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PHOTONS PRODUCED INSIDEA CAVITY WITH A MOVING WALLPaweª W�grzyn and Tomasz RógM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived O
tober 4, 2002; revised version April 30, 2003)The produ
tion of parti
les inside one-dimensional 
avity with a mov-ing wall is dis
ussed. Cavities with periodi
ally driven wall motions areanalyzed numeri
ally for long times. We formulate the 
onditions underwhi
h the parti
le produ
tion is being e�
iently run. The 
onditions areindependent of a spe
i�
 type of 
avity motions.PACS numbers: 03.70.+k 1. Introdu
tionThe relativisti
 theory of quantized �elds to be de�ned in the presen
eof boundaries or interfa
es is usually a troublesome issue. Espe
ially, han-dling with a non-stationary 
ase of moving boundaries theorists are entan-gled in embarrassing underlying problems. For the most part, remarkablephenomena arising in appli
ations of the quantum �eld theory in spa
eswith moving boundaries are widely dis
ussed in literature under the nameof dynami
al Casimir e�e
t (or non-stationary Casimir e�e
t). One 
onse-quen
e of 
on�ning quantum �elds to live in some bounded spa
e is that theboundaries experien
e attra
tive or repulsive for
es. Unlike a stati
 
ase,Casimir va
uum for
es 
an 
hange in time. However, it is assumed in usualsettings that the motion of boundaries is �rmly �xed by some external en-vironment. Therefore, no attention is paid to Casimir for
es. A prominentfeature of the dynami
al Casimir e�e
t is the phenomenon of quantum radi-ation attributable to va
uum �u
tuations. Most of extensive studies of thesubje
t are mainly 
ontributions to the knowledge of this purely quantumme
hanism of parti
le produ
tion (
alled motion-indu
ed radiation as well).In spite of the signi�
ant number of resear
hes, even the simplest systemsof idealized 
avities with moving boundaries are not fully understood (seea re
ent review of the subje
t and a long list of referen
es in [1℄). One 
an(3887)



3888 P. W�grzyn, T. Rógbelieve that su
h systems are truly fundamental with respe
t to motion-indu
ed radiation and that their investigation will 
larify 
on
eptual issuesraised by more 
ompli
ated models. This subje
t is also important in itsown right, espe
ially 
on
erning prospe
ts for experimental tests to measurean emission of va
uum photons out of a real 
avity with vibrating walls.In this paper, we 
ontinue our investigation of one-dimensional vibrating
avities with perfe
tly re�e
ting walls 
arried out in [2℄. For su
h systems,it is 
learly re
ognized that a signi�
ant amount of photons may be pro-du
ed inside the 
avity only under some spe
ial 
ir
umstan
es. The 
ru
ialpoint is to maintain a 
onstru
tive interferen
e of quantum waves from theperturbed �eld va
uum. It is provided for a 
avity on 
ondition of someparametri
 �opto-me
hani
al� resonan
e. A frequen
y of 
avity os
illationsshould be a multiple of some stati
 
avity eigenfrequen
y [3-16℄. Only fewpapers analyzed the pro
ess of radiation generated under a disturbed reso-nan
e 
ondition. Dodonov et al., [1,9℄ thoroughly studied harmoni
 motions
onsidering approximate solutions for small amplitudes of os
illations. Inour previous paper [2℄, we analyzed energy densities and total energies foro� resonant os
illations. But for open dynami
al systems it happens thatthere is no dire
t 
orresponden
e between the total a

