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NOISE-ASSISTED CURRENTS IN A CYLINDER-LIKESET OF MESOSCOPIC RINGS�J. Dajkaa, M. Kosturb, J. �uzkaa, M. Szopaa, and E. ZipperaaInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, PolandbDepartment of Physis, University of Maine5709 Bennet Hall, Orono, ME 04469, USA(Reeived Deember 16, 2002)We study magneti �uxes and urrents in a set of mesosopi ringswhih form a ylinder. We investigate the noiseless system as well as thein�uene of equilibrium and non-equilibrium �utuations on the proper-ties of selfsustaining urrents. Thermal equilibrium Nyquist noise does notdestroy selfsustaining urrents up to temperatures of the same order asthe ritial temperature for selfsustaining urrents. For temperatures be-low the ritial temperature, randomness in the distribution of parity ofthe oherent eletrons an lead to disappearing of selfsustaining urrentsand induing new metastable states. For temperatures above the ritialtemperature, it auses a reation of new metastable states with non-zerourrents.PACS numbers: 05.40.�a, 73.23.Ra, 02.50.Ey1. IntrodutionQuantum phenomena manifested at the mesosopi level have attratedmuh experimental and theoretial attention. Phase oherene and persis-tent urrents an be mentioned as examples. Persistent urrents of the soalled oherent eletrons are a diret manifestation of the Aharonov�Bohme�et at the mesosopi level. They were predited as early as in 1938 [1℄and have been observed experimentally only sine 1990 [2℄. In the paperwe study the steady state magneti �uxes and urrents in mesosopi ringsunder onditions when dissipation and �utuations an play an importantrole [3℄. Our system onsists of a set of onentri one dimensional ringswhih form a ylinder. It is expeted [4℄ that in suh a system selfsustainingurrents an our in the absene of the external �ux. In the ground state, at� Presented at the XV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 7�12, 2002.(3793)



3794 J. Dajka et al.T = 0, only oherent eletrons are present in the system and the persistenturrent �ows without dissipation. The non-zero temperature T > 0 reduesthe amplitude of the persistent urrent and some eletrons beome �normal�(i.e. non-oherent). Then oherent and normal eletrons oexist.In the system at temperature T > 0 there are various soures of noiseand �utuations. There are so-alled universal ondutane �utuations [5℄that arise from the random quantum interferene between many eletronpaths whih ontribute to the ondutane in the di�usive regime. These�utuations deay algebraially with temperature and an be negleted athigher temperatures [5℄. Inelasti transitions in the ring ause another kindof �utuations. However, they do not destroy persistent urrents but reduetheir amplitude [6℄. There is also a part of the urrent noise whih is alledshot noise [3℄, the spetral density of whih is proportional to mean ur-rent. This noise an be redued by inreasing the size of rings [7℄. Thermalmotion of harge arriers in any ondutor is a soure of Nyquist noise [3℄.This thermal equilibrium noise is universal and is present in any ondutor.Moreover, this noise inreases with temperature and indues �utuationsof urrent. We onsider suh onditions that universal ondutane �utu-ations and shot noise an be negleted. Let us notie that the system isharaterized by parameters whih qualitatively and quantitatively hangethe transport properties. As an example let us onsider the parity of theoherent eletron's number in the urrent hannel. The hange of the parityhanges the response of the system for the applied magneti �ux from para-to diamagneti and vie versa. In the paper we propose a method of deal-ing with this sensitivity. We onsider the probability of an even number ofoherent eletrons in a single urrent hannel to be either stohasti proess(symmetri dihotomi proess) or quenhed noise (random variable). Therole of Nyquist noise and other soures of �utuations is the main subjetof the paper. 2. The modelWe onsider a olletion of rings, so alled urrent hannels, whih forma ylinder with Nz hannels in diretion of the ylinder axis and Nr in thediretion of the ylinder radius. We assume that the thikness of the ylinderwall is muh smaller then the radius. The urrent in one ring, via mutualindutane, indues �ux and urrent in other rings and so on. The e�etiveinteration [8℄ between the ring urrents, onsidered in the selfonsistentmean �eld approximation, results in the magneti �ux � = LItot felt by alleletrons, where L is the ylinder indutane and Itot is the total urrent ina ylinder. The indutane of a ylinder of the radius r and the height lzreads [9℄ L = �0�r2lz ; (1)



