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CONTRACTIONS OF LIE ALGEBRAS ANDGENERALIZED CASIMIR INVARIANTSRutwig Campoamor-StursbergLaboratoire de Mathématiques et AppliationsFaulté de Sienes et TehniquesUniversité de Haute Alsae4, rue des Frères Lumière, 68093 Mulhouse, Franee-mail: R.Campoamor�uha.fr(Reeived Deember 10, 2002)We prove that if g0 is a ontration of a Lie algebra g then the number offuntionally independent invariants of g0 is at least that of g. This allows toobtain some riteria to ensure the non-existene of non-trivial invariants forLie algebras, as well as to dedue some results on the number of derivationsof a Lie algebra. In partiular, it is shown that almost any even dimensionalsolvable omplete Lie algebra has only trivial invariants. Moreover, withthe ontration formula we determine expliitly the number of invariantsof Lie algebras arrying a supplementary struture, suh as linear ontator linear forms whose di�erential is sympleti, without having expliitknowledge on the struture of the ontrating algebra. This in partiularenables us to onstrut Lie algebras with non-trivial Levi deompositionand none invariants for the oadjoint representation as deformations offrobeniusian model Lie algebras.PACS numbers: 02.20.Sv 1. IntrodutionInvariants of the oadjoint representation of Lie algebras, also alled gen-eralized Casimir invariants, are rather important in physis, sine they arerelated to some preserved quantities in any theory desribed in terms ofsymmetry algebras [1℄. In any ase, these invariants provide various infor-mation on the irreduible representations of the onsidered Lie algebras [1℄,and haraterize spei� properties of a physial system, like mass formulaefor dynamial groups. For the lassial Lie algebras the problem was solvedlong ago by Raah, and by the Levi deomposition the lass whih must beanalyzed is that of solvable Lie algebras, joint with the representations ofthe Levi subalgebra on the radial. Various authors have approahed theproblem in reent years, and the di�ulty of �nding or even haraterizingthe invariants of solvable Lie algebras has been pointed out [2, 3℄.(3901)



3902 R. Campoamor-StursbergAnother ruial feature in the study of a physial system is the determi-nation of its symmetries, more spei�ally, of the symmetry group of thesystem [4,5℄. This leads naturally to the omparison of systems having simi-lar groups. Contrations of Lie algebras were introdued as a tool to explainformally why some theories arise as limiting ases of other theories, like thepassage from the de Sitter algebra to the Poinaré algebra or from the latterto the Galilei algebra, and were further developed by various authors [6�8℄.Endowed with these methods, it is natural to ask whih is the relation ofthe invariants of a Lie algebra and the invariants of its ontrations. For thespeial ase of lassial Casimir invariants, the question redues to relate theorresponding universal enveloping algebras. This question was analyzed indetail in [9℄ for the speial ase of the simple Lie algebra sl(3; C ). This prob-lem is de�nitively interesting for physial appliations, sine ontrationsan be interpreted in some sense as approximations, and the understand-ing of the behaviour of the invariants ould provide useful interpretations ofphysial phenomena. One ould argue that, sine any Lie algebra ontratsto the Abelian Lie algebra, a ontration will obviously have more invariantsthan the ontrated algebra. This pattern oinides also with the (few) Liealgebras analyzed with respet to this observation, thus ould be taken asan �experimental proof�. However, suh a onlusion is formally non rigor-ous, and an easily lead to mistakes. Until 1999, basing on the theory ofsemisimple Lie algebras and all onstrutions known, it was impliitly a-epted that any rigid Lie algebra was rational (i.e., de�ned over the �eldof rational numbers), whih also seemed to be a quite natural onsequeneof this theory. However, so obvious the fat appeared, it was pointed outthat this onlusion is false, sine there exist rigid Lie algebras whih arenot only non-rational, but even non-real [10℄. Therefore, if the observationon the number of invariants of ontrations is to be sustained, it must beproven formally for nonpolynomial invariants (for polynomials the assertionfollows from the properties of the universal enveloping algebras).Among other interesting problems related to the invariants of Lie al-gebras, a haraterization of solvable Lie algebras with Abelian nilradialadmitting only trivial invariants was presented in [11℄. In the same paper,the author ommented the importane of �nding a orresponding harater-ization for solvable Lie algebras with non-Abelian nilradial. In view of theases treated and other examples, suh a haraterization probably does notexist, as it should omprise simultaneously the solvable and the non-solvableLie algebras with nonzero Levi subalgebra. However, su�ieny onditionsto ensure the non-existene of non-trivial invariants an be found [2, 3℄.In this paper we approah the problem of analyzing the relation betweenthe number of invariants of a Lie algebra and the number of invariants of itsontrations. In Setion 2 we reall the general results on ontrations of Lie