umulated energy andthe number of observed parti
les. The aim of this paper is to extend ourprevious analysis. In what follows, we will analyze the number of radiatedphotons and 
onditions in order to observe the enhan
ed photon produ
tionin one-dimensional 
avity.From pra
ti
al point of view, the one-dimensional 
avity model with per-fe
tly re�e
ting point-like walls seems to be a 
rude oversimpli�
ation. Letus remind the arguments why the investigation of this toy model 
an be reallya �rst step to gain insight into a realisti
 lifelike situation. First, the anal-ysis of three-dimensional 
avities shows that ea
h transverse photon mode
an be truly des
ribed by one-dimensional model. Therefore, the quantumele
trodynami
s inside one-dimensional 
avity is really a single polarizationapproximation. Next, from all papers we know that realisti
 features of 
av-ity walls (like �nite size, imperfe
t shape, frequen
y-dependent 
ondu
tivity)are in
luded in fa
t as suitable modi�
ations of the theoreti
al model withperfe
t 
avity walls. They do not 
hange the basi
 me
hanism (resonan
eenhan
ement of the photon produ
tion, the qualitative laws for the growthof the energy and the number of photons, the formation of traveling peaks inthe energy density (pulse shaping) et
.), but diminish the 
avity �nesse. Onthe other hand, the dete
tor involved to 
ount photons will have its in�uen
eon the photon produ
tion pro
ess as well. But the most important fa
tor isprovided in 
ase we take into 
onsideration the in�uen
e of non-zero tem-perature upon the produ
tion pro
ess. The �nite temperature modi�
ationslead to the opposite e�e
t. A 
avity moving in thermal �u
tuations produ
es



Photons Produ
ed Inside a Cavity with . . . 3889more photons. They are generated rather from a thermal �eld than from ava
uum �eld. However, all qualitative features of motion-indu
ed radiationknown from the zero temperature 
ase are observed here. The experimentaldete
tion of radiation may be 
onsiderably simpler in this 
ase [13℄. All theabove 
onsiderations of in
luding important 
avity features whi
h should betaken into a

ount in realisti
 experiments suggest that the modi�
ationspreserve the basi
 pi
ture of the produ
tion pro
ess. They in�uen
e onlythe photon produ
tion rate.The most important and interesting phenomenon seen in the os
illating
avity system is the opto-me
hani
al resonan
e. The produ
tion of photonsinside the 
avity 
an be greatly enhan
ed due to some 
onstru
tive inter-feren
e. We 
annot des
ribe all 
ir
umstan
es whi
h dire
tly a�e
t it. It isfairly 
ertain that the me
hani
al os
illation frequen
y must be a multiple ofopti
al resonan
e frequen
ies. But other features of the 
avity motion seemto be less important. The 
ases of 
avities with one or two os
illating wallsare similar [14, 15℄. There are no important di�eren
es between the 
aseswhen the 
avity os
illates as a whole (translational vibrations) and whenthe 
avity length os
illates (breathing vibrations) [11℄. There is no need forsinusoidal type of os
illations to have the opto-me
hani
al resonan
e [10,16℄.It is not proved, but maybe there is no need for exa
t periodi
ity and weneed only some �an
hor� points of the 
avity motion [8℄ to take pro�t ofthe resonan
e enhan
ement. The existen
e of an an
hor point means thatthe 
avity should always return to some �xed position with a resonant fre-quen
y. In fa
t, it is possible to �nd a set of di�erent 
avity motions orperturbations with the 
ommon parametri
 opto-me
hani
al resonan
e 
on-dition leading to the exponential growth of produ
ed photons. We re
ognizethe same parametri
 resonan
e 
ondition for any periodi
 
avity motion. Itgives a motivation to study thoroughly the parametri
 resonan
e 
ondition.In the presented paper, we analyze two di�erent motions of a 
avity withperturbed resonan
e 
onditions. Our goal is to �nd the resonan
e width,where the exponential growth of photons still o

urs.The paper is organized as follows. In Se
. 2 we remind the setup of quan-tum ele
trodynami
s inside one-dimensional 
avity with perfe
tly re�e
tingwalls. The quantization pro
edure is 
arefully des
ribed. We address thequestion of parti
le produ
tion indu
ed by some 
avity motion whi
h is as-sumed to be bounded in time. In Se
. 3 we des
ribe how to explore moregeneral 
avity motions than harmoni
ally os
illating walls. Then, we dis-
uss examples of harmoni
 os
illations and some non-harmoni
 os
illations.For both types of 
avity os
illations, we re
all main results well-known fromstudies of resonant harmoni
 motions. Finally, the o�-resonant os
illationsare dis
ussed. We give two 
onditions of the frequen
y adjustment ne
essaryto keep the exponential growth of produ
ed parti
les. This adjustment re-