Noise-Assisted Currents in a Cylinder-Like Set of . . . 3795where �0 is the permeability of the free spae. At temperature T > 0, theurrent Ioh(�; T ) of the oherent eletrons in a set of N = Nr �Nz urrenthannels forming the ylinder is either paramagneti [4℄Ioh(�; T ) = Ie(�; T ) = NI0 1Xn=1An(T ) sin�2n���0 � (2)for an even number of oherent eletrons in eah single hannel or diamag-neti Ioh(�; T ) = I0(�; T ) = Ieven(�+ �0=2; T ) (3)for an odd number of oherent eletrons. The unit urrentI0 := heNe=(2l2xme) ;where lx is the irumferene of the ylinder, kF is the Fermi momentumand Ne is the number of oherent eletrons in a single urrent hannel. Theamplitude An(T ) = 4T�T � exp(�nT=T �)1� exp(�2nT=T �) os(nkFlx) : (4)The harateristi temperature T � is given by the relation kBT � = �F=2�2,where kB is the Boltzmann onstant and �F is the energy gap at the Fermisurfae. For temperatures T < T � the oherent urrent �ows in suh aylinder without dissipation but its amplitude (4) is redued [10℄. On theother hand, at temperature T > 0, normal eletrons our and their �ow isdissipative. The motion of normal eletrons is random, like the motion ofeletrons in a normal ondutor and it generates random urrents.Sine the urrent-�ux harateristis for the oherent eletrons is extraor-dinary sensitive to a hange of parity of the oherent arriers number [10℄ wetake into aount the possible di�erene of parity in the rings and onsiderthe urrent of oherent eletrons as the averageIoh(�; T ) = pIe(�; T ) + (1� p)I0(�; T ) ; (5)where p 2 [0; 1℄ is the probability of the even number of oherent eletronsin a given hannel.The urrent oming from the normal eletrons an be indued by e.g.the hange of the magneti �ux �. From the Lenz's rule and the Ohm's lawone infers that [11℄ RInor(�) = �d�dt ; (6)where R is the e�etive resistane of the system [6℄.



3796 J. Dajka et al.The relation between the magneti �ux and the urrent is given by� = �ext + L(Ioh(�; T ) + Inor(�)) ; (7)i.e. it is a sum of the external �ux �ext and the �ux oming from the totalurrent.Now, we assume that the only soure of �utuations is equilibrium noiseindued by the resistane R. The orrelation funtion of this soure of�utuations is assumed to be given by the Nyquist relation. If we take intoaount (5)�(7) and add the term desribing urrent �utuations then weobtain the equation (see the Appendix)1R d�dt = � 1L(�� �ext) + Ioh(�; T ) +r2kBTR � (t) ; (8)where � (t) is Gaussian white noise modeling Nyquist equilibrium urrentnoise. This equation takes the form of a lassial Langevin equation and isour basi evolution equation.The dimensionless variables are introdued in the following way. In theLangevin equation (8), the basi quantity is the magneti �ux � = �(t).The natural unit of the �ux is the �ux quantum �0 = h=e. Aordingly,the �ux is saled as x = �=�0. To identify the harateristi time �0, let usonsider a partiular ase of (8), namely, when the persistent urrent andthe external �ux are zero. Thend�dt = �RL�+p2RkBT � (t) : (9)From this equation it follows that the mean valueh�(t)i = h�(0)i exp(�t=�0) ; (10)where �0 = L=R (11)is the relaxation time of the averaged normal urrent. Therefore, time issaled as ~t = t=�0. In this ase, Eq. (8) an be transformed into its dimen-sionless form _x = �V 0(x) +p2D e� (~t) ; (12)where the dot denotes a derivative with respet to the resaled time ~t andthe prime denotes a derivative with respet to x. The generalized potentialV (x) = V (x; �; i0; p; T ) = 12x2 � �x� i0F (x; p; T ) ; (13)