Contrations of Lie Algebras and Generalized Casimir Invariants 3903algebras and the generalized Casimir invariants. In Setion 3 we prove for-mally, making use of the Beltrametti�Blasi formula [12℄, that a ontrationof a Lie algebras has at least as many funtionally independent invariants asthe algebra it omes from. This generalizes the pattern observed for somespeial types of algebras to arbitrary Lie algebras. As onsequenes of thisresult, we dedue riteria to ensure that a Lie algebra has no non-trivialinvariants. The formula an also be used to determine upper bounds for thenumber of invariants in the ase where a diret omputation beomes toodi�ult. In Setion 4 we apply the result to the study of derivations of Liealgebras. In partiular, we prove that any Lie algebra with less derivationsthan its dimension neessarily has a fundamental set of invariants formed byrational funtions, of whih at least one orresponds to a degree one poly-nomial. This also tells that in absene of a fundamental set of invariantsformed by rational invariants, a Lie algebra annot be omplete [13℄. Thelatter ase is of speial interest, sine most of the even-dimensional solv-able omplete Lie algebras in dimensions n � 9 have only trivial invariants,showing that this lass is, in even dimension, an adequate starting pointto searh for riteria on the non-existene of non-trivial invariants. Evensome of their ontrations, whih are not omplete any more, are strongandidates for admitting only trivial invariants.Finally, in Setion 5, we analyze the invariants for some Lie algebrasarrying an additional struture, suh as linear ontat forms or sympletiforms. The interest of suh properties is out of disussion in view of theimportane of sympleti strutures in physis [14℄ The advantage of Liealgebras having supplementary strutures like these lies in the fat thatthey an always be lassi�ed up to ontration [15, 16℄, whih enables usto determine the number of invariants without any information about thepreise struture of the ontrating algebra. This method is also of interestfor deformation theory, whih, under ertain restritions, is deeply relatedwith ontration theory [17, 18℄.Unless otherwise stated, any Lie algebra g onsidered here is de�ned overthe �eld K = R; C and nonsplit, i.e., g does not deompose as a diret sumof ideals.2. Contrations of Lie algebras. Generalized Casimir invariants2.1. Contrations of Lie algebrasTraditionally ontrations of Lie algebras are presented as limits [7, 8℄,although other authors have approahed the ontration problem from thepoint of view of group ations [17, 18℄.



3904 R. Campoamor-StursbergA Lie algebra g = (K n ; �) may be onsidered as an element � of thevariety Hom�V2 K n ;K n� via the skew-symmetri bilinear map � : g
 g !g de�ning the Lie braket on g. Thus we an identify the Lie algebra gwith its law �. The set Ln of Lie algebras is then a subset of the varietyHom�V2 K n ;K n� on whih the general linear group GL (n;K ) ats by :(g Æ �)(x; y) = g�1 (� (gx; gy)) ; g 2 GL (n;K ) ;x; y 2 K n :Clearly the orbit under this ation are the isomorphism lasses of �. Nowa Lie algebra �1 is alled a ontration of a Lie algebra �0 if �1 2 O (�0),the Zariski losure of the orbit. The ontration is alled nontrivial if �lies in the boundary of the orbit. This geometrial de�nition is nothingmore than a topologial reformulation of the lassial onept of Inönü�Wigner ontrations and its variations [7, 8℄. As known, these ontra-tions an be viewed as singular hanges of basis, starting from a �xed basisfX1; : : : ;Xng of a Lie algebra g. That is, onsidering a sequene of endo-morphisms ffp ("1; : : : ; "r)gp2N[f0g (where f0 an be taken as the identityand "i designate the parameters), for any p we have:�p := f�1p Æ �0 (fp; fp) : (1)Thus, if the limit exists, it also represents a Lie algebra, and the law of theontration is given by �1 = limp!1�p : (2)Therefore, if nCkijo are the struture onstants of g0 = (K n ; �0) over abasis fX1; : : : ;Xng and nCkij(p)o the struture onstants of gp = (K n ; �p),the law of �1 is given by fCkij = limp!1Ckij(p) : (3)The most elementary example is the well known fat that any Lie algebraontrats to the Abelian algebra of the same dimension. The ontrationis easily seen to be realized by the endomorphisms �ft = t�1id	, where iddenotes the identity matrix. This speial kind of ontration, depending onan unique parameter, is alled one-parameter subgroup ontration [18℄.2.2. Generalized Casimir invariantsThe standard method to obtain the Casimir operators and its general-izations of a Lie algebra is their interpretation as invariants of the oadjointrepresentation of the orresponding Lie group [1, 11, 19℄.



