �gure 1.
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Fig. 3. Values of the Hurst exponent for the original time series of frational Brow-nian (stars) and Lévy motions (dots). Observe that for Lm (Figs. 3�6) the self-similarity index H ranges from [0.5, 1℄ sine H = 1=� and 1 � � � 2. The valuesfor the surrogate data (not shown here) take the value HH = 1=2 for fBm andessentially do not hange for Lm. Note, the deviations from the diagonal line.



3784 S. Merik et al.In eah ase we used the standard proess, i.e. with the mean (or me-dian if the mean does not exists) equal to 0 and the standard deviation (orsale parameter if the standard deviation does not exists or is in�nite) equalto 1. To determine the mean value and the volatility of the investigatedestimator the alulations were repeated 100 times for all values of the self-similarity index. The alulation were performed on time series onsistingof 217 = 131 072 observations. We want to stress that in order to get amore omplete information on the estimators behaviour one has to studynot only the mean value and the standard deviation of the estimators buttheir distribution, sine the distribution does not have to be Gaussian [27℄.The Hurst exponent HH alulated for the frational Brownian motion withdi�erent self-similarity indies is plotted in Figure 3 as a funtion of theself-similarity index H. In this representation the estimator should plaethe values of the self-similarity index along the diagonal. One an see thatthe Hurst exponent is a good estimator of the self-similarity index for theinterval H 2 (0:5; 0:8) only. For H > 0:8 the value of the Hurst exponentis lower than the investigated proess self-similarity index and for H < 0:5the values are too high. Moreover, the more H is distant from the range(0:5; 0:8) the larger the estimation error is. The results for the Lévy motionwith di�erent � are also enlosed. It is learly seen that in this ase theHurst exponent simply reads HH = 0:5 (with an estimation error). This isdue to the fat that Lévy motion has independent inrements. Nevertheless,the Hurst estimator does not work perfetly.Muh better result an be obtained using the DFA estimator. The simu-lations are presented in Figure 4 both for the frational Brownian and Lévymotions. General onlusions are the same as for the resaled range analysis:the DFA exponent reads 0.5 for the Lévy motion and HDFA = H for the fra-tional Brownian motion due to the long-range dependene. The estimationerrors are muh smaller, and what is most important, in the DFA analysisthere is no the systemati error that an be observed for the resaled rangeanalysis of the frational Brownian motion with H =2 (0:5; 0:8) and everyase of the Lévy motion. If the proedure is repeated for the surrogate datathe values of the estimators read 0.5 both for the Hurst and DFA analysis.Randomly shu�ing of the original data brakes the orrelations and the re-sulting time series (i.e. surrogate data) is without any memory. Sine bothestimators arry an information on the memory and neglet the distributionsthe result is always 0.5.The Orey index  alulated for the frational Brownian and Lévy mo-tions is presented in Figure 5. Notie, that the values obtained for the Lévymotion are just a numerial artefat and have no sense � the Orey indexexists only for proesses with Gaussian distributions. The Orey index givesus information on memory and estimates the self-similarity index sine for
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Fig. 4. Values of the DFA exponent for the original time series of frational Brown-ian (stars) and Lévy motions (dots). The values for the surrogate data (not shownhere) take the value HDFA = 1=2 for fBm and essentially do not hange for Lm.Note, that the DFA estimator works better.
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Fig. 5. Values of the Orey index for the original time series of frational Brownian(stars) and Lévy motions (dots). The values for the surrogate data (not shownhere) take the value  = 1=2 for fBm and essentially do not hange for Lm.



3786 S. Merik et al.a Gaussian proess the distribution fator in the self-similarity index readsjust 1=� = 1=2. The random shu�ing of the original time series breaks or-relations and the proess beomes just Brownian motion. It an be observedas a hange of the Orey index value to 0.5.The Absolute Value estimator HAV alulated for every given ase ofthe frational Brownian motion and Lévy motion is presented in Figure 6.One an see a di�erene between the work of this estimator and the threeanalysed above: the values obtained for the Lévy motion di�er from 0.5and are pretty lose to the self-similarity index value. For the frationalBrownian motion the values are very similar to those given by Hurst, DFAand Orey analysis. So, the HAV estimator gives information on both, thememory and distribution of the investigated proess and in fat returns avalue of the self-similarity index. The estimation error is muh larger for theLévy motion sine the distribution of the estimator is Gaussian if one appliesit to Gaussian proess and �-stable if one applies it to Lévy motion. In theseond ase the variation of the estimator does not exist and the volatilityof the estimator value (so the estimation error) is large [27℄.
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Fig. 6. Values of the absolute value index for the original time series of frationalBrownian (stars) and Lévy motions (dots). The values for surrogate data (notshown here) take the value HAV = 1=2 for fBm and essentially do not hange forLm.



