Vol. 34 (2003) ACTA PHYSICA POLONICA B No 7

NOISE-ASSISTED CURRENTS IN A CYLINDER-LIKE
SET OF MESOSCOPIC RINGS*

J. DAJKA®, M. KosTURP, J. Luczka?®, M. Szopra?®, AND E. ZIPPER?
) ) ) )

aInstitute of Physics, University of Silesia

Uniwersytecka 4, 40-007 Katowice, Poland
bDepartment of Physics, University of Maine

5709 Bennet Hall, Orono, ME 04469, USA

(Received December 16, 2002)

We study magnetic fluxes and currents in a set of mesoscopic rings
which form a cylinder. We investigate the noiseless system as well as the
influence of equilibrium and non-equilibrium fluctuations on the proper-
ties of selfsustaining currents. Thermal equilibrium Nyquist noise does not
destroy selfsustaining currents up to temperatures of the same order as
the critical temperature for selfsustaining currents. For temperatures be-
low the critical temperature, randomness in the distribution of parity of
the coherent electrons can lead to disappearing of selfsustaining currents
and inducing new metastable states. For temperatures above the critical
temperature, it causes a creation of new metastable states with non-zero
currents.

PACS numbers: 05.40.—a, 73.23.Ra, 02.50.Ey

1. Introduction

Quantum phenomena manifested at the mesoscopic level have attracted
much experimental and theoretical attention. Phase coherence and persis-
tent currents can be mentioned as examples. Persistent currents of the so
called coherent electrons are a direct manifestation of the Aharonov—Bohm
effect at the mesoscopic level. They were predicted as early as in 1938 [1]
and have been observed experimentally only since 1990 [2]. In the paper
we study the steady state magnetic fluxes and currents in mesoscopic rings
under conditions when dissipation and fluctuations can play an important
role [3]. Our system consists of a set of concentric one dimensional rings
which form a cylinder. It is expected [4] that in such a system selfsustaining
currents can occur in the absence of the external flux. In the ground state, at
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T = 0, only coherent electrons are present in the system and the persistent
current flows without dissipation. The non-zero temperature T' > 0 reduces
the amplitude of the persistent current and some electrons become “normal”
(i.e. non-coherent). Then coherent and normal electrons coexist.

In the system at temperature T' > 0 there are various sources of noise
and fluctuations. There are so-called universal conductance fluctuations [5]
that arise from the random quantum interference between many electron
paths which contribute to the conductance in the diffusive regime. These
fluctuations decay algebraically with temperature and can be neglected at
higher temperatures [5]. Inelastic transitions in the ring cause another kind
of fluctuations. However, they do not destroy persistent currents but reduce
their amplitude [6]. There is also a part of the current noise which is called
shot noise [3], the spectral density of which is proportional to mean cur-
rent. This noise can be reduced by increasing the size of rings [7]. Thermal
motion of charge carriers in any conductor is a source of Nyquist noise |[3].
This thermal equilibrium noise is universal and is present in any conductor.
Moreover, this noise increases with temperature and induces fluctuations
of current. We consider such conditions that universal conductance fluctu-
ations and shot noise can be neglected. Let us notice that the system is
characterized by parameters which qualitatively and quantitatively change
the transport properties. As an example let us consider the parity of the
coherent electron’s number in the current channel. The change of the parity
changes the response of the system for the applied magnetic flux from para-
to diamagnetic and wice versa. In the paper we propose a method of deal-
ing with this sensitivity. We consider the probability of an even number of
coherent electrons in a single current channel to be either stochastic process
(symmetric dichotomic process) or quenched noise (random variable). The
role of Nyquist noise and other sources of fluctuations is the main subject

of the paper.
2. The model

We consider a collection of rings, so called current channels, which form
a cylinder with N, channels in direction of the cylinder axis and N, in the
direction of the cylinder radius. We assume that the thickness of the cylinder
wall is much smaller then the radius. The current in one ring, via mutual
inductance, induces flux and current in other rings and so on. The effective
interaction [8] between the ring currents, considered in the selfconsistent
mean field approximation, results in the magnetic flux ¢ = Ll felt by all
electrons, where L is the cylinder inductance and I, is the total current in
a cylinder. The inductance of a cylinder of the radius r and the height [,
reads [9]