Contrations of Lie Algebras and Generalized Casimir Invariants 3905The problem of �nding its invariants is indeed redued to that of solv-ing a system of linear �rst order partial di�erential equations. If B =fX1; : : : ;Xng is a basis of the n-dimensional Lie algebra g and fx1; : : : ; xnga oordinate system on the dual spae, then the in�nitesimal generators ofthe ation are denoted by eXi. If moreover the struture onstants of g aregiven by [Xi;Xj ℄ = Cki;jXk over the basis B, a funtion F 2 C1 (g�) is aninvariant of the oadjoint representation if and only if it satis�es the twofollowing onditions:1. eXi =Pj(�Cki;j)xk ��xj and h eXi; eXji = Cki;j eXk ,2. F is a solution of the system n eXiF = 0o1�i�n .Solutions to this system are usually found by integration of the orre-sponding system of harateristi equations or other standard integrationproedures [4℄. If the solutions are polynomials, then they orrespond to thelassial Casimir operators. If the solutions are rational or transendentalfuntions, we all them generalized Casimir operators. The latter type ofsolutions has shown its importane in the theory of integrable Hamiltoniansystems, as pointed out in [20℄.A maximal set of funtionally independent solutions will be alled afundamental set of invariants. Sine a Lie algebra law is an alternated tensorof type (2; 1), this rank of the algebra does not depend on the basis hosen.By antisymmetry, this rank must be even, and from the analysis undertakenin [12℄ it follows that the number of invariants N satis�es the ongrueneN � dim (g) (mod 2). Polynomial solutions will naturally orrespond to thelassial Casimir operators ( possibly after symmetrizing ). In partiular,an odd dimensional Lie algebra has at least one nontrivial invariant.3. The ontration formulaAs told in the introdution, in [9℄ the authors studied the ontrationsof the simple Lie algebra sl (3; C ), and observed that invariants of the on-trations an be obtained as limits of the invariants of sl (3; C ), at least inthe ase of Inönü�Wigner ontrations. In partiular, from this analysis weget that ontrations are expeted to have more invariants than the alge-bra they ome from. The known ases seem to agree with this observation,whih however does not onstitute an evidene for its orretness. In thissetion we prove that this important observation generalizes indeed to on-trations of any Lie algebra (the orbit losure argument allowing to dealwith all partiular types of ontrations simultaneously).As follows from the work of Beltrametti and Blasi [12℄, the number offuntionally independent invariants of the oadjoint representation ad� of a



3906 R. Campoamor-StursbergLie algebra g is given by N = dim(g) � r (g), where r (g) is the maximumrank of the ommutator table onsidered as a (n� n)-matrix, where n =dim(g). That is, the matrix is Aijk := �Ckijxk�1�i<j;k�dim(g) over the basisfX1; : : : ;Xng, nCkijo being the struture onstants over this basis. It islear that on the transformed basis ffpX1; : : : ; fpXng we obtain the matrixApijk = �Ckij (p)xk�.Theorem 1 If g1 = (K n ; �1) is a ontration of g0 = (K n ; �0), then N (g1) �N (g0).ProofLet fX1; : : : ;Xng be a basis of g0 and fp ("1; : : : ; "r) be the sequene ofendomorphisms suh that �1 = limp!1�pBy appliation of elementary properties of matrix analysis algebra we obtainthat: rank (Aijk) � rank� limp!1�Apijk�� : (4)This inequality holds for any representative �0 of the Lie algebra g0 and anyfamily fp 2 GL (n;K ) realizing the ontration. This proves that startingfrom the orbit of g0 we preserve of derease the rank of the matries in (4).As a onsequene of the fat that ontrations of Lie algebras over a�eld k an be haraterized in terms of disrete valuation k-algebras whosequotient �eld has transendene degree one over k, and that formal deforma-tions an be desribed using inverse limits and the ompletion of valuationalgebras [18℄, we dedue that a ontration an be realized as a deforma-tion [17℄, whih ensures that the maximal rank of ommutation matriesAijk of representatives �1 of g1 is lower or equal to the rank of some om-mutator matrix of a representative of g0. This shows that no representativeof the orbit of g1 an reverse the inequality (4). Therefore we obtain that:r (g0) � r (g1) (5)and from the formula for the number of invariants:N (g0) � N (g1) ; (6)that is, the ontration g1 has at least N (g0) invariants.



Contrations of Lie Algebras and Generalized Casimir Invariants 3907This result onstitutes a omplete proof of the intuition that ontrationshave �less brakets� than the Lie algebra they ome from, and it is indepen-dent of any experimental observation made on partiular ases. Geometri-ally this is more or less lear, as the dimension of the orbit of ontratedalgebras is lower than the orbit dimension of the starting algebra, and there-fore one should expet that the ontration has more invariants. Observefurther that this result annot be formulated in terms of deformations, sinethere exist deformations whih are not related to a ontration:Example 1 Let r�K be the solvable Lie algebra given by the brakets[X1;X2℄ = X1; [X1;X3℄ = [X2;X3℄ = 0over the basis fX1;X2;X3g. The family of algebras L (�) given by[X1;X2℄ = X1; [X2;X3℄ = ��X3; [X1;X3℄ = 0with � 6= 1 is a deformation of r � K , but none element of this familyontrats to r� K [17℄.From Theorem 1 we dedue a result whih was antiipated in [9℄ for thespeial ase of sl (3; C ):Corollary 1 If g is a ontration of a simple Lie algebra of rank p, then ghas at least p funtionally independent invariants.Thus Theorem 1 establishes a neessary ondition on the number ofinvariants of ontrations. This is speially of interest when we searh forLie algebras admitting only trivial invariants [i.e., all whose invariants areonstant funtions℄:Lemma 1 If g has a ontration without any non-trivial invariants, then gitself has only trivial invariants.This lemma gives an alternative proedure to ensure the non-existeneof non-trivial invariants: to �nd a ontration whih has only trivial invari-ants. On the other hand, it also provides us a geometrial onsequene: theorbits of suh Lie algebras are not inluded in the orbit losure of simple Liealgebras, sine they annot be ontrations of them. However, its interest isthe possibility of applying it to Lie algebras for whih we know ontrationswhose invariants have already been determined. An elementary exampleillustrates this fat: For m � 2 let r be a (2m + 2)-dimensional solvable



