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The production of particles inside one-dimensional cavity with a mov-
ing wall is discussed. Cavities with periodically driven wall motions are
analyzed numerically for long times. We formulate the conditions under
which the particle production is being efficiently run. The conditions are
independent of a specific type of cavity motions.

PACS numbers: 03.70.+k

1. Introduction

The relativistic theory of quantized fields to be defined in the presence
of boundaries or interfaces is usually a troublesome issue. Especially, han-
dling with a non-stationary case of moving boundaries theorists are entan-
gled in embarrassing underlying problems. For the most part, remarkable
phenomena arising in applications of the quantum field theory in spaces
with moving boundaries are widely discussed in literature under the name
of dynamical Casimir effect (or non-stationary Casimir effect). One conse-
quence of confining quantum fields to live in some bounded space is that the
boundaries experience attractive or repulsive forces. Unlike a static case,
Casimir vacuum forces can change in time. However, it is assumed in usual
settings that the motion of boundaries is firmly fixed by some external en-
vironment. Therefore, no attention is paid to Casimir forces. A prominent
feature of the dynamical Casimir effect is the phenomenon of quantum radi-
ation attributable to vacuum fluctuations. Most of extensive studies of the
subject are mainly contributions to the knowledge of this purely quantum
mechanism of particle production (called motion-induced radiation as well).
In spite of the significant number of researches, even the simplest systems
of idealized cavities with moving boundaries are not fully understood (see
a recent review of the subject and a long list of references in [1]). One can
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believe that such systems are truly fundamental with respect to motion-
induced radiation and that their investigation will clarify conceptual issues
raised by more complicated models. This subject is also important in its
own right, especially concerning prospects for experimental tests to measure
an emission of vacuum photons out of a real cavity with vibrating walls.

In this paper, we continue our investigation of one-dimensional vibrating
cavities with perfectly reflecting walls carried out in [2|. For such systems,
it is clearly recognized that a significant amount of photons may be pro-
duced inside the cavity only under some special circumstances. The crucial
point is to maintain a constructive interference of quantum waves from the
perturbed field vacuum. It is provided for a cavity on condition of some
parametric “opto-mechanical” resonance. A frequency of cavity oscillations
should be a multiple of some static cavity eigenfrequency [3-16]. Only few
papers analyzed the process of radiation generated under a disturbed reso-
nance condition. Dodonov et al., [1,9] thoroughly studied harmonic motions
considering approximate solutions for small amplitudes of oscillations. In
our previous paper [2|, we analyzed energy densities and total energies for
off resonant oscillations. But for open dynamical systems it happens that
there is no direct correspondence between the total accumulated energy and
the number of observed particles. The aim of this paper is to extend our
previous analysis. In what follows, we will analyze the number of radiated
photons and conditions in order to observe the enhanced photon production
in one-dimensional cavity.

From practical point of view, the one-dimensional cavity model with per-
fectly reflecting point-like walls seems to be a crude oversimplification. Let
us remind the arguments why the investigation of this toy model can be really
a first step to gain insight into a realistic lifelike situation. First, the anal-
ysis of three-dimensional cavities shows that each transverse photon mode
can be truly described by one-dimensional model. Therefore, the quantum
electrodynamics inside one-dimensional cavity is really a single polarization
approximation. Next, from all papers we know that realistic features of cav-
ity walls (like finite size, imperfect shape, frequency-dependent conductivity)
are included in fact as suitable modifications of the theoretical model with
perfect cavity walls. They do not change the basic mechanism (resonance
enhancement of the photon production, the qualitative laws for the growth
of the energy and the number of photons, the formation of traveling peaks in
the energy density (pulse shaping) etc.), but diminish the cavity finesse. On
the other hand, the detector involved to count photons will have its influence
on the photon production process as well. But the most important factor is
provided in case we take into consideration the influence of non-zero tem-
perature upon the production process. The finite temperature modifications
lead to the opposite effect. A cavity moving in thermal fluctuations produces
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more photons. They are generated rather from a thermal field than from a
vacuum field. However, all qualitative features of motion-induced radiation
known from the zero temperature case are observed here. The experimental
detection of radiation may be considerably simpler in this case [13]. All the
above considerations of including important cavity features which should be
taken into account in realistic experiments suggest that the modifications
preserve the basic picture of the production process. They influence only
the photon production rate.