Noise-Assisted Currents in a Cylinder-Like Set of . . . 3797where � = �ext=�0 is the resaled external �ux. The prefator i0 = NLI0=�0is a oupling onstant haraterizing the interation between ring urrents(it is the resaled amplitude of the �ux reated by the urrent � it leads toselfsustaining urrents). The funtionF (x) = F (x; p; T ) = Z f(x; p; T )dx (14)haraterizes the oherent eletrons andf(x; p; T ) = pfe(x; T ) + (1� p)f0(x; T ) ; (15)where fe(x; T ) = 1Xn=1An(T ) sin(2n�x) (16)and f0(x; T ) = fe(x+ 12 ; T ) : (17)The dimensionless intensity D of resaled Gaussian white noise e� (~t) �p�0 � (�0~t) is a ratio of thermal energy to the elementary energy storedup in the indutane,D = 12kBT="0 ; "0 := �202L : (18)Let us observe that the resistane R does not enter into the resaled equation(12).In order to evaluate the magnitudes of the parameters appearing in ourequations let us notie that the resaled oupling onstanti0 = �0e2N8�me Nelz : (19)We assume that the ylinder has the radius r = 3 � 104Å and the heightlz = 100Å. It onsists of a set of N � 50 urrent hannels [12℄ in a wallof width muh smaller than the radius. If the number of eletrons in eahhannel is Ne � 2 � 105 then i0 � 1. The energy gap at the Fermi surfae�F = ~2Ne=(2mer2) gives the resaled noise amplitudekBT �2"0 = �0e216�3me Nelz : (20)For the above values of parameters the di�usion oe�ient D � 0:001T=T �.Below, unless stated otherwise, the parameters are �xed so that i0 = 1,D = 0:001T=T � and the produt kFlx = 0:1 in the formula for the oherenturrent.



3798 J. Dajka et al.3. AnalysisIn this setion the properties of system desribed by Eq. (12) are an-alyzed. We onsider in details two speial ases. In the noiseless ase,we neglet the in�uene of Nyquist noise. It is a justi�ed approximationfor very small intensity of noise. Formally, it an be negleted only whentemperature T = 0 (see Eq. (8)) and, onsequently, we should put T = 0in Ioh(�; T ). However, �rst we want to analyze the deterministi systemwhih orresponds to the ase e� (~t) = 0 in (12) and next to investigate in-�uene of Nyquist noise. As follows from (7), the total urrent is linearlyrelated to the magneti �ux � (or the resaled �ux x). In a onsequene, theproperties and behavior of the urrent are idential to the properties andbehavior of the magneti �ux. Therefore, below we use equivalently thesetwo harateristis of the system.3.1. Selfsustaining urrentsFirst, let us onsider the deterministi ase of the Langevin stohastiequation (12) formally negleting the Nyquist noise term ~� (~t), i.e.,_x = �V 0(x) : (21)The stationary solutions xs of (21), for whih _xs = 0, orrespond to extremaof the generalized potential (13),V 0(xs) = xs � �� i0f(xs; p; T ) = 0 : (22)The solutions xs of the gradient di�erential equation (21) are stable providedthey orrespond to a minimum of the generalized potential (13) and theyare unstable in the ase of a maximum [13℄. In the following we investigateproperties of solutions xs with respet to four independent parameters: thetemperature T , the oupling onstant i0 whih haraterizes the mean-�eldinteration between rings, the probability p of the ourrene of the hannelwith an even number of oherent eletrons and the external �ux �.3.1.1. T and i0-dependeneThe dependene of the potential (13) on the temperature for � = 0,i0 = 1 and the probability p = 1=2 is shown in Fig. 1. In high temperatures,only one stable solution, orresponding to zero stationary �ux xs = 0 andzero urrent, exists. If temperature dereases, a bifuration ours � thepotential beomes bistable and two non-zero symmetri minima appear atxs = �xm. They orrespond to two stable stationary solutions. Physially,it means that below some ritial temperature T the spontaneous �ux [14℄
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Fig. 1. The dimensionless generalized potential V (x) is shown as a funtion of thedimensionless magneti �ux x for two values of the saled temperature T=T �. Thesaled amplitude i0 = 1 and saled external magneti �ux � = 0.appears and non-zero stationary urrent �ows in the system. This ritialtemperature T is de�ned by the ondition that V 00(xs = 0) = 0. Theorresponding diagram is shown in Fig. 2. The phenomenon is analogous tothe ontinuous phase transition in marosopi systems, and appears hereas a result of the interation of ring urrents. The entral maximum xs =xM = 0, orresponds to the unstable stationary solution of (21). Moregenerally, one an notie that the stationary solutions our where the linearpart x � � of (22) is equal to its periodi part i0f(x; p; T ). In the limit ofi0 ! 0 (very small, or no interation of ring urrents), regardless T , the

