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ENIGMA OF SELF-SIMILARITY OF FRACTIONALLÉVY STABLE MOTIONS�Szymon Mer
iky Karina WeronzInstitute of Physi
s, Wro
law University of Te
hnologyWybrze»e Wyspia«skiego 27, 50-370 Wro
law, PolandKrzysztof Burne
ki and Aleksander WeronInstitute of Mathemati
s, Wro
law University of Te
hnologyWybrze»e Wyspia«skiego 27, 50-370 Wro
law, Poland(Re
eived De
ember 12, 2002)We show that the most popular estimators of the self-similarity index� the Hurst and the DFA exponents � 
annot give exa
t value of theestimated parameter in some 
ases. The goal of this paper is to provide asimple 
omputer test by means of whi
h origins of the self-similarity featureof a parti
ular time series 
an be found. We demonstrate that the observedself-similarity 
an re�e
t a long-memory (fra
tional Brownian motion 
ase)or in�nite varian
e of the pro
ess' in
rements (Lévy �-stable motion 
ase).PACS numbers: 87.17.�d, 87.22.�q, 05.40.+j1. Introdu
tionOver the past de
ade there has been mu
h interest in the asymptoti
behaviour of dynami
al systems, in parti
ular in dete
ting self-similar 
har-a
ter of these systems and testing for the existen
e of so 
alled �long mem-ory� or �long-range dependen
e�. It turns out that the self-similar pro
essesare very important mathemati
al obje
ts whi
h 
an be used to model manyphysi
al, geophysi
al, hydrologi
al, e
onomi
al and biologi
al phenomena(see [1�9℄ and referen
es there.) After the �rst step made by Einstein andSmolu
howski who explained why the range rea
hed by a Brownian parti-
le is proportional to the square root of the movement duration, there were� Presented at the XV Marian Smolu
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ik�rainbow.if.pwr.wro
.plz E-mail address: karina�rainbow.if.pwr.wro
.pl(3773)



3774 S. Mer
ik et al.
onstru
ted many other self-similar pro
esses in
luding the most prominentexamples: fra
tional Brownian [10℄, Lévy stable, and fra
tional Lévy stablemotions [11, 12℄. The mathemati
al 
onstru
tions were su

essfully used tomodel di�usion on fra
tals, 
urren
y and sto
k market pri
es, ioni
 
urrent�ow through a single 
hannel in a biologi
al membrane, turbulen
es, 
ommu-ni
ation and many others. Sin
e the self-similarity property was observed inmany real phenomena there is a need to build e�
ient estimators of the self-similarity index [3,4,13℄. A self-similar sto
hasti
 pro
ess is a pro
ess that isinvariant under suitable translations of time and s
ale. The property is dis-
ussed in details in Se
tion 2. Now we only mention that the self-similarityis des
ribed by a real positive parameter H > 0 
alled self-similarity in-dex whi
h provides information on the investigated time series stru
ture,
orrelations and fra
tal properties. For example, the Brownian motion isself-similar with H = 1=2; it has no memory and its in
rements have �nitevarian
e. The �rst most known and widely used analysis of parameter His 
alled the res
aled range (R=S) analysis and was developed by Hurst [1℄(dis
ussed in details in Se
tion 3). The number obtained as a result of thepro
edure is 
alled the Hurst exponent. Unfortunately, it is not an estima-tor of the self-similarity index even though it is so 
ommonly 
alled. Thevalue of the Hurst exponent H provides information on 
orrelations in thetime series measured at di�erent time s
ales. When H = 1=2, the 
hangesin the values of a time series are random and, therefore, un
orrelated withea
h other. When 0 < H < 1=2, in
reases in the values of a time seriesare likely to be followed by de
reases and, 
onversely, de
reases are morelikely to be followed by in
reases. Su
h a time series is 
alled antipersistent.When 1=2 < H < 1, in
reases in the values of a time series are more likelyto be followed by in
reases, and, 
onversely, de
reases are more likely to befollowed by de
reases. Su
h a time series is 