(1)
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where g is the permeability of the free space. At temperature T' > 0, the
current Ieon(¢p, T) of the coherent electrons in a set of N = N, x N, current
channels forming the cylinder is either paramagnetic [4]

(2)

Lo (6, T) = L.(¢,T) = NI f: A4, (T)sin <2mr¢)
n=1

bo

for an even number of coherent electrons in each single channel or diamag-
netic

Icoh(¢a T) = IO(¢a T) = Ieven(gzS + ¢0/27T) (3)

for an odd number of coherent electrons. The unit current
Iy := heN,/(212m,) ,

where [, is the circumference of the cylinder, kp is the Fermi momentum
and N, is the number of coherent electrons in a single current channel. The
amplitude

A (T) = AT exp(—nT/T*)
" T 1 — exp(—2nT/T*)

cos(nkply) . (4)

The characteristic temperature T* is given by the relation kgT* = Arp /272,
where kg is the Boltzmann constant and Ap is the energy gap at the Fermi
surface. For temperatures T' < T the coherent current flows in such a
cylinder without dissipation but its amplitude (4) is reduced [10]. On the
other hand, at temperature T' > 0, normal electrons occur and their flow is
dissipative. The motion of normal electrons is random, like the motion of
electrons in a normal conductor and it generates random currents.

Since the current-flux characteristics for the coherent electrons is extraor-
dinary sensitive to a change of parity of the coherent carriers number [10] we
take into account the possible difference of parity in the rings and consider
the current of coherent electrons as the average

Icoh(¢a T) = pIe(¢7T) + (1 - p)Io(ng,T) ) (5)

where p € [0, 1] is the probability of the even number of coherent electrons
in a given channel.

The current coming from the normal electrons can be induced by e.g.
the change of the magnetic flux ¢. From the Lenz’s rule and the Ohm’s law
one infers that [11]

d¢

RInor(¢) == dt’ (6)

where R is the effective resistance of the system [6].
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The relation between the magnetic flux and the current is given by

¢ = Pext + L(Icoh(¢aT) + Inor(¢)) ) (7)

i.e. it is a sum of the external flux ¢ext and the flux coming from the total
current.

Now, we assume that the only source of fluctuations is equilibrium noise
induced by the resistance R. The correlation function of this source of
fluctuations is assumed to be given by the Nyquist relation. If we take into
account (5)-(7) and add the term describing current fluctuations then we
obtain the equation (see the Appendix)

1 d¢ 1 2kpT

E% - _Z(¢_¢9Xt)+Icoh(¢aT)+ R

(), (8)

where I'(t) is Gaussian white noise modeling Nyquist equilibrium current
noise. This equation takes the form of a classical Langevin equation and is
our basic evolution equation.

The dimensionless variables are introduced in the following way. In the
Langevin equation (8), the basic quantity is the magnetic flux ¢ = ¢(¢).
The natural unit of the flux is the flux quantum ¢g = h/e. Accordingly,
the flux is scaled as z = ¢/¢g. To identify the characteristic time 79, let us
consider a particular case of (8), namely, when the persistent current and
the external flux are zero. Then

% - —%q& +\2RksT I'(t). (9)

From this equation it follows that the mean value
(¢(t)) = (¢(0)) exp(—t/70), (10)
where
70=L/R (11)

is the relaxation time of the averaged normal current. Therefore, time is
scaled as t = t/7g. In this case, Eq. (8) can be transformed into its dimen-
sionless form

I

i=-V'(z) +V2D I'(i) (12)

where the dot denotes a derivative with respect to the rescaled time ¢ and
the prime denotes a derivative with respect to . The generalized potential

