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NOISE-ASSISTED CURRENTS IN A CYLINDER-LIKESET OF MESOSCOPIC RINGS�J. Dajkaa, M. Kosturb, J. �u
zkaa, M. Szopaa, and E. ZipperaaInstitute of Physi
s, University of SilesiaUniwersyte
ka 4, 40-007 Katowi
e, PolandbDepartment of Physi
s, University of Maine5709 Bennet Hall, Orono, ME 04469, USA(Re
eived De
ember 16, 2002)We study magneti
 �uxes and 
urrents in a set of mesos
opi
 ringswhi
h form a 
ylinder. We investigate the noiseless system as well as thein�uen
e of equilibrium and non-equilibrium �u
tuations on the proper-ties of selfsustaining 
urrents. Thermal equilibrium Nyquist noise does notdestroy selfsustaining 
urrents up to temperatures of the same order asthe 
riti
al temperature for selfsustaining 
urrents. For temperatures be-low the 
riti
al temperature, randomness in the distribution of parity ofthe 
oherent ele
trons 
an lead to disappearing of selfsustaining 
urrentsand indu
ing new metastable states. For temperatures above the 
riti
altemperature, it 
auses a 
reation of new metastable states with non-zero
urrents.PACS numbers: 05.40.�a, 73.23.Ra, 02.50.Ey1. Introdu
tionQuantum phenomena manifested at the mesos
opi
 level have attra
tedmu
h experimental and theoreti
al attention. Phase 
oheren
e and persis-tent 
urrents 
an be mentioned as examples. Persistent 
urrents of the so
alled 
oherent ele
trons are a dire
t manifestation of the Aharonov�Bohme�e
t at the mesos
opi
 level. They were predi
ted as early as in 1938 [1℄and have been observed experimentally only sin
e 1990 [2℄. In the paperwe study the steady state magneti
 �uxes and 
urrents in mesos
opi
 ringsunder 
onditions when dissipation and �u
tuations 
an play an importantrole [3℄. Our system 
onsists of a set of 
on
entri
 one dimensional ringswhi
h form a 
ylinder. It is expe
ted [4℄ that in su
h a system selfsustaining
urrents 
an o

ur in the absen
e of the external �ux. In the ground state, at� Presented at the XV Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 7�12, 2002.(3793)



3794 J. Dajka et al.T = 0, only 
oherent ele
trons are present in the system and the persistent
urrent �ows without dissipation. The non-zero temperature T > 0 redu
esthe amplitude of the persistent 
urrent and some ele
trons be
ome �normal�(i.e. non-
oherent). Then 
oherent and normal ele
trons 
oexist.In the system at temperature T > 0 there are various sour
es of noiseand �u
tuations. There are so-
alled universal 
ondu
tan
e �u
tuations [5℄that arise from the random quantum interferen
e between many ele
tronpaths whi
h 
ontribute to the 
ondu
tan
e in the di�usive regime. These�u
tuations de
ay algebrai
ally with temperature and 
an be negle
ted athigher temperatures [5℄. Inelasti
 transitions in the ring 
ause another kindof �u
tuations. However, they do not destroy persistent 
urrents but redu
etheir amplitude [6℄. There is also a part of the 
urrent noise whi
h is 
alledshot noise [3℄, the spe
tral density of whi
h is proportional to mean 
ur-rent. This noise 
an be redu
ed by in
reasing the size of rings [7℄. Thermalmotion of 
harge 
arriers in any 
ondu
tor is a sour
e of Nyquist noise [3℄.This thermal equilibrium noise is universal and is present in any 
ondu
tor.Moreover, this noise in
reases with temperature and indu
es �u
tuationsof 
urrent. We 
onsider su
h 
onditions that universal 
ondu
tan
e �u
tu-ations and shot noise 
an be negle
ted. Let us noti
e that the system is
hara
terized by parameters whi
h qualitatively and quantitatively 
hangethe transport properties. As an example let us 
onsider the parity of the
oherent ele
tron's number in the 
urrent 
hannel. The 
hange of the parity
hanges the response of the system for the applied magneti
 �ux from para-to diamagneti
 and vi
e versa. In the paper we propose a method of deal-ing with this sensitivity. We 
onsider the probability of an even number of
oherent ele
trons in a single 
urrent 
hannel to be either sto
hasti
 pro
ess(symmetri
 di
hotomi
 pro
ess) or quen
hed noise (random variable). Therole of Nyquist noise and other sour
es of �u
tuations is the main subje
tof the paper. 2. The modelWe 
onsider a 
olle
tion of rings, so 
alled 
urrent 
hannels, whi
h forma 
ylinder with Nz 
hannels in dire
tion of the 
ylinder axis and Nr in thedire
tion of the 
ylinder radius. We assume that the thi
kness of the 
ylinderwall is mu
h smaller then the radius. The 
urrent in one ring, via mutualindu
tan
e, indu
es �ux and 
urrent in other rings and so on. The e�e
tiveintera
tion [8℄ between the ring 
urrents, 
onsidered in the self
onsistentmean �eld approximation, results in the magneti
 �ux � = LItot felt by allele
trons, where L is the 
ylinder indu
tan
e and Itot is the total 
urrent ina 
ylinder. The indu
tan
e of a 
ylinder of the radius r and the height lzreads [9℄ L = �0�r2lz ; (1)
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e. At temperature T > 0, the
urrent I
oh(�; T ) of the 
oherent ele
trons in a set of N = Nr �Nz 
urrent
hannels forming the 
ylinder is either paramagneti
 [4℄I
oh(�; T ) = Ie(�; T ) = NI0 1Xn=1An(T ) sin�2n���0 � (2)for an even number of 
oherent ele
trons in ea
h single 
hannel or diamag-neti
 I
oh(�; T ) = I0(�; T ) = Ieven(�+ �0=2; T ) (3)for an odd number of 
oherent ele
trons. The unit 
urrentI0 := heNe=(2l2xme) ;where lx is the 
ir
umferen
e of the 
ylinder, kF is the Fermi momentumand Ne is the number of 
oherent ele
trons in a single 
urrent 
hannel. Theamplitude An(T ) = 4T�T � exp(�nT=T �)1� exp(�2nT=T �) 
os(nkFlx) : (4)The 
hara
teristi
 temperature T � is given by the relation kBT � = �F=2�2,where kB is the Boltzmann 
onstant and �F is the energy gap at the Fermisurfa
e. For temperatures T < T � the 
oherent 
urrent �ows in su
h a
ylinder without dissipation but its amplitude (4) is redu
ed [10℄. On theother hand, at temperature T > 0, normal ele
trons o