Fig. 2. Bifuration of the stable stationary magneti �ux xs with respet to tem-perature for a �xed external magneti �ux � = 0.



3800 J. Dajka et al.only stationary solution of (22) is the external �ux xs = �. For intermediatei0 (typial interation of mesosopi rings) two stable non-zero stationarystates an exist below T and this number of solutions is preserved in the limitT ! 0. As one an infer from (13)�(17), dereasing temperature enhanesthe periodi part of (22) but only to a maximal value de�ned by T ! 0.Further enhanement of the periodi part is possible only by inreasing theoupling onstant i0. As a result of that, the ritial temperature T inreaseswith i0. Therefore, if i0 is su�iently large (very strong interation of rings),even more stationary states an our. The number of stationary statesbelow T and for p = 1=2 an, in general, be equal to 4k�1; (k = 1; 2:::) butonly 2k of them of stable states. Lowering the temperature below T resultsthen in a asade of bifurations. The �rst bifuration takes plae at T = T.With further lowering the temperature at T = T1 < T two additional pairsof stationary solutions appear and so on. There is one metastable and oneunstable solution in every pair. The metastable solutions orrespond to theso alled �ux trapped in the ylinder. Notie that in the limit T ! 0 andtypial i0 > 0 there are always spontaneous �ux solutions whereas the �uxtrapped solutions an be obtained only for su�iently large i0.3.1.2. The p-dependeneIn the following part of this setion the temperature is set below T.If the probability p = 1 we have an even number of oherent eletronsand paramagneti urrent in eah hannel. The potential possesses twominima orresponding to spontaneous �uxes (Fig. 3). Dereasing p, the

Fig. 3. The dimensionless generalized potential V (x) is shown as a funtion of thedimensionless magneti �ux x for harateristi values of the probability p. Theamplitude i0 = 1 and � = 0.



Noise-Assisted Currents in a Cylinder-Like Set of . . . 3801probability 1�p of �nding odd hannels with diamagneti urrents inreasesand the spontaneous �ux solutions xs derease to oalese �nally into a singleabsolutely stable solution at xs = 0. The ratio p at whih the oaleseneours dereases with dereasing temperature. Now, for su�iently large i0,�ve stationary states exist. Note that apart from the stable �uxless solutionxs = 0 there are two metastable solutions at 12 < jxsj < 1 and two unstablesolutions. The metastable solutions orrespond to the �ux trapped in theylinder. In realisti devies they are hardly aessible due to the value ofthe neessary parameters. The value of p has a important impat on theproperties of persistent urrents. The ase when p is a �xed deterministiquantity is studied in [15℄.3.1.3. The �-dependeneThere are three di�erent types of the generalized potential. First is asymmetri double well potential whih appears for � = k=2 with integralk. The stable solutions xs are then always around the external �ux 0 <jxs � �j < 12 . For the values of � lose but not equal to k=2 the solutionsremain in that range but the double-well potential beomes asymmetri �one of the stable solutions beomes metastable. For the values of external�ux far from half integer values k=2 one obtains the potential with only asingle stable solution. All the mentioned types of potentials are aessiblefor 0 � � < 1=2 indiating a kind of the `strutural periodiity' with respetto the external �ux. An interesting feature of the x� � harateristi is theourrene of the hysteresis loop (Fig. 4). With inreasing �, at its ertainvalue, the system undergoes disontinuous jump of x. Dereasing then thevalue of �, the opposite jump of x ours at lower � produing a hysteresis