V(z) =V (z,\io,p, T) = 32° — Az — i F(z,p, T) , (13)
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where A\ = ¢ext /o is the rescaled external flux. The prefactor ig = NLIy/ o
is a coupling constant characterizing the interaction between ring currents
(it is the rescaled amplitude of the flux created by the current — it leads to
selfsustaining currents). The function

F(o) = Flo.p.T) = [ f(o.p.T)do (14)
characterizes the coherent electrons and
f(iE,p,T) :pfe(x,T)—i-(l _p)f0($,T), (15)
where -~
fe(z,T) =" An(T)sin(2nmz) (16)
n=1
and
f0($,T) :fe(iﬁ—i‘%,T)- (17)

The dimensionless intensity D of rescaled Gaussian white noise f(f) =

V7o L'(1ot) is a ratio of thermal energy to the elementary energy stored
up in the inductance,

D= Lty % (18)
= — IS s EQ) = — .

pRBL/€0 0= 57
Let us observe that the resistance R does not enter into the rescaled equation

(12).
In order to evaluate the magnitudes of the parameters appearing in our
equations let us notice that the rescaled coupling constant

. N062N Ne

0 —

19
8mm, I, (19)
We assume that the cylinder has the radius r = 3 x 10*A and the height
I, = 100A. It consists of a set of N ~ 50 current channels [12] in a wall
of width much smaller than the radius. If the number of electrons in each
channel is N, ~ 2 x 10° then iy ~ 1. The energy gap at the Fermi surface
Ap = h2N,/(2m.r?) gives the rescaled noise amplitude

kgT* poe® N,

= —. 20
2e0 16m3m, 1, (20)

For the above values of parameters the diffusion coefficient D ~ 0.001T/T*.
Below, unless stated otherwise, the parameters are fixed so that i = 1,
D =0.0017/T* and the product kpl; = 0.1 in the formula for the coherent
current.
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3. Analysis

In this section the properties of system described by Eq. (12) are an-
alyzed. We consider in details two special cases. In the noiseless case,
we neglect the influence of Nyquist noise. It is a justified approximation
for very small intensity of noise. Formally, it can be neglected only when
temperature T' = 0 (see Eq. (8)) and, consequently, we should put 7" = 0
in Ion(¢p, T). However, first we want to analyze the deterministic system
which corresponds to the case I'(£) = 0 in (12) and next to investigate in-
fluence of Nyquist noise. As follows from (7), the total current is linearly
related to the magnetic flux ¢ (or the rescaled flux z). In a consequence, the
properties and behavior of the current are identical to the properties and
behavior of the magnetic flux. Therefore, below we use equivalently these
two characteristics of the system.

3.1. Selfsustaining currents

First, let us consider the deterministic case of the Langevin stochastic
equation (12) formally neglecting the Nyquist noise term I'(t), i.e.,

T =-V'(z). (21)

The stationary solutions xg of (21), for which &5 = 0, correspond to extrema
of the generalized potential (13),

V'(zs) = ms — X —iof (25,0, T) = 0. (22)

The solutions zg of the gradient differential equation (21) are stable provided
they correspond to a minimum of the generalized potential (13) and they
are unstable in the case of a maximum [13]. In the following we investigate
properties of solutions x5 with respect to four independent parameters: the
temperature T', the coupling constant iy which characterizes the mean-field
interaction between rings, the probability p of the occurrence of the channel
with an even number of coherent electrons and the external flux A.

