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PHOTONS PRODUCED INSIDEA CAVITY WITH A MOVING WALLPaweª W�grzyn and Tomasz RógM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived Otober 4, 2002; revised version April 30, 2003)The prodution of partiles inside one-dimensional avity with a mov-ing wall is disussed. Cavities with periodially driven wall motions areanalyzed numerially for long times. We formulate the onditions underwhih the partile prodution is being e�iently run. The onditions areindependent of a spei� type of avity motions.PACS numbers: 03.70.+k 1. IntrodutionThe relativisti theory of quantized �elds to be de�ned in the preseneof boundaries or interfaes is usually a troublesome issue. Espeially, han-dling with a non-stationary ase of moving boundaries theorists are entan-gled in embarrassing underlying problems. For the most part, remarkablephenomena arising in appliations of the quantum �eld theory in spaeswith moving boundaries are widely disussed in literature under the nameof dynamial Casimir e�et (or non-stationary Casimir e�et). One onse-quene of on�ning quantum �elds to live in some bounded spae is that theboundaries experiene attrative or repulsive fores. Unlike a stati ase,Casimir vauum fores an hange in time. However, it is assumed in usualsettings that the motion of boundaries is �rmly �xed by some external en-vironment. Therefore, no attention is paid to Casimir fores. A prominentfeature of the dynamial Casimir e�et is the phenomenon of quantum radi-ation attributable to vauum �utuations. Most of extensive studies of thesubjet are mainly ontributions to the knowledge of this purely quantummehanism of partile prodution (alled motion-indued radiation as well).In spite of the signi�ant number of researhes, even the simplest systemsof idealized avities with moving boundaries are not fully understood (seea reent review of the subjet and a long list of referenes in [1℄). One an(3887)



3888 P. W�grzyn, T. Rógbelieve that suh systems are truly fundamental with respet to motion-indued radiation and that their investigation will larify oneptual issuesraised by more ompliated models. This subjet is also important in itsown right, espeially onerning prospets for experimental tests to measurean emission of vauum photons out of a real avity with vibrating walls.In this paper, we ontinue our investigation of one-dimensional vibratingavities with perfetly re�eting walls arried out in [2℄. For suh systems,it is learly reognized that a signi�ant amount of photons may be pro-dued inside the avity only under some speial irumstanes. The ruialpoint is to maintain a onstrutive interferene of quantum waves from theperturbed �eld vauum. It is provided for a avity on ondition of someparametri �opto-mehanial� resonane. A frequeny of avity osillationsshould be a multiple of some stati avity eigenfrequeny [3-16℄. Only fewpapers analyzed the proess of radiation generated under a disturbed reso-nane ondition. Dodonov et al., [1,9℄ thoroughly studied harmoni motionsonsidering approximate solutions for small amplitudes of osillations. Inour previous paper [2℄, we analyzed energy densities and total energies foro� resonant osillations. But for open dynamial systems it happens thatthere is no diret orrespondene between the total aumulated energy andthe number of observed partiles. The aim of this paper is to extend ourprevious analysis. In what follows, we will analyze the number of radiatedphotons and onditions in order to observe the enhaned photon produtionin one-dimensional avity.From pratial point of view, the one-dimensional avity model with per-fetly re�eting point-like walls seems to be a rude oversimpli�ation. Letus remind the arguments why the investigation of this toy model an be reallya �rst step to gain insight into a realisti lifelike situation. First, the anal-ysis of three-dimensional avities shows that eah transverse photon modean be truly desribed by one-dimensional model. Therefore, the quantumeletrodynamis inside one-dimensional avity is