3908 R. Campoamor-StursbergLie algebra whose nilradial is isomorphi to the parametrized nilpotent Liealgebra n�1;:::;�[m2 ℄+2 given by:[X2+j ;X2m+1�j ℄ = X1; 0 � j � m� 1[X2+j ;X2m+1℄ = �jXj ; 1 � j � m� 2��1; : : : ; �[m2 ℄+2� 2 K [m2 ℄+2 9>=>; ; (7)where fX1; : : : ;X2m+1;X2m+2g is a basis of r and �j + �2m�j = 0 for 1 �j � [m2 ℄ + 2.Observe that X1 belongs to the entre of the nilradial, and therefore rhas trivial entre whenever [X2m+2;X1℄ 6= 0. Let ft 2 GL(2m+2;K ) be thesequene de�ned byft (Xj) = t2m+2�jXj ; 1 � j � 2m+ 2 :Clearly these endomorphisms de�ne a one-parameter subgroup ontration,at it an easily be seen that limt!1 �f�1t r(ft; ft)� is a solvable Lie algebrawhose nilradial is isomorphi to the Heisenberg Lie algebrahm = hX1; : : : ;X2m+1j[X2+j ;X2m+1�j ℄ = X1i :If we suppose, moreover, that [X2m+2;X1℄ 6= 0, then the ontrated alge-bra is of type L (m; 1) [21℄, and either from a diret omputation or byappliation of the formulae given there, sine the entre is trivial, we obtainthat N (L(m; 1)) = 0, and therefore r has only trivial invariants. A diretomputation of the invariants of r is muh more ompliated, due to the pres-ene of the [m2 ℄ + 2 parameters depending on the dimension. Although ingeneral the preeding result annot be announed using deformations, it ap-plies in partiular to deformations whih are related to ontrations. Reallthat a jump deformation �t of a Lie algebra (V; �0) is a formal deformation�t = �0 + t�1 + t2�2 + : : : : ��i 2 Hom �^2V; V �� whih remains onstantfor generi t 6= 0. That is, if u is an additional variable and oe�ient areextended to K ((t)) [[u℄℄; we have an isomorphism �t = �(1+u)t.Proposition 1 Let g be a Lie algebra satisfying N (g) = 0. Then any jumpdeformation g0 also satis�es N (g0) = 0.The appliability of this onsequene is onstrained by the neessity on-ditions for the existene of jump deformations, suh as the non-nullity of theohomology group H1 (g; g).



Contrations of Lie Algebras and Generalized Casimir Invariants 39094. Invariants and derivations of Lie algebrasIn this paragraph we analyze some questions relating the invariants of aLie algebra g with the struture of its Lie algebra of derivations Der(g). Inpartiular, we are interested on the invariants of Lie algebras satisfying theinequality dimDer(g) � dim g.Among the multiple properties of ontrations of Lie algebras existing,we emphasize the following, whih will be used in this setion and whoseproof is straightforward:Lemma 2 Let g1 be a ontration of the Lie algebra g0. Then the followingonditions are satis�ed:1. dim[g0; g0℄ � dim[g1; g1℄ ,2. dimZ(g0) � dimZ(g1) ,3. dimDer(g0) < dimDer(g1) ,where Z(g) denotes the entre of g.Reall that a Lie algebra g is said algebrai if it is isomorphi to the Liealgebra of a linear algebrai group. Among the Lie algebras satisfying theondition presented at the beginning of this setion, we obtain the ompleteLie algebras [enterless Lie algebras all whose derivations are inner℄, whihin partiular over semisimple Lie algebras, whose invariants are perfetlyknown. Now the existene of Lie algebras satisfying dimDer(g) < dim ghas been a onjeture for long time, until the �rst examples were found in1971 [22℄. The entral strutural result was obtained by Carles in 1984 [23℄:Theorem 2 Let dimDer(g) � dim g. Then g is an algebrai Lie algebra(with non-trivial entre if dimDer(g) < dimg). Moreover, in this ase g isperfet, i.e., g = [g; g℄).From this Theorem we immediately dedue an interesting result on theinvariants of suh Lie algebras:Proposition 2 Let g be a Lie algebra suh that dimDer(g) � dimg. Theng admits a fundamental set of invariants formed by rational funtions, ofwhih at least one an be taken as a polynomial of degree one.This tells in partiular that a Lie algebra with less derivations than itsdimension an never ontrat to a omplete Lie algebra. More preisely, aomplete Lie algebra an never arise as a ontration of a Lie algebra. Thismakes these algebras more di�ult to loalize, sine the orbit losure methodfails. However, using the invariants we an dedue the following property:



3910 R. Campoamor-StursbergProposition 3 If the Lie algebra g does not admit a fundamental set ofinvariants formed by rational funtions, then dimDer(g) > dimg. In par-tiular g annot be omplete.The proof follows immediately from Theorem 2. For the speial aseof Lie algebras with trivial entre, the proposition ensures the existene ofan outer derivation (i.e., a derivation whih is not of the form ad(X) forsome X 2 g). The result is remarkable sine it relates the struture of theinvariants with the number of derivations of g.Taking together the above results, it follows that for Lie algebras sat-isfying dimDer(g) � dim g, only the omplete ase an provide us withLie algebras having no non-trivial invariants (in even dimension). Sine allknown examples are solvable, one an ask whether any algebra satisfyingN (g) = 0 and the onditions above must be solvable.4.1. Solvable omplete Lie algebras in dimension n � 8Solvable omplete Lie algebras have been ompletely lassi�ed up todimension 9, while non-solvable omplete Lie algebras are lassi�ed up todimension 7 [13℄. Sine solvable omplete Lie algebras r deompose as asemidiret produt r = n � t of its nilradial n and a maximal toral subal-gebra t [i.e., an Abelian subalgebra formed by ad-semisimple elements℄ [13℄,the lassi�ation redues to the ase where n is nonsplit. Following [13℄,the solvable omplete Lie algebras with nonsplit nilradial are alled simpleomplete. The distribution of isomorphism N lasses by dimension is givenin Table I. TABLE INumber N of isomorphism lasses.Dimension 2 3 4 5 6 7 8 9N 1 0 0 1 2 6 11 9From Table I we see that in low dimension the even dimensional ase hasmore isomorphism lasses. Table II presents the isomorphism lass, labelledlike in [13℄, and the number of invariants of these algebras for the evendimensions:The remarkable fat from this table is that most of these algebras haveonly non-trivial invariants, whih leads to the question whether for higherdimensions this pattern is preserved. In any ase, this shows that solvableomplete Lie algebras in even dimension is a lass whih is worthy to beanalyzed, as well as its ontrations (see also the solvable rigid Lie algebrasin even dimensions [2, 3℄).



Contrations of Lie Algebras and Generalized Casimir Invariants 3911TABLE IINumber of invariants of solvable omplete Lie algebras in even dimension � 8.Algebra Brakets dim N (r)r14 [X5; Xi℄ = Xi; i = 1; 3 6 0[X5; X4℄ = 2X4; [X6; Xi℄ = Xi; i = 2; 3; 4[X1; Xi℄ = Xi+1; i = 2; 3r65 [X6; Xi℄ = iXi; 1 � i � 5 6 0[X1; Xi℄ = Xi+1; i = 2; 3; 4 [X2; X3℄ = X5;r15 [X6; Xi℄ = iXi; 1 � i � 5 8 2[X7; Xi℄ = Xi; i = 2; 4; 5; [X8; Xi℄ = Xi; i = 3; 4; 5;[X1; X4℄ = [X2; X3℄ = X5r25 [X6; Xi℄ = Xi; i = 1; 3; 5 8 0[X7; Xi℄ = Xi; i = 2; 4 [X8; Xi℄ = Xi; i = 3; 5[X1; Xi℄ = Xi+2; i = 2; 3r26 [X7; Xi℄ = iXi; 1 � i � 4 8 2[X7; X5℄ = 3X5, [X7; X6℄ = 5X6[X8; Xi℄ = Xi; i = 2; 3; 4; 6 [X1; Xi℄ = Xi+1 i=2,3[X2; X5℄ = X6r46 [X7; Xi℄ = Xi; i = 1; 3 8 0[X7; Xi℄ = 2Xi,i=4,5 [X7; X6℄ = 3X6[X8; Xi℄ = Xi; i = 2; 3; 5; 6 [X7; X4℄ = 2X4[X1; Xi℄ = Xi+1; i = 2; 5 [X1; X3℄ = X5[Xi; X4℄ = Xi+3; i = 2; 3r86 [X7; Xi℄ = Xi; i = 1; 3 8 0[X7; Xi℄ = 3Xi,i=5,6 [X7; X4℄ = 2X4[X8; Xi℄ = Xi; 2 � i � 5 [X7; X6℄ = 2X6[X1; Xi℄ = Xi+1; i = 2; 3 [X2; X5℄ = X6[X3; X4℄ = �X6:r96 [X7; Xi℄ = iXi; 1 � i � 6; 8 2[X8; Xi℄ = Xi; 2 � i � 6; [X1; Xi℄ = Xi+1; 2 � i � 5:r106 [X7; Xi℄ = Xi; i = 1; 4 8 0[X7; X3℄ = 12X3 [X7; X5℄ = 32X5[X7; X6℄ = 2X6 [X8; Xi℄ = Xi; i = 2; 4; 6[X8; Xi℄ = 12Xi; i = 3; 5 [X3; X5℄ = X6;[X1; Xi℄ = Xi+2; i = 2; 3; 4r146 [X7; Xi℄ = Xi; i = 1; 3; 5 8 2[X7; Xi℄ = 2X4; i = 2; 4 [X6; Xi℄ = Xi; i = 2; 3; 4[X1; Xi℄ = Xi+1; i = 2; 3r156 [X7; Xi℄ = Xi; i = 1; 3; 6 8 0[X7; Xi℄ = 2Xi; i = 4; 5 [X8; Xi℄ = Xi; i = 2; 3; 5[X8; X6℄ = 2X6 [X1; X2℄ = X3;[X1; Xi℄ = Xi+2; i = 3; 4 [X2; X3℄ = X6;r206 [X7; Xi℄ = Xi; i = 1; 3 8 0[X7; Xi℄ = 2Xi; i = 4; 5 [X7; X6℄ = 3X6[X8; Xi℄ = Xi; i = 2; 3; 5 [X1; X2℄ = X3[X1; Xi℄ = Xi+2; i = 3; 4 [X2; X4℄ = X5r236 [X7; Xi℄ = Xi; i = 1; 3; 6 8 0[X7; Xi℄ = (i � 2)Xi, [X8; X6℄ = 2X6[X8; Xi℄ = Xi; 2 � i � 5 [X1; Xi℄ = Xi+1; i = 2; 3; 4



