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CONTRACTIONS OF LIE ALGEBRAS ANDGENERALIZED CASIMIR INVARIANTSRutwig Campoamor-StursbergLaboratoire de Mathématiques et Appli
ationsFa
ulté de S
ien
es et Te
hniquesUniversité de Haute Alsa
e4, rue des Frères Lumière, 68093 Mulhouse, Fran
ee-mail: R.Campoamor�uha.fr(Re
eived De
ember 10, 2002)We prove that if g0 is a 
ontra
tion of a Lie algebra g then the number offun
tionally independent invariants of g0 is at least that of g. This allows toobtain some 
riteria to ensure the non-existen
e of non-trivial invariants forLie algebras, as well as to dedu
e some results on the number of derivationsof a Lie algebra. In parti
ular, it is shown that almost any even dimensionalsolvable 
omplete Lie algebra has only trivial invariants. Moreover, withthe 
ontra
tion formula we determine expli
itly the number of invariantsof Lie algebras 
arrying a supplementary stru
ture, su
h as linear 
onta
tor linear forms whose di�erential is symple
ti
, without having expli
itknowledge on the stru
ture of the 
ontra
ting algebra. This in parti
ularenables us to 
onstru
t Lie algebras with non-trivial Levi de
ompositionand none invariants for the 
oadjoint representation as deformations offrobeniusian model Lie algebras.PACS numbers: 02.20.Sv 1. Introdu
tionInvariants of the 
oadjoint representation of Lie algebras, also 
alled gen-eralized Casimir invariants, are rather important in physi
s, sin
e they arerelated to some preserved quantities in any theory des
ribed in terms ofsymmetry algebras [1℄. In any 
ase, these invariants provide various infor-mation on the irredu
ible representations of the 
onsidered Lie algebras [1℄,and 
hara
terize spe
i�
 properties of a physi
al system, like mass formulaefor dynami
al groups. For the 
lassi
al Lie algebras the problem was solvedlong ago by Ra
ah, and by the Levi de
omposition the 
lass whi
h must beanalyzed is that of solvable Lie algebras, joint with the representations ofthe Levi subalgebra on the radi
al. Various authors have approa
hed theproblem in re
ent years, and the di�
ulty of �nding or even 
hara
terizingthe invariants of solvable Lie algebras has been pointed out [2, 3℄.(3901)



3902 R. Campoamor-StursbergAnother 
ru
ial feature in the study of a physi
al system is the determi-nation of its symmetries, more spe
i�
ally, of the symmetry group of thesystem [4,5℄. This leads naturally to the 
omparison of systems having simi-lar groups. Contra
tions of Lie algebras were introdu
ed as a tool to explainformally why some theories arise as limiting 
ases of other theories, like thepassage from the de Sitter algebra to the Poin
aré algebra or from the latterto the Galilei algebra, and were further developed by various authors [6�8℄.Endowed with these methods, it is natural to ask whi
h is the relation ofthe invariants of a Lie algebra and the invariants of its 
ontra
tions. For thespe
ial 
ase of 
lassi
al Casimir invariants, the question redu
es to relate the
orresponding universal enveloping algebras. This question was analyzed indetail in [9℄ for the spe
ial 
ase of the simple Lie algebra sl(3; C ). This prob-lem is de�nitively interesting for physi
al appli
ations, sin
e 
ontra
tions
an be interpreted in some sense as approximations, and the understand-ing of the behaviour of the invariants 
ould provide useful interpretations ofphysi
al phenomena. One 
ould argue that, sin
e any Lie algebra 
ontra
tsto the Abelian Lie algebra, a 
ontra
tion will obviously have more invariantsthan the 
ontra
ted algebra. This pattern 
oin
ides also with the (few) Liealgebras analyzed with respe
t to this observation, thus 
ould be taken asan �experimental proof�. However, su
h a 
on
lusion is formally non rigor-ous, and 
an easily lead to mistakes. Until 1999, basing on the theory ofsemisimple Lie algebras and all 
onstru
tions known, it was impli
itly a
-
epted that any rigid Lie algebra was rational (i.e., de�ned over the �eldof rational numbers), whi
h also seemed to be a quite natural 
onsequen
eof this theory. However, so obvious the fa
t appeared, it was pointed outthat this 
on
lusion is false, sin
e there exist rigid Lie algebras whi
h arenot only non-rational, but even non-real [10℄. Therefore, if the observationon the number of invariants of 
ontra
tions is to be sustained, it must beproven formally for nonpolynomial invariants (for polynomials the assertionfollows from the properties of the universal enveloping algebras).Among other interesting problems related to the invariants of Lie al-gebras, a 
hara
terization of solvable Lie algebras with Abelian nilradi
aladmitting only trivial invariants was presented in [11℄. In the same paper,the author 
ommented the importan
e of �nding a 
orresponding 
hara
ter-ization for solvable Lie algebras with non-Abelian nilradi
al. In view of the
ases treated and other examples, su
h a 
hara
terization probably does notexist, as it should 
omprise simultaneously the solvable and the non-solvableLie algebras with nonzero Levi subalgebra. However, su�
ien
y 
onditionsto ensure the non-existen
