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We show that the most popular estimators of the self-similarity index
— the Hurst and the DFA exponents — cannot give exact value of the
estimated parameter in some cases. The goal of this paper is to provide a
simple computer test by means of which origins of the self-similarity feature
of a particular time series can be found. We demonstrate that the observed
self-similarity can reflect a long-memory (fractional Brownian motion case)
or infinite variance of the process’ increments (Lévy a-stable motion case).

PACS numbers: 87.17.—d, 87.22.—q, 05.40.+j

1. Introduction

Over the past decade there has been much interest in the asymptotic
behaviour of dynamical systems, in particular in detecting self-similar char-
acter of these systems and testing for the existence of so called “long mem-
ory” or “long-range dependence”. It turns out that the self-similar processes
are very important mathematical objects which can be used to model many
physical, geophysical, hydrological, economical and biological phenomena
(see [1-9] and references there.) After the first step made by Einstein and
Smoluchowski who explained why the range reached by a Brownian parti-
cle is proportional to the square root of the movement duration, there were
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constructed many other self-similar processes including the most prominent
examples: fractional Brownian [10], Lévy stable, and fractional Lévy stable
motions [11,12]. The mathematical constructions were successfully used to
model diffusion on fractals, currency and stock market prices, ionic current
flow through a single channel in a biological membrane, turbulences, commu-
nication and many others. Since the self-similarity property was observed in
many real phenomena there is a need to build efficient estimators of the self-
similarity index [3,4,13]. A self-similar stochastic process is a process that is
invariant under suitable translations of time and scale. The property is dis-
cussed in details in Section 2. Now we only mention that the self-similarity
is described by a real positive parameter H > 0 called self-similarity in-
dex which provides information on the investigated time series structure,
correlations and fractal properties. For example, the Brownian motion is
self-similar with H = 1/2; it has no memory and its increments have finite
variance. The first most known and widely used analysis of parameter H
is called the rescaled range (R/S) analysis and was developed by Hurst [1]
(discussed in details in Section 3). The number obtained as a result of the
procedure is called the Hurst exponent. Unfortunately, it is not an estima-
tor of the self-similarity index even though it is so commonly called. The
value of the Hurst exponent H provides information on correlations in the
time series measured at different time scales. When H = 1/2, the changes
in the values of a time series are random and, therefore, uncorrelated with
each other. When 0 < H < 1/2, increases in the values of a time series
are likely to be followed by decreases and, conversely, decreases are more
likely to be followed by increases. Such a time series is called antipersistent.
When 1/2 < H < 1, increases in the values of a time series are more likely
to be followed by increases, and, conversely, decreases are more likely to be
followed by decreases. Such a time series is called persistent and it has a
long-memory property [14]. So, the estimator gives us information on mem-
ory of the investigated process but it is not the only possible origin of the
self-similarity. The problem how to recognise the origins of the self-similarity
property in a time series recorded from a particular physical systems still
needs our attention. It is well-known that if a process has purely random
increments with infinite variance then the process can be self-similar with in-
dex of self-similarity different from 1/2. The example of such a process is the
Lévy stable motion with stationary and independent, identically distributed
increments with symmetric a-stable distribution [11,12]. When one applies
to that process the R/S analysis, the obtained Hurst exponent equals 1/2
since the estimator shows a lack of memory. Thus the second origin of the
self-similarity is the process’ increments distribution what is, to our knowl-
edge, neglected by many authors. There is another example of even more
complicated process — the fractional Lévy stable motion [11,12] which has
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the memory property and increments with infinite variance. In this case the
self-similarity index carries information on both, on long-memory and incre-
ments distribution. Hence studying the process’ self-similarity one needs to
have robust statistical tools and clear algorithms to extract information on
both of the factors. A simple hint is as follows: If one wants to investigate the
self-similarity property, one needs to distinguish between the long-memory
property and the process’ increments distribution properties. Otherwise a
wrong conclusion can be drawn. In this paper we study in details origins of
the self-similarity property by employing the rigorous and widely used math-
ematical tools. We provide an explicit algorithm distinguishing between the
origins of the self-similarity in the case of a given time series on the base of
a simple simulation experiment (computer test). In Section 2 we introduce
basic definitions necessary to understand differences between processes we
would like to discuss. Methods used in numerical simulations of the Brow-
nian, fractional Brownian, Lévy stable, and fractional Lévy stable motions
are shortly described in Appendix. We provide in Section 3 different esti-
mators [3,4,15] used to determine self-similarity exponents or its factors in
each case. The results of Section 3 are applied to investigate origins of the
self-similarity. We demonstrate in Section 4 how to use the proposed com-
puter test in order to explain origins of the processes self-similarity. Finally,
Section 5 contains conclusions.