ur and their �ow isdissipative. The motion of normal ele
trons is random, like the motion ofele
trons in a normal 
ondu
tor and it generates random 
urrents.Sin
e the 
urrent-�ux 
hara
teristi
s for the 
oherent ele
trons is extraor-dinary sensitive to a 
hange of parity of the 
oherent 
arriers number [10℄ wetake into a

ount the possible di�eren
e of parity in the rings and 
onsiderthe 
urrent of 
oherent ele
trons as the averageI
oh(�; T ) = pIe(�; T ) + (1� p)I0(�; T ) ; (5)where p 2 [0; 1℄ is the probability of the even number of 
oherent ele
tronsin a given 
hannel.The 
urrent 
oming from the normal ele
trons 
an be indu
ed by e.g.the 
hange of the magneti
 �ux �. From the Lenz's rule and the Ohm's lawone infers that [11℄ RInor(�) = �d�dt ; (6)where R is the e�e
tive resistan
e of the system [6℄.



3796 J. Dajka et al.The relation between the magneti
 �ux and the 
urrent is given by� = �ext + L(I
oh(�; T ) + Inor(�)) ; (7)i.e. it is a sum of the external �ux �ext and the �ux 
oming from the total
urrent.Now, we assume that the only sour
e of �u
tuations is equilibrium noiseindu
ed by the resistan
e R. The 
orrelation fun
tion of this sour
e of�u
tuations is assumed to be given by the Nyquist relation. If we take intoa

ount (5)�(7) and add the term des
ribing 
urrent �u
tuations then weobtain the equation (see the Appendix)1R d�dt = � 1L(�� �ext) + I
oh(�; T ) +r2kBTR � (t) ; (8)where � (t) is Gaussian white noise modeling Nyquist equilibrium 
urrentnoise. This equation takes the form of a 
lassi
al Langevin equation and isour basi
 evolution equation.The dimensionless variables are introdu
ed in the following way. In theLangevin equation (8), the basi
 quantity is the magneti
 �ux � = �(t).The natural unit of the �ux is the �ux quantum �0 = h=e. A