e of non-trivial invariants 
an be found [2, 3℄.In this paper we approa
h the problem of analyzing the relation betweenthe number of invariants of a Lie algebra and the number of invariants of its
ontra
tions. In Se
tion 2 we re
all the general results on 
ontra
tions of Lie



Contra
tions of Lie Algebras and Generalized Casimir Invariants 3903algebras and the generalized Casimir invariants. In Se
tion 3 we prove for-mally, making use of the Beltrametti�Blasi formula [12℄, that a 
ontra
tionof a Lie algebras has at least as many fun
tionally independent invariants asthe algebra it 
omes from. This generalizes the pattern observed for somespe
ial types of algebras to arbitrary Lie algebras. As 
onsequen
es of thisresult, we dedu
e 
riteria to ensure that a Lie algebra has no non-trivialinvariants. The formula 
an also be used to determine upper bounds for thenumber of invariants in the 
ase where a dire
t 
omputation be
omes toodi�
ult. In Se
tion 4 we apply the result to the study of derivations of Liealgebras. In parti
ular, we prove that any Lie algebra with less derivationsthan its dimension ne
essarily has a fundamental set of invariants formed byrational fun
tions, of whi
h at least one 
orresponds to a degree one poly-nomial. This also tells that in absen
e of a fundamental set of invariantsformed by rational invariants, a Lie algebra 
annot be 
omplete [13℄. Thelatter 
ase is of spe
ial interest, sin
e most of the even-dimensional solv-able 
omplete Lie algebras in dimensions n � 9 have only trivial invariants,showing that this 
lass is, in even dimension, an adequate starting pointto sear
h for 
riteria on the non-existen
e of non-trivial invariants. Evensome of their 
ontra
tions, whi
h are not 
omplete any more, are strong
andidates for admitting only trivial invariants.Finally, in Se
tion 5, we analyze the invariants for some Lie algebras
arrying an additional stru
ture, su
h as linear 
onta
t forms or symple
ti
forms. The interest of su
h properties is out of dis
ussion in view of theimportan
e of symple
ti
 stru
tures in physi
s [14℄ The advantage of Liealgebras having supplementary stru
tures like these lies in the fa
t thatthey 
an always be 
lassi�ed up to 
ontra
tion [15, 16℄, whi
h enables usto determine the number of invariants without any information about thepre
ise stru
ture of the 
ontra
ting algebra. This method is also of interestfor deformation theory, whi
h, under 
ertain restri
tions, is deeply relatedwith 
ontra
tion theory [17, 18℄.Unless otherwise stated, any Lie algebra g 
onsidered here is de�ned overthe �eld K = R; C and nonsplit, i.e., g does not de
ompose as a dire
t sumof ideals.2. Contra
tions of Lie algebras. Generalized Casimir invariants2.1. Contra
tions of Lie algebrasTraditionally 
ontra
tions of Lie algebras are presented as limits [7, 8℄,although other authors have approa
hed the 
ontra
tion problem from thepoint of view of group a
tions [17, 18℄.



3904 R. Campoamor-StursbergA Lie algebra g = (K n ; �) may be 
onsidered as an element � of thevariety Hom�V2 K n ;K n� via the skew-symmetri
 bilinear map � : g
 g !g de�ning the Lie bra
ket on g. Thus we 
an identify the Lie algebra gwith its law �. The set Ln of Lie algebras is then a subset of the varietyHom�V2 K n ;K n� on whi
h the general linear group GL (n;K ) a
ts by :(g Æ �)(x; y) = g�1 (� (gx; gy)) ; g 2 GL (n;K ) ;x; y 2 K n :Clearly the orbit under this a
tion are the isomorphism 
lasses of �. Nowa Lie algebra �1 is 
alled a 
ontra
tion of a Lie algebra �0 if �1 2 O (�0),the Zariski 
losure of the orbit. The 
ontra
tion is 
alled nontrivial if �lies in the boundary of the orbit. This geometri
al de�nition is nothingmore than a topologi
al reformulation of the 
lassi
al 
on
ept of Inönü�Wigner 
ontra
tions and its variations [7, 8℄. As known, these 
ontra
-tions 
an be viewed as singular 
hanges of basis, starting from a �xed basisfX1; : : : ;Xng of a Lie algebra g. That is, 
onsidering a sequen
e of endo-morphisms ffp ("1; : : : ; "r)gp2N[f0g (where f0 
an be taken as the identityand "i designate the parameters), for any p we have:�p := f�1p Æ �0 (fp; fp) : (1)Thus, if the limit exists, it also represents a Lie algebra, and the law of the
ontra
tion is given by �1 = limp!1�p : (2)Therefore, if nCkijo are the stru
ture 
onstants of g0 = (K n ; �0) over abasis fX1; : : : ;Xng and nCkij(p)o the stru
ture 
onstants of gp = (K n ; �p),the law of �1 is given by fCkij = limp!1Ckij(p) : (3)The most elementary example is the well known fa
t that any Lie algebra
ontra
ts to the Abelian algebra of the same dimension. The 
ontra
tionis easily seen to be realized by the endomorphisms �ft = t�1id	, where iddenotes the identity matrix. This spe
ial kind of 
ontra
tion, depending onan unique parameter, is 
alled one-parameter subgroup 
ontra
tion [18℄.2.2. Generalized Casimir invariantsThe standard method to obtain the Casimir operators and its general-izations of a Lie algebra is their interpretation as invariants of the 
oadjointrepresentation of the 
orresponding Lie group [1, 11, 19℄.