alled persistent and it has along-memory property [14℄. So, the estimator gives us information on mem-ory of the investigated pro
ess but it is not the only possible origin of theself-similarity. The problem how to re
ognise the origins of the self-similarityproperty in a time series re
orded from a parti
ular physi
al systems stillneeds our attention. It is well-known that if a pro
ess has purely randomin
rements with in�nite varian
e then the pro
ess 
an be self-similar with in-dex of self-similarity di�erent from 1=2. The example of su
h a pro
ess is theLévy stable motion with stationary and independent, identi
ally distributedin
rements with symmetri
 �-stable distribution [11, 12℄. When one appliesto that pro
ess the R=S analysis, the obtained Hurst exponent equals 1=2sin
e the estimator shows a la
k of memory. Thus the se
ond origin of theself-similarity is the pro
ess' in
rements distribution what is, to our knowl-edge, negle
ted by many authors. There is another example of even more
ompli
ated pro
ess � the fra
tional Lévy stable motion [11, 12℄ whi
h has
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tional Lévy Stable Motions 3775the memory property and in
rements with in�nite varian
e. In this 
ase theself-similarity index 
arries information on both, on long-memory and in
re-ments distribution. Hen
e studying the pro
ess' self-similarity one needs tohave robust statisti
al tools and 
lear algorithms to extra
t information onboth of the fa
tors. A simple hint is as follows: If one wants to investigate theself-similarity property, one needs to distinguish between the long-memoryproperty and the pro
ess' in
rements distribution properties. Otherwise awrong 
on
lusion 
an be drawn. In this paper we study in details origins ofthe self-similarity property by employing the rigorous and widely used math-emati
al tools. We provide an expli
it algorithm distinguishing between theorigins of the self-similarity in the 
ase of a given time series on the base ofa simple simulation experiment (
omputer test). In Se
tion 2 we introdu
ebasi
 de�nitions ne
essary to understand di�eren
es between pro
esses wewould like to dis
uss. Methods used in numeri
al simulations of the Brow-nian, fra
tional Brownian, Lévy stable, and fra
tional Lévy stable motionsare shortly des
ribed in Appendix. We provide in Se
tion 3 di�erent esti-mators [3, 4, 15℄ used to determine self-similarity exponents or its fa
tors inea
h 
ase. The results of Se
tion 3 are applied to investigate origins of theself-similarity. We demonstrate in Se
tion 4 how to use the proposed 
om-puter test in order to explain origins of the pro
esses self-similarity. Finally,Se
tion 5 
ontains 
on
lusions.2. Self-similar pro
essesAs we mentioned above, the self-similar pro
esses introdu
ed by Lam-perti [16℄ are the ones that are invariant under suitable translations of timeand s
ale. They are important in probability theory be
ause of their 
on-ne
tion to limit theorems and they are of great interest in modelling heavy-tailed and long-memory phenomena. In fa
t, Lamperti used the term �semi-stable� in order to underline that the role of self-similar pro
esses amongsto
hasti
 pro
esses is analogous to the role of stable distributions amongall distributions. The term self-similarity was 
oined by Mandelbrot whi
hused it also in the 
ontext of the s
aling of non-random obje
ts. A pro
essX = fX(t)gt�0 is 
alled self-similar [16℄ if for some H > 0,X(at) d= aHX(t) for every a > 0; (1)where d= denotes equality of all �nite-dimensional distributions of the pro-
esses on the left and right. X is also 
alled a H-self-similar pro
ess andthe parameter H is 
alled the self-similarity index or exponent. If we in-terpret t as �time� and Xt as �spa
e� then (1) tells us that every 
hange oftime s
ale a > 0 
orresponds to a 
hange of spa
e s
ale aH . The bigger H,