The most important and interesting phenomenon seen in the oscillating
cavity system is the opto-mechanical resonance. The production of photons
inside the cavity can be greatly enhanced due to some constructive inter-
ference. We cannot describe all circumstances which directly affect it. It is
fairly certain that the mechanical oscillation frequency must be a multiple of
optical resonance frequencies. But other features of the cavity motion seem
to be less important. The cases of cavities with one or two oscillating walls
are similar [14, 15]. There are no important differences between the cases
when the cavity oscillates as a whole (translational vibrations) and when
the cavity length oscillates (breathing vibrations) [11|. There is no need for
sinusoidal type of oscillations to have the opto-mechanical resonance [10,16].
It is not proved, but maybe there is no need for exact periodicity and we
need only some “anchor” points of the cavity motion [8] to take profit of
the resonance enhancement. The existence of an anchor point means that
the cavity should always return to some fixed position with a resonant fre-
quency. In fact, it is possible to find a set of different cavity motions or
perturbations with the common parametric opto-mechanical resonance con-
dition leading to the exponential growth of produced photons. We recognize
the same parametric resonance condition for any periodic cavity motion. It
gives a motivation to study thoroughly the parametric resonance condition.
In the presented paper, we analyze two different motions of a cavity with
perturbed resonance conditions. Our goal is to find the resonance width,
where the exponential growth of photons still occurs.

The paper is organized as follows. In Sec. 2 we remind the setup of quan-
tum electrodynamics inside one-dimensional cavity with perfectly reflecting
walls. The quantization procedure is carefully described. We address the
question of particle production induced by some cavity motion which is as-
sumed to be bounded in time. In Sec. 3 we describe how to explore more
general cavity motions than harmonically oscillating walls. Then, we dis-
cuss examples of harmonic oscillations and some non-harmonic oscillations.
For both types of cavity oscillations, we recall main results well-known from
studies of resonant harmonic motions. Finally, the off-resonant oscillations
are discussed. We give two conditions of the frequency adjustment necessary
to keep the exponential growth of produced particles. This adjustment re-
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lies on the inequalities between the frequency modulation depth, the relative
amplitude of oscillations and the total number of oscillations (or the total
time of the cavity motion). Some conclusions for prospected experiments
are drawn.

2. Quantum electrodynamics inside one-dimensional cavity

We study the electromagnetic field inside one-dimensional oscillating cav-
ity made of two perfectly reflecting walls. We mean in fact the quantum the-
ory of linearly polarized light [17,18]. It is equivalent to the problem of the
scalar field with the corresponding field equation and boundary conditions:

(=07 + 97)A(w,t) = 0,
A(r =0,t) = A(z = q(t),t) = 0 for all times. (1)

The left wall is assumed to be fixed at position z = 0, while the right one
is oscillating with some prescribed time-like trajectory ¢(¢). The physical
system is just open, therefore, the total field energy and the number of field
quanta can change their values over the period of wall motion. We restrict
ourselves to some regular wall motions. In particular, a velocity of the wall is
never close to the speed of light. The allowed wall trajectories are specified
by the following set of requirements |2]:

(i) q(t) = L, for t <0

)
() 1g(t)] <
(i) q(t) > 0,
(iv) q(t)=L for t>T. (2)

The fourth requirement concerns the calculation of the number of “photons”.
In our one-dimensional physics, we mean massless scalar particles. Requir-
ing that the wall motion lasts a finite period of time, we have guaranteed
the equivalence between in and out photon states. In general case, Fock
spaces related to both asymptotic states are not unitary equivalent. It com-
plicates the definition of “particles”. As usual the specification of particles
corresponds to the choice of a suitable number of quanta operator. This
choice should be made on physical grounds, so we cannot determine it from
the formalism of the theory. Because of the lack of direct experimental ver-
ification of the idealized and simplified model, in literature it is commonly
assumed that a particle detector responds to standing-wave field modes of
a static cavity. These modes correspond to asymptotic solutions of (1):