Contra
tions of Lie Algebras and Generalized Casimir Invariants 3905The problem of �nding its invariants is indeed redu
ed to that of solv-ing a system of linear �rst order partial di�erential equations. If B =fX1; : : : ;Xng is a basis of the n-dimensional Lie algebra g and fx1; : : : ; xnga 
oordinate system on the dual spa
e, then the in�nitesimal generators ofthe a
tion are denoted by eXi. If moreover the stru
ture 
onstants of g aregiven by [Xi;Xj ℄ = Cki;jXk over the basis B, a fun
tion F 2 C1 (g�) is aninvariant of the 
oadjoint representation if and only if it satis�es the twofollowing 
onditions:1. eXi =Pj(�Cki;j)xk ��xj and h eXi; eXji = Cki;j eXk ,2. F is a solution of the system n eXiF = 0o1�i�n .Solutions to this system are usually found by integration of the 
orre-sponding system of 
hara
teristi
 equations or other standard integrationpro
edures [4℄. If the solutions are polynomials, then they 
orrespond to the
lassi
al Casimir operators. If the solutions are rational or trans
endentalfun
tions, we 
all them generalized Casimir operators. The latter type ofsolutions has shown its importan
e in the theory of integrable Hamiltoniansystems, as pointed out in [20℄.A maximal set of fun
tionally independent solutions will be 
alled afundamental set of invariants. Sin
e a Lie algebra law is an alternated tensorof type (2; 1), this rank of the algebra does not depend on the basis 
hosen.By antisymmetry, this rank must be even, and from the analysis undertakenin [12℄ it follows that the number of invariants N satis�es the 
ongruen
eN � dim (g) (mod 2). Polynomial solutions will naturally 
orrespond to the
lassi
al Casimir operators ( possibly after symmetrizing ). In parti
ular,an odd dimensional Lie algebra has at least one nontrivial invariant.3. The 
ontra
tion formulaAs told in the introdu
tion, in [9℄ the authors studied the 
ontra
tionsof the simple Lie algebra sl (3; C ), and observed that invariants of the 
on-tra
tions 
an be obtained as limits of the invariants of sl (3; C ), at least inthe 
ase of Inönü�Wigner 
ontra
tions. In parti
ular, from this analysis weget that 
ontra
tions are expe
ted to have more invariants than the alge-bra they 
ome from. The known 
ases seem to agree with this observation,whi
h however does not 
onstitute an eviden
e for its 
orre
tness. In thisse
tion we prove that this important observation generalizes indeed to 
on-tra
tions of any Lie algebra (the orbit 
losure argument allowing to dealwith all parti
ular types of 
ontra
tions simultaneously).As follows from the work of Beltrametti and Blasi [12℄, the number offun
tionally independent invariants of the 
oadjoint representation ad� of a



3906 R. Campoamor-StursbergLie algebra g is given by N = dim(g) � r (g), where r (g) is the maximumrank of the 
ommutator table 
onsidered as a (n� n)-matrix, where n =dim(g). That is, the matrix is Aijk := �Ckijxk�1�i<j;k�dim(g) over the basisfX1; : : : ;Xng, nCkijo being the stru
ture 
onstants over this basis. It is
lear that on the transformed basis ffpX1; : : : ; fpXng we obtain the matrixApijk = �Ckij (p)xk�.Theorem 1 If g1 = (K n ; �1) is a 
ontra
tion of g0 = (K n ; �0), then N (g1) �N (g0).ProofLet fX1; : : : ;Xng be a basis of g0 and fp ("1; : : : ; "r) be the sequen
e ofendomorphisms su
h that �1 = limp!1�pBy appli
ation of elementary properties of matrix analysis algebra we obtainthat: rank (Aijk) � rank� limp!1�Apijk�� : (4)This inequality holds for any representative �0 of the Lie algebra g0 and anyfamily fp 2 GL (n;K ) realizing the 
ontra
tion. This proves that startingfrom the orbit of g0 we preserve of de
rease the rank of the matri
es in (4).As a 
onsequen
e of the fa
t that 
ontra
tions of Lie algebras over a�eld k 
an be 
hara
terized in terms of dis
rete valuation k-algebras whosequotient �eld has trans
enden
e degree one over k, and that formal deforma-tions 
an be des
ribed using inverse limits and the 
ompletion of valuationalgebras [18℄, we dedu
e that a 
ontra
tion 
an be realized as a deforma-tion [17℄, whi
h ensures that the maximal rank of 
ommutation matri
esAijk of representatives �1 of g1 is lower or equal to the rank of some 
om-mutator matrix of a representative of g0. This shows that no representativeof the orbit of g1 
an reverse the inequality (4). Therefore we obtain that:r (g0) � r (g1) (5)and from the formula for the number of invariants:N (g0) � N (g1) ; (6)that is, the 
ontra
tion g1 has at least N (g0) invariants.