2. Self-similar processes

As we mentioned above, the self-similar processes introduced by Lam-
perti [16] are the ones that are invariant under suitable translations of time
and scale. They are important in probability theory because of their con-
nection to limit theorems and they are of great interest in modelling heavy-
tailed and long-memory phenomena. In fact, Lamperti used the term “semi-
stable” in order to underline that the role of self-similar processes among
stochastic processes is analogous to the role of stable distributions among
all distributions. The term self-similarity was coined by Mandelbrot which
used it also in the context of the scaling of non-random objects. A process
X = {X(t)},>¢ is called self-similar [16] if for some H > 0,

X (at) iaHX(t) for every a > 0, (1)

where £ denotes equality of all finite-dimensional distributions of the pro-
cesses on the left and right. X is also called a H-self-similar process and
the parameter H is called the self-similarity index or exponent. If we in-
terpret ¢ as “time” and X; as “space” then (1) tells us that every change of
time scale a > 0 corresponds to a change of space scale a’. The bigger H,
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the more dramatic is the change of the space co-ordinate. Notice that (1),
indeed, means a “scale-invariance” of the finite-dimensional distributions of
X. This property of a self-similar process does not imply the same for the
sample paths. Therefore, pictures trying to explain self-similarity by some
zooming in or out on one sample path, are by definition misleading. Why?
In contrast to the deterministic self-similarity, the self-similarity of stochas-
tic processes does not mean that the same picture repeats itself exactly as
we go closer. It is rather the general impression that remains the same! A
convenient mathematical tool to observe self-similarity is provided by so-
called quantile lines [11]. Many of the interesting self-similar processes have
stationary increments. A process X = {X(t)},5, is said to have stationary
increments if for any b > 0, B

(X(t+b) = X(B) £ (X(t) = X(0)). (2)

2.1. Fractional Brownian motion

Since the function {|t1 |27 4 [ta|?7 — |t; — t2|?H, t1,t2 € R} is positive
definite for all 0 < H < 1, so one can construct a Gaussian process X =
{X(t)},5, with mean zero and an autocovariance function given by

R(t1,t3) = = {|t1|2H + [to| 2 — |ty — 1o} Var (X (1)). (3)

where R(ty,t2) = Cov (X (t1), X (t2)) = E(X(¢1)X(t2)) and E(-) denotes
an expected value (or mean) of the random variable in the brackets. The
above properties define a process called a fractional Brownian motion (fBm)
and we denote it by By = {Bp(t)},~o- It is H-self-similar with stationary
increments and it is the only Gaussian process with such properties for 0 <
H < 1[12]. If VarX (1) = 1 we call it a standard fractional Brownian motion.
The standard fractional Brownian motion has the integral representation