really a single polarizationapproximation. Next, from all papers we know that realisti features of av-ity walls (like �nite size, imperfet shape, frequeny-dependent ondutivity)are inluded in fat as suitable modi�ations of the theoretial model withperfet avity walls. They do not hange the basi mehanism (resonaneenhanement of the photon prodution, the qualitative laws for the growthof the energy and the number of photons, the formation of traveling peaks inthe energy density (pulse shaping) et.), but diminish the avity �nesse. Onthe other hand, the detetor involved to ount photons will have its in�ueneon the photon prodution proess as well. But the most important fator isprovided in ase we take into onsideration the in�uene of non-zero tem-perature upon the prodution proess. The �nite temperature modi�ationslead to the opposite e�et. A avity moving in thermal �utuations produes



Photons Produed Inside a Cavity with . . . 3889more photons. They are generated rather from a thermal �eld than from avauum �eld. However, all qualitative features of motion-indued radiationknown from the zero temperature ase are observed here. The experimentaldetetion of radiation may be onsiderably simpler in this ase [13℄. All theabove onsiderations of inluding important avity features whih should betaken into aount in realisti experiments suggest that the modi�ationspreserve the basi piture of the prodution proess. They in�uene onlythe photon prodution rate.The most important and interesting phenomenon seen in the osillatingavity system is the opto-mehanial resonane. The prodution of photonsinside the avity an be greatly enhaned due to some onstrutive inter-ferene. We annot desribe all irumstanes whih diretly a�et it. It isfairly ertain that the mehanial osillation frequeny must be a multiple ofoptial resonane frequenies. But other features of the avity motion seemto be less important. The ases of avities with one or two osillating wallsare similar [14, 15℄. There are no important di�erenes between the aseswhen the avity osillates as a whole (translational vibrations) and whenthe avity length osillates (breathing vibrations) [11℄. There is no need forsinusoidal type of osillations to have the opto-mehanial resonane [10,16℄.It is not proved, but maybe there is no need for exat periodiity and weneed only some �anhor� points of the avity motion [8℄ to take pro�t ofthe resonane enhanement. The existene of an anhor point means thatthe avity should always return to some �xed position with a resonant fre-queny. In fat, it is possible to �nd a set of di�erent avity motions orperturbations with the ommon parametri opto-mehanial resonane on-dition leading to the exponential growth of produed photons. We reognizethe same parametri resonane ondition for any periodi avity motion. Itgives a motivation to study thoroughly the parametri resonane ondition.In the presented paper, we analyze two di�erent motions of a avity withperturbed resonane onditions. Our goal is to �nd the resonane width,where the exponential growth of photons still ours.The paper is organized as follows. In Se. 2 we remind the setup of quan-tum eletrodynamis inside one-dimensional avity with perfetly re�etingwalls. The quantization proedure is arefully desribed. We address thequestion of partile prodution indued by some avity motion whih is as-sumed to be bounded in time. In Se. 3 we desribe how to explore moregeneral avity motions than harmonially osillating walls. Then, we dis-uss examples of harmoni osillations and some non-harmoni osillations.For both types of avity osillations, we reall main results well-known fromstudies of resonant harmoni motions. Finally, the o�-resonant osillationsare disussed. We give two onditions of the frequeny adjustment neessaryto keep the exponential growth of produed partiles. This adjustment re-