Contra
tions of Lie Algebras and Generalized Casimir Invariants 3907This result 
onstitutes a 
omplete proof of the intuition that 
ontra
tionshave �less bra
kets� than the Lie algebra they 
ome from, and it is indepen-dent of any experimental observation made on parti
ular 
ases. Geometri-
ally this is more or less 
lear, as the dimension of the orbit of 
ontra
tedalgebras is lower than the orbit dimension of the starting algebra, and there-fore one should expe
t that the 
ontra
tion has more invariants. Observefurther that this result 
annot be formulated in terms of deformations, sin
ethere exist deformations whi
h are not related to a 
ontra
tion:Example 1 Let r�K be the solvable Lie algebra given by the bra
kets[X1;X2℄ = X1; [X1;X3℄ = [X2;X3℄ = 0over the basis fX1;X2;X3g. The family of algebras L (�) given by[X1;X2℄ = X1; [X2;X3℄ = ��X3; [X1;X3℄ = 0with � 6= 1 is a deformation of r � K , but none element of this family
ontra
ts to r� K [17℄.From Theorem 1 we dedu
e a result whi
h was anti
ipated in [9℄ for thespe
ial 
ase of sl (3; C ):Corollary 1 If g is a 
ontra
tion of a simple Lie algebra of rank p, then ghas at least p fun
tionally independent invariants.Thus Theorem 1 establishes a ne
essary 
ondition on the number ofinvariants of 
ontra
tions. This is spe
ially of interest when we sear
h forLie algebras admitting only trivial invariants [i.e., all whose invariants are
onstant fun
tions℄:Lemma 1 If g has a 
ontra
tion without any non-trivial invariants, then gitself has only trivial invariants.This lemma gives an alternative pro
edure to ensure the non-existen
eof non-trivial invariants: to �nd a 
ontra
tion whi
h has only trivial invari-ants. On the other hand, it also provides us a geometri
al 
onsequen
e: theorbits of su
h Lie algebras are not in
luded in the orbit 
losure of simple Liealgebras, sin
e they 
annot be 
ontra
tions of them. However, its interest isthe possibility of applying it to Lie algebras for whi
h we know 
ontra
tionswhose invariants have already been determined. An elementary exampleillustrates this fa
t: For m � 2 let r be a (2m + 2)-dimensional solvable



3908 R. Campoamor-StursbergLie algebra whose nilradi
al is isomorphi
 to the parametrized nilpotent Liealgebra n�1;:::;�[m2 ℄+2 given by:[X2+j ;X2m+1�j ℄ = X1; 0 � j � m� 1[X2+j ;X2m+1℄ = �jXj ; 1 � j � m� 2��1; : : : ; �[m2 ℄+2� 2 K [m2 ℄+2 9>=>; ; (7)where fX1; : : : ;X2m+1;X2m+2g is a basis of r and �j + �2m�j = 0 for 1 �j � [m2 ℄ + 2.Observe that X1 belongs to the 
entre of the nilradi
al, and therefore rhas trivial 
entre whenever [X2m+2;X1℄ 6= 0. Let ft 2 GL(2m+2;K ) be thesequen
e de�ned byft (Xj) = t2m+2�jXj ; 1 � j � 2m+ 2 :Clearly these endomorphisms de�ne a one-parameter subgroup 
ontra
tion,at it 
an easily be seen that limt!1 �f�1t r(ft; ft)� is a solvable Lie algebrawhose nilradi
al is isomorphi
 to the Heisenberg Lie algebrahm = hX1; : : : ;X2m+1j[X2+j ;X2m+1�j ℄ = X1i :If we suppose, moreover, that [X2m+2;X1℄ 6= 0, then the 
ontra
ted alge-bra is of type L (m; 1) [21℄, and either from a dire
t 
omputation or byappli
ation of the formulae given there, sin
e the 
entre is trivial, we obtainthat N (L(m; 1)) = 0, and therefore r has only trivial invariants. A dire
t
omputation of the invariants of r is mu
h more 
ompli
ated, due to the pres-en
e of the [m2 ℄ + 2 parameters depending on the dimension. Although ingeneral the pre
eding result 
annot be announ
ed using deformations, it ap-plies in parti
ular to deformations whi
h are related to 
ontra
tions. Re
allthat a jump deformation �t of a Lie algebra (V; �0) is a formal deformation�t = �0 + t�1 + t2�2 + : : : : ��i 2 Hom �^2V; V �� whi
h remains 
onstantfor generi
 t 6= 0. That is, if u is an additional variable and 
oe�
ient areextended to K ((t)) [[u℄℄; we have an isomorphism �t = �(1+u)t.Proposition 1 Let g be a Lie algebra satisfying N (g) = 0. Then any jumpdeformation g0 also satis�es N (g0) = 0.The appli
ability of this 
onsequen
e is 
onstrained by the ne
essity 
on-ditions for the existen
e of jump deformations, su
h as the non-nullity of the
ohomology group H1 (g; g).