3.1.1. T and to-dependence

The dependence of the potential (13) on the temperature for A = 0,
i9 = 1 and the probability p = 1/2 is shown in Fig. 1. In high temperatures,
only one stable solution, corresponding to zero stationary flux zg = 0 and
zero current, exists. If temperature decreases, a bifurcation occurs — the
potential becomes bistable and two non-zero symmetric minima appear at
Ts = *x. They correspond to two stable stationary solutions. Physically,
it means that below some critical temperature T, the spontaneous fluz [14]
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Fig. 1. The dimensionless generalized potential V(z) is shown as a function of the
dimensionless magnetic flux z for two values of the scaled temperature T'/T*. The
scaled amplitude ip = 1 and scaled external magnetic flux A = 0.

appears and non-zero stationary current flows in the system. This critical
temperature T, is defined by the condition that V"(zs = 0) = 0. The
corresponding diagram is shown in Fig. 2. The phenomenon is analogous to
the continuous phase transition in macroscopic systems, and appears here
as a result of the interaction of ring currents. The central maximum zg =
M = 0, corresponds to the unstable stationary solution of (21). More
generally, one can notice that the stationary solutions occur where the linear
part z — A of (22) is equal to its periodic part igf(z,p,T). In the limit of
i9 — 0 (very small, or no interaction of ring currents), regardless T, the
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Fig. 2. Bifurcation of the stable stationary magnetic flux x5 with respect to tem-
perature for a fixed external magnetic flux A = 0.
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only stationary solution of (22) is the external flux g = A. For intermediate
ig (typical interaction of mesoscopic rings) two stable non-zero stationary
states can exist below T, and this number of solutions is preserved in the limit
T — 0. As one can infer from (13)—(17), decreasing temperature enhances
the periodic part of (22) but only to a maximal value defined by T — 0.
Further enhancement of the periodic part is possible only by increasing the
coupling constant 7. As a result of that, the critical temperature T, increases
with ig. Therefore, if i is sufficiently large (very strong interaction of rings),
even more stationary states can occur. The number of stationary states
below T, and for p = 1/2 can, in general, be equal to 4k —1, (k = 1,2...) but
only 2k of them of stable states. Lowering the temperature below T, results
then in a cascade of bifurcations. The first bifurcation takes place at T' = T¢.
With further lowering the temperature at 7' = T, < T, two additional pairs
of stationary solutions appear and so on. There is one metastable and one
unstable solution in every pair. The metastable solutions correspond to the
so called fluz trapped in the cylinder. Notice that in the limit 7" — 0 and
typical 79 > 0 there are always spontaneous flux solutions whereas the flux
trapped solutions can be obtained only for sufficiently large .

3.1.2. The p-dependence

In the following part of this section the temperature is set below T¢.
If the probability p = 1 we have an even number of coherent electrons
and paramagnetic current in each channel. The potential possesses two
minima corresponding to spontaneous fluxes (Fig. 3). Decreasing p, the
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Fig.3. The dimensionless generalized potential V' (z) is shown as a function of the
dimensionless magnetic flux = for characteristic values of the probability p. The
amplitude g = 1 and A = 0.
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probability 1 —p of finding odd channels with diamagnetic currents increases
and the spontaneous flux solutions xg decrease to coalesce finally into a single
absolutely stable solution at g = 0. The ratio p at which the coalescence
occurs decreases with decreasing temperature. Now, for sufficiently large 4,
five stationary states exist. Note that apart from the stable fluxless solution
zs = 0 there are two metastable solutions at 3 < |z5| < 1 and two unstable
solutions. The metastable solutions correspond to the flux trapped in the
cylinder. In realistic devices they are hardly accessible due to the value of
the necessary parameters. The value of p has a important impact on the
properties of persistent currents. The case when p is a fixed deterministic
quantity is studied in [15].