ordingly,the �ux is s
aled as x = �=�0. To identify the 
hara
teristi
 time �0, let us
onsider a parti
ular 
ase of (8), namely, when the persistent 
urrent andthe external �ux are zero. Thend�dt = �RL�+p2RkBT � (t) : (9)From this equation it follows that the mean valueh�(t)i = h�(0)i exp(�t=�0) ; (10)where �0 = L=R (11)is the relaxation time of the averaged normal 
urrent. Therefore, time iss
aled as ~t = t=�0. In this 
ase, Eq. (8) 
an be transformed into its dimen-sionless form _x = �V 0(x) +p2D e� (~t) ; (12)where the dot denotes a derivative with respe
t to the res
aled time ~t andthe prime denotes a derivative with respe
t to x. The generalized potentialV (x) = V (x; �; i0; p; T ) = 12x2 � �x� i0F (x; p; T ) ; (13)
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aled external �ux. The prefa
tor i0 = NLI0=�0is a 
oupling 
onstant 
hara
terizing the intera
tion between ring 
urrents(it is the res
aled amplitude of the �ux 
reated by the 
urrent � it leads toselfsustaining 
urrents). The fun
tionF (x) = F (x; p; T ) = Z f(x; p; T )dx (14)
hara
terizes the 
oherent ele
trons andf(x; p; T ) = pfe(x; T ) + (1� p)f0(x; T ) ; (15)where fe(x; T ) = 1Xn=1An(T ) sin(2n�x) (16)and f0(x; T ) = fe(x+ 12 ; T ) : (17)The dimensionless intensity D of res
aled Gaussian white noise e� (~t) �p�0 � (�0~t) is a ratio of thermal energy to the elementary energy storedup in the indu
tan
e,D = 12kBT="0 ; "0 := �202L : (18)Let us observe that the resistan
e R does not enter into the res
aled equation(12).In order to evaluate the magnitudes of the parameters appearing in ourequations let us noti
e that the res
aled 
oupling 
onstanti0 = �0e2N8�me Nelz : (19)We assume that the 
ylinder has the radius r = 3 � 104Å and the heightlz = 100Å. It 
onsists of a set of N � 50 
urrent 
hannels [12℄ in a wallof width mu
h smaller than the radius. If the number of ele
trons in ea
h
hannel is Ne � 2 � 105 then i0 � 1. The energy gap at the Fermi surfa
e�F = ~2Ne=(2mer2) gives the res
aled noise amplitudekBT �2"0 = �0e216�3me Nelz : (20)For the above values of parameters the di�usion 
oe�
ient D � 0:001T=T �.Below, unless stated otherwise, the parameters are �xed so that i0 = 1,D = 0:001T=T � and the produ
t kFlx = 0:1 in the formula for the 
oherent
urrent.



3798 J. Dajka et al.3. AnalysisIn this se
tion the properties of system des
ribed by Eq. (12) are an-alyzed. We 
onsider in details two spe
ial 
ases. In the noiseless 
ase,we negle
t the in�uen
e of Nyquist noise. It is a justi�ed approximationfor very small intensity of noise. Formally, it 
an be negle
ted only whentemperature T = 0 (see Eq. (8)) and, 
onsequently, we should put T = 0in I
oh(�; T ). However, �rst we want to analyze the deterministi
 systemwhi
h 
orresponds to the 
ase e� (~t) = 0 in (12) and next to investigate in-�uen
e of Nyquist noise. As follows from (7), the total 
urrent is linearlyrelated to the magneti
 �ux � (or the res
aled �ux x). In a 
onsequen
e, theproperties and behavior of the 
urrent are identi
al to the properties andbehavior of the magneti
 �ux. Therefore, below we use equivalently thesetwo 
hara
teristi
s of the system.3.1. Selfsustaining 
urrentsFirst, let us 
onsider the deterministi
 
ase of the Langevin sto
hasti
equation (12) formally negle
ting the Nyquist noise term ~� (~t), i.e.,_x = �V 0(x) : (21)The stationary solutions xs of (21), for whi
h _xs = 0, 
orrespond to extremaof the generalized potential (13),V 0(xs) = xs � �� i0f(xs; p; T ) = 0 : (22)The solutions xs of the gradient di�erential equation (21) are stable providedthey 
orrespond to a minimum of the generalized potential (13) and theyare unstable in the 
ase of a maximum [13℄. In the following we investigateproperties of solutions xs with respe
t to four independent parameters: thetemperature T , the 
oupling 
onstant i0 whi
h 
hara
terizes the mean-�eldintera
tion between rings, the probability p of the o

urren
e of the 
hannelwith an even number of 
oherent ele
trons and the external �ux �.3.1.1. T and i0-dependen
eThe dependen
e of the potential (13) on the temperature for � = 0,i0 = 1 and the probability p = 1=2 is shown in Fig. 1. In high temperatures,only one stable solution, 
orresponding to zero stationary �ux xs = 0 andzero 
urrent, exists. If temperature de
reases, a bifur
ation o

urs � thepotential be
omes bistable and two non-zero symmetri
 minima appear atxs = �xm. They 
orrespond to two stable stationary solutions. Physi
ally,it means that below some 
riti
al temperature T
 the spontaneous �ux [14℄