Contra
tions of Lie Algebras and Generalized Casimir Invariants 39094. Invariants and derivations of Lie algebrasIn this paragraph we analyze some questions relating the invariants of aLie algebra g with the stru
ture of its Lie algebra of derivations Der(g). Inparti
ular, we are interested on the invariants of Lie algebras satisfying theinequality dimDer(g) � dim g.Among the multiple properties of 
ontra
tions of Lie algebras existing,we emphasize the following, whi
h will be used in this se
tion and whoseproof is straightforward:Lemma 2 Let g1 be a 
ontra
tion of the Lie algebra g0. Then the following
onditions are satis�ed:1. dim[g0; g0℄ � dim[g1; g1℄ ,2. dimZ(g0) � dimZ(g1) ,3. dimDer(g0) < dimDer(g1) ,where Z(g) denotes the 
entre of g.Re
all that a Lie algebra g is said algebrai
 if it is isomorphi
 to the Liealgebra of a linear algebrai
 group. Among the Lie algebras satisfying the
ondition presented at the beginning of this se
tion, we obtain the 
ompleteLie algebras [
enterless Lie algebras all whose derivations are inner℄, whi
hin parti
ular 
over semisimple Lie algebras, whose invariants are perfe
tlyknown. Now the existen
e of Lie algebras satisfying dimDer(g) < dim ghas been a 
onje
ture for long time, until the �rst examples were found in1971 [22℄. The 
entral stru
tural result was obtained by Carles in 1984 [23℄:Theorem 2 Let dimDer(g) � dim g. Then g is an algebrai
 Lie algebra(with non-trivial 
entre if dimDer(g) < dimg). Moreover, in this 
ase g isperfe
t, i.e., g = [g; g℄).From this Theorem we immediately dedu
e an interesting result on theinvariants of su
h Lie algebras:Proposition 2 Let g be a Lie algebra su
h that dimDer(g) � dimg. Theng admits a fundamental set of invariants formed by rational fun
tions, ofwhi
h at least one 
an be taken as a polynomial of degree one.This tells in parti
ular that a Lie algebra with less derivations than itsdimension 
an never 
ontra
t to a 
omplete Lie algebra. More pre
isely, a
omplete Lie algebra 
an never arise as a 
ontra
tion of a Lie algebra. Thismakes these algebras more di�
ult to lo
alize, sin
e the orbit 
losure methodfails. However, using the invariants we 
an dedu
e the following property:



3910 R. Campoamor-StursbergProposition 3 If the Lie algebra g does not admit a fundamental set ofinvariants formed by rational fun
tions, then dimDer(g) > dimg. In par-ti
ular g 
annot be 
omplete.The proof follows immediately from Theorem 2. For the spe
ial 
aseof Lie algebras with trivial 
entre, the proposition ensures the existen
e ofan outer derivation (i.e., a derivation whi
h is not of the form ad(X) forsome X 2 g). The result is remarkable sin
e it relates the stru
ture of theinvariants with the number of derivations of g.Taking together the above results, it follows that for Lie algebras sat-isfying dimDer(g) � dim g, only the 
omplete 
ase 
an provide us withLie algebras having no non-trivial invariants (in even dimension). Sin
e allknown examples are solvable, one 
an ask whether any algebra satisfyingN (g) = 0 and the 
onditions above must be solvable.4.1. Solvable 
omplete Lie algebras in dimension n � 8Solvable 
omplete Lie algebras have been 
ompletely 
lassi�ed up todimension 9, while non-solvable 
omplete Lie algebras are 
lassi�ed up todimension 7 [13℄. Sin
e solvable 
omplete Lie algebras r de
ompose as asemidire
t produ
t r = n � t of its nilradi
al n and a maximal toral subal-gebra t [i.e., an Abelian subalgebra formed by ad-semisimple elements℄ [13℄,the 
lassi�
ation redu
es to the 
ase where n is nonsplit. Following [13℄,the solvable 
omplete Lie algebras with nonsplit nilradi
al are 
alled simple
omplete. The distribution of isomorphism N 
lasses by dimension is givenin Table I. TABLE INumber N of isomorphism 
lasses.Dimension 2 3 4 5 6 7 8 9N 1 0 0 1 2 6 11 9From Table I we see that in low dimension the even dimensional 
ase hasmore isomorphism 
lasses. Table II presents the isomorphism 
lass, labelledlike in [13℄, and the number of invariants of these algebras for the evendimensions:The remarkable fa
t from this table is that most of these algebras haveonly non-trivial invariants, whi
h leads to the question whether for higherdimensions this pattern is preserved. In any 
ase, this shows that solvable
omplete Lie algebras in even dimension is a 
lass whi
h is worthy to beanalyzed, as well as its 
ontra
tions (see also the solvable rigid Lie algebrasin even dimensions [2, 3℄).