Fig. 4. The hystereti behavior of the stationary �ux with respet to the external�ux. The part of the graph with negative slope orresponds to unstable xs. Theamplitude i0 = 1.



3802 J. Dajka et al.loop. It is a hallmark of the �rst order phase transition. The transitionan our only below the ritial temperature T. Due to the 'struturalperiodiity' the hysteresis loop is repeated with the period � = 1=2 whatresults in the formation of a family of loops.3.2. Noise-assisted selfsustaining urrentsIn this setion we disuss the in�uene of both equilibrium and non-equilibrium perturbations on the properties of the �ux in the mesosopiylinders. First we disuss the thermal noise and later the system for whihthe probability of the given parity of oherent eletrons in the hannel is arandom proess.3.2.1. Nyquist noiseNoise and �utuations are ubiquitous in real systems and idealization ofthe noiseless systems is sometimes not justi�ed. In the following, we willfous on the system (12) subjeted to Nyquist noise. From the mathemat-ial point of view, the Langevin equation (12) de�nes a Markov di�usionproess. Its probability density p(x; ~t) obeys the Fokker�Plank equation inthe form [16℄ ��~tp(x; ~t) = ��xV 0(x)p(x; ~t) +D �2�x2 p(x ; ~t) (23)with the natural boundary ondition limjxj!1 p(x; ~t) = 0. The stationarysolution ps(x) is asymptotially stable [17℄ and takes the formps(x) = N0e�V (x)=D (24)with a normalization onstantN�10 = 1Z�1 e�V (x)=D dx : (25)Let us �rst onsider the ase of absene of the external �ux, � = 0. If in thenoiseless ase the system possesses only one stationary solution xs = 0, theprobability density (24) has maximum at x = 0 and the mean value of the�ux hxi = 0. If in the noiseless ase the system possesses three stationarystates, the probability density (24) has three extremal points: two symmet-ri maxima whih orrespond to the spontaneous �uxes and one minimumat x = 0 whih orresponds to the unstable stationary state (see Fig. 5).Beause the potential is re�etion-symmetri, V (x) = V (�x), the mean
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Fig. 5. The stationary probability density for the system subjet to Nyquist noise.The amplitude i0 = 1 and D = 0:001T=T �.value of any odd funtion of the �ux is zero. In partiular, the mean valueof the �ux hxi = 0 and the mean value of the urrent is zero as well. Fromthis point of view, properties of stationary states are trivial and non-zero�uxes and urrents are impossible. However, in some situations the statis-tial moments are not good harateristis of the system beause muh in-formation is lost when an integration is performed alulating the statistialmoments [18℄. The relevant quantity is a stationary probability distributionwhih ontains muh more information about the system. Is any reasonablemethod to determine the ritial value of temperature T in this ase? Onepossibility is to de�ne the phase transition in the following way [18,19℄: thephase transition point is a value of the relevant parameter  of the system atwhih the pro�le of the stationary distribution funtion hanges drastially(e.g. if a number of maxima of the distribution funtion hanges) or if aertain most probable point x0 begins to hange to an unstable state. Insome ases, it is indeed a good `order parameter' of the system. For exam-ple, from the measurements of the laser experiment (see e.g. [20℄), one anobtain the stationary probability distribution of the laser intensity and onean observe a phase transition aording to the above de�nition. In the aseonsidered here, for su�iently low temperatures, thermal �utuations aresmall and one expets the experimental results to be aumulated aroundthe most probable values of the stationary probability distribution. It followsfrom (24) that the most probable values of the �ux orrespond exatly tothe stationary states (22) of the system (21). In this sense, the properties ofthe system are the same as disussed in the previous subsetion. We want toemphasize that it is orret for low temperatures beause then the residenetime in a stable state is long. For higher temperature T , thermal �utuations