3912 R. Campoamor-Stursberg5. Linear ontat forms and frobeniusian Lie algebrasThe ontration formula enables us to obtain some riteria on the numberof invariants of a Lie algebra. This will be of speial interest for those lassesof Lie algebras whih, having an additional struture, an be lassi�ed up toontration. The examples of additional struture we present here are basedon properties appearing in di�erential geometry, suh as linear ontat formsor a frobeniusian struture. These two properties are related to HeisenbergLie algebras hn, whih are well known to be subalgebras of the extendedGalilei algebra [24, 25℄.5.1. Generalization of the Heisenberg Lie algebraGiven a Lie algebra g = �K 2n+1 ; �� and a linear form ! over K 2n+1 , theexterior di�erential of ! relative to � is given byd!� (X;Y ) = �! (� (X;Y )) ; 8X;Y 2 K 2n+1 : (8)We say that ! is a linear ontat form relative to � if! ^ (d!�)n 6= 0 ; (9)where (d!�)n = Vn d!�. We observe that the left invariant Pfa� formindued by ! over the Lie groups having g as Lie algebra is a ontat formin the usual sense. We will simply say that g is equipped with a linearontat form.The motivation to study linear ontat forms omes from the analysis ofthe Lie algebra so(3) of the rotation group:Proposition 4 Every nonzero linear form ! on so(3) is a linear ontatform.This is easily seen by onsidering the basis fX1;X2;X3g suh that[Xj ;Xk℄ = "ijkXi;sine for the linear forms !i; 1 � i � 3 we have!i ^ d!i 6= 0 :This gives a haraterization of so(3) in terms of ontat forms [15℄:Proposition 5 A Lie algebra g all whose linear forms ! 2 g� are linearontat forms is isomorphi to so(3).



Contrations of Lie Algebras and Generalized Casimir Invariants 3913This shows that for dimensions n � 3 we have to relax the ondition in orderto obtain useful results. We will now see that Lie algebras having a linearontat form an be lassi�ed up to ontration, i.e., we an �nd a family Fof Lie algebras ( the family an eventually redue to an unique algebra) suhthat any Lie algebra g with a linear ontat form ontrats to some elementof F [15℄.Theorem 3 [15℄ Let g = �K 2n+1 ; �� be a Lie algebra equipped with a linearontat form !. Then the Heisenberg Lie algebra hn is a ontration of g.We an enumerate two onsequenes of this Theorem:1. If g has a linear ontat form, then the dimension of its entre is atmost one.2. If g is semisimple, then its rank is one.By Theorems 1 and 3, to obtain an upper bound for N (g) it su�es todetermine N (hn), whih is easily heked to be 1. Observe that it oinideswith the dimension of the entre of hn. As a onsequene we have that anyalgebra g with a linear ontat form satis�esdim g = 2n+ 1; n � 1N (g) � 1 � : (10)In partiular, the latter equation provides us a proof of onsequene 2.above. Sine the number of invariants of a semisimple Lie algebra is thedimension h of a Cartan subalgebra [1℄, by Theorem 1 we obtain that h � 1.5.2. Frobeniusian Lie algebrasLet g = �K 2n ; �� be a Lie algebra. We say that g is frobeniusian if thereexists a linear form ! 2 g� suh that(d!�)n 6= 0 : (11)Frobeniusian Lie algebras have also been lassi�ed up to ontration [16℄. Inontrast to the previous ase, frobeniusian Lie algebras need not ontrat tothe same algebra, but to a parametrized family:



3914 R. Campoamor-StursbergTheorem 4 [16℄ Let g = �R2n ; �� be a frobeniusian Lie algebra. Then gontrats to some element of the following family g (�1; : : : ; �s; �1; : : : ; �n�1�s):[X1;X2℄ = X1[X2r+1;X2r+2℄ = X1; 1 � r � n� 1[X2;X4k�1℄ = �kX4k�1 + �kX4k+1; k � s[X2;X4k℄ = (�1� �k)X4k � �kX4k+2; k � s[X2;X4k+1℄ = ��kX4k�1 + �kX4k+1; k � s[X2;X4k+2℄ = �kX4k + (�1� �k)X4k+2; k � s[X2;X4s+2k�1℄ = �12X4s+2k�1 + �k+s�1X4s+2k; 2 � k � n� 2s[X2;X4s+2k℄ = ��k+s�1X4k+2s�1 � 12X4s+2k; 2 � k � n� 2s
9>>>>>>>>>=>>>>>>>>>; ;(12)where 0 � s � �n�12 � and (�1; : : : ; �s; �1; : : : ; �n�1�s) 2 Rn�1 . The algebrasg (�1; : : : ; �s; �1; : : : ; �n�1�s) are alled frobeniusian model Lie algebras.We observe that the omplex models are obtained by omplexi�ation ofthe preeding algebras. Spei�ally, for K = C we obtain that any omplexfrobeniusian Lie algebra ontrats to some algebra of the following family[X1;X2℄ = X1[X2r+1;X2r+2℄ = X1; 1 � r � n� 1[X2;X2k+1℄ = �kX2k+1; 0 � k � n� 1[X2;X2k+2℄ = (�1� �k)X2k+2; 0 � k � n� 1(�1; : : : ; �n�1) 2 C n�1 9>>>=>>>; : (13)Proposition 6 Let g be a frobeniusian Lie algebra over K = R; C . Then ghas no non-trivial generalized Casimir invariants.Proof We prove it for K = R, the omplex ase being similar. Observefrom (12) that frobeniusian model Lie algebras are solvable with nilradialisomorphi to the Heisenberg Lie algebra hn�1. Realizing the oadjoint rep-resentation of g (�1; : : : ; �s; �1; : : : ; �n�1�s) in a funtional spae of (2n+ 1)variables denoted by fx1; : : : ; x2n+1g, we havebX1 = �x1�x2 ; (14)whih implies that an invariant F does not depend on x2. Now, sine forany j � 3 we havebXj = fj (x3; : : : ; x2n) �x2 + (�1)j�1 x1�xj+(�1)j�1 ; (15)the funtion fj (x3; : : : ; x2n) expressing the Lie brakets [X2;Xj ℄ of (12), weobtain that �xjF = 0; j � 3 (16)