Contra
tions of Lie Algebras and Generalized Casimir Invariants 3911TABLE IINumber of invariants of solvable 
omplete Lie algebras in even dimension � 8.Algebra Bra
kets dim N (r)r14 [X5; Xi℄ = Xi; i = 1; 3 6 0[X5; X4℄ = 2X4; [X6; Xi℄ = Xi; i = 2; 3; 4[X1; Xi℄ = Xi+1; i = 2; 3r65 [X6; Xi℄ = iXi; 1 � i � 5 6 0[X1; Xi℄ = Xi+1; i = 2; 3; 4 [X2; X3℄ = X5;r15 [X6; Xi℄ = iXi; 1 � i � 5 8 2[X7; Xi℄ = Xi; i = 2; 4; 5; [X8; Xi℄ = Xi; i = 3; 4; 5;[X1; X4℄ = [X2; X3℄ = X5r25 [X6; Xi℄ = Xi; i = 1; 3; 5 8 0[X7; Xi℄ = Xi; i = 2; 4 [X8; Xi℄ = Xi; i = 3; 5[X1; Xi℄ = Xi+2; i = 2; 3r26 [X7; Xi℄ = iXi; 1 � i � 4 8 2[X7; X5℄ = 3X5, [X7; X6℄ = 5X6[X8; Xi℄ = Xi; i = 2; 3; 4; 6 [X1; Xi℄ = Xi+1 i=2,3[X2; X5℄ = X6r46 [X7; Xi℄ = Xi; i = 1; 3 8 0[X7; Xi℄ = 2Xi,i=4,5 [X7; X6℄ = 3X6[X8; Xi℄ = Xi; i = 2; 3; 5; 6 [X7; X4℄ = 2X4[X1; Xi℄ = Xi+1; i = 2; 5 [X1; X3℄ = X5[Xi; X4℄ = Xi+3; i = 2; 3r86 [X7; Xi℄ = Xi; i = 1; 3 8 0[X7; Xi℄ = 3Xi,i=5,6 [X7; X4℄ = 2X4[X8; Xi℄ = Xi; 2 � i � 5 [X7; X6℄ = 2X6[X1; Xi℄ = Xi+1; i = 2; 3 [X2; X5℄ = X6[X3; X4℄ = �X6:r96 [X7; Xi℄ = iXi; 1 � i � 6; 8 2[X8; Xi℄ = Xi; 2 � i � 6; [X1; Xi℄ = Xi+1; 2 � i � 5:r106 [X7; Xi℄ = Xi; i = 1; 4 8 0[X7; X3℄ = 12X3 [X7; X5℄ = 32X5[X7; X6℄ = 2X6 [X8; Xi℄ = Xi; i = 2; 4; 6[X8; Xi℄ = 12Xi; i = 3; 5 [X3; X5℄ = X6;[X1; Xi℄ = Xi+2; i = 2; 3; 4r146 [X7; Xi℄ = Xi; i = 1; 3; 5 8 2[X7; Xi℄ = 2X4; i = 2; 4 [X6; Xi℄ = Xi; i = 2; 3; 4[X1; Xi℄ = Xi+1; i = 2; 3r156 [X7; Xi℄ = Xi; i = 1; 3; 6 8 0[X7; Xi℄ = 2Xi; i = 4; 5 [X8; Xi℄ = Xi; i = 2; 3; 5[X8; X6℄ = 2X6 [X1; X2℄ = X3;[X1; Xi℄ = Xi+2; i = 3; 4 [X2; X3℄ = X6;r206 [X7; Xi℄ = Xi; i = 1; 3 8 0[X7; Xi℄ = 2Xi; i = 4; 5 [X7; X6℄ = 3X6[X8; Xi℄ = Xi; i = 2; 3; 5 [X1; X2℄ = X3[X1; Xi℄ = Xi+2; i = 3; 4 [X2; X4℄ = X5r236 [X7; Xi℄ = Xi; i = 1; 3; 6 8 0[X7; Xi℄ = (i � 2)Xi, [X8; X6℄ = 2X6[X8; Xi℄ = Xi; 2 � i � 5 [X1; Xi℄ = Xi+1; i = 2; 3; 4
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onta
t forms and frobeniusian Lie algebrasThe 
ontra
tion formula enables us to obtain some 
riteria on the numberof invariants of a Lie algebra. This will be of spe
ial interest for those 
lassesof Lie algebras whi
h, having an additional stru
ture, 
an be 
lassi�ed up to
ontra
tion. The examples of additional stru
ture we present here are basedon properties appearing in di�erential geometry, su
h as linear 
onta
t formsor a frobeniusian stru
ture. These two properties are related to HeisenbergLie algebras hn, whi
h are well known to be subalgebras of the extendedGalilei algebra [24, 25℄.5.1. Generalization of the Heisenberg Lie algebraGiven a Lie algebra g = �K 2n+1 ; �� and a linear form ! over K 2n+1 , theexterior di�erential of ! relative to � is given byd!� (X;Y ) = �! (� (X;Y )) ; 8X;Y 2 K 2n+1 : (8)We say that ! is a linear 
onta
t form relative to � if! ^ (d!�)n 6= 0 ; (9)where (d!�)n = Vn d!�. We observe that the left invariant Pfa� formindu
ed by ! over the Lie groups having g as Lie algebra is a 
onta
t formin the usual sense. We will simply say that g is equipped with a linear
onta
t form.The motivation to study linear 
onta
t forms 
omes from the analysis ofthe Lie algebra so(3) of the rotation group:Proposition 4 Every nonzero linear form ! on so(3) is a linear 