Noise-Assisted Currents in a Cylinder-Like Set of . . . 3799

Fig. 1. The dimensionless generalized potential V (x) is shown as a fun
tion of thedimensionless magneti
 �ux x for two values of the s
aled temperature T=T �. Thes
aled amplitude i0 = 1 and s
aled external magneti
 �ux � = 0.appears and non-zero stationary 
urrent �ows in the system. This 
riti
altemperature T
 is de�ned by the 
ondition that V 00(xs = 0) = 0. The
orresponding diagram is shown in Fig. 2. The phenomenon is analogous tothe 
ontinuous phase transition in ma
ros
opi
 systems, and appears hereas a result of the intera
tion of ring 
urrents. The 
entral maximum xs =xM = 0, 
orresponds to the unstable stationary solution of (21). Moregenerally, one 
an noti
e that the stationary solutions o

ur where the linearpart x � � of (22) is equal to its periodi
 part i0f(x; p; T ). In the limit ofi0 ! 0 (very small, or no intera
tion of ring 
urrents), regardless T , the

Fig. 2. Bifur
ation of the stable stationary magneti
 �ux xs with respe
t to tem-perature for a �xed external magneti
 �ux � = 0.



3800 J. Dajka et al.only stationary solution of (22) is the external �ux xs = �. For intermediatei0 (typi
al intera
tion of mesos
opi
 rings) two stable non-zero stationarystates 
an exist below T
 and this number of solutions is preserved in the limitT ! 0. As one 
an infer from (13)�(17), de
reasing temperature enhan
esthe periodi
 part of (22) but only to a maximal value de�ned by T ! 0.Further enhan
ement of the periodi
 part is possible only by in
reasing the
oupling 
onstant i0. As a result of that, the 
riti
al temperature T
 in
reaseswith i0. Therefore, if i0 is su�
iently large (very strong intera
tion of rings),even more stationary states 
an o

ur. The number of stationary statesbelow T
 and for p = 1=2 
an, in general, be equal to 4k�1; (k = 1; 2:::) butonly 2k of them of stable states. Lowering the temperature below T
 resultsthen in a 
as
ade of bifur
ations. The �rst bifur
ation takes pla
e at T = T
.With further lowering the temperature at T = T
1 < T
 two additional pairsof stationary solutions appear and so on. There is one metastable and oneunstable solution in every pair. The metastable solutions 
orrespond to theso 
alled �ux trapped in the 
ylinder. Noti
e that in the limit T ! 0 andtypi
al i0 > 0 there are always spontaneous �ux solutions whereas the �uxtrapped solutions 
an be obtained only for su�
iently large i0.3.1.2. The p-dependen
eIn the following part of this se
tion the temperature is set below T
.If the probability p = 1 we have an even number of 
oherent ele
tronsand paramagneti
 
urrent in ea
h 
hannel. The potential possesses twominima 
orresponding to spontaneous �uxes (Fig. 3). De
reasing p, the

Fig. 3. The dimensionless generalized potential V (x) is shown as a fun
tion of thedimensionless magneti
 �ux x for 
hara
teristi
 values of the probability p. Theamplitude i0 = 1 and � = 0.
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hannels with diamagneti
 
urrents in
reasesand the spontaneous �ux solutions xs de
rease to 
oales
e �nally into a singleabsolutely stable solution at xs = 0. The ratio p at whi
h the 
oales
en
eo

urs de
reases with de
reasing temperature. Now, for su�
iently large i0,�ve stationary states exist. Note that apart from the stable �uxless solutionxs = 0 there are two metastable solutions at 12 < jxsj < 1 and two unstablesolutions. The metastable solutions 
orrespond to the �ux trapped in the
ylinder. In realisti
 devi
es they are hardly a