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ik et al.the more dramati
 is the 
hange of the spa
e 
o-ordinate. Noti
e that (1),indeed, means a �s
ale-invarian
e� of the �nite-dimensional distributions ofX. This property of a self-similar pro
ess does not imply the same for thesample paths. Therefore, pi
tures trying to explain self-similarity by somezooming in or out on one sample path, are by de�nition misleading. Why?In 
ontrast to the deterministi
 self-similarity, the self-similarity of sto
has-ti
 pro
esses does not mean that the same pi
ture repeats itself exa
tly aswe go 
loser. It is rather the general impression that remains the same! A
onvenient mathemati
al tool to observe self-similarity is provided by so-
alled quantile lines [11℄. Many of the interesting self-similar pro
esses havestationary in
rements. A pro
ess X = fX(t)gt�0 is said to have stationaryin
rements if for any b > 0,(X(t+ b)�X(b)) d=(X(t)�X(0)) : (2)2.1. Fra
tional Brownian motionSin
e the fun
tion fjt1j2H + jt2j2H � jt1 � t2j2H ; t1; t2 2 Rg is positivede�nite for all 0 < H < 1, so one 
an 
onstru
t a Gaussian pro
ess X =fX(t)gt�0 with mean zero and an auto
ovarian
e fun
tion given byR(t1; t2) = 12 �jt1j2H + jt2j2H � jt1 � t2j2H	Var (X(1)) : (3)where R(t1; t2) � Cov (X(t1);X(t2)) � E (X(t1)X(t2)) and E(�) denotesan expe
ted value (or mean) of the random variable in the bra
kets. Theabove properties de�ne a pro
ess 
alled a fra
tional Brownian motion (fBm)and we denote it by BH = fBH(t)gt�0. It is H-self-similar with stationaryin
rements and it is the only Gaussian pro
ess with su
h properties for 0 <H < 1 [12℄. IfVarX(1) = 1 we 
all it a standard fra
tional Brownian motion.The standard fra
tional Brownian motion has the integral representationBH(t)= 1CH0� 0Z�1 (jt� ujH�1=2 � jujH�1=2)B(du) + tZ0 jt� ujH�1=2B(du)1A ;(4)where C2H = R10 �(1 + x)H�1=2 � xH�1=2�2 dx + 12H and B(du) is a sym-metri
 Gaussian independently s
attered random measure [12℄. The 
las-si
 Brownian motion B(t), used by Einstein and Smolu
howski, is sim-ply a spe
ial 
ase of the fra
tional Brownian motion when H = 1=2. Inthis 
ase B ((s; t℄) = B(t) � B(s) and the above integral with the deter-ministi
 kernel has to be understood in the It� sense. In modelling of
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tional Lévy Stable Motions 3777long-memory phenomena, the stationary in
rements of H-self-similar pro-
esses are of interest. Any H-self-similar pro
ess with stationary in
re-ments X = fX(t)gt2R indu
es a stationary sequen
e Y = fYjgj2Z whereYj = X(j + 1)�X(j); j = : : : ;�1; 0; 1; : : :. The sequen
e 
orresponding tothe fra
tional Brownian motion is 
alled fra
tional Gaussian noise (fGn) (seeTable I). It is 
alled a standard fra
tional Gaussian noise if VarYj = 1 forevery j 2 Z. The fra
tional Gaussian noise has some remarkable properties.If H = 1=2, then its auto
ovarian
e fun
tion r(k) = R(0; k) = 0 for k 6= 0and hen
e it is the sequen
e of independent identi
ally distributed (i.i.d)Gaussian random variables. The situation is quite di�erent when H 6= 1=2,namely the Yj 's are dependent and the time series has the auto
ovarian
efun
tion of the formr(k) � VarY1H(2H � 1)k2H�2; as k !1: (5)The auto
ovarian
e fun
tion r(k) tends to 0 as k !1 for all 0 < H < 1, butwhen 1=2 < H < 1 it tends to zero so slowly that the sum P1k=�1 r(k) di-verges. We say that in this 
ase the in
rement pro
ess exhibits long-memoryor �long-range dependen
e� [3℄. Moreover, formula (5) by the Wiener Taube-rian theorem (see [17℄ Chapt. V.2) implies that the spe
tral density h(�) ofthe stationary pro
ess fGn has a pole at zero. A phenomenon often referredto as �1=f noise�. If 0 < H < 1=2, then P1k=�1 r(k) = 0 and the spe
traldensity tends to zero as j�j ! 0. We say in that 
ase that the sequen
e dis-plays a short-memory. Furthermore, as the 
oe�
ient H(2H�1) is negative,the r(j)'s are negative for all large j, a behaviour referred to as �negativedependen
e�. 2.2. Fra
tional Lévy stable motionThe most 
ommonly used extension of the fra
tional Brownian motionto the �-stable 
ase is the fra
tional Lévy stable motion (fsm) [18�20℄. Thepro
ess ZH� = �ZH� (t)	t2R is de�ned by the following integral representationZH� (t) = 0Z�1 �jt� ujH� 1� � jujH� 1��Z�(du) + tZ0 jt� ujH� 1�Z�(du); (6)where Z� is a symmetri
 Lévy �-stable independently s
attered randommeasure [11, 12℄. The integral is well de�ned for 0 < H < 1 and 0 < � � 2as a weighted average of the Lévy stable motion Z�(u) over the in�nite pastwith the weight given by the above kernel denoted by kH;�(t; u). The kernelis �rst approximated by a sequen
e of step fun
tions fm = Pmj 
j1[uj�1; uj ℄



3778 S. Mer
ik et al.and then the above integral 
an be understood as the limit in the Lp norm,where p < �.tZ�1 kH;�(t; u)Z�(du) = limm mXj 
j [Z�(uj)� Z�(uj�1)℄ : (7)This pro
ess is H-self-similar and has stationary in
rements [18℄. Let usobserve that H-self-similarity follows from the above integral representationand the fa
t that the kernel kH;�(t; u) is d-self-similar with d = H � 1=�,when the integrator Z�(du) is 1=�-self-similar. This implies the followingimportant relation H = d+ 1=�: (8)The representation of fsm is similar to the representation (4) of the fra
tionalBrownian motion. Therefore fsm redu
es to the fra
tional Brownian motionif one sets � = 2. When we putH = 1=� we obtain the Lévy �-stable motionwhi
h is an extension of the Brownian motion to the �-stable 
ase (seeTable I). We note, that 
ontrary to the Gaussian 
ase (� = 2) the Lévy�-stable motion is not the only 1=�-self-similar Lévy �-stable pro
ess withstationary in
rements (this is true for 0 < � < 1 only).The in
rement pro
ess 
orresponding to the fra
tional Lévy stable pro-
ess is 
alled a fra
tional stable noise (fsn). By analogy with the 
ase � = 2,we say that fsn has the long-range dependen
e when H > 1=� and the neg-ative dependen
e when H < 1=�. If H = 1=� the in
rements of fsm arei.i.d. symmetri
 �-stable variables. The asymptoti
 dependen
e stru
tureof the fra
tional Brownian noise is studied by virtue of the auto
ovarian
eTABLE ISpe
ial 
ases of the fra
tional stable motion and the 
orresponding noises.0 < � < 2 � = 2fra
t. stable motion fra
t. Brownian motionH 6= 1=� + +fra
t. stable noise fra
t. Gaussian noiseLèvy motion Brownian motionH = 1=� + +stable noise �white noise�
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tional Lévy Stable Motions 3779fun
tion. Sin
e in the �-stable 
ase the se
ond moment is in�nite one has touse another measure of dependen
e, e.g. the 
odi�eren
e �(j) whi
h equalsthe 
ovarian
e when � = 2 [12℄. For most, but not all, values of � and H,� de
reases as j�H�� for large j. This is analogous to the behaviour of theauto
ovarian
e fun
tion in the Gaussian 
ase � = 2. Finally, we note thatthere is no long-range dependen
e when 0 < � 6 1 be
ause H is 
onstrainedto lie in the interval (0; 1). For simulations of the above self-similar pro
esseswe will need later spe
i�
 
omputer generators. Two of su
h algorithms forgeneration of fra
tional Gaussian noise (fGn) and fra
tional stable noise (fsn)are des
ribed with details in Appendix.3. Estimators and methodsThe estimation methods we 
onsider in this paper are:1. The Hurst R=S analysis,2. the Detrended Flu
tuation Analysis (DFA),3. the Orey analysis4. the Absolute Value method.Two of the applied estimators � the Hurst (HH) and the DFA (HDFA)exponents � are well-known and widely used [3, 13, 15℄ and so we do not
on
entrate here on an exa
t re
ipe how to 
al
ulate them. For the sake of
ompleteness we in
lude a rough des
ription only.3.1. Hurst and DFA exponentsThe Hurst analysis of a series fXkgNk=1 is based on division of the seriesinto nonoverlaping segments of length n. Then for every m-th segment ofthe original re