3890 P. W�grzyn, T. Róglies on the inequalities between the frequen
y modulation depth, the relativeamplitude of os
illations and the total number of os
illations (or the totaltime of the 
avity motion). Some 
on
lusions for prospe
ted experimentsare drawn.2. Quantum ele
trodynami
s inside one-dimensional 
avityWe study the ele
tromagneti
 �eld inside one-dimensional os
illating 
av-ity made of two perfe
tly re�e
ting walls. We mean in fa
t the quantum the-ory of linearly polarized light [17,18℄. It is equivalent to the problem of thes
alar �eld with the 
orresponding �eld equation and boundary 
onditions:(��2t + �2x)A(x; t) = 0 ;A(x = 0; t) = A(x = q(t); t) = 0 for all times: (1)The left wall is assumed to be �xed at position x = 0, while the right oneis os
illating with some pres
ribed time-like traje
tory q(t). The physi
alsystem is just open, therefore, the total �eld energy and the number of �eldquanta 
an 
hange their values over the period of wall motion. We restri
tourselves to some regular wall motions. In parti
ular, a velo
ity of the wall isnever 
lose to the speed of light. The allowed wall traje
tories are spe
i�edby the following set of requirements [2℄:(i) q(t) = L ; for t � 0(ii) j _q(t)j < 1 ;(iii) q(t) > 0 ;(iv) q(t) = L for t � T : (2)The fourth requirement 
on
erns the 
al
ulation of the number of �photons�.In our one-dimensional physi
s, we mean massless s
alar parti
les. Requir-ing that the wall motion lasts a �nite period of time, we have guaranteedthe equivalen
e between in and out photon states. In general 
ase, Fo
kspa
es related to both asymptoti
 states are not unitary equivalent. It 
om-pli
ates the de�nition of �parti
les�. As usual the spe
i�
ation of parti
les
orresponds to the 
hoi
e of a suitable number of quanta operator. This
hoi
e should be made on physi
al grounds, so we 
annot determine it fromthe formalism of the theory. Be
ause of the la
k of dire
t experimental ver-i�
ation of the idealized and simpli�ed model, in literature it is 
ommonlyassumed that a parti
le dete
tor responds to standing-wave �eld modes ofa stati
 
avity. These modes 
orrespond to asymptoti
 solutions of (1):Aink (x; t) = 1p�k exp (�i!kt) sin (!kx) ; !k � k�L : (3)



Photons Produ
ed Inside a Cavity with . . . 3891Note that ea
h !k 
orresponds to an eigenfrequen
y of the stati
 
avity. Dueto the fourth requirement of (2), the quantized �eld for t > T 
an be nowrepresented in terms of 
reation âyk and annihilation âk operators asso
iatedwith the stati
 
avity system:Â(x; t) = 1Xk=1 hâkAink (x; t) + âykAin�k (x; t)i : (4)The quantization of the ele
tromagneti
 �eld inside a stati
 