essible due to the value ofthe ne
essary parameters. The value of p has a important impa
t on theproperties of persistent 
urrents. The 
ase when p is a �xed deterministi
quantity is studied in [15℄.3.1.3. The �-dependen
eThere are three di�erent types of the generalized potential. First is asymmetri
 double well potential whi
h appears for � = k=2 with integralk. The stable solutions xs are then always around the external �ux 0 <jxs � �j < 12 . For the values of � 
lose but not equal to k=2 the solutionsremain in that range but the double-well potential be
omes asymmetri
 �one of the stable solutions be
omes metastable. For the values of external�ux far from half integer values k=2 one obtains the potential with only asingle stable solution. All the mentioned types of potentials are a

essiblefor 0 � � < 1=2 indi
ating a kind of the `stru
tural periodi
ity' with respe
tto the external �ux. An interesting feature of the x� � 
hara
teristi
 is theo

urren
e of the hysteresis loop (Fig. 4). With in
reasing �, at its 
ertainvalue, the system undergoes dis
ontinuous jump of x. De
reasing then thevalue of �, the opposite jump of x o

urs at lower � produ
ing a hysteresis

Fig. 4. The hystereti
 behavior of the stationary �ux with respe
t to the external�ux. The part of the graph with negative slope 
orresponds to unstable xs. Theamplitude i0 = 1.



3802 J. Dajka et al.loop. It is a hallmark of the �rst order phase transition. The transition
an o

ur only below the 
riti
al temperature T
. Due to the 'stru
turalperiodi
ity' the hysteresis loop is repeated with the period � = 1=2 whatresults in the formation of a family of loops.3.2. Noise-assisted selfsustaining 
urrentsIn this se
tion we dis
uss the in�uen
e of both equilibrium and non-equilibrium perturbations on the properties of the �ux in the mesos
opi

ylinders. First we dis
uss the thermal noise and later the system for whi
hthe probability of the given parity of 
oherent ele
trons in the 
hannel is arandom pro
ess.3.2.1. Nyquist noiseNoise and �u
tuations are ubiquitous in real systems and idealization ofthe noiseless systems is sometimes not justi�ed. In the following, we willfo
us on the system (12) subje
ted to Nyquist noise. From the mathemat-i
al point of view, the Langevin equation (12) de�nes a Markov di�usionpro
ess. Its probability density p(x; ~t) obeys the Fokker�Plan
k equation inthe form [16℄ ��~tp(x; ~t) = ��xV 0(x)p(x; ~t) +D �2�x2 p(x ; ~t) (23)with the natural boundary 
ondition limjxj!1 p(x; ~t) = 0. The stationarysolution ps(x) is asymptoti
ally stable [17℄ and takes the formps(x) = N0e�V (x)=D (24)with a normalization 
onstantN�10 = 1Z�1 e�V (x)=D dx : (25)Let us �rst 
onsider the 
ase of absen
e of the external �ux, � = 0. If in thenoiseless 
ase the system possesses only one stationary solution xs = 0, theprobability density (24) has maximum at x = 0 and the mean value of the�ux hxi = 0. If in the noiseless 
ase the system possesses three stationarystates, the probability density (24) has three extremal points: two symmet-ri
 maxima whi
h 
orrespond to the spontaneous �uxes and one minimumat x = 0 whi
h 
orresponds to the unstable stationary state (see Fig. 5).Be
ause the potential is re�e
tion-symmetri
, V (x) = V (�x), the mean
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Fig. 5. The stationary probability density for the system subje
t to Nyquist noise.The amplitude i0 = 1 and D = 0:001T=T �.value of any odd fun
tion of the �ux is zero. In parti
ular, the mean valueof the �ux hxi = 0 and the mean value of the 
urrent is zero as well. Fromthis point of view, properties of stationary states are trivial and non-zero�uxes and 
urrents are impossible. However, in some situations the statis-ti
al moments are not good 
hara
teristi
s of the system be
ause mu
h in-formation is lost when an integration is performed 
al
ulating the statisti
almoments [18℄. The relevant quantity is a stationary probability distributionwhi
h 
ontains mu
h more information about the system. Is any reasonablemethod to determine the 
riti
al value of temperature T
 in this 
ase? Onepossibility is to de�ne the phase transition in the following way [18,19℄: thephase transition point is a value of the relevant parameter 
 of the system atwhi
h the pro�le of the stationary distribution fun
tion 
hanges drasti
ally(e.g. if a number of maxima of the distribution fun
tion 
hanges) or if a
ertain most probable point x0 begins to 
hange to an unstable state. Insome 
ases, it is indeed a good `order parameter' of the system. For exam-ple, from the measurements of the laser experiment (see e.g. [20℄), one 
anobtain the stationary probability distribution of the laser intensity and one
an observe a phase transition a