0 t
1
Bu) =g [ (=l = ™) Bl + [ 1= "B |
— 00 0

(4)
where C% = [7° ((1+2)1/2 - H*1/2)2dx + 55 and B(du) is a sym-
metric Gaussrdn independently scattered random measure [12]. The clas-
sic Brownian motion B(t), used by Einstein and Smoluchowski, is sim-
ply a special case of the fractional Brownian motion when H = 1/2. In
this case B((s,t]) = B(t) — B(s) and the above integral with the deter-
ministic kernel has to be understood in the Itd sense. In modelling of
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long-memory phenomena, the stationary increments of H-self-similar pro-
cesses are of interest. Any H-self-similar process with stationary incre-
ments X = {X(t)},cg induces a stationary sequence Y = {Yj}, , where
Y;=X(+1)—-X(j); j=....—1,0,1,.... The sequence corresponding to
the fractional Brownian motion is called fractional Gaussian noise (fGn) (see
Table I). It is called a standard fractional Gaussian noise if VarY; = 1 for
every j € Z. The fractional Gaussian noise has some remarkable properties.
If H = 1/2, then its autocovariance function r(k) = R(0,k) = 0 for £ # 0
and hence it is the sequence of independent identically distributed (i.i.d)
Gaussian random variables. The situation is quite different when H # 1/2,
namely the Yj’s are dependent and the time series has the autocovariance
function of the form

r(k) ~ VarY; H2H — 1)k*7 =2, as k — oc. (5)

The autocovariance function r(k) tends to 0 as k — oo forall 0 < H < 1, but
when 1/2 < H < 1 it tends to zero so slowly that the sum Y 72 (k) di-
verges. We say that in this case the increment process exhibits long-memory
or “long-range dependence” [3|. Moreover, formula (5) by the Wiener Taube-
rian theorem (see [17] Chapt. V.2) implies that the spectral density h(\) of
the stationary process fGn has a pole at zero. A phenomenon often referred
to as “1/f noise”. If 0 < H < 1/2, then > 22 (k) = 0 and the spectral
density tends to zero as |A\| — 0. We say in that case that the sequence dis-
plays a short-memory. Furthermore, as the coefficient H(2H —1) is negative,
the r(j)’s are negative for all large j, a behaviour referred to as “negative
dependence”.

2.2. Fractional Lévy stable motion

The most commonly used extension of the fractional Brownian motion
to the a-stable case is the fractional Lévy stable motion (fsm) [18-20]. The
process ZH = {ZH (1)} +c g 1 defined by the following integral representation

0

20 = [ (1t =ul"% =l 8) Zadn) + [ =l Zaa), (6)
0

— 00

where Z, is a symmetric Lévy a-stable independently scattered random
measure [11,12]. The integral is well defined for 0 < H < 1 and 0 < o < 2
as a weighted average of the Lévy stable motion Z,(u) over the infinite past
with the weight given by the above kernel denoted by ko (t, u). The kernel

is first approximated by a sequence of step functions f,, = Z;n CiLiu;_y, uy]
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and then the above integral can be understood as the limit in the LP norm,
where p < a.

/ ki.a(t,u)Za(du) = im Y ¢ [Za(uj) = Za(uj1)]. (7)
% j

This process is H-self-similar and has stationary increments [18]. Let us
observe that H-self-similarity follows from the above integral representation
and the fact that the kernel kg o (¢, u) is d-self-similar with d = H — 1/«
when the integrator Z,(du) is 1/a-self-similar. This implies the following
important relation

H=d+1/a. 8)

The representation of fsm is similar to the representation (4) of the fractional
Brownian motion. Therefore fsm reduces to the fractional Brownian motion
if one sets @ = 2. When we put H = 1/a we obtain the Lévy a-stable motion
which is an extension of the Brownian motion to the a-stable case (see
Table I). We note, that contrary to the Gaussian case (a = 2) the Lévy
a-stable motion is not the only 1/a-self-similar Lévy a-stable process with
stationary increments (this is true for 0 < @ < 1 only).

The increment process corresponding to the fractional Lévy stable pro-
cess is called a fractional stable noise (fsn). By analogy with the case a = 2,
we say that fsn has the long-range dependence when H > 1/a and the neg-
ative dependence when H < 1/a. If H = 1/a the increments of fsm are
i.i.d. symmetric a-stable variables. The asymptotic dependence structure
of the fractional Brownian noise is studied by virtue of the autocovariance

TABLE I
Special cases of the fractional stable motion and the corresponding noises.