avity is donehere in a manner analogous to the 
anoni
al quantization of the ele
tromag-neti
 �eld in the whole spa
e. The 
hoi
e of operators fak; aykg allows us toset up the Fo
k representation. In other words, the notion of parti
les is thenintrodu
ed. Before going further, we make some 
omment about the quanti-zation. It has been re
ognized very early by von Neumann (1938) that thereexist in�nitely many unitary inequivalent representations in the quantum�eld theory. We should remember that the quantum system settled downin a spa
e bounded by re�e
ting walls is in fa
t an e�e
tive theory. Theboundary 
onditions for �elds 
ome from idealizations of the a
tual physi
s.If we think about the des
ription of real physi
s, then we must 
on
ludethat in order to simplify the problem we have repla
ed 
ompli
ated inter-a
tions of �elds with boundary walls with simple boundary 
onditions for�elds themselves. In any quantum theory, the pri
e for su
h idealization isthat we lost some information and even worse we have inje
ted an in�niteamount of information whi
h we did not have. This manifests itself later in
al
ulations of physi
al observables. The 
al
ulations may involve in�nitenumbers and need for physi
al 
ut-o�s. Moreover, any e�e
tive theory al-ways sets the stage for a dis
ussion whi
h 
hoi
e of quantum representationis appropriate. In other words and referring dire
tly to our 
ontext, thenotion of parti
les in the presen
e of idealized (moving) boundaries is notjudi
iously de�ned. In the framework of an oversimpli�ed e�e
tive theory, itmay happen that we 
annot justify rules for sele
ting operators for 
ountingreal parti
les. If we are not in a position to analyze a full theory, then therelevant sele
tion 
an be justi�ed only on physi
al grounds with referen
eto some experimental setup. Therefore, at the level of theoreti
al 
onsidera-tions based on the oversimpli�ed e�e
tive theory we are not able to addressthis question. To avoid possible 
onfusion we stress that the quantizationpro
edure [17℄ seems to build a well de�ned quantum theory. Nevertheless,the quantization of e�e
tive theories always must be handled with 
are and
onfronted with a physi
al 
ontext.Let us review brie�y the pro
edure for 
al
ulating a number of pro-du
ed parti
les inside a vibrating 
avity. The 
omplete set of mode fun
-tions Ak(x; t) for any time may be 
hosen in su
h a way that left-moving



3892 P. W�grzyn, T. Rógand right-moving wave pa
kets have the same shape [17℄:Ak(x; t) = Nk heik�R(t+x) � eik�R(t�x)i ; Nk � ip4�k ; (5)where the phase fun
tion R is subje
t to the Moore's equationR(t+ q(t)) = R(t� q(t)) + 2 : (6)In fa
t, the phase fun
tion R 
ontains the whole information about thephysi
al system. For a stati
 
ase, the basi
 solutions (5) mat
h exa
tly thestanding-wave solutions (3). A
tually, this generalized fundamental set ofsolutions 
an be easily 
onstru
ted from standing-wave solutions if we makeuse of the 
onformal symmetry that our two-dimensional theory possesses.One 
an immediately re
ognize this way if the solutions (5) are written downin the following alternative form:Ak(x; t) = 1p�k exp (�i!ku+) sin (!ku�) ; (7)where we have introdu
ed new 
oordinates:u� = R(t+ x)�R(t� x)2 L : (8)Sin
e we are equipped with the basis (5), we 
an evaluate the sum over �eldmodes referring to any point in time. The de
omposition of the �nal state(t > T ) of the �eld operator in the basis (5) yields:Â(x; t) = 1Xk=1 hb̂kAk(x; t) + b̂ykA�k(x; t)i : (9)The parti
le 
ontent of the system 
an be now re
ognized in the followingstandard way [17℄. We use here the Heisenberg pi
ture. For t > T , the
avity system is being in the quantum state that 
orresponds to the statejouti. The state jouti is uniquely de�ned as the state whi
h is annihilatedby all operators fbkg. In this 
onstru
tion, the operators fbk; bykg do notannihilate and 
reate any parti
les. This a
tion is realized by the set ofoperators fak; aykg. The family of b-operators helps us to tra
e the evolutionof parti
le states. After a time period of 
avity motion T , the va
uumstate j0i goes to the squeezed state jouti, whi
h is a
tually a formal Fo
kva
uum state with respe
t to the a
tion of b-operators. To 
ount for parti
lesprodu
ed inside the 
avity during the 
avity motion, we should analyze theparti
le 
ontent of the �nal state jouti. The number of quanta nk produ
ed