ording to the above de�nition. In the 
ase
onsidered here, for su�
iently low temperatures, thermal �u
tuations aresmall and one expe
ts the experimental results to be a

umulated aroundthe most probable values of the stationary probability distribution. It followsfrom (24) that the most probable values of the �ux 
orrespond exa
tly tothe stationary states (22) of the system (21). In this sense, the properties ofthe system are the same as dis
ussed in the previous subse
tion. We want toemphasize that it is 
orre
t for low temperatures be
ause then the residen
etime in a stable state is long. For higher temperature T , thermal �u
tuations
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ome larger. In turn, �u
tuations of the magneti
 �ux around the mostprobable value be
ome larger and larger and the residen
e time in a stablestate be
omes shorter. One 
an guess that the spontaneous 
urrent shouldvanish at temperature T0 whi
h is lower than the 
riti
al temperature T
 inthe noiseless 
ase. This is be
ause of in�uen
e of Nyquist �u
tuations. Theargumentation is the following. If the potential is multistable then one 
anintrodu
e 
hara
teristi
 time s
ales of the system. The �rst 
hara
teristi
time �d = 1=V 00(xs) des
ribes de
ay within the attra
tor xs = �xm of thepotential V (x). The se
ond 
hara
teristi
 time is the es
ape time �e fromthe well around �xm. This time is related to the mean �rst passage timefrom the minimum of the potential to the maximum. If these time s
alesare well separated, i.e. if �e >> �d then the des
ription based on the mostprobable value seems to be 
orre
t. Otherwise, this des
ription fails and weshould 
hara
terize the system by averaged values of relevant variables. Inthe noiseless 
ase, for i0 = 1 and D = 0:001T=T �, from Eq.(13) we esti-mated the 
riti
al temperature T
 � 1:66T �. We observed that roughly fortemperatures T < 0:9T
, the 
hara
teristi
 time �d is more than one orderof magnitude less than �e. Both time s
ales are well separated and selfsus-taining 
urrents are long-living states. In this sense, they are not destroyedby Nyquist noise.The stationary �ux varian
e or mean-squared deviation � = hx2i�hxi2 =hx2i is a non-monotoni
 fun
tion of temperature (Fig. 6): For T = 0 thevarian
e � = x2s , where xs is a stationary solution of (21). As the tempera-ture in
reases, � diminishes attaining a minimal value at some temperatureT1. The temperature T1 seems to be always larger than T
 what has been
on�rmed by numeri
al studies. A further in
rease of temperature leads toan in
rease of the varian
e. In the high temperature limit, the dependen
eis linear as for the Gaussian distribution. Indeed, below the 
riti
al temper-ature, the distribution (24) possessing two peaks is 
learly non-Gaussian.However, for higher temperatures the probability density is one-peaked. Forthis 
ase, the kurtosis Kurt = hx4i3hx2i2 � 1 (26)measures the relative �atness of the distribution (24) to the Gaussian dis-tribution. The kurtosis is negative and it means that the distribution (24)is �at. It approa
hes zero in the high temperature limit and then the distri-bution (24) approa
hes the Gaussian distribution.The behavior of the se
ond moment hx2i has a simple explanation interms of the average energy stored in the magneti
 �eld, i.e.hEi = h�2i=2L = "0hx2i ; (27)
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Fig. 6. Averaged magneti
 energy hEi="0 given by Eq. (27) vs s
aled temperaturefor two values of i0, �xed � = 0 and D = 0:001T=T �.where "0 is given in (18). For low temperatures, �u
tuations are smalland the main 
ontribution to the energy 
omes from the deterministi
 part�2=2L. Be
ause the magneti
 �ux � de
reases as temperature in
reases(
f. Fig. 2), hen
e hEi de
reases as well. On the other hand, for high tem-perature the stationary probability density approa
hes the Gaussian distri-bution and in 
onsequen
e the main 
ontribution to the average magneti
energy 
omes from thermal energy, hEi / kT whi
h obviously in
reaseswhen T grows. The 
ompetition between these two me
hanisms leads tothe minimal value of hEi for a 
ertain value of temperature T1. At thistemperature, �u
tuations of the 
urrent are minimal.The in�uen
e of the external �eld on the properties of the stationarydensity (24) may be dedu
ed from Fig. 3. Finally, let us 
onsider the limitof a very weak 
oupling between the ring 
urrents 
orresponding to a verysmall value of i0. The selfsustaining stable solutions are non a