I<a<?2 a=2

fract. stable motion | fract. Brownian motion

H#1/a U U
fract. stable noise fract. Gaussian noise
Lévy motion Brownian motion
H=1/a ' v

stable noise “white noise”
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function. Since in the a-stable case the second moment is infinite one has to
use another measure of dependence, e.g. the codifference 7(j) which equals
the covariance when a = 2 [12]. For most, but not all, values of a and H,
7 decreases as j*H ¢ for large j. This is analogous to the behaviour of the
autocovariance function in the Gaussian case o = 2. Finally, we note that
there is no long-range dependence when 0 < o < 1 because H is constrained
to lie in the interval (0, 1). For simulations of the above self-similar processes
we will need later specific computer generators. Two of such algorithms for
generation of fractional Gaussian noise (fGn) and fractional stable noise (fsn)
are described with details in Appendix.

3. Estimators and methods

The estimation methods we consider in this paper are:

—_

. The Hurst R/S analysis,

2. the Detrended Fluctuation Analysis (DFA),
3. the Orey analysis

4. the Absolute Value method.

Two of the applied estimators — the Hurst (Hy) and the DFA (Hppa)
exponents — are well-known and widely used [3,13, 15] and so we do not
concentrate here on an exact recipe how to calculate them. For the sake of
completeness we include a rough description only.

3.1. Hurst and DFA exponents

The Hurst analysis of a series {X;}~_, is based on division of the series
into nonoverlaping segments of length n. Then for every m-th segment of
the original record one should calculate the standard deviation S,, and build
the cumulative series with mean zero for which the range R,, is defined as
difference between maximum and minimum value reached by it. For the
whole time series the mean value of the rescaled range equals

(r/5) ) = (g}

where () denotes mean value, and is proportional to Hpg-th power of the
window n

(R/S) (n) o (n)H, 0< Hy < 1. (9)

The number Hy is called Hurst exponent and its interpretation was given
in Introduction. An alternative method of testing scaling and correlation
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properties of a time series is the DFA [15,21,22]. It consists of two main steps:
the first step is to divide the entire series of length N into N/l nonoverlapping
fragments of [ observations and determine a local trend of the subseries.
Next, one has to define the detrended process in every fragment denoted by
yi(n) as the difference between the original value of the series and the local
trend. The desired statistic is the mean variance of the detrended process
F2(l), where mean is taken over all the fragments of size /

) = 5 3" S uk(m),

and it scales power with the window size [
Fy(l) oc 17072,

where Hppa is called DFA exponent. The interpretation of the DFA expo-
nent is very similar to the Hurst exponent: if only short-range correlations
(or no correlations at all) exist in the studied series then Hppa = 1/2; if
there is a correlation then Hppa # 1/2. Moreover, if the exponent Hppa is
greater than 1/2; the time series is persistent and if Hppa < 1/2 then the
time series is not persistent. Note that both estimators give an information
on memory and not on distribution of the process increments. Moreover,
both estimators are based on a variance or standard deviation of the process
or its increments, but even if the variance (or standard deviation) is infinite
both estimators work correctly [4]. So if one apply them to the Brownian
and Lévy motions which both have no memory and different self-similarity
one gets 1/2 in both cases.

3.2. Orey index

The Orey analysis is a method of investigating the Gaussian time se-
ries data [23]. The Orey index < estimates the self-similarity index H of
stationary Gaussian stochastic processes. The equivalence of the Orey in-
dex with the Hurst and DFA exponents suggests the Gaussian nature of
the investigated process. The advantage of the Orey index is that it is ob-
tained with one compact formula and one does not need additional tools
(like linear regression and the log-log plot) to estimate the self-similarity
index of a Gaussian process. The Orey index < can be estimated [23, 24]
by means of an ordinary least squares estimator 3. For a given time series
{AX;;i=1,2,...2™} consisting of 2™ observations we have to calculate

a cumulative series {Xj = Zgzl AX;;5=1,2,... Qm} and an incremental
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variance o
1 2
u(n)? = o (X = X)%
j=1
where Xg = 0 and n = 1,2,...m. Then the Orey index estimator is given
by

m

7= yilogyulj),
j=1

where y; = (z; — z)/ > 7L, (%5 —7)? and z; = log,1/27 = —j for j =
1,2,...m. This estimator 7 is strongly consistent with the Orey index
(for details see [23]).