A}Cn(x,t) = exp (—iwgt) sin (wgx) , Wp = —. (3)

1
vk
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Note that each wy corresponds to an eigenfrequency of the static cavity. Due
to the fourth requirement of (2), the quantized field for ¢ > T can be now
represented in terms of creation &L and annihilation a; operators associated
with the static cavity system:

o
Z [akAm x,t) dLAZ”*(x,t) . (4)
k=1

The quantization of the electromagnetic field inside a static cavity is done
here in a manner analogous to the canonical quantization of the electromag-
netic field in the whole space. The choice of operators {ay, al} allows us to
set up the Fock representation. In other words, the notion of particles is then
introduced. Before going further, we make some comment about the quanti-
zation. It has been recognized very early by von Neumann (1938) that there
exist infinitely many unitary inequivalent representations in the quantum
field theory. We should remember that the quantum system settled down
in a space bounded by reflecting walls is in fact an effective theory. The
boundary conditions for fields come from idealizations of the actual physics.
If we think about the description of real physics, then we must conclude
that in order to simplify the problem we have replaced complicated inter-
actions of fields with boundary walls with simple boundary conditions for
fields themselves. In any quantum theory, the price for such idealization is
that we lost some information and even worse we have injected an infinite
amount of information which we did not have. This manifests itself later in
calculations of physical observables. The calculations may involve infinite
numbers and need for physical cut-offs. Moreover, any effective theory al-
ways sets the stage for a discussion which choice of quantum representation
is appropriate. In other words and referring directly to our context, the
notion of particles in the presence of idealized (moving) boundaries is not
judiciously defined. In the framework of an oversimplified effective theory, it
may happen that we cannot justify rules for selecting operators for counting
real particles. If we are not in a position to analyze a full theory, then the
relevant selection can be justified only on physical grounds with reference
to some experimental setup. Therefore, at the level of theoretical considera-
tions based on the oversimplified effective theory we are not able to address
this question. To avoid possible confusion we stress that the quantization
procedure [17] seems to build a well defined quantum theory. Nevertheless,
the quantization of effective theories always must be handled with care and
confronted with a physical context.

Let us review briefly the procedure for calculating a number of pro-
duced particles inside a vibrating cavity. The complete set of mode func-
tions Ag(z,t) for any time may be chosen in such a way that left-moving
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and right-moving wave packets have the same shape [17]:

. . u o 7
Ak(.’L‘,t) = N, ezkﬂR(H»z) - ezkﬂR(t ) ’ Ny = — ’ (5)

where the phase function R is subject to the Moore’s equation

R(t+q(t)) = R(t — (1)) + 2. (6)

In fact, the phase function R contains the whole information about the
physical system. For a static case, the basic solutions (5) match exactly the
standing-wave solutions (3). Actually, this generalized fundamental set of
solutions can be easily constructed from standing-wave solutions if we make
use of the conformal symmetry that our two-dimensional theory possesses.
One can immediately recognize this way if the solutions (5) are written down
in the following alternative form:

Ak($, t) =

1
exp (—iwgu, ) sin (wpu_) , 7
- exp (i) sin (s ) ™
where we have introduced new coordinates:
_ R(t+z) £ R(t — )
N 2

L. (8)

Since we are equipped with the basis (5), we can evaluate the sum over field
modes referring to any point in time. The decomposition of the final state
(t > T) of the field operator in the basis (5) yields:

i@MHm+Hm@ﬂ. 9)
k=1

The particle content of the system can be now recognized in the following
standard way [17]. We use here the Heisenberg picture. For ¢ > T, the
cavity system is being in the quantum state that corresponds to the state
lout). The state |out) is uniquely defined as the state which is annihilated
by all operators {b;}. In this construction, the operators {bk,bl} do not
annihilate and create any particles. This action is realized by the set of
operators {ag, a};}. The family of b-operators helps us to trace the evolution
of particle states. After a time period of cavity motion T, the vacuum
state |0) goes to the squeezed state |out), which is actually a formal Fock
vacuum state with respect to the action of b-operators. To count for particles
produced inside the cavity during the cavity motion, we should analyze the
particle content of the final state |out). The number of quanta nj produced
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in the k-th mode is just the expectation value of the appropriate number
operator &L&k in the final state |out). The total number of created photons
is, therefore, given by N = > 7°, nj. Now, we can perform all suitable
calculations.