essible. Thesolutions of Eq. (21) 
orrespond then to the persistent 
urrents driven by theexternal �eld. The stationary density forms a family of one peak 
urves withthe most probable values given by �. We 
on
lude that even in the weak
oupling limit the presen
e of Nyquist noise does not destroy the persistent
urrents.3.2.2. Random parity of 
oherent ele
tronsThe value of p is not a �xed parameter for the systems at temperaturesT > 0 when the energy gap at the Fermi surfa
e be
omes smaller. There arethen 
oherent ele
trons whi
h 
an be
ome normal and vi
e versa, there arenormal ele
trons whi
h may be
ome 
oherent. In su
h a 
ase the probabilityp itself is a random fun
tion of time. Further we limit our dis
ussion to



3806 J. Dajka et al.the transitions p = 0 $ p = 1. They 
orrespond to the 
hange fromeven to odd number of 
oherent ele
trons in every 
urrent 
hannel in the
ylinder. The transitions satisfy the following assumptions: �rst, the 
hangeeven$odd o

urs simultaneously and immediately (i.e. it takes no time) inevery 
hannel and se
ond, the number of ele
trons 
hanging their ��uid� issmall enough to keep i0 �xed in the transition. The dynami
s of �ux in theabsen
e of the external �eld 
an be modeled by the following equation_x = �x+ f+(x) + f�(x)�(~t) +p2D e� (~t) ; (28)where f�(x) := i0(fe(x) � f0(x))=2 and �(~t) = f�1; 1g is a zero-mean,exponentially 
orrelated di
hotomi
 pro
ess of the 
orrelation time � [21℄. If�(~t) = 1 then there is an even number of 
oherent ele
trons and if �(~t) = �1then there is an odd number of 
oherent ele
trons.With the random pro
ess Eq. (28), whi
h is 
learly non-Markovian,we asso
iate the two dimensional pro
ess fx(~t); �(~t)g, whi
h is Markovian.The probability densities p+(x; ~t) := p(x(~t); �(~t) = 1) and p�(x; ~t) :=p(x(~t); �(~t) = �1) satisfy the master equation [21℄��~tp+(x; ~t) = � ��x [�x+ f+(x) + f�(x)℄ p+(x; ~t)� 12� �p+(x; ~t)� p�(x; ~t)�+D �2�x2 p+(x; ~t) ;��~tp�(x; ~t) = � ��x [�x+ f+(x)� f�(x)℄ p�(x; ~t)� 12� �p�(x; ~t)� p+(x; ~t)�+D �2�x2 p�(x; ~t) : (29)The stationary state is des
ribed by the stationary redu
ed probability den-sity p(x) = lim~t!1 p(x; ~t) = lim~t!1[p+(x; ~t)+p�(x; ~t)℄. An analyti
al formof the stationary solution of (29) is known when D = 0, i.e. when temper-ature T = 0. If T > 0 then we should 
onsequently assume that D > 0.In this 
ase, an analyti
al formula for p(x) 
an be derived for the limiting
ase � ! 1 (adiabati
 noise). In a general 
ase, one should numeri
allysolve Eq. (29) with zero left hand sides. We have applied the Finite ElementMethod [22℄. The results are presented in Figs. 7 and 8. For temperaturebelow the 
riti
al temperature (Fig. 7), di
hotomi
 noise of a short 
orrela-tion time does not in�uen
e the system: there are two stable and symmetri
states of non-zero selfsustaining 
urrents (the double-peaked density for the
ase � = 0:0259294 in Fig. 7). If the 
orrelation time � in
reases then thestates of non-zero 
urrents disappear. The state of zero 
urrent is stable andtwo new metastable states of non-zero 
urrents o

ur (the triple-peaked den-sity for the 
ase � = 0:239503). For temperature above the 
riti
al tempera-ture (Fig. 8), di
hotomi
 noise of a short 
orrelation time does not in�uen
e
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Fig. 7. The stationary probability density for the system with di
hotomi
 �u
tua-tions of p for several values of their 
orrelation time � . The amplitude i0 = 1 andT = 0:5T
.the system: the single-peaked density for the 
ase � = 0:0672336 in Fig. 8
orresponds to zero-
urrent 
ase. For long 
orrelation times, di
hotomi
noise 
an indu
e new metastable states whi
h 
orrespond to non-zero 
ur-rents (the triple-peaked density for the 
ase � = 3:0392). In both 
ases, thenoise-indu
ed metastable states are lo
ated in the neighborhood of zeros ofthe `di�usion fun
tion'D(x) = f2�(x)� (f+(x)� x)2 : (30)

Fig. 8. The stationary probability density for the system with di
hotomi
 �u
tua-tions of p. The amplitude i0 = 1 and T = 2T
.