ord one should 
al
ulate the standard deviation Sm and buildthe 
umulative series with mean zero for whi
h the range Rm is de�ned asdi�eren
e between maximum and minimum value rea
hed by it. For thewhole time series the mean value of the res
aled range equalshR=Si (n) = �R(n)S(n)� ;where h�i denotes mean value, and is proportional to HH -th power of thewindow n hR=Si (n) / (n)HH ; 0 < HH < 1: (9)The number HH is 
alled Hurst exponent and its interpretation was givenin Introdu
tion. An alternative method of testing s
aling and 
orrelation
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ik et al.properties of a time series is the DFA [15,21,22℄. It 
onsists of two main steps:the �rst step is to divide the entire series of length N into N=l nonoverlappingfragments of l observations and determine a lo
al trend of the subseries.Next, one has to de�ne the detrended pro
ess in every fragment denoted byyl(n) as the di�eren
e between the original value of the series and the lo
altrend. The desired statisti
 is the mean varian
e of the detrended pro
essF 2d (l), where mean is taken over all the fragments of size lF 2d (l) = 1N N=lXl=1 lXn=1 y2l (n);and it s
ales power with the window size lFd(l) / lHDFA;where HDFA is 
alled DFA exponent. The interpretation of the DFA expo-nent is very similar to the Hurst exponent: if only short-range 
orrelations(or no 
orrelations at all) exist in the studied series then HDFA = 1=2; ifthere is a 
orrelation then HDFA 6= 1=2. Moreover, if the exponent HDFA isgreater than 1=2, the time series is persistent and if HDFA < 1=2 then thetime series is not persistent. Note that both estimators give an informationon memory and not on distribution of the pro
ess in
rements. Moreover,both estimators are based on a varian
e or standard deviation of the pro
essor its in
rements, but even if the varian
e (or standard deviation) is in�niteboth estimators work 
orre
tly [4℄. So if one apply them to the Brownianand Lévy motions whi
h both have no memory and di�erent self-similarityone gets 1/2 in both 
ases. 3.2. Orey indexThe Orey analysis is a method of investigating the Gaussian time se-ries data [23℄. The Orey index 
 estimates the self-similarity index H ofstationary Gaussian sto
hasti
 pro
esses. The equivalen
e of the Orey in-dex with the Hurst and DFA exponents suggests the Gaussian nature ofthe investigated pro
ess. The advantage of the Orey index is that it is ob-tained with one 
ompa
t formula and one does not need additional tools(like linear regression and the log-log plot) to estimate the self-similarityindex of a Gaussian pro
ess. The Orey index 
 
an be estimated [23, 24℄by means of an ordinary least squares estimator b
. For a given time seriesf�Xi; i = 1; 2; : : : 2mg 
onsisting of 2m observations we have to 
al
ulatea 
umulative series nXj =Pji=1�Xi; j = 1; 2; : : : 2mo and an in
remental
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tional Lévy Stable Motions 3781varian
e u(n)2 = 12n 2nXj=1 (Xj �Xj�1)2;where X0 = 0 and n = 1; 2; : : : m. Then the Orey index estimator is givenby b
 = mXj=1 yj log2 u(j);where yj = (xj � �x)=Pmj=1 (xj � �x)2 and xj = log2 1=2j = �j for j =1; 2; : : : m. This estimator b
 is strongly 
onsistent with the Orey index 
(for details see [23℄). 3.3. Absolute Value exponentThe method is based on 
al
ulating mean value Æ from the pro
ess re-alisations and studying its s
aling with a sample length [4℄. A time seriesof length N one divides into subseries of length m and 
al
ulates the �rstabsolute moment Æ(m) = 1N=m N=mXk=1 ���X(m)(k)� hXi��� ; (10)where X(m) is an m-th subseries and hXi is the overall series mean. Theobtained statisti
s Æ(m) s
ales with the window size m and the power expo-nent equals HAV � 1, where HAV is the self-similarity index estimator (theAbsolute Value exponent) Æ(m) / mHAV�1:Noti