3.8. Absolute Value exponent

The method is based on calculating mean value d from the process re-
alisations and studying its scaling with a sample length [4]. A time series
of length N one divides into subseries of length m and calculates the first
absolute moment

) = S X - (). (10)
k=1

where X(™) is an m-th subseries and (X) is the overall series mean. The
obtained statistics 8™ scales with the window size m and the power expo-
nent equals Hay — 1, where Hpy is the self-similarity index estimator (the
Absolute Value exponent)

§(m) o mHav—1,

Notice, that this estimator gives an information on the self-similarity index.
If the variance of the time series is infinite the estimator also works correctly,
so it can be used to investigate, for example, the Lévy motion.

3.4. Surrogate data

The concept of surrogate data has been proposed by Chang et al. [25,26].
Surrogate data refers to data that preserve certain linear statistic properties
of the experimental time series, without the deterministic component [25].
It is commonly used to determine the memory of a process by means of the
local dispersion and nonlinear prediction methods. The surrogate data can
be obtained by several different ways [25,26]. In this paper we obtain it by
random shuffling of the original data positions. To investigate memory of a
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studied process we apply the above mentioned estimators to an original data
set obtained as a realisation of the given process. If the self-similarity results
from the process memory only than the values of the applied estimators
should change to 1/2 for the surrogate data independently on the initial
values. If the self-similarity results only from the process’ increments infinite
variance than the estimators values should be the same for the original and
surrogate data. The self-similarity resulting from both origins should be
observed as a partial change in the estimators values.

4. Computer test — the behaviour of the estimators

The behaviour of the estimators was investigated on simulated time se-
ries. The calculations were performed for:

e Fractional Brownian motion with self-similarity index H of values
{0.001,0.05, 0.10,...,0.90,0.95,0.999}, see figures 1 and 2 for a sample
path.

e Lévy motion with distribution of increments given by a-stable distri-
bution [11] with « of values {1.00,1.05,...,1.90,1.95}, see Figures 1
and 2 for a sample path. As presented in Section 2 the self-similarity
index reads in this case H = 1/« and ranges from H = 1 for a = 1.00
to H = 0.51 for a = 1.95. The case a = 2.00 corresponds to Brownian
motion with H = 0.5.

L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000

400

300

200

X(t)