3808 J. Dajka et al.The model Eq. (28) is 
learly a simpli�
ation of the realisti
 one whi
h shouldin
orporate both the Nyquist noise and the possibility of independent tran-sitions in ea
h 
hannel. Su
h an independent transitions 
an be des
ribedby a ve
tor sto
hasti
 di
hotomi
 pro
ess �!� := (�1; �2; : : : ; �N ) where N isthe number of 
hannels in the 
ylinder and �i are independent of ea
h otherdi
hotomi
 pro
esses des
ribed above. Further we assume that D 6= 0 andthe 
on�guration of �!� is quen
hed i.e. the probability of the even number of
oherent ele
trons in a single 
urrent 
hannel is a random variable uniformlydistributed on the interval [0; 1℄. The stationary probability density of the�ux is now expressed as ps(x) = 1Z0 p(xjz)dz ; (31)where the 
onditional probability distributionp(xjz) = N0(z) exp(�V (x; z)=D) (32)with V (x; z) := �x + i0zfe(x; T ) + i0(1 � z)f0(x; T ) and the normaliza-tion 
onstant N0(z). The stationary probability density (31) is plotted inFig. (9) for several values of the temperature. Its pro�le is very di�erent if
ompared with the 
ase p = 1=2. First, one should note that the density isnot very sensitive for the 
hanges of temperature and se
ond the maximafor non-zero selfsustaining �uxes are dominated by the maximum appearingat zero. It means that even relatively small thermal �u
tuations destroy theselfsustaining 
urrents in the system.

Fig. 9. The stationary probability density for the system of randomly distributedp for several values of T=T �. The amplitude i0 = 1 and D = 0:001T=T �.
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urrents are beautiful manifestation ofquantum 
oheren
e in mesos
opi
 systems. The natural question is howdo they behave in the presen
e of randomness and �u
tuations. Assumingthe two �uid model for mesos
opi
 system we have investigated the in�uen
eof Nyquist noise and non-equilibrium �u
tuations of one of the parameters(parity of the 
oherent ele
trons number). Our dis
ussion is limited to sta-tionary states of the magneti
 �ux and 
urrent although the proposed modelof the �ux dynami
s 
an be, in prin
iple, applied to study time dependentproblems. The general 
on
lusion is that Nyquist noise preserves the selfsus-taning 
urrents, i.e. for some parameters there are states of the long-livingnon-zero �ux and 
urrent. In the 
ase of �xed p the properties of the sta-tionary �ux are determined by the generalized potential V (x). Assumingnon-equilibrium (di
hotomi
) �u
tuations of the number of 
oherent ele
-trons in the 
hannel we 
on
lude that noise of su�
iently large 
orrelationtime 
an indu
e non-zero �ux states determined by maxima of the probabil-ity density at x 6= 0. In the 
ase of p being the uniformly distributed randomvariable the long-living 
urrents are observable at low temperatures. In thatsense the quen
hed randomness of p destroys selfsustaining 
urrents mu
hmore than equilibrium �u
tuations.AppendixFor the paper to be self-
ontained, we remind one of the form of the�u
tuation�dissipation theorem and the Nyquist relation exploited in ourbasi
 Eq. (8). The Brownian motion of a parti
le of mass m in a �uid oftemperature T is des
ribed by a Langevin equation [16℄. A

ording to the�u
tuation-dissipation theorem [16℄, its form for the velo
ity v = v(t) readsm _v + 
v =p2
kBT � (t) ; (33)where a dot denotes a derivative with respe
t to time, 
 is the fri
tion
oe�
ient, kB is the Boltzmann 
onstant and � (t) is the zero-mean andDira
 Æ-
orrelated Gaussian sto
hasti
 pro
ess (white noise),h� (t)i = 0; h� (t)� (s)i = Æ(t� s) : (34)Mutatis mutandis, the Langevin equation for the 
urrent I = I(t) in the RL
ir
uit takes the form [23℄L _I +RI =p2RkBT � (t): (35)It is one of the form of the Nyquist relation. In the 
ase when� = LI (36)
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an be rewritten as 1R d�dt + 1L� =r2kBTR � (t) ; (37)whi
h justi�es the prefa
tor of the noise term in Eq. (8).J.D. thanks Joa
him Ankerhold for his helpful remarks. The work wassupported by the Polish State Committee for S
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