3.1.3. The A-dependence

There are three different types of the generalized potential. First is a
symmetric double well potential which appears for A = k/2 with integral
k. The stable solutions zg are then always around the external flux 0 <
|z — A| < 1. For the values of A close but not equal to k/2 the solutions
remain in that range but the double-well potential becomes asymmetric —
one of the stable solutions becomes metastable. For the values of external
flux far from half integer values k/2 one obtains the potential with only a
single stable solution. All the mentioned types of potentials are accessible
for 0 < A < 1/2 indicating a kind of the ‘structural periodicity’ with respect
to the external flux. An interesting feature of the x — A characteristic is the
occurrence of the hysteresis loop (Fig. 4). With increasing A, at its certain
value, the system undergoes discontinuous jump of x. Decreasing then the
value of A, the opposite jump of z occurs at lower A producing a hysteresis

1.0
XS
0.5
0.0
—TT=09
0 S e TT=18
i=1, p=0.5
.04 . . T T
1.0 05 0.0 0.5 1.0

Fig.4. The hysteretic behavior of the stationary flux with respect to the external
flux. The part of the graph with negative slope corresponds to unstable z5. The
amplitude i = 1.
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loop. It is a hallmark of the first order phase transition. The transition
can occur only below the critical temperature T.. Due to the ’structural
periodicity’ the hysteresis loop is repeated with the period A = 1/2 what
results in the formation of a family of loops.

3.2. Noise-assisted selfsustaining currents

In this section we discuss the influence of both equilibrium and non-
equilibrium perturbations on the properties of the flux in the mesoscopic
cylinders. First we discuss the thermal noise and later the system for which
the probability of the given parity of coherent electrons in the channel is a
random process.

3.2.1. Nyquist noise

Noise and fluctuations are ubiquitous in real systems and idealization of
the noiseless systems is sometimes not justified. In the following, we will
focus on the system (12) subjected to Nyquist noise. From the mathemat-
ical point of view, the Langevin equation (12) defines a Markov diffusion
process. Its probability density p(x,#) obeys the Fokker-Planck equation in
the form [16]

0 - 0 - 0? N

—p(z,t) = a—xvl(x)p(x, t)+ D wp(m ,1) (23)

with the natural boundary condition limj,_, p(#,t) = 0. The stationary
solution ps(z) is asymptotically stable [17] and takes the form

ps(x) = Noe™ VP (24)

with a normalization constant

o
Ny = / e V@D gy (25)

—00

Let us first consider the case of absence of the external flux, A = 0. If in the
noiseless case the system possesses only one stationary solution zg = 0, the
probability density (24) has maximum at z = 0 and the mean value of the
flux (z) = 0. If in the noiseless case the system possesses three stationary
states, the probability density (24) has three extremal points: two symmet-
ric maxima which correspond to the spontaneous fluxes and one minimum
at x = 0 which corresponds to the unstable stationary state (see Fig. 5).
Because the potential is reflection-symmetric, V(z) = V(—z), the mean



Noise-Assisted Currents in a Cylinder-Like Set of ... 3803

e

6] Ps(X)

54

44 .

) \ ——TT=12
3 - —-TT=15
0 ----TT=18

; | —-=TT=2
1- \ p=0.5, i;=1
0 . I v I v ) v ) "“ Al¥

0.2 -0.1 0.0 0.1 0.2

Fig.5. The stationary probability density for the system subject to Nyquist noise.
The amplitude ip = 1 and D = 0.001T'/T*.