100

0

~100 L L L L L L I I I
0 100 200 300 400 500 600 700 800 900 1000
t

Fig.1. A sample paths of the fractional Brownian motion with the self-similarity
index H = 0.8 (d=0.3 and a = 2; top) and of the Lévy motion with the the
self-similarity index H = 0.8 (d=0 and a = 1.25; bottom).
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Fig.2. Noises corresponding to the sample paths of the fractional Brownian (top)
and Lévy (bottom) motions presented in figure 1.
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Fig. 3. Values of the Hurst exponent for the original time series of fractional Brow-
nian (stars) and Lévy motions (dots). Observe that for Lm (Figs. 3-6) the self-
similarity index H ranges from [0.5, 1] since H = 1/a and 1 < a < 2. The values
for the surrogate data (not shown here) take the value Hy = 1/2 for fBm and
essentially do not change for Lm. Note, the deviations from the diagonal line.
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In each case we used the standard process, i.e. with the mean (or me-
dian if the mean does not exists) equal to 0 and the standard deviation (or
scale parameter if the standard deviation does not exists or is infinite) equal
to 1. To determine the mean value and the volatility of the investigated
estimator the calculations were repeated 100 times for all values of the self-
similarity index. The calculation were performed on time series consisting
of 2!7 = 131 072 observations. We want to stress that in order to get a
more complete information on the estimators behaviour one has to study
not only the mean value and the standard deviation of the estimators but
their distribution, since the distribution does not have to be Gaussian [27].
The Hurst exponent Hy calculated for the fractional Brownian motion with
different self-similarity indices is plotted in Figure 3 as a function of the
self-similarity index H. In this representation the estimator should place
the values of the self-similarity index along the diagonal. One can see that
the Hurst exponent is a good estimator of the self-similarity index for the
interval H € (0.5,0.8) only. For H > 0.8 the value of the Hurst exponent
is lower than the investigated process self-similarity index and for H < 0.5
the values are too high. Moreover, the more H is distant from the range
(0.5,0.8) the larger the estimation error is. The results for the Lévy motion
with different «a are also enclosed. It is clearly seen that in this case the
Hurst exponent simply reads Hy = 0.5 (with an estimation error). This is
due to the fact that Lévy motion has independent increments. Nevertheless,
the Hurst estimator does not work perfectly.

Much better result can be obtained using the DFA estimator. The simu-
lations are presented in Figure 4 both for the fractional Brownian and Lévy
motions. General conclusions are the same as for the rescaled range analysis:
the DFA exponent reads 0.5 for the Lévy motion and Hppa = H for the frac-
tional Brownian motion due to the long-range dependence. The estimation
errors are much smaller, and what is most important, in the DFA analysis
there is no the systematic error that can be observed for the rescaled range
analysis of the fractional Brownian motion with H ¢ (0.5,0.8) and every
case of the Lévy motion. If the procedure is repeated for the surrogate data
the values of the estimators read 0.5 both for the Hurst and DFA analysis.
Randomly shuffling of the original data brakes the correlations and the re-
sulting time series (i.e. surrogate data) is without any memory. Since both
estimators carry an information on the memory and neglect the distributions
the result is always 0.5.

The Orey index v calculated for the fractional Brownian and Lévy mo-
tions is presented in Figure 5. Notice, that the values obtained for the Lévy
motion are just a numerical artefact and have no sense — the Orey index
exists only for processes with Gaussian distributions. The Orey index gives
us information on memory and estimates the self-similarity index since for
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a Gaussian process the distribution factor in the self-similarity index reads
just 1/a = 1/2. The random shuffling of the original time series breaks cor-
relations and the process becomes just Brownian motion. It can be observed
as a change of the Orey index value to 0.5.

The Absolute Value estimator Hay calculated for every given case of
the fractional Brownian motion and Lévy motion is presented in Figure 6.
One can see a difference between the work of this estimator and the three
analysed above: the values obtained for the Lévy motion differ from 0.5
and are pretty close to the self-similarity index value. For the fractional
Brownian motion the values are very similar to those given by Hurst, DFA
and Orey analysis. So, the Hay estimator gives information on both, the
memory and distribution of the investigated process and in fact returns a
value of the self-similarity index. The estimation error is much larger for the
Lévy motion since the distribution of the estimator is Gaussian if one applies
it to Gaussian process and a-stable if one applies it to Lévy motion. In the
second case the variation of the estimator does not exist and the volatility
of the estimator value (so the estimation error) is large [27].
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Lm.
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5. Conclusions

Using the computer test proposed here the two different origins of self-
similarity in stationary time series recorded from different physics systems
in principle can be distinguished. The inclusion of infinite variance time
series forces us to differentiate carefully between the two parameters H and
d that are used to characterise long-memory. For the finite variance case
H = d+1/2 and for the infinite variance case the self-similarity index reads:
H = d+1/a. We want to underline that parameters H and d are used almost
indistinguishably in the finite variance cases! It is important therefore to
known whether an estimator is estimating H or d. The estimators analysed
in the paper

e Hurst index Hy,

e Detrended Fluctuation Analysis index Hppa,

e Orey index v,

e Absolute Value exponent Hay,
provide information listed in Table II. Notice, that neither Hurst nor DFA
indices are the self-similarity index estimators in the general case! They can

give information on the self-similarity index in the case of Gaussian process
only.