onta
tform.This is easily seen by 
onsidering the basis fX1;X2;X3g su
h that[Xj ;Xk℄ = "ijkXi;sin
e for the linear forms !i; 1 � i � 3 we have!i ^ d!i 6= 0 :This gives a 
hara
terization of so(3) in terms of 
onta
t forms [15℄:Proposition 5 A Lie algebra g all whose linear forms ! 2 g� are linear
onta
t forms is isomorphi
 to so(3).



Contra
tions of Lie Algebras and Generalized Casimir Invariants 3913This shows that for dimensions n � 3 we have to relax the 
ondition in orderto obtain useful results. We will now see that Lie algebras having a linear
onta
t form 
an be 
lassi�ed up to 
ontra
tion, i.e., we 
an �nd a family Fof Lie algebras ( the family 
an eventually redu
e to an unique algebra) su
hthat any Lie algebra g with a linear 
onta
t form 
ontra
ts to some elementof F [15℄.Theorem 3 [15℄ Let g = �K 2n+1 ; �� be a Lie algebra equipped with a linear
onta
t form !. Then the Heisenberg Lie algebra hn is a 
ontra
tion of g.We 
an enumerate two 
onsequen
es of this Theorem:1. If g has a linear 
onta
t form, then the dimension of its 
entre is atmost one.2. If g is semisimple, then its rank is one.By Theorems 1 and 3, to obtain an upper bound for N (g) it su�
es todetermine N (hn), whi
h is easily 
he
ked to be 1. Observe that it 
oin
ideswith the dimension of the 
entre of hn. As a 
onsequen
e we have that anyalgebra g with a linear 
onta
t form satis�esdim g = 2n+ 1; n � 1N (g) � 1 � : (10)In parti
ular, the latter equation provides us a proof of 
onsequen
e 2.above. Sin
e the number of invariants of a semisimple Lie algebra is thedimension h of a Cartan subalgebra [1℄, by Theorem 1 we obtain that h � 1.5.2. Frobeniusian Lie algebrasLet g = �K 2n ; �� be a Lie algebra. We say that g is frobeniusian if thereexists a linear form ! 2 g� su
h that(d!�)n 6= 0 : (11)Frobeniusian Lie algebras have also been 
lassi�ed up to 
ontra
tion [16℄. In
ontrast to the previous 
ase, frobeniusian Lie algebras need not 
ontra
t tothe same algebra, but to a parametrized family:



3914 R. Campoamor-StursbergTheorem 4 [16℄ Let g = �R2n ; �� be a frobeniusian Lie algebra. Then g
ontra
ts to some element of the following family g (�1; : : : ; �s; �1; : : : ; �n�1�s):[X1;X2℄ = X1[X2r+1;X2r+2℄ = X1; 1 � r � n� 1[X2;X4k�1℄ = �kX4k�1 + �kX4k+1; k � s[X2;X4k℄ = (�1� �k)X4k � �kX4k+2; k � s[X2;X4k+1℄ = ��kX4k�1 + �kX4k+1; k � s[X2;X4k+2℄ = �kX4k + (�1� �k)X4k+2; k � s[X2;X4s+2k�1℄ = �12X4s+2k�1 + �k+s�1X4s+2k; 2 � k � n� 2s[X2;X4s+2k℄ = ��k+s�1X4k+2s�1 � 12X4s+2k; 2 � k � n� 2s
9>>>>>>>>>=>>>>>>>>>; ;(12)where 0 � s � �n�12 � and (�1; : : : ; �s; �1; : : : ; �n�1�s) 2 Rn�1 . The algebrasg (�1; : : : ; �s; �1; : : : ; �n�1�s) are 
alled frobeniusian model Lie algebras.We observe that the 
omplex models are obtained by 
omplexi�
ation ofthe pre
eding algebras. Spe
i�
ally, for K = C we obtain that any 
omplexfrobeniusian Lie algebra 
ontra
ts to some algebra of the following family[X1;X2℄ = X1[X2r+1;X2r+2℄ = X1; 1 � r � n� 1[X2;X2k+1℄ = �kX2k+1; 0 � k � n� 1[X2;X2k+2℄ = (�1� �k)X2k+2; 0 � k � n� 1(�1; : : : ; �n�1) 2 C n�1 9>>>=>>>; : (13)Proposition 6 Let g be a frobeniusian Lie algebra over K = R; C . Then ghas no non-trivial generalized Casimir invariants.Proof We prove it for K = R, the 