Enigma of Self-Similarity of Frational Lévy Stable Motions 37875. ConlusionsUsing the omputer test proposed here the two di�erent origins of self-similarity in stationary time series reorded from di�erent physis systemsin priniple an be distinguished. The inlusion of in�nite variane timeseries fores us to di�erentiate arefully between the two parameters H andd that are used to haraterise long-memory. For the �nite variane aseH = d+1=2 and for the in�nite variane ase the self-similarity index reads:H = d+1=�. We want to underline that parameters H and d are used almostindistinguishably in the �nite variane ases! It is important therefore toknown whether an estimator is estimating H or d. The estimators analysedin the paper� Hurst index HH ,� Detrended Flutuation Analysis index HDFA,� Orey index ,� Absolute Value exponent HAV,provide information listed in Table II. Notie, that neither Hurst nor DFAindies are the self-similarity index estimators in the general ase! They angive information on the self-similarity index in the ase of Gaussian proessonly. TABLE IIInformation provided by di�erent estimators.Information on Information on NoiseEstimator property of the self-similarity onditioninvestigated proess omponentHH memory only d = HH � 1=2 stableHDFA memory only d = HDFA � 1=2 stable memory only d =  � 1=2 GaussianHAV memory d = HAV � 1=� stable& distribution



3788 S. Merik et al.Appendix AAppendix: fGn generatorThe frational Gaussian proess (fGp) algorithm was introdued by Daviesand Harte [28℄ for simulations requiring exat one-dimensional frationalGaussian noise. The fGp algorithm generates the noise, so that both, themean and the autoorrelation funtion for time series from fGn for someH onverge to their expeted values as more and more path samples areonsidered. It is an exat synthesis method. In order to desribe the methodwe follow Caia et al. [29℄. Using the fast Fourier transform algorithm, fGptransforms i.i.d. standard normal random variables into the orrelated series.The fGp method operates on the order of N log2N alulations. It simulatesa frational Gaussian noise Y = fYjgj2Z with the autoovariane funtiongiven by(�) � � = VarY12 �j� + 1j2H � 2j� j2H + j� � 1j2H� ; � = 0;�1;�2; : : :(A.1)The fGp algorithm an be divided into four steps.1. Let N be a power of 2 and let M = 2N . For j = 0; 1; : : : ;M=2,we ompute the exat spetral power expeted for this autoovarianefuntion Sj, from the disrete Fourier transform of the following se-quene of  : 0; 1; : : : ; M=2�1; M=2 :Sj � M=2X�=0 �e�i2�j(�=M) + M�1X�=M=2+1 M��e�i2�j(�=M): (A.2)2. We hek that Sj � 0 for all j. This should be true for the fra-tional Gaussian motion. Negativity would indiate that the sequeneis orrupt.3. LetWk, where k 2 f0; 1; : : : ;M�1g, be a set of i.i.d. Gaussian randomvariables with zero mean and unit variane. Now we alulate therandomised spetral amplitudes Vk:V0 = pS0W0;Vk = r12Sk(W2k�1 + iW2k) for 1 � k < M2 ;VM=2 = qSM=2WM�1;Vk = V �M�k for M2 < k �M � 1;where � denotes that Vk and VM�k are omplex onjugates.



Enigma of Self-Similarity of Frational Lévy Stable Motions 37894. We ompute the simulated time series Yn using the �rst N elementsof the disrete Fourier transform of V :Yn = 1pM M�1Xk=0 Vke�i2�k(n=M); (A.3)where n = 0; 1; : : : ; N � 1.Appendix BAppendix: fsn generatorThe algorithm presented in this setion is based on Theorem 7 of Mae-jima [18℄ who studied the domains of attration of the frational and log-frational stable motion. The domains are given in terms of moving averages.We rewrite the part onerning fsm as follows. Let (�j)1j=�1 be a sequeneof i.i.d. symmetri �-stable random variables generated by Chambers, Mal-lows and Stuk (CMS) method [30, 31℄. The moving average is de�ned byformula �k = 1Xj=1 jH�1=��1�k�j; k = 1; 2; : : : (B.1)This in�nite sum onverges [18℄ with probability 1. The new sequene(�k)1k=1 is stationary and, in general, it is strongly dependent. Under theabove onditions, for H 6= 1=�, we have1nH [nt℄Xk=1 �k d) ZH� (t); n!1; (B.2)where d) denotes onvergene of all �nite dimensional distributions. It fol-lows from (B.2) that the inrementsY =8<:Yj = ZH� (j + 1)� ZH� (j) = 1NH N(j+1)Xk=Nj+1 �k9=;j2Zfor large N , de�ne a generator of the frational stable noise. Finally, wenotie that in order to use this generator we have to set an appropriateuto� of the in�nite sum (B.1).
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