e, that this estimator gives an information on the self-similarity index.If the varian
e of the time series is in�nite the estimator also works 
orre
tly,so it 
an be used to investigate, for example, the Lévy motion.3.4. Surrogate dataThe 
on
ept of surrogate data has been proposed by Chang et al. [25,26℄.Surrogate data refers to data that preserve 
ertain linear statisti
 propertiesof the experimental time series, without the deterministi
 
omponent [25℄.It is 
ommonly used to determine the memory of a pro
ess by means of thelo
al dispersion and nonlinear predi
tion methods. The surrogate data 
anbe obtained by several di�erent ways [25, 26℄. In this paper we obtain it byrandom shu�ing of the original data positions. To investigate memory of a
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ik et al.studied pro
ess we apply the above mentioned estimators to an original dataset obtained as a realisation of the given pro
ess. If the self-similarity resultsfrom the pro
ess memory only than the values of the applied estimatorsshould 
hange to 1/2 for the surrogate data independently on the initialvalues. If the self-similarity results only from the pro
ess' in
rements in�nitevarian
e than the estimators values should be the same for the original andsurrogate data. The self-similarity resulting from both origins should beobserved as a partial 
hange in the estimators values.4. Computer test � the behaviour of the estimatorsThe behaviour of the estimators was investigated on simulated time se-ries. The 
al
ulations were performed for:� Fra
tional Brownian motion with self-similarity index H of valuesf0:001; 0:05; 0:10; : : : ; 0:90; 0:95; 0:999g, see �gures 1 and 2 for a samplepath.� Lévy motion with distribution of in
rements given by �-stable distri-bution [11℄ with � of values f1:00; 1:05; : : : ; 1:90; 1:95g, see Figures 1and 2 for a sample path. As presented in Se
tion 2 the self-similarityindex reads in this 
ase H = 1=� and ranges from H = 1 for � = 1:00to H = 0:51 for � = 1:95. The 
ase � = 2:00 
orresponds to Brownianmotion with H = 0:5.
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Fig. 1. A sample paths of the fra
tional Brownian motion with the self-similarityindex H = 0:8 (d=0.3 and � = 2; top) and of the Lévy motion with the theself-similarity index H = 0:8 (d=0 and � = 1:25; bottom).
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Fig. 2. Noises 
orresponding to the sample paths of the fra
tional Brownian (top)and Lévy (bottom) motions presented in �gure 1.
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3784 S. Mer
ik et al.In ea
h 
ase we used the standard pro
ess, i.e. with the mean (or me-dian if the mean does not exists) equal to 0 and the standard deviation (ors
ale parameter if the standard deviation does not exists or is in�nite) equalto 1. To determine the mean value and the volatility of the investigatedestimator the 
al
ulations were repeated 100 times for all values of the self-similarity index. The 
al
ulation were performed on time series 
onsistingof 217 = 131 072 observations. We want to stress that in order to get amore 
omplete information on the estimators behaviour one has to studynot only the mean value and the standard deviation of the estimators buttheir distribution, sin
e the distribution does not have to be Gaussian [27℄.The Hurst exponent HH 
al
ulated for the fra
tional Brownian motion withdi�erent self-similarity indi
es is plotted in Figure 3 as a fun
tion of theself-similarity index H. In this representation the estimator should pla
ethe values of the self-similarity index along the diagonal. One 
an see thatthe Hurst exponent is a good estimator of the self-similarity index for theinterval H 2 (0:5; 0:8) only. For H > 0:8 the value of the Hurst exponentis lower than the investigated pro