3890 P. W�grzyn, T. Róglies on the inequalities between the frequeny modulation depth, the relativeamplitude of osillations and the total number of osillations (or the totaltime of the avity motion). Some onlusions for prospeted experimentsare drawn.2. Quantum eletrodynamis inside one-dimensional avityWe study the eletromagneti �eld inside one-dimensional osillating av-ity made of two perfetly re�eting walls. We mean in fat the quantum the-ory of linearly polarized light [17,18℄. It is equivalent to the problem of thesalar �eld with the orresponding �eld equation and boundary onditions:(��2t + �2x)A(x; t) = 0 ;A(x = 0; t) = A(x = q(t); t) = 0 for all times: (1)The left wall is assumed to be �xed at position x = 0, while the right oneis osillating with some presribed time-like trajetory q(t). The physialsystem is just open, therefore, the total �eld energy and the number of �eldquanta an hange their values over the period of wall motion. We restritourselves to some regular wall motions. In partiular, a veloity of the wall isnever lose to the speed of light. The allowed wall trajetories are spei�edby the following set of requirements [2℄:(i) q(t) = L ; for t � 0(ii) j _q(t)j < 1 ;(iii) q(t) > 0 ;(iv) q(t) = L for t � T : (2)The fourth requirement onerns the alulation of the number of �photons�.In our one-dimensional physis, we mean massless salar partiles. Requir-ing that the wall motion lasts a �nite period of time, we have guaranteedthe equivalene between in and out photon states. In general ase, Fokspaes related to both asymptoti states are not unitary equivalent. It om-pliates the de�nition of �partiles�. As usual the spei�ation of partilesorresponds to the hoie of a suitable number of quanta operator. Thishoie should be made on physial grounds, so we annot determine it fromthe formalism of the theory. Beause of the lak of diret experimental ver-i�ation of the idealized and simpli�ed model, in literature it is ommonlyassumed that a partile detetor responds to standing-wave �eld modes ofa stati avity. These modes orrespond to asymptoti solutions of (1):Aink (x; t) = 1p�k exp (�i!kt) sin (!kx) ; !k � k�L : (3)



Photons Produed Inside a Cavity with . . . 3891Note that eah !k orresponds to an eigenfrequeny of the stati avity. Dueto the fourth requirement of (2), the quantized �eld for t > T an be nowrepresented in terms of reation âyk and annihilation âk operators assoiatedwith the stati avity system:Â(x; t) = 1Xk=1 hâkAink (x; t) + âykAin�k (x; t)i : (4)The quantization of the eletromagneti �eld inside a stati avity is donehere in a manner analogous to the anonial quantization of the eletromag-neti �eld in the whole spae. The hoie of operators fak; aykg allows us toset up the Fok representation. In other words, the notion of partiles is thenintrodued. Before going further, we make some omment about the quanti-zation. It has been reognized very early by von Neumann (1938) that thereexist in�nitely many unitary inequivalent representations in the quantum�eld theory. We should remember that the quantum system settled downin a spae bounded by re�eting walls is in fat an e�etive theory. Theboundary onditions for �elds ome from idealizations of the atual physis.If we think about the desription of real physis, then we must onludethat in order to simplify the problem we have replaed ompliated inter-ations of �elds with boundary walls with simple boundary onditions for�elds themselves. In any quantum theory, the prie for suh idealization isthat we lost some information and even worse we have injeted an in�niteamount of information whih we did not have. This manifests itself later inalulations of physial observables. The alulations may involve in�nitenumbers and need for physial ut-o�s. Moreover, any e�etive theory al-ways sets the stage for a disussion whih hoie of quantum representationis appropriate. In other words and referring diretly to our ontext, thenotion of partiles in the presene of idealized (moving) boundaries is notjudiiously de�ned. In the framework of an oversimpli�ed e�etive theory, itmay happen that we annot justify rules for seleting operators for ountingreal partiles. If we are not in a position to analyze a full theory, then therelevant seletion