3804 J. Dajka et al.beome larger. In turn, �utuations of the magneti �ux around the mostprobable value beome larger and larger and the residene time in a stablestate beomes shorter. One an guess that the spontaneous urrent shouldvanish at temperature T0 whih is lower than the ritial temperature T inthe noiseless ase. This is beause of in�uene of Nyquist �utuations. Theargumentation is the following. If the potential is multistable then one anintrodue harateristi time sales of the system. The �rst harateristitime �d = 1=V 00(xs) desribes deay within the attrator xs = �xm of thepotential V (x). The seond harateristi time is the esape time �e fromthe well around �xm. This time is related to the mean �rst passage timefrom the minimum of the potential to the maximum. If these time salesare well separated, i.e. if �e >> �d then the desription based on the mostprobable value seems to be orret. Otherwise, this desription fails and weshould haraterize the system by averaged values of relevant variables. Inthe noiseless ase, for i0 = 1 and D = 0:001T=T �, from Eq.(13) we esti-mated the ritial temperature T � 1:66T �. We observed that roughly fortemperatures T < 0:9T, the harateristi time �d is more than one orderof magnitude less than �e. Both time sales are well separated and selfsus-taining urrents are long-living states. In this sense, they are not destroyedby Nyquist noise.The stationary �ux variane or mean-squared deviation � = hx2i�hxi2 =hx2i is a non-monotoni funtion of temperature (Fig. 6): For T = 0 thevariane � = x2s , where xs is a stationary solution of (21). As the tempera-ture inreases, � diminishes attaining a minimal value at some temperatureT1. The temperature T1 seems to be always larger than T what has beenon�rmed by numerial studies. A further inrease of temperature leads toan inrease of the variane. In the high temperature limit, the dependeneis linear as for the Gaussian distribution. Indeed, below the ritial temper-ature, the distribution (24) possessing two peaks is learly non-Gaussian.However, for higher temperatures the probability density is one-peaked. Forthis ase, the kurtosis Kurt = hx4i3hx2i2 � 1 (26)measures the relative �atness of the distribution (24) to the Gaussian dis-tribution. The kurtosis is negative and it means that the distribution (24)is �at. It approahes zero in the high temperature limit and then the distri-bution (24) approahes the Gaussian distribution.The behavior of the seond moment hx2i has a simple explanation interms of the average energy stored in the magneti �eld, i.e.hEi = h�2i=2L = "0hx2i ; (27)
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Fig. 6. Averaged magneti energy hEi="0 given by Eq. (27) vs saled temperaturefor two values of i0, �xed � = 0 and D = 0:001T=T �.where "0 is given in (18). For low temperatures, �utuations are smalland the main ontribution to the energy omes from the deterministi part�2=2L. Beause the magneti �ux � dereases as temperature inreases(f. Fig. 2), hene hEi dereases as well. On the other hand, for high tem-perature the stationary probability density approahes the Gaussian distri-bution and in onsequene the main ontribution to the average magnetienergy omes from thermal energy, hEi / kT whih obviously inreaseswhen T grows. The ompetition between these two mehanisms leads tothe minimal value of hEi for a ertain value of temperature T1. At thistemperature, �utuations of the urrent are minimal.The in�uene of the external �eld on the properties of the stationarydensity (24) may be dedued from Fig. 3. Finally, let us onsider the limitof a very weak oupling between the ring urrents orresponding to a verysmall value of i0. The selfsustaining stable solutions are non aessible. Thesolutions of Eq. (21) orrespond then to the persistent urrents driven by theexternal �eld. The stationary density forms a family of one peak urves withthe most probable values given by �. We onlude that even in the weakoupling limit the presene of Nyquist noise does not destroy the persistenturrents.3.2.2. Random parity of oherent eletronsThe value of p is not a �xed parameter for the systems at temperaturesT > 0 when the energy gap at the Fermi surfae beomes smaller. There arethen oherent eletrons whih an beome normal and vie versa, there arenormal eletrons whih may beome oherent. In suh a ase the probabilityp itself is a random funtion of time. Further we limit our disussion to