ess self-similarity index and for H < 0:5the values are too high. Moreover, the more H is distant from the range(0:5; 0:8) the larger the estimation error is. The results for the Lévy motionwith di�erent � are also en
losed. It is 
learly seen that in this 
ase theHurst exponent simply reads HH = 0:5 (with an estimation error). This isdue to the fa
t that Lévy motion has independent in
rements. Nevertheless,the Hurst estimator does not work perfe
tly.Mu
h better result 
an be obtained using the DFA estimator. The simu-lations are presented in Figure 4 both for the fra
tional Brownian and Lévymotions. General 
on
lusions are the same as for the res
aled range analysis:the DFA exponent reads 0.5 for the Lévy motion and HDFA = H for the fra
-tional Brownian motion due to the long-range dependen
e. The estimationerrors are mu
h smaller, and what is most important, in the DFA analysisthere is no the systemati
 error that 
an be observed for the res
aled rangeanalysis of the fra
tional Brownian motion with H =2 (0:5; 0:8) and every
ase of the Lévy motion. If the pro
edure is repeated for the surrogate datathe values of the estimators read 0.5 both for the Hurst and DFA analysis.Randomly shu�ing of the original data brakes the 
orrelations and the re-sulting time series (i.e. surrogate data) is without any memory. Sin
e bothestimators 
arry an information on the memory and negle
t the distributionsthe result is always 0.5.The Orey index 
 
al
ulated for the fra
tional Brownian and Lévy mo-tions is presented in Figure 5. Noti
e, that the values obtained for the Lévymotion are just a numeri
al artefa
t and have no sense � the Orey indexexists only for pro
esses with Gaussian distributions. The Orey index givesus information on memory and estimates the self-similarity index sin
e for
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Fig. 4. Values of the DFA exponent for the original time series of fra
tional Brown-ian (stars) and Lévy motions (dots). The values for the surrogate data (not shownhere) take the value HDFA = 1=2 for fBm and essentially do not 
hange for Lm.Note, that the DFA estimator works better.
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Fig. 5. Values of the Orey index for the original time series of fra
tional Brownian(stars) and Lévy motions (dots). The values for the surrogate data (not shownhere) take the value 
 = 1=2 for fBm and essentially do not 
hange for Lm.



3786 S. Mer
ik et al.a Gaussian pro
ess the distribution fa
tor in the self-similarity index readsjust 1=� = 1=2. The random shu�ing of the original time series breaks 
or-relations and the pro
ess be
omes just Brownian motion. It 
an be observedas a 
hange of the Orey index value to 0.5.The Absolute Value estimator HAV 
al
ulated for every given 
ase ofthe fra
tional Brownian motion and Lévy motion is presented in Figure 6.One 
an see a di�eren
e between the work of this estimator and the threeanalysed above: the values obtained for the Lévy motion di�er from 0.5and are pretty 
lose to the self-similarity index value. For the fra
tionalBrownian motion the values are very similar to those given by Hurst, DFAand Orey analysis. So, the HAV estimator gives information on both, thememory and distribution of the investigated pro
ess and in fa
t returns avalue of the self-similarity index. The estimation error is mu
h larger for theLévy motion sin
e the distribution of the estimator is Gaussian if one appliesit to Gaussian pro
ess and �-stable if one applies it to Lévy motion. In these
ond 
ase the variation of the estimator does not exist and the volatilityof the estimator value (so the estimation error) is large [27℄.
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Fig. 6. Values of the absolute value index for the original time series of fra
tionalBrownian (stars) and Lévy motions (dots). The values for surrogate data (notshown here) take the value HAV = 1=2 for fBm and essentially do not 
hange forLm.