A standard method is to calculate the Bogoliubov coefficients at first.
The passage from one basis (3) to another one (5) can be represented by

some linear transformation:

= [am Al (1) + Bu ™ (z,1)] . (10)
=1

With the help of the Bogoliubov coefficients ay; and Bg;, one can also estab-
lish the following operator transformations

o
ap = Z (Oéuci?z + 51*16??;[) ;

=1

= i (ﬁlki’l + Oéfki)D ;

c->

i (akzal 5kla1) )

(_,Bkldl + Otszlzr) . (11

?y-c:li
I
Mg T

~

1

It is now straightforward to calculate the Bogoliubov coefficients starting
from the knowledge of the phase function R(z) [3,19] (note some minor sign
error in [3] and other papers):

t+L

Qg = 2L\/7 / dz eleer +zwlz

t+L
kl — 2L\/7 / dz e—zka zwlz (12)

The above formulas are meaningful provided that ¢ > T. Obviously, the
Bogoliubov coefficients are in fact independent of time. The number of
photons in k-th mode and the total number of photons produced in the
oscillating cavity are given by

ne=Y_ 1Bl N=Y n. (13)
I=1

The knowledge of the phase function R(z) comes from the solution of Moore’s
equation (6) for a given trajectory of a moving cavity wall. This solution
usually can be obtained only numerically.
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3. Photon production inside a cavity with a periodically
oscillating wall

In this paper, we will consider the problem of a vibrating cavity under
perturbed parametric resonance conditions. Its motion is assumed to be peri-
odic but a corresponding frequency differs from the resonant one w, = nn/L.
Moreover, the cavity oscillations will die after some period of timeT". Then,
we will be looking for the number of created particles. As it was mentioned
in the previous section, the key point of the corresponding calculation is to
find the phase function R(z). The method to solve Moore’s equation (6) was
presented in [2] (we have found recently that a similar method was described
in [20] in the context of classical strings). We define an auxiliary function
f(2) as the unique solution to the equation:

flE+q(t) =t —q(t). (14)

The function f(z) itself represents a physically reasonable motion of the
cavity wall (2) provided that the following conditions are satisfied:

(1) f(z)=2z—-2L, for 2 <L, (15)
(1) 0< f(2) < 00,
(i#i) F(z) < 2,
(i) f(z)=2z-2L, for z>L+T. (16)
Using this function, we can evaluate the corresponding solution of (6) as
n
_m@:4n+f£@ for 2 € [Ln_1,Ln], (17)

where we denote Lo = L and L,, = (f !)"(L). The symbol f" is used here
for something else than the power of the function, namely for the n-fold
multicomposition fo fo...o f. In the static region, for all z < L we have
always R(z) = z/L. The relevant periodicity conditions for a motion of the
cavity wall can be expressed referring either directly to the trajectory q(t)
or to the auxiliary function f(z):

q(t+Tp) = q(t) for 0<t<T-Typ,

Fz+To)=f(2)+Ty for L<z<L+T-T,. (18)

The period of wall oscillations is denoted here by Ty. For our resonant
motions, we have Ty = 27 /w, = 2L/n. If we are dealing with resonant
periodic wall motions, then the phase function R(z) always develops a per-
fect staircase-shape [2,8]. In this case, the energy and the total number
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of photons usually grow with time. The vibrating cavity system being in
a parametric resonance can continuously increase the amount of photons
created from vacuum. This phenomenon is referred as constructive interfer-
ence. Evidently it happens, but we need yet to ask whether this mechanism
of particle production runs efficiently only when the system parameters are
fine tuned for a resonance. The practical importance of this mechanism of
particle production depends crucially on conditions needed in order to keep
constructive interference inside a cavity system. Their investigation should
cast light on the feasibility for setting up experimental tests.