TABLE 11
Information provided by different estimators.
Information on Information on Noise
Estimator property of the self-similarity condition
investigated process component,
Hy memory only d=Hpg—1/2 stable
Hpra memory only d = Hppa — 1/2 stable
5y memory only d=v—-1/2 Gaussian
Hav memory d=Hyy —1/a stable
& distribution
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Appendix A
Appendiz: fGn generator

The fractional Gaussian process (fGp) algorithm was introduced by Davies
and Harte [28] for simulations requiring exact one-dimensional fractional
Gaussian noise. The fGp algorithm generates the noise, so that both, the
mean and the autocorrelation function for time series from fGn for some
H converge to their expected values as more and more path samples are
considered. It is an exact synthesis method. In order to describe the method
we follow Caccia et al. [29]. Using the fast Fourier transform algorithm, fGp
transforms i.i.d. standard normal random variables into the correlated series.
The fGp method operates on the order of N logy N calculations. It simulates
a fractional Gaussian noise Y = {Y;},_, with the autocovariance function
given by

VarY;
’}/(T)E’)/T: a; 1 (|T+1|2H—2|T|2H+|T—1|2H), T:O,ﬂ:l,ﬂ:Q,...

(A1)

The fGp algorithm can be divided into four steps.

1. Let N be a power of 2 and let M = 2N. For j = 0,1,...,M/2,
we compute the exact spectral power expected for this autocovariance
function Sj, from the discrete Fourier transform of the following se-

quence of v : ¥p, Y1, y YM/2—1TYM /2 -

M/2

S = Z’Y 67127r] (/M) + Z YV —r 7i27rj(T/M). (AQ)
T=M/2+1

2. We check that S; > 0 for all j. This should be true for the frac-
tional Gaussian motion. Negativity would indicate that the sequence
is corrupt.

3. Let Wy, where k € {0,1,..., M —1}, be a set of i.i.d. Gaussian random
variables with zero mean and unit variance. Now we calculate the
randomised spectral amplitudes Vj:

Vo = V/SoWa,

v, = \/;(WQH 4 W) for1 <k < %
Ve = \/SmpWu-1,

Vi = Vi, for%<k§M—1,

where * denotes that Vi and Vj;_j are complex conjugates.



Enigma of Self-Similarity of Fractional Lévy Stable Motions 3789

4. We compute the simulated time series Y, using the first N elements
of the discrete Fourier transform of V:

1 M—-1

Yn — \/_M Vke—iQFk(n/M)’ (A3)
k=0

where n =0,1,..., N — 1.

Appendix B

Appendiz: fsn generator

The algorithm presented in this section is based on Theorem 7 of Mae-
jima [18] who studied the domains of attraction of the fractional and log-
fractional stable motion. The domains are given in terms of moving averages.
We rewrite the part concerning fsm as follows. Let (§;)32_., be a sequence
of i.i.d. symmetric a-stable random variables generated by Chambers, Mal-
lows and Stuck (CMS) method [30,31]. The moving average is defined by
formula

Go=> T Vel k=12, ... (B.1)
7=1

This infinite sum converges [18] with probability 1. The new sequence
(Ck)pe, is stationary and, in general, it is strongly dependent. Under the
above conditions, for H # 1/, we have

[nt]

1
TG 201, n oo, (B2)
k=1

where =% denotes convergence of all finite dimensional distributions. It fol-
lows from (B.2) that the increments

1 N(j+1)
Hy,: Hy:
Y = YJ’:Za(]"Fl)_Za(]):W Z C
k=Nj+1 jez
for large N, define a generator of the fractional stable noise. Finally, we
notice that in order to use this generator we have to set an appropriate
cutoff of the infinite sum (B.1).
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