3806 J. Dajka et al.the transitions p = 0 $ p = 1. They orrespond to the hange fromeven to odd number of oherent eletrons in every urrent hannel in theylinder. The transitions satisfy the following assumptions: �rst, the hangeeven$odd ours simultaneously and immediately (i.e. it takes no time) inevery hannel and seond, the number of eletrons hanging their ��uid� issmall enough to keep i0 �xed in the transition. The dynamis of �ux in theabsene of the external �eld an be modeled by the following equation_x = �x+ f+(x) + f�(x)�(~t) +p2D e� (~t) ; (28)where f�(x) := i0(fe(x) � f0(x))=2 and �(~t) = f�1; 1g is a zero-mean,exponentially orrelated dihotomi proess of the orrelation time � [21℄. If�(~t) = 1 then there is an even number of oherent eletrons and if �(~t) = �1then there is an odd number of oherent eletrons.With the random proess Eq. (28), whih is learly non-Markovian,we assoiate the two dimensional proess fx(~t); �(~t)g, whih is Markovian.The probability densities p+(x; ~t) := p(x(~t); �(~t) = 1) and p�(x; ~t) :=p(x(~t); �(~t) = �1) satisfy the master equation [21℄��~tp+(x; ~t) = � ��x [�x+ f+(x) + f�(x)℄ p+(x; ~t)� 12� �p+(x; ~t)� p�(x; ~t)�+D �2�x2 p+(x; ~t) ;��~tp�(x; ~t) = � ��x [�x+ f+(x)� f�(x)℄ p�(x; ~t)� 12� �p�(x; ~t)� p+(x; ~t)�+D �2�x2 p�(x; ~t) : (29)The stationary state is desribed by the stationary redued probability den-sity p(x) = lim~t!1 p(x; ~t) = lim~t!1[p+(x; ~t)+p�(x; ~t)℄. An analytial formof the stationary solution of (29) is known when D = 0, i.e. when temper-ature T = 0. If T > 0 then we should onsequently assume that D > 0.In this ase, an analytial formula for p(x) an be derived for the limitingase � ! 1 (adiabati noise). In a general ase, one should numeriallysolve Eq. (29) with zero left hand sides. We have applied the Finite ElementMethod [22℄. The results are presented in Figs. 7 and 8. For temperaturebelow the ritial temperature (Fig. 7), dihotomi noise of a short orrela-tion time does not in�uene the system: there are two stable and symmetristates of non-zero selfsustaining urrents (the double-peaked density for thease � = 0:0259294 in Fig. 7). If the orrelation time � inreases then thestates of non-zero urrents disappear. The state of zero urrent is stable andtwo new metastable states of non-zero urrents our (the triple-peaked den-sity for the ase � = 0:239503). For temperature above the ritial tempera-ture (Fig. 8), dihotomi noise of a short orrelation time does not in�uene
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Fig. 7. The stationary probability density for the system with dihotomi �utua-tions of p for several values of their orrelation time � . The amplitude i0 = 1 andT = 0:5T.the system: the single-peaked density for the ase � = 0:0672336 in Fig. 8orresponds to zero-urrent ase. For long orrelation times, dihotominoise an indue new metastable states whih orrespond to non-zero ur-rents (the triple-peaked density for the ase � = 3:0392). In both ases, thenoise-indued metastable states are loated in the neighborhood of zeros ofthe `di�usion funtion'D(x) = f2�(x)� (f+(x)� x)2 : (30)

Fig. 8. The stationary probability density for the system with dihotomi �utua-tions of p. The amplitude i0 = 1 and T = 2T.