Photons Produ
ed Inside a Cavity with . . . 3893in the k -th mode is just the expe
tation value of the appropriate numberoperator âykâk in the �nal state jouti. The total number of 
reated photonsis, therefore, given by N = P1k=1 nk. Now, we 
an perform all suitable
al
ulations.A standard method is to 
al
ulate the Bogoliubov 
oe�
ients at �rst.The passage from one basis (3) to another one (5) 
an be represented bysome linear transformation:Ak(x; t) = 1Xl=1 ��klAinl (x; t) + �klAin?l (x; t)� : (10)With the help of the Bogoliubov 
oe�
ients �kl and �kl, one 
an also estab-lish the following operator transformationsâk = 1Xl=1 ��lk b̂l + �?lk b̂yl� ; b̂k = 1Xl=1 ��?klâl � �?klâyl� ;âyk = 1Xl=1 ��lk b̂l + �?lk b̂yl� ; b̂yk = 1Xl=1 ���klâl + �klâyl� : (11)It is now straightforward to 
al
ulate the Bogoliubov 
oe�
ients startingfrom the knowledge of the phase fun
tion R(z) [3,19℄ (note some minor signerror in [3℄ and other papers):�kl = 12Lr lk t+LZt�L dz e�ik�R(z)+i!lz ;�kl = � 12Lr lk t+LZt�L dz e�ik�R(z)�i!lz : (12)The above formulas are meaningful provided that t > T . Obviously, theBogoliubov 
oe�
ients are in fa
t independent of time. The number ofphotons in k -th mode and the total number of photons produ
ed in theos
illating 
avity are given bynk = 1Xl=1 j�lkj2 ; N = 1Xk=1 nk : (13)The knowledge of the phase fun
tion R(z) 
omes from the solution of Moore'sequation (6) for a given traje
tory of a moving 
avity wall. This solutionusually 
an be obtained only numeri
ally.



3894 P. W�grzyn, T. Róg3. Photon produ
tion inside a 
avity with a periodi
allyos
illating wallIn this paper, we will 
onsider the problem of a vibrating 
avity underperturbed parametri
 resonan
e 
onditions. Its motion is assumed to be peri-odi
 but a 
orresponding frequen
y di�ers from the resonant one !n = n�=L.Moreover, the 
avity os
illations will die after some period of timeT . Then,we will be looking for the number of 
reated parti
les. As it was mentionedin the previous se
tion, the key point of the 
orresponding 
al
ulation is to�nd the phase fun
tion R(z). The method to solve Moore's equation (6) waspresented in [2℄ (we have found re
ently that a similar method was des
ribedin [20℄ in the 
ontext of 
lassi
al strings). We de�ne an auxiliary fun
tionf(z) as the unique solution to the equation:f(t+ q(t)) = t� q(t): (14)The fun
tion f(z) itself represents a physi
ally reasonable motion of the
avity wall (2) provided that the following 
onditions are satis�ed:(i) f(z) = z � 2L ; for z � L ; (15)(ii) 0 < f 0(z) <1 ;(iii) f(z) < z ;(iv) f(z) = z � 2L ; for z � L+ T : (16)Using this fun
tion, we 
an evaluate the 
orresponding solution of (6) asR(z) = 2n+ fn(z)L for z 2 [Ln�1; Ln℄ ; (17)where we denote L0 � L and Ln = (f�1)n(L). The symbol fn is used herefor something else than the power of the fun
tion, namely for the n-foldmulti
omposition f Æ f Æ : : : Æ f . In the stati
 region, for all z � L we havealways R(z) = z=L. The relevant periodi
ity 
onditions for a motion of the
avity wall 
an be expressed referring either dire
tly to the traje
tory q(t)or to the auxiliary fun
tion f(z):q(t+ T0) = q(t) for 0 � t � T � T0 ;f(z + T0) = f(z) + T0 for L � z � L+ T � T0 : (18)The period of wall os
illations is denoted here by T0. For our resonantmotions, we have T0 = 2�=!n = 2L=n. If we are dealing with resonantperiodi
 wall motions, then the phase fun
tion R(z) always develops a per-fe
t stair
ase-shape [2, 8℄. In this 
ase, the energy and the total number