To follow our discussion of nearly resonant behavior of the oscillating
cavity system, we specify the motion of the cavity wall. We investigate two
different wall motions with either ¢(¢) or f(z) being a harmonic function:

L, t<0
qit) =< L{l1+dsinjw,(14+€)t]}, 0<t<T (19)
L, t>T
z—2L, z< L
f(z)=1< z—-2L+dsinfw,(14+¢e)(z—L)], L<z<L+T . (20)
z—2L, z>L+T

Note that the above examples (19) and (20) correspond to two different
types of wall motions. The example (19) yields just harmonic oscillations,
while the example (20) corresponds to a more sophisticated type of oscilla-
tions. In both cases, we can interpret € as a perturbation of the resonant
frequency (detuning of the resonance). For small amplitudes, an analysis of
the off resonant systems (19) was carried out in [1]. Here, we will discuss
such vibrating cavity systems for more general motions, arbitrary amplitudes
and long-time limits. We will calculate numerically the number of particles
created in different modes. The most interesting question is the long-time
behavior of these quantities.

First, we review some results concerning a resonant motion with some
finely adjusted frequency w, = n7/L. Let us remind that we have restricted
ourselves to motions of type (19) or (20). The parametric resonance means
e = 0 there. The corresponding phase function R(z) develops a well known
staircase shape. It is checked that the total average energy exponentially
grows in time. If we look at the energy density, it is concentrated into nar-
row traveling wave packets. The energy density wave packets grow rapidly
in time under the resonance conditions. Looking outside of the wave pack-
ets, the energy density is very small. Its average value is smaller n? times
than the value of Casimir energy density inside a static cavity. It results
that the photons are produced in sharp and intense pulses. In the long
time limit, the total number of photons created from the vacuum increases
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in time. The exception is a resonant oscillation with the lowest frequency
w1 (“semi-resonance”). There is no rapid proliferation of photons with time
there. The picture of traveling narrow wave packets in the energy density
does not appear in this case as well. In all resonant cases with the frequency
w9, photons are created practically only in the odd modes (see Fig. 1), their
amount in even modes is small (in the linear approximation [1]| there is no
photon production in even modes). The significant number of particles is
created just in the lowest mode (see Fig. 1), after a long time the system
looks like a Bose—Einstein condensate. The results described in this para-
graph have been previously drawn for small-amplitude cavity oscillations.
In this paper, we have checked them numerically to be true in general.
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Fig. 1. Number of created photons in particular modes ny,n9,n3,n5 and ny. Time
is rescaled as wdt/2L [1]. A cavity wall oscillates with resonant frequency w>. Even
modes are suppressed. The lowest mode n; dominates for a long-time regime.

Let us now discuss cavity systems defined by (19) or (20) and assume
that we have there € # 0. It means that the parametric resonance is violated.
Unlike the parametric resonance case, there are unknown exact solutions of
Moore’s equation (6) for off resonant motions. Some analytical information
was given in [2]: the long-time pattern of phase function R(z) is characterized
by a “long period” M1y, where M is some positive integer which can be
defined by the following relation:

LN:L—l-MT(). (21)