an be justi�ed only on physial grounds with refereneto some experimental setup. Therefore, at the level of theoretial onsidera-tions based on the oversimpli�ed e�etive theory we are not able to addressthis question. To avoid possible onfusion we stress that the quantizationproedure [17℄ seems to build a well de�ned quantum theory. Nevertheless,the quantization of e�etive theories always must be handled with are andonfronted with a physial ontext.Let us review brie�y the proedure for alulating a number of pro-dued partiles inside a vibrating avity. The omplete set of mode fun-tions Ak(x; t) for any time may be hosen in suh a way that left-moving



3892 P. W�grzyn, T. Rógand right-moving wave pakets have the same shape [17℄:Ak(x; t) = Nk heik�R(t+x) � eik�R(t�x)i ; Nk � ip4�k ; (5)where the phase funtion R is subjet to the Moore's equationR(t+ q(t)) = R(t� q(t)) + 2 : (6)In fat, the phase funtion R ontains the whole information about thephysial system. For a stati ase, the basi solutions (5) math exatly thestanding-wave solutions (3). Atually, this generalized fundamental set ofsolutions an be easily onstruted from standing-wave solutions if we makeuse of the onformal symmetry that our two-dimensional theory possesses.One an immediately reognize this way if the solutions (5) are written downin the following alternative form:Ak(x; t) = 1p�k exp (�i!ku+) sin (!ku�) ; (7)where we have introdued new oordinates:u� = R(t+ x)�R(t� x)2 L : (8)Sine we are equipped with the basis (5), we an evaluate the sum over �eldmodes referring to any point in time. The deomposition of the �nal state(t > T ) of the �eld operator in the basis (5) yields:Â(x; t) = 1Xk=1 hb̂kAk(x; t) + b̂ykA�k(x; t)i : (9)The partile ontent of the system an be now reognized in the followingstandard way [17℄. We use here the Heisenberg piture. For t > T , theavity system is being in the quantum state that orresponds to the statejouti. The state jouti is uniquely de�ned as the state whih is annihilatedby all operators fbkg. In this onstrution, the operators fbk; bykg do notannihilate and reate any partiles. This ation is realized by the set ofoperators fak; aykg. The family of b-operators helps us to trae the evolutionof partile states. After a time period of avity motion T , the vauumstate j0i goes to the squeezed state jouti, whih is atually a formal Fokvauum state with respet to the ation of b-operators. To ount for partilesprodued inside the avity during the avity motion, we should analyze thepartile ontent of the �nal state jouti. The number of quanta nk produed



Photons Produed Inside a Cavity with . . . 3893in the k -th mode is just the expetation value of the appropriate numberoperator âykâk in the �nal state jouti. The total number of reated photonsis, therefore, given by N = P1k=1 nk. Now, we an perform all suitablealulations.A standard method is to alulate the Bogoliubov oe�ients at �rst.The passage from one basis (3) to another one (5) an be represented bysome linear transformation:Ak(x; t) = 1Xl=1 ��klAinl (x; t) + �klAin?l (x; t)� : (10)With the help of the Bogoliubov oe�ients �kl and �kl, one an also estab-lish the following operator transformationsâk = 1Xl=1 ��lk b̂l + �?lk b̂yl� ; b̂k = 1Xl=1 ��?klâl � �?klâyl� ;âyk = 1Xl=1 ��lk b̂l + �?lk b̂yl� ; b̂yk = 1Xl=1 ���klâl + �klâyl� : (11)It is now straightforward to alulate the Bogoliubov oe�ients startingfrom the knowledge of the phase funtion R(z) [3,19℄ (note some minor signerror in [3℄ and other papers):�kl = 12Lr lk t+LZt�L dz e�ik�R(z)+i!lz ;�kl = � 12Lr lk t+LZt�L dz e�ik�R(z)�i!lz : (12)The above formulas are meaningful provided that t > T . Obviously, theBogoliubov oe�ients are in fat independent of time. The number ofphotons in k -th mode and the total number of photons produed in theosillating avity are given bynk = 1Xl=1 j�lkj2 ; N = 1Xk=1 nk : (13)The knowledge of the phase funtion R(z) omes from the solution of Moore'sequation (6) for a given trajetory of a moving avity wall. This solutionusually an be obtained only numerially.