Photons Produ
ed Inside a Cavity with . . . 3895of photons usually grow with time. The vibrating 
avity system being ina parametri
 resonan
e 
an 
ontinuously in
rease the amount of photons
reated from va
uum. This phenomenon is referred as 
onstru
tive interfer-en
e. Evidently it happens, but we need yet to ask whether this me
hanismof parti
le produ
tion runs e�
iently only when the system parameters are�ne tuned for a resonan
e. The pra
ti
al importan
e of this me
hanism ofparti
le produ
tion depends 
ru
ially on 
onditions needed in order to keep
onstru
tive interferen
e inside a 
avity system. Their investigation should
ast light on the feasibility for setting up experimental tests.To follow our dis
ussion of nearly resonant behavior of the os
illating
avity system, we spe
ify the motion of the 
avity wall. We investigate twodi�erent wall motions with either q(t) or f(z) being a harmoni
 fun
tion:q(t) = 8<: L ; t < 0L f1 + d sin [!n(1 + ")t℄g ; 0 < t < TL ; t > T ; (19)f(z) = 8<: z � 2L ; z < Lz � 2L+ d sin [!n(1 + ")(z � L)℄ ; L < z < L+ Tz � 2L ; z > L+ T : (20)Note that the above examples (19) and (20) 
orrespond to two di�erenttypes of wall motions. The example (19) yields just harmoni
 os
illations,while the example (20) 
orresponds to a more sophisti
ated type of os
illa-tions. In both 
ases, we 
an interpret " as a perturbation of the resonantfrequen
y (detuning of the resonan
e). For small amplitudes, an analysis ofthe o� resonant systems (19) was 
arried out in [1℄. Here, we will dis
usssu
h vibrating 
avity systems for more general motions, arbitrary amplitudesand long-time limits. We will 
al
ulate numeri
ally the number of parti
les
reated in di�erent modes. The most interesting question is the long-timebehavior of these quantities.First, we review some results 
on
erning a resonant motion with some�nely adjusted frequen
y !n = n�=L. Let us remind that we have restri
tedourselves to motions of type (19) or (20). The parametri
 resonan
e means" = 0 there. The 
orresponding phase fun
tion R(z) develops a well knownstair
ase shape. It is 
he
ked that the total average energy exponentiallygrows in time. If we look at the energy density, it is 
on
entrated into nar-row traveling wave pa
kets. The energy density wave pa
kets grow rapidlyin time under the resonan
e 
onditions. Looking outside of the wave pa
k-ets, the energy density is very small. Its average value is smaller n2 timesthan the value of Casimir energy density inside a stati
 
avity. It resultsthat the photons are produ
ed in sharp and intense pulses. In the longtime limit, the total number of photons 
reated from the va
uum in
reases



3896 P. W�grzyn, T. Rógin time. The ex
eption is a resonant os
illation with the lowest frequen
y!1 (�semi-resonan
e�). There is no rapid proliferation of photons with timethere. The pi
ture of traveling narrow wave pa
kets in the energy densitydoes not appear in this 
ase as well. In all resonant 
ases with the frequen
y!2, photons are 
reated pra
ti
ally only in the odd modes (see Fig. 1), theiramount in even modes is small (in the linear approximation [1℄ there is nophoton produ
tion in even modes). The signi�
ant number of parti
les is
reated just in the lowest mode (see Fig. 1), after a long time the systemlooks like a Bose�Einstein 
ondensate. The results des
ribed in this para-graph have been previously drawn for small-amplitude 
avity os
illations.In this paper, we have 
he
ked them numeri
ally to be true in general.
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n2Fig. 1. Number of 
reated photons in parti
ular modes n1,n2,n3,n5 and n7. Timeis res
aled as �dt=2L [1℄. A 
avity wall os
illates with resonant frequen
y !2. Evenmodes are suppressed. The lowest mode n1 dominates for a long-time regime.Let us now dis
uss 
avity systems de�ned by (19) or (20) and assumethat we have there " 6= 0. It means that the parametri
 resonan
e is violated.Unlike the parametri
 resonan
e 
ase, there are unknown exa
t solutions ofMoore's equation (6) for o� resonant motions. Some analyti
al informationwas given in [2℄: the long-time pattern of phase fun
tion R(z) is 
hara
terizedby a �long period� MT0, where M is some positive integer whi
h 
an bede�ned by the following relation:LN = L+MT0 : (21)For many examples of 
avity motions the above relation 
an be exa
t, and ingeneral we assume that it holds up to some desired a