3808 J. Dajka et al.The model Eq. (28) is learly a simpli�ation of the realisti one whih shouldinorporate both the Nyquist noise and the possibility of independent tran-sitions in eah hannel. Suh an independent transitions an be desribedby a vetor stohasti dihotomi proess �!� := (�1; �2; : : : ; �N ) where N isthe number of hannels in the ylinder and �i are independent of eah otherdihotomi proesses desribed above. Further we assume that D 6= 0 andthe on�guration of �!� is quenhed i.e. the probability of the even number ofoherent eletrons in a single urrent hannel is a random variable uniformlydistributed on the interval [0; 1℄. The stationary probability density of the�ux is now expressed as ps(x) = 1Z0 p(xjz)dz ; (31)where the onditional probability distributionp(xjz) = N0(z) exp(�V (x; z)=D) (32)with V (x; z) := �x + i0zfe(x; T ) + i0(1 � z)f0(x; T ) and the normaliza-tion onstant N0(z). The stationary probability density (31) is plotted inFig. (9) for several values of the temperature. Its pro�le is very di�erent ifompared with the ase p = 1=2. First, one should note that the density isnot very sensitive for the hanges of temperature and seond the maximafor non-zero selfsustaining �uxes are dominated by the maximum appearingat zero. It means that even relatively small thermal �utuations destroy theselfsustaining urrents in the system.

Fig. 9. The stationary probability density for the system of randomly distributedp for several values of T=T �. The amplitude i0 = 1 and D = 0:001T=T �.



Noise-Assisted Currents in a Cylinder-Like Set of . . . 38094. SummaryPersistent and selfsustaining urrents are beautiful manifestation ofquantum oherene in mesosopi systems. The natural question is howdo they behave in the presene of randomness and �utuations. Assumingthe two �uid model for mesosopi system we have investigated the in�ueneof Nyquist noise and non-equilibrium �utuations of one of the parameters(parity of the oherent eletrons number). Our disussion is limited to sta-tionary states of the magneti �ux and urrent although the proposed modelof the �ux dynamis an be, in priniple, applied to study time dependentproblems. The general onlusion is that Nyquist noise preserves the selfsus-taning urrents, i.e. for some parameters there are states of the long-livingnon-zero �ux and urrent. In the ase of �xed p the properties of the sta-tionary �ux are determined by the generalized potential V (x). Assumingnon-equilibrium (dihotomi) �utuations of the number of oherent ele-trons in the hannel we onlude that noise of su�iently large orrelationtime an indue non-zero �ux states determined by maxima of the probabil-ity density at x 6= 0. In the ase of p being the uniformly distributed randomvariable the long-living urrents are observable at low temperatures. In thatsense the quenhed randomness of p destroys selfsustaining urrents muhmore than equilibrium �utuations.AppendixFor the paper to be self-ontained, we remind one of the form of the�utuation�dissipation theorem and the Nyquist relation exploited in ourbasi Eq. (8). The Brownian motion of a partile of mass m in a �uid oftemperature T is desribed by a Langevin equation [16℄. Aording to the�utuation-dissipation theorem [16℄, its form for the veloity v = v(t) readsm _v + v =p2kBT � (t) ; (33)where a dot denotes a derivative with respet to time,  is the fritionoe�ient, kB is the Boltzmann onstant and � (t) is the zero-mean andDira Æ-orrelated Gaussian stohasti proess (white noise),h� (t)i = 0; h� (t)� (s)i = Æ(t� s) : (34)Mutatis mutandis, the Langevin equation for the urrent I = I(t) in the RLiruit takes the form [23℄L _I +RI =p2RkBT � (t): (35)It is one of the form of the Nyquist relation. In the ase when� = LI (36)
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