3894 P. W�grzyn, T. Róg3. Photon prodution inside a avity with a periodiallyosillating wallIn this paper, we will onsider the problem of a vibrating avity underperturbed parametri resonane onditions. Its motion is assumed to be peri-odi but a orresponding frequeny di�ers from the resonant one !n = n�=L.Moreover, the avity osillations will die after some period of timeT . Then,we will be looking for the number of reated partiles. As it was mentionedin the previous setion, the key point of the orresponding alulation is to�nd the phase funtion R(z). The method to solve Moore's equation (6) waspresented in [2℄ (we have found reently that a similar method was desribedin [20℄ in the ontext of lassial strings). We de�ne an auxiliary funtionf(z) as the unique solution to the equation:f(t+ q(t)) = t� q(t): (14)The funtion f(z) itself represents a physially reasonable motion of theavity wall (2) provided that the following onditions are satis�ed:(i) f(z) = z � 2L ; for z � L ; (15)(ii) 0 < f 0(z) <1 ;(iii) f(z) < z ;(iv) f(z) = z � 2L ; for z � L+ T : (16)Using this funtion, we an evaluate the orresponding solution of (6) asR(z) = 2n+ fn(z)L for z 2 [Ln�1; Ln℄ ; (17)where we denote L0 � L and Ln = (f�1)n(L). The symbol fn is used herefor something else than the power of the funtion, namely for the n-foldmultiomposition f Æ f Æ : : : Æ f . In the stati region, for all z � L we havealways R(z) = z=L. The relevant periodiity onditions for a motion of theavity wall an be expressed referring either diretly to the trajetory q(t)or to the auxiliary funtion f(z):q(t+ T0) = q(t) for 0 � t � T � T0 ;f(z + T0) = f(z) + T0 for L � z � L+ T � T0 : (18)The period of wall osillations is denoted here by T0. For our resonantmotions, we have T0 = 2�=!n = 2L=n. If we are dealing with resonantperiodi wall motions, then the phase funtion R(z) always develops a per-fet stairase-shape [2, 8℄. In this ase, the energy and the total number



Photons Produed Inside a Cavity with . . . 3895of photons usually grow with time. The vibrating avity system being ina parametri resonane an ontinuously inrease the amount of photonsreated from vauum. This phenomenon is referred as onstrutive interfer-ene. Evidently it happens, but we need yet to ask whether this mehanismof partile prodution runs e�iently only when the system parameters are�ne tuned for a resonane. The pratial importane of this mehanism ofpartile prodution depends ruially on onditions needed in order to keeponstrutive interferene inside a avity system. Their investigation shouldast light on the feasibility for setting up experimental tests.To follow our disussion of nearly resonant behavior of the osillatingavity system, we speify the motion of the avity wall. We investigate twodi�erent wall motions with either q(t) or f(z) being a harmoni funtion:q(t) = 8<: L ; t < 0L f1 + d sin [!n(1 + ")t℄g ; 0 < t < TL ; t > T ; (19)f(z) = 8<: z � 2L ; z < Lz � 2L+ d sin [!n(1 + ")(z � L)℄ ; L < z < L+ Tz � 2L ; z > L+ T : (20)Note that the above examples (19) and (20) orrespond to two di�erenttypes of wall motions. The example (19) yields just harmoni osillations,while the example (20) orresponds to a more sophistiated type of osilla-tions. In both ases, we an interpret " as a perturbation of the resonantfrequeny (detuning of the resonane). For small amplitudes, an analysis ofthe o� resonant systems (19) was arried out in [1℄. Here, we will disusssuh vibrating avity systems for more general motions, arbitrary amplitudesand long-time limits. We will alulate numerially the number of partilesreated in di�erent modes. The most interesting question is the long-timebehavior of these quantities.First, we review some results onerning a resonant motion with some�nely adjusted frequeny !n = n�=L. Let us remind that we have restritedourselves to motions of type (19) or (20). The parametri resonane means" = 0 there. The orresponding phase funtion R(z) develops a well knownstairase shape. It is heked that the total average energy exponentiallygrows in time. If we look at the energy density, it is onentrated into nar-row traveling wave pakets. The energy density wave pakets grow rapidlyin time under the resonane onditions. Looking outside of the wave pak-ets, the energy density is very small. Its average value is smaller n2 timesthan the value of Casimir energy density inside a stati avity. It resultsthat the photons are produed in sharp and intense pulses. In the longtime limit, the total number of photons reated from the vauum inreases



3896 P. W�grzyn, T. Rógin time. The exeption is a resonant osillation with the lowest frequeny!1 (�semi-resonane�). There is no rapid proliferation of photons with timethere. The piture of traveling narrow wave pakets in the energy densitydoes not appear in this ase as well. In all resonant ases with the frequeny!2, photons are reated pratially only in the odd modes (see Fig. 1), theiramount in even modes is small (in the linear approximation [1℄ there is nophoton prodution in even modes). The signi�ant number of partiles isreated just in the lowest mode (see Fig. 1), after a long time the systemlooks like a Bose�Einstein ondensate. The results desribed in this para-graph have been previously drawn for small-amplitude avity osillations.In this paper, we have heked them numerially to be true in general.