ura
y. From the rela-



Photons Produ
ed Inside a Cavity with . . . 3897tion (21) follows immediately: LN+n = Ln+MT0. It results that the phasefun
tion R(z) after the long period MT0 is just reprodu
ed but shifted. The�eld energy inside a 
avity that os
illates with a perturbed resonant fre-quen
y grows exponentially only during the time MT0=2. Later, the totalenergy rapidly de
reases down to its minimal value. The minimal energymat
hes the value of Casimir energy for a stati
 
avity. After rea
hing itsminimal value, the energy be
omes to grow again. Thus, the value of thetotal �eld energy inside the 
avity os
illates with the long period MT0. Itallows us to de�ne the �rst 
ondition to keep our me
hanism of parti
leprodu
tion e�
ient: MT0=2 > T . Let us now summarize our numeri
alresults 
on
erning the number of produ
ed parti
les for o� resonant 
avitymotions. We are interested to know whether the me
hanism of 
onstru
tiveinterferen
e disappear and how the photon produ
tion rate is in�uen
ed.The relevant parameter to 
ontrol that is g = "=d. Figs. 2 and 3 show thebehavior of the number of parti
les produ
ed in the lowest mode for smalland large g respe
tively. These data were taken from numeri
al 
al
ulationsfor the 
avity motion (19) with frequen
y !2, but 
al
ulations for motionsof type (20) and other resonant frequen
ies lead to similar results and plots.The parti
les are still produ
ed mainly in �prin
ipal� modes [1℄. The lowestmode n1 is always preferred, however, if we detune the system the lowestmode is more suppressed than the higher ones (see Fig. 4). We noti
e thatthe numbers of produ
ed parti
les in di�erent modes grows in time linearly
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 resonan
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ondi-tions g > 1, we 
an observe negligible os
illations of parti
le numbers aroundnull values. Let us then summarize that we observe the sharp transition ofthe photon produ
tion rate about g = 1. If the parameters of the vibrating
avity system are out of the resonant width de�ned by the inequality g < 1,
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ed Inside a Cavity with . . . 3899then the exponential rate of the photon growth disappears. This feature is
hara
teristi
 for resonant behavior and our parametri
 
ondition is 
ommonfor 
avity motions of both types (19) and (20).4. Con
lusionsEa
h of our examples of 
avity motions we have investigated in this pa-per enables us to draw some 
ommon 
on
lusions. The main results 
an besummarized by the following relations arising from analyti
al and numeri
al
al
ulations. First, we proved that the measurement of produ
ed parti
lesmust be set in the �rst half of the �long period�, before the pro
ess of de-stru
tion of parti
les starts. The 
orresponding 
ondition MT0=2 > T 
anbe rewritten as: �!! < T0T : (22)In the above 
ondition, ! is the (resonant) frequen
y of 
avity os
illa-tions, �! denotes the a

ura
y of tuning this frequen
y, T0 is a period ofos
illations and T stands for the total time of 
avity motion. It is the �rst
ondition to keep resonant enhan
ement of the produ
tion of photons insidea vibrating 
avity. The se
ond 
ondition 
omes from the numeri
al 
al
u-lations dis
ussed in the previous se
tion. They show that the total numberof photons produ
ed inside a 
avity grows in time up to signi�
ant amountsprovided that the following relation between parameters o