value of any odd function of the flux is zero. In particular, the mean value
of the flux (x) = 0 and the mean value of the current is zero as well. From
this point of view, properties of stationary states are trivial and non-zero
fluxes and currents are impossible. However, in some situations the statis-
tical moments are not good characteristics of the system because much in-
formation is lost when an integration is performed calculating the statistical
moments [18]. The relevant quantity is a stationary probability distribution
which contains much more information about the system. Is any reasonable
method to determine the critical value of temperature 7T, in this case? One
possibility is to define the phase transition in the following way [18,19]: the
phase transition point is a value of the relevant parameter vy of the system at
which the profile of the stationary distribution function changes drastically
(e.g. if a number of maxima of the distribution function changes) or if a
certain most probable point zy begins to change to an unstable state. In
some cases, it is indeed a good ‘order parameter’ of the system. For exam-
ple, from the measurements of the laser experiment (see e.g. [20]), one can
obtain the stationary probability distribution of the laser intensity and one
can observe a phase transition according to the above definition. In the case
considered here, for sufficiently low temperatures, thermal fluctuations are
small and one expects the experimental results to be accumulated around
the most probable values of the stationary probability distribution. It follows
from (24) that the most probable values of the flux correspond exactly to
the stationary states (22) of the system (21). In this sense, the properties of
the system are the same as discussed in the previous subsection. We want to
emphasize that it is correct for low temperatures because then the residence
time in a stable state is long. For higher temperature T', thermal fluctuations
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become larger. In turn, fluctuations of the magnetic flux around the most
probable value become larger and larger and the residence time in a stable
state becomes shorter. One can guess that the spontaneous current should
vanish at temperature T which is lower than the critical temperature T¢ in
the noiseless case. This is because of influence of Nyquist fluctuations. The
argumentation is the following. If the potential is multistable then one can
introduce characteristic time scales of the system. The first characteristic
time 74 = 1/V"(xs) describes decay within the attractor zg = f+xp, of the
potential V'(z). The second characteristic time is the escape time 7, from
the well around =£xz,,. This time is related to the mean first passage time
from the minimum of the potential to the maximum. If these time scales
are well separated, i.e. if 7. >> 74 then the description based on the most
probable value seems to be correct. Otherwise, this description fails and we
should characterize the system by averaged values of relevant variables. In
the noiseless case, for g = 1 and D = 0.0017/T*, from Eq.(13) we esti-
mated the critical temperature T; = 1.66T*. We observed that roughly for
temperatures T < 0.97, the characteristic time 74 is more than one order
of magnitude less than 7.. Both time scales are well separated and selfsus-
taining currents are long-living states. In this sense, they are not destroyed
by Nyquist noise.

The stationary flux variance or mean-squared deviation o = (z2)—(z)? =
(x?) is a non-monotonic function of temperature (Fig. 6): For T' = 0 the
variance 0 = 22, where z is a stationary solution of (21). As the tempera-
ture increases, o diminishes attaining a minimal value at some temperature
T1. The temperature 717 seems to be always larger than 7, what has been
confirmed by numerical studies. A further increase of temperature leads to
an increase of the variance. In the high temperature limit, the dependence
is linear as for the Gaussian distribution. Indeed, below the critical temper-
ature, the distribution (24) possessing two peaks is clearly non-Gaussian.
However, for higher temperatures the probability density is one-peaked. For
this case, the kurtosis

(z')

Kurt = —55 — 1 26
measures the relative flatness of the distribution (24) to the Gaussian dis-
tribution. The kurtosis is negative and it means that the distribution (24)
is flat. It approaches zero in the high temperature limit and then the distri-
bution (24) approaches the Gaussian distribution.

The behavior of the second moment (x?) has a simple explanation in
terms of the average energy stored in the magnetic field, i.e.

(E) = (¢*)/2L = eoa?) (27)
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Fig.6. Averaged magnetic energy (E) /e given by Eq. (27) vs scaled temperature

for two values of i, fixed A = 0 and D = 0.0017/T*.

where g is given in (18). For low temperatures, fluctuations are small
and the main contribution to the energy comes from the deterministic part
$?/2L. Because the magnetic flux ¢ decreases as temperature increases
(cf. Fig. 2), hence (F) decreases as well. On the other hand, for high tem-
perature the stationary probability density approaches the Gaussian distri-
bution and in consequence the main contribution to the average magnetic
energy comes from thermal energy, (E) o« kT which obviously increases
when T grows. The competition between these two mechanisms leads to
the minimal value of (E) for a certain value of temperature Tj. At this
temperature, fluctuations of the current are minimal.