Contrations of Lie Algebras and Generalized Casimir Invariants 3915for any invariant F . Finally, onsidering the representation of X2:bX2 = � 2nXj=3 gj(x3; : : : ; x2n)�xj + x1�x1 ; (17)the funtions gj(x3; : : : ; x2n) again expressing the brakets of (12), we dedue�x1F = 0, whih shows that F is a trivial invariant.Observe that frobeniusian model Lie algebras are subalgebras of thesemidiret produt sp (2n;K ) � hn, sp (2n;K ) being the simple sympletiLie algebra. This makes frobeniusian algebras interesting for the study ofnulear olletive motions [24, 25℄.From this result we obtain a su�ieny riterion for a Lie algebra to haveno non-trivial invariants:Proposition 7 If g is a frobeniusian Lie algebra, then N (g) = 0.Proof Sine there exists a n-tuple (�1; :::; �s; �1; :::; �n�1�s) suh thatg (�1; :::; �s; �1; :::; �n�1�s) 2 O (g) , the result follows from Theorem 1.Thus the existene of a linear form whose di�erential is sympleti foresthe triviality of invariants of the oadjoint representation of g. This proposi-tion gives a quite interesting lass of algebras to be analyzed with respet tothe problem of invariants and deformations. The ohomology of frobeniusianmodel algebras is known [26℄, and it has been proven that any nonsolvablefrobeniusian Lie algebra ontrats on some model g (�1; :::; �s; �1; :::; �n�1�s)whose parameters (�1; :::; �s; �1; :::; �n�1�s) move on a �nite union of hyper-planes [26℄. Therefore a detailed analysis of these nonsolvable Lie algebrasmay be approahed by ohomologial means. We illustrate this by an ex-ample. The lassi�ation of non-semisimple Lie algebras with nonzero Levisubalgebra s in dimensions n � 9 [27℄ was motivated by the study of higherdimensional versions of the Bianhi type-IX universe [28℄. Obtaining of tendimensional models in full generality is however not possible due to thegreat number of parameters involved and the nonexistene of a lassi�a-tion of solvable Lie algebras in dimensions n � 7. This fores to onsidersome additional assumption in order to redue the number of parameters.In the ontext of frobeniusian Lie algebras, one an ask whether there existfrobeniusian Lie algebras with Levi subalgebra s isomorphi to the rotationalgebra so(3). This redues to analyze the ohomology of the model alge-bras in order to obtain the Levi part so(3) (this implies severe restritionson the representations R desribing the semidiret produt s�!�Rr, wherer is the radial). With some e�ort it an be shown that solutions to this



3916 R. Campoamor-Stursbergproblem exist, suh as for example the parametrized family of Lie algebrasL(1; : : : ; 7) de�ned, over the basis fX1; : : : ;X10g, by the brakets:[X1;X2℄ = X3; [X1;X3℄ = �X2; [X2;X3℄ = X1;[X1;X4℄ = 12X7; [X1;X5℄ = 12X6; [X1;X6℄ = �12X5;[X1;X7℄ = �12X4; [X2;X4℄ = 12X5; [X2;X5℄ = �12X4;[X2;X6℄ = 12X7; [X2;X7℄ = �12X6; [X3;X4℄ = 12X6;[X3;X5℄ = �12X7; [X3;X6℄ = �12X4; [X3;X7℄ = 12X5;[X4;X8℄ = 5X4; [X5;X8℄ = 5X5; [X6;X8℄ = 5X6;[X7;X8℄ = 5X7; [X8;X10℄ = 6X10; [X9;X10℄ = 7X10;[X4;X9℄ = 1X4 + 2X5 + 3X6 + 4X7;[X5;X9℄ = �2X4 + 1X5 � 4X6 + 2X7;[X6;X9℄ = �3X4 + 4X5 + 1X6 � 2X7;[X7;X9℄ = �4X4 � 3X5 + 2X6 + 1X7:
9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>; ; (18)

where (1; : : : ; 7) 2 R7 . It follows at one that the Levi deompositionof these algebras is so(3)�!�R4�3D0r (1; : : : ; 7), where R4 is the irreduiblerepresentation of so(3) of degree four, D0 is the trivial representation andr (1; : : : ; 7) denotes the radial.Proposition 8 The Lie algebras L(1; :::; 7) are deformations of the frobe-niusian model Lie algebras g(�1; :::; �s; �1; :::; �n�s�1) if and only if16 � 57 6= 0 (19)holds.Proof The proof follows at one observing that a losed form! 2 (L(1; :::; 7))� of maximal rank an be redued to a �anonial form�! = (6!8 ^ !10 + 7!9 ^ !10) + 4Xi=1 !i ; (20)