For many examples of cavity motions the above relation can be exact, and in
general we assume that it holds up to some desired accuracy. From the rela-
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tion (21) follows immediately: Ly, = Ly + MTp. It results that the phase
function R(z) after the long period M Ty is just reproduced but shifted. The
field energy inside a cavity that oscillates with a perturbed resonant fre-
quency grows exponentially only during the time MT,/2. Later, the total
energy rapidly decreases down to its minimal value. The minimal energy
matches the value of Casimir energy for a static cavity. After reaching its
minimal value, the energy becomes to grow again. Thus, the value of the
total field energy inside the cavity oscillates with the long period MTy. It
allows us to define the first condition to keep our mechanism of particle
production efficient: MT,/2 > T. Let us now summarize our numerical
results concerning the number of produced particles for off resonant cavity
motions. We are interested to know whether the mechanism of constructive
interference disappear and how the photon production rate is influenced.
The relevant parameter to control that is g = ¢/d. Figs. 2 and 3 show the
behavior of the number of particles produced in the lowest mode for small
and large g respectively. These data were taken from numerical calculations
for the cavity motion (19) with frequency ws, but calculations for motions
of type (20) and other resonant frequencies lead to similar results and plots.
The particles are still produced mainly in “principal” modes [1]. The lowest
mode n; is always preferred, however, if we detune the system the lowest
mode is more suppressed than the higher ones (see Fig. 4). We notice that
the numbers of produced particles in different modes grows in time linearly

phot ons
©
(o]

o
o

©
IN

number of

0.2y

0 0.5 1 1.5 2 2.5
rescaled tine
Fig.2. The change of the number of particles produced in the dominating lowest

mode n; during the detuning of the parametric resonance. The detuning process is
described by dimensionless parameter g = £/d. The unperturbed frequency is ws.
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Fig. 3. The change of n; for a strong detuning g > 1. The production of particles
is suppressed.

provided that g < 1. For a strong violence of parametric resonance condi-
tions g > 1, we can observe negligible oscillations of particle numbers around
null values. Let us then summarize that we observe the sharp transition of
the photon production rate about g = 1. If the parameters of the vibrating
cavity system are out of the resonant width defined by the inequality g < 1,

" 0. 25¢
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" _’////L:-

0 0.5 1 1.5 2 2.5
rescaled tine

Fig.4. Number of created photons in higher modes ns,ns and n;. Upper curves
correspond to the parametric resonance g = 0, and lower ones are taken for g = 0.6.



Photons Produced Inside a Cavity with . . . 3899

then the exponential rate of the photon growth disappears. This feature is
characteristic for resonant behavior and our parametric condition is common
for cavity motions of both types (19) and (20).

4. Conclusions

Each of our examples of cavity motions we have investigated in this pa-
per enables us to draw some common conclusions. The main results can be
summarized by the following relations arising from analytical and numerical
calculations. First, we proved that the measurement of produced particles
must be set in the first half of the “long period”, before the process of de-
struction of particles starts. The corresponding condition MTy/2 > T can
be rewritten as:

Aw TO
— <=
w T

In the above condition, w is the (resonant) frequency of cavity oscilla-
tions, Aw denotes the accuracy of tuning this frequency, Ty is a period of
oscillations and T stands for the total time of cavity motion. It is the first
condition to keep resonant enhancement of the production of photons inside
a vibrating cavity. The second condition comes from the numerical calcu-
lations discussed in the previous section. They show that the total number
of photons produced inside a cavity grows in time up to significant amounts
provided that the following relation between parameters occurs (we rewrite
here the requirement g < 1 for the constructive interference from the Sec. 3)

(22)

Aw AL
— <7 (23)
The cavity length is denoted by L, and its maximal change is AL.

The observation of photons created by virtue of the cavity oscillations
in realistic experiments is hoped in near future [21]. Instead of oscillations
of a cavity wall as a whole they consider rather surface oscillations induced
by strong acoustic waves. Then AL would correspond to the maximal pos-
sible displacement of a wall material. The condition (23) states simply that
the modulation depth of the resonant frequency should be smaller than the
relative depth of surface oscillations. This can be used as a crude estima-
tion of the sufficient amplitude of the high-frequency surface vibrations that
should be excited inside the wall. The second condition (22) says that the
number of oscillations the cavity performs should be less that the inverse of
this relative frequency modulation. This condition gives the estimated total
time of the growing production of photons.

The production of photons inside a vibrating cavity due to the dynamical
Casimir effect would be detected only if the parameters of our experimental
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setup are inside the width of the opto-mechanical resonance. Our simple and
general conditions confronted with feasible parameters of mechanical waves
which can be generated inside cavity walls suggest that an experimental
evidence is now still out of reach.
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