The influence of the external field on the properties of the stationary
density (24) may be deduced from Fig. 3. Finally, let us consider the limit
of a very weak coupling between the ring currents corresponding to a very
small value of ig. The selfsustaining stable solutions are non accessible. The
solutions of Eq. (21) correspond then to the persistent currents driven by the
external field. The stationary density forms a family of one peak curves with
the most probable values given by A. We conclude that even in the weak
coupling limit the presence of Nyquist noise does not destroy the persistent
currents.

3.2.2. Random parity of coherent electrons

The value of p is not a fixed parameter for the systems at temperatures
T > 0 when the energy gap at the Fermi surface becomes smaller. There are
then coherent electrons which can become normal and vice versa, there are
normal electrons which may become coherent. In such a case the probability
p itself is a random function of time. Further we limit our discussion to
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the transitions p = 0 <> p = 1. They correspond to the change from
even to odd number of coherent electrons in every current channel in the
cylinder. The transitions satisfy the following assumptions: first, the change
even<»odd occurs simultaneously and immediately (i.e. it takes no time) in
every channel and second, the number of electrons changing their “fluid” is
small enough to keep iy fixed in the transition. The dynamics of flux in the
absence of the external field can be modeled by the following equation

i=—z+ fi(z)+ f_(2)¢@d) +V2DI{), (28)

where fi(x) := io(fe(x) £ fo(x))/2 and &(t) = {—1,1} is a zero-mean,
exponentially correlated dichotomic process of the correlation time 7 [21]. If
&(f) = 1 then there is an even number of coherent electrons and if £(f) = —1
then there is an odd number of coherent electrons.

With the random process Eq. (28), which is clearly non-Markovian,
we associate the two dimensional process {z(f),&(f)}, which is Markovian.
The probability densities py(z,%) = p(x(t),&(t) = 1) and p_(z,t) =
p(z(t), () = —1) satisfy the master equation [21]

Spiad) =~ [ fo(o) + @b (oD
o [ B) ()] + Daa—;m(xaf%
Sp @) =~ o fo(@) - @]p (@D
D —piad) DL D). 9

The stationary state is described by the stationary reduced probability den-
sity p(z) = limg_, o p(z,t) = lim;_, . [p4 (7, %) +p_(z,1)]. An analytical form
of the stationary solution of (29) is known when D = 0, i.e. when temper-
ature T = 0. If T > 0 then we should consequently assume that D > 0.
In this case, an analytical formula for p(z) can be derived for the limiting
case T — oo (adiabatic noise). In a general case, one should numerically
solve Eq. (29) with zero left hand sides. We have applied the Finite Element
Method [22]. The results are presented in Figs. 7 and 8. For temperature
below the critical temperature (Fig. 7), dichotomic noise of a short correla-
tion time does not influence the system: there are two stable and symmetric
states of non-zero selfsustaining currents (the double-peaked density for the
case 7 = 0.0259294 in Fig. 7). If the correlation time 7 increases then the
states of non-zero currents disappear. The state of zero current is stable and
two new metastable states of non-zero currents occur (the triple-peaked den-
sity for the case 7 = 0.239503). For temperature above the critical tempera-
ture (Fig. 8), dichotomic noise of a short correlation time does not influence
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Fig. 7. The stationary probability density for the system with dichotomic fluctua-
tions of p for several values of their correlation time 7. The amplitude ig = 1 and
T = 0.5T.

the system: the single-peaked density for the case 7 = 0.0672336 in Fig. 8
corresponds to zero-current case. For long correlation times, dichotomic
noise can induce new metastable states which correspond to non-zero cur-
rents (the triple-peaked density for the case 7 = 3.0392). In both cases, the
noise-induced metastable states are located in the neighborhood of zeros of
the ‘diffusion function’

D(w) = 12(@) — (f1(x) — ). (30)
T px :
x "
o] P, L 1=0.0672336
| Y 2 U 1=0.452035
] FA | 1=3.0392
] TT=2,
4-. D=0.001T/T
3-
2-_ II" /‘\‘
/ \
E 'l “
. ’
1 I’I P . “‘\
RIS <Al S ‘\ ~