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Photons Produed Inside a Cavity with . . . 3897tion (21) follows immediately: LN+n = Ln+MT0. It results that the phasefuntion R(z) after the long period MT0 is just reprodued but shifted. The�eld energy inside a avity that osillates with a perturbed resonant fre-queny grows exponentially only during the time MT0=2. Later, the totalenergy rapidly dereases down to its minimal value. The minimal energymathes the value of Casimir energy for a stati avity. After reahing itsminimal value, the energy beomes to grow again. Thus, the value of thetotal �eld energy inside the avity osillates with the long period MT0. Itallows us to de�ne the �rst ondition to keep our mehanism of partileprodution e�ient: MT0=2 > T . Let us now summarize our numerialresults onerning the number of produed partiles for o� resonant avitymotions. We are interested to know whether the mehanism of onstrutiveinterferene disappear and how the photon prodution rate is in�uened.The relevant parameter to ontrol that is g = "=d. Figs. 2 and 3 show thebehavior of the number of partiles produed in the lowest mode for smalland large g respetively. These data were taken from numerial alulationsfor the avity motion (19) with frequeny !2, but alulations for motionsof type (20) and other resonant frequenies lead to similar results and plots.The partiles are still produed mainly in �prinipal� modes [1℄. The lowestmode n1 is always preferred, however, if we detune the system the lowestmode is more suppressed than the higher ones (see Fig. 4). We notie thatthe numbers of produed partiles in di�erent modes grows in time linearly
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Photons Produed Inside a Cavity with . . . 3899then the exponential rate of the photon growth disappears. This feature isharateristi for resonant behavior and our parametri ondition is ommonfor avity motions of both types (19) and (20).4. ConlusionsEah of our examples of avity motions we have investigated in this pa-per enables us to draw some ommon onlusions. The main results an besummarized by the following relations arising from analytial and numerialalulations. First, we proved that the measurement of produed partilesmust be set in the �rst half of the �long period�, before the proess of de-strution of partiles starts. The orresponding ondition MT0=2 > T anbe rewritten as: �!! < T0T : (22)In the above ondition, ! is the (resonant) frequeny of avity osilla-tions, �! denotes the auray of tuning this frequeny, T0 is a period ofosillations and T stands for the total time of avity motion. It is the �rstondition to keep resonant enhanement of the prodution of photons insidea vibrating avity. The seond ondition omes from the numerial alu-lations disussed in the previous setion. They show that the total numberof photons produed inside a avity grows in time up to signi�ant amountsprovided that the following relation between parameters ours (we rewritehere the requirement g < 1 for the onstrutive interferene from the Se. 3)�!! < �LL : (23)The avity length is denoted by L, and its maximal hange is �L.The observation of photons reated by virtue of the avity osillationsin realisti experiments is hoped in near future [21℄. Instead of osillationsof a avity wall as a whole they onsider rather surfae osillations induedby strong aousti waves. Then �L would orrespond to the maximal pos-sible displaement of a wall material. The ondition (23) states simply thatthe modulation depth of the resonant frequeny should be smaller than therelative depth of surfae osillations. This an be used as a rude estima-tion of the su�ient amplitude of the high-frequeny surfae vibrations thatshould be exited inside the wall. The seond ondition (22) says that thenumber of osillations the avity performs should be less that the inverse ofthis relative frequeny modulation. This ondition gives the estimated totaltime of the growing prodution of photons.The prodution of photons inside a vibrating avity due to the dynamialCasimir e�et would be deteted only if the parameters of our experimental
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