urs (we rewritehere the requirement g < 1 for the 
onstru
tive interferen
e from the Se
. 3)�!! < �LL : (23)The 
avity length is denoted by L, and its maximal 
hange is �L.The observation of photons 
reated by virtue of the 
avity os
illationsin realisti
 experiments is hoped in near future [21℄. Instead of os
illationsof a 
avity wall as a whole they 
onsider rather surfa
e os
illations indu
edby strong a
ousti
 waves. Then �L would 
orrespond to the maximal pos-sible displa
ement of a wall material. The 
ondition (23) states simply thatthe modulation depth of the resonant frequen
y should be smaller than therelative depth of surfa
e os
illations. This 
an be used as a 
rude estima-tion of the su�
ient amplitude of the high-frequen
y surfa
e vibrations thatshould be ex
ited inside the wall. The se
ond 
ondition (22) says that thenumber of os
illations the 
avity performs should be less that the inverse ofthis relative frequen
y modulation. This 
ondition gives the estimated totaltime of the growing produ
tion of photons.The produ
tion of photons inside a vibrating 
avity due to the dynami
alCasimir e�e
t would be dete
ted only if the parameters of our experimental



3900 P. W�grzyn, T. Rógsetup are inside the width of the opto-me
hani
al resonan
e. Our simple andgeneral 
onditions 
onfronted with feasible parameters of me
hani
al waveswhi
h 
an be generated inside 
avity walls suggest that an experimentaleviden
e is now still out of rea
h.REFERENCES[1℄ V.V. Dodonov, Modern Nonlinear Opti
s, Part 1, p. 309�394 (Advan
es inChemi
al Physi
s, Vol. 119, Ed. M.W. Evans, Wiley, NY 2001).[2℄ P. W�grzyn, T. Róg, A
ta Phys. Pol. B 32, 129 (2001).[3℄ V.V. Dodonov, A.B. Klimov, D.E. Nikonov, Phys. Lett. A149, 225 (1990).[4℄ M.T. Jae
kel, S. Reynaud, J. Phys. I2, 149 (1992).[5℄ V.V. Dodonov, A.B. Klimov, D.E. Nikonov, J. Math. Phys. 34, 2742 (1993).[6℄ C.K. Law, Phys. Rev. Lett. 73, 1931 (1994).[7℄ C.K. Law, Phys. Rev. A49, 433 (1994).[8℄ C.K. Cole, W.C. S
hieve, Phys. Rev. A53, 4495 (1995).[9℄ V.V. Dodonov, A.B. Klimov, Phys. Rev. A53, 2664 (1996).[10℄ O. Méplan, C. Gignoux, Phys. Rev. Lett. 76, 408 (1996).[11℄ A. Lambre
ht, M.T. Jae
kel, S. Reynaud, Phys. Rev. Lett. 77, 615 (1996).[12℄ V.V. Dodonov, J. Phys. A31, 9835 (1998).[13℄ A. Lambre
ht, M.T. Jae
kel, S. Reynaud, Europhys. Lett. 43, 147 (1998).[14℄ D.A. Dalvit, F.D. Mazzitelli, Phys. Rev. A57, 2113 (1998).[15℄ D.A. Dalvit, F.D. Mazitelli, Phys. Rev. 59, 3049 (1999).[16℄ Y. Wu, K.W. Chan, M.C. Chu, P.T. Leung, Phys. Rev. A59, 1662 (1999).[17℄ G.T. Moore. J. Math. Phys. 11, 2679 (1970).[18℄ S.A. Fulling, C.W. Davies, Pro
. R. So
. Lond. A348, 393 (1976).[19℄ W.R. Walker, Phys. Rev. D31, 767 (1985).[20℄ J. Dittri
h, P. Du
los, P. �Seba, Phys. Rev. E49, 3535 (1994).[21℄ M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001).