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lusionsUsing the 
omputer test proposed here the two di�erent origins of self-similarity in stationary time series re
orded from di�erent physi
s systemsin prin
iple 
an be distinguished. The in
lusion of in�nite varian
e timeseries for
es us to di�erentiate 
arefully between the two parameters H andd that are used to 
hara
terise long-memory. For the �nite varian
e 
aseH = d+1=2 and for the in�nite varian
e 
ase the self-similarity index reads:H = d+1=�. We want to underline that parameters H and d are used almostindistinguishably in the �nite varian
e 
ases! It is important therefore toknown whether an estimator is estimating H or d. The estimators analysedin the paper� Hurst index HH ,� Detrended Flu
tuation Analysis index HDFA,� Orey index 
,� Absolute Value exponent HAV,provide information listed in Table II. Noti
e, that neither Hurst nor DFAindi
es are the self-similarity index estimators in the general 
ase! They 
angive information on the self-similarity index in the 
ase of Gaussian pro
essonly. TABLE IIInformation provided by di�erent estimators.Information on Information on NoiseEstimator property of the self-similarity 
onditioninvestigated pro
ess 
omponentHH memory only d = HH � 1=2 stableHDFA memory only d = HDFA � 1=2 stable
 memory only d = 
 � 1=2 GaussianHAV memory d = HAV � 1=� stable& distribution
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ik et al.Appendix AAppendix: fGn generatorThe fra
tional Gaussian pro
ess (fGp) algorithm was introdu
ed by Daviesand Harte [28℄ for simulations requiring exa
t one-dimensional fra
tionalGaussian noise. The fGp algorithm generates the noise, so that both, themean and the auto
orrelation fun
tion for time series from fGn for someH 
onverge to their expe
ted values as more and more path samples are
onsidered. It is an exa
t synthesis method. In order to des
ribe the methodwe follow Ca

ia et al. [29℄. Using the fast Fourier transform algorithm, fGptransforms i.i.d. standard normal random variables into the 
orrelated series.The fGp method operates on the order of N log2N 
al
ulations. It simulatesa fra
tional Gaussian noise Y = fYjgj2Z with the auto
ovarian
e fun
tiongiven by
(�) � 
� = VarY12 �j� + 1j2H � 2j� j2H + j� � 1j2H� ; � = 0;�1;�2; : : :(A.1)The fGp algorithm 
an be divided into four steps.1. Let N be a power of 2 and let M = 2N . For j = 0; 1; : : : ;M=2,we 
ompute the exa
t spe
tral power expe
ted for this auto
ovarian
efun
tion Sj, from the dis
rete Fourier transform of the following se-quen
e of 
 : 
0; 
1; : : : ; 
M=2�1; 
M=2 :Sj � M=2X�=0 
�e�i2�j(�=M) + M�1X�=M=2+1 
M��e�i2�j(�=M): (A.2)2. We 
he
k that Sj � 0 for all j. This should be true for the fra
-tional Gaussian motion. Negativity would indi
ate that the sequen
eis 
orrupt.3. LetWk, where k 2 f0; 1; : : : ;M�1g, be a set of i.i.d. Gaussian randomvariables with zero mean and unit varian
e. Now we 
al
ulate therandomised spe
tral amplitudes Vk:V0 = pS0W0;Vk = r12Sk(W2k�1 + iW2k) for 1 � k < M2 ;VM=2 = qSM=2WM�1;Vk = V �M�k for M2 < k �M � 1;where � denotes that Vk and VM�k are 
omplex 
onjugates.
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tional Lévy Stable Motions 37894. We 
ompute the simulated time series Yn using the �rst N elementsof the dis
rete Fourier transform of V :Yn = 1pM M�1Xk=0 Vke�i2�k(n=M); (A.3)where n = 0; 1; : : : ; N � 1.Appendix BAppendix: fsn generatorThe algorithm presented in this se
tion is based on Theorem 7 of Mae-jima [18℄ who studied the domains of attra
tion of the fra
tional and log-fra
tional stable motion. The domains are given in terms of moving averages.We rewrite the part 
on
erning fsm as follows. Let (�j)1j=�1 be a sequen
eof i.i.d. symmetri
 �-stable random variables generated by Chambers, Mal-lows and Stu
k (CMS) method [30, 31℄. The moving average is de�ned byformula �k = 1Xj=1 jH�1=��1�k�j; k = 1; 2; : : : (B.1)This in�nite sum 
onverges [18℄ with probability 1. The new sequen
e(�k)1k=1 is stationary and, in general, it is strongly dependent. Under theabove 
onditions, for H 6= 1=�, we have1nH [nt℄Xk=1 �k d) ZH� (t); n!1; (B.2)where d) denotes 
onvergen
e of all �nite dimensional distributions. It fol-lows from (B.2) that the in
rementsY =8<:Yj = ZH� (j + 1)� ZH� (j) = 1NH N(j+1)Xk=Nj+1 �k9=;j2Zfor large N , de�ne a generator of the fra
tional stable noise. Finally, wenoti
e that in order to use this generator we have to set an appropriate
uto� of the in�nite sum (B.1).
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