Contrations of Lie Algebras and Generalized Casimir Invariants 3917where !1 = �12!1 ^ !7 � 12!2 ^ !5 � 12!3 ^ !6 + 5!4 ^ !8+ 1!4 ^ !9 � 2!5 ^ !9 � 3!6 ^ !9 � 4!7 ^ !9 ;!2 = �12!1 ^ !6 + 12!2 ^ !4 + 12!3 ^ !7 + 5!5 ^ !8+ 2!4 ^ !9 + 1!5 ^ !9 + 4!6 ^ !9 � 3!7 ^ !9 ;!3 = 12!1 ^ !5 � 12!2 ^ !7 + 12!3 ^ !4 + 5!6 ^ !8+ 3!4 ^ !9 � 4!5 ^ !9 + 1!6 ^ !9 + 2!7 ^ !9 ;!4 = 12!1 ^ !4 + 12!2 ^ !6 � 12!3 ^ !5 ++5!7 ^ !8+ 4!4 ^ !9 + 3!5 ^ !9 � 2!6 ^ !9 + 1!7 ^ !9 :It follows at one that the form being of maximal rank, i.e., satisfying5̂ ! 6= 0 ; (21)is equivalent to impose 57 � 61 6= 0 : (22)Therefore the Lie algebras L(1; : : : ; 7) onstitute a parametrized familyof non-semisimple Lie algebras with Levi subalgebra isomorphi to so(3) andhaving no non-trivial invariants for the oadjoint representation. We mayremark that this is the �rst example of non-solvable algebras having thisproperty that has appeared in the literature.Conluding remarksTheorem 1 provides a neessary ondition for a Lie algebra g to be aontration of a Lie algebra g0 in terms of the number of invariants of theoadjoint orbit. This result was antiipated for the ontrations of the simpleLie algebra sp (3; C ) in [9℄, and has been proved formally here for arbi-trary Lie algebras.The pratial utility of Theorem 1 is its appliation to the study of(solvable) Lie algebras having only trivial invariants, by the study of itsontrations. Sine ontrations are also transitive [7, 18℄, the result an beused to establish lower and upper bounds for the number of invariants of Liealgebras. This ould be of interest for those lasses of algebras for whih adiret determination of the number of invariants is a very di�ult problem,



3918 R. Campoamor-Stursbergdue to omputational limitations [21℄. For ertain lasses of solvable Liealgebras, whose nilradial generalizes in some sense the nilradials of Borelsubalgebras of simple Lie algebras [29℄ or metasolvable Lie algebras [30℄ ,the method should also provide useful onlusions. In partiular, the use ofthe formula has provided us with a ten dimensional family of Lie algebraswith nontrivial Levi deomposition whih are frobeniusian, showing thatthese algebras onstitute an interesting lass of algebras for onstruting Liealgebras with only trivial invariants for ad�.We have also seen that the ontration formula an be used to prove somequestions about Lie algebras having less derivations than its dimension, andto prove that the existene of a fundamental set of invariants formed byrational funtions is a neessary ondition for a Lie algebra to be omplete.In partiular, the latter algebras seem to form an adequate lass to obtain Liealgebras without any non-trivial invariants, as follows from Table II. Theirontrations are also of interest, sine ontrations of solvable Lie algebrasare also solvable.For partiular groups, suh as the onformal group of spae time, where(real) Lie algebras in high dimension appear as subalgebras, the ontrationmethod ould be of interest to determine the maximal possible number ofinvariants.On the other hand, for ertain additional properties, mainly arising fromdi�erential geometry, we an always lassify the Lie algebras satisfying theproperty up to ontration, usually obtaining a parametrized family F. Inorder to obtain an upper bound for the number of funtionally independentinvariants for the algebras satisfying the property, it su�es to determineN (F) for the elements of the family. Conerning the properties analyzedhere, linear ontat form and frobeniusian Lie algebras, both model familiesare of importane for physial appliations, sine they are deeply relatedwith the Heisenberg Lie algebra. Spei�ally, one ould ask whether anyfrobeniusian Lie algebra is a subalgebra of sp (2n;K )�hn, and whether otherproperties, suh as the existene of a sympleti form on the nilradial, analso be solved by this means. REFERENCES[1℄ L. Abellanas, L.M. Alonso, J. Math. Phys. 16, 1580 (1975).[2℄ R. Campoamor-Stursberg, J. Phys. A: Math. Gen. 35, 6293 (2002).[3℄ R. Campoamor-Stursberg, J. Math. Phys. 44, 771 (2003).[4℄ P. Olver, Appliations of Lie Groups to Di�erential Equations, New York,Springer 1986.
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