Fig.8. The stationary probability density for the system with dichotomic fluctua-
tions of p. The amplitude 79 = 1 and T = 27T¢.
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The model Eq. (28) is clearly a simplification of the realistic one which should
incorporate both the Nyquist noise and the possibility of independent tran-
sitions in each channel. Such an independent transitions can be described
by a vector stochastic dichotomic process & := (£1,&2,...,&N) where N is
the number of channels in the cylinder and &; are independent of each other
dichotomic processes described above. Further we assume that D # 0 and
the configuration of ¢ is quenched i.e. the probability of the even number of
coherent electrons in a single current channel is a random variable uniformly
distributed on the interval [0,1]. The stationary probability density of the
flux is now expressed as

1
ps(z) = | p(x|z)dz, (31)
/

where the conditional probability distribution
p(z|z) = No(z) exp(=V(z,2)/D) (32)

with V(x,2) := —x + igzfe(z,T) + io(1 — 2) fo(x,T) and the normaliza-
tion constant Ny(z). The stationary probability density (31) is plotted in
Fig. (9) for several values of the temperature. Its profile is very different if
compared with the case p = 1/2. First, one should note that the density is
not very sensitive for the changes of temperature and second the maxima
for non-zero selfsustaining fluxes are dominated by the maximum appearing
at zero. It means that even relatively small thermal fluctuations destroy the
selfsustaining currents in the system.

141p,(x)

124

10

~

Fig.9. The stationary probability density for the system of randomly distributed
p for several values of T/T*. The amplitude ic = 1 and D = 0.0017/T*.
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4. Summary

Persistent and selfsustaining currents are beautiful manifestation of
quantum coherence in mesoscopic systems. The natural question is how
do they behave in the presence of randomness and fluctuations. Assuming
the two fluid model for mesoscopic system we have investigated the influence
of Nyquist noise and non-equilibrium fluctuations of one of the parameters
(parity of the coherent electrons number). Our discussion is limited to sta-
tionary states of the magnetic flux and current although the proposed model
of the flux dynamics can be, in principle, applied to study time dependent
problems. The general conclusion is that Nyquist noise preserves the selfsus-
taning currents, i.e. for some parameters there are states of the long-living
non-zero flux and current. In the case of fixed p the properties of the sta-
tionary flux are determined by the generalized potential V' (z). Assuming
non-equilibrium (dichotomic) fluctuations of the number of coherent elec-
trons in the channel we conclude that noise of sufficiently large correlation
time can induce non-zero flux states determined by maxima of the probabil-
ity density at z # 0. In the case of p being the uniformly distributed random
variable the long-living currents are observable at low temperatures. In that
sense the quenched randomness of p destroys selfsustaining currents much
more than equilibrium fluctuations.

Appendix

For the paper to be self-contained, we remind one of the form of the
fluctuation—dissipation theorem and the Nyquist relation exploited in our
basic Eq. (8). The Brownian motion of a particle of mass m in a fluid of
temperature T is described by a Langevin equation [16]. According to the
fluctuation-dissipation theorem [16], its form for the velocity v = v(t) reads

mo + yv = /2vkgT I'(t), (33)

where a dot denotes a derivative with respect to time, -y is the friction
coefficient, kp is the Boltzmann constant and I'(t) is the zero-mean and
Dirac d-correlated Gaussian stochastic process (white noise),

((#) =0, (L(H)I(s)) =t —s). (34)

Mutatis mutandis, the Langevin equation for the current I = I(t) in the RL
circuit takes the form [23]

LI + RI = \/2RkpT I'(t). (35)
It is one of the form of the Nyquist relation. In the case when

¢ =LI (36)
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it can be rewritten as

ldp 1,  [2ksT
Ra TV R

), (37)
which justifies the prefactor of the noise term in Eq. (8).
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supported by the Polish State Committee for Scientific Research (KBN)
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