omplex 
ase being similar. Observefrom (12) that frobeniusian model Lie algebras are solvable with nilradi
alisomorphi
 to the Heisenberg Lie algebra hn�1. Realizing the 
oadjoint rep-resentation of g (�1; : : : ; �s; �1; : : : ; �n�1�s) in a fun
tional spa
e of (2n+ 1)variables denoted by fx1; : : : ; x2n+1g, we havebX1 = �x1�x2 ; (14)whi
h implies that an invariant F does not depend on x2. Now, sin
e forany j � 3 we havebXj = fj (x3; : : : ; x2n) �x2 + (�1)j�1 x1�xj+(�1)j�1 ; (15)the fun
tion fj (x3; : : : ; x2n) expressing the Lie bra
kets [X2;Xj ℄ of (12), weobtain that �xjF = 0; j � 3 (16)
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tions of Lie Algebras and Generalized Casimir Invariants 3915for any invariant F . Finally, 
onsidering the representation of X2:bX2 = � 2nXj=3 gj(x3; : : : ; x2n)�xj + x1�x1 ; (17)the fun
tions gj(x3; : : : ; x2n) again expressing the bra
kets of (12), we dedu
e�x1F = 0, whi
h shows that F is a trivial invariant.Observe that frobeniusian model Lie algebras are subalgebras of thesemidire
t produ
t sp (2n;K ) � hn, sp (2n;K ) being the simple symple
ti
Lie algebra. This makes frobeniusian algebras interesting for the study ofnu
lear 
olle
tive motions [24, 25℄.From this result we obtain a su�
ien
y 
riterion for a Lie algebra to haveno non-trivial invariants:Proposition 7 If g is a frobeniusian Lie algebra, then N (g) = 0.Proof Sin
e there exists a n-tuple (�1; :::; �s; �1; :::; �n�1�s) su
h thatg (�1; :::; �s; �1; :::; �n�1�s) 2 O (g) , the result follows from Theorem 1.Thus the existen
e of a linear form whose di�erential is symple
ti
 for
esthe triviality of invariants of the 
oadjoint representation of g. This proposi-tion gives a quite interesting 
lass of algebras to be analyzed with respe
t tothe problem of invariants and deformations. The 
ohomology of frobeniusianmodel algebras is known [26℄, and it has been proven that any nonsolvablefrobeniusian Lie algebra 
ontra
ts on some model g (�1; :::; �s; �1; :::; �n�1�s)whose parameters (�1; :::; �s; �1; :::; �n�1�s) move on a �nite union of hyper-planes [26℄. Therefore a detailed analysis of these nonsolvable Lie algebrasmay be approa
hed by 
ohomologi
al means. We illustrate this by an ex-ample. The 
lassi�
ation of non-semisimple Lie algebras with nonzero Levisubalgebra s in dimensions n � 9 [27℄ was motivated by the study of higherdimensional versions of the Bian
hi type-IX universe [28℄. Obtaining of tendimensional models in full generality is however not possible due to thegreat number of parameters involved and the nonexisten
e of a 
lassi�
a-tion of solvable Lie algebras in dimensions n � 7. This for
es to 
onsidersome additional assumption in order to redu
e the number of parameters.In the 
ontext of frobeniusian Lie algebras, one 
an ask whether there existfrobeniusian Lie algebras with Levi subalgebra s isomorphi
 to the rotationalgebra so(3). This redu
es to analyze the 
ohomology of the model alge-bras in order to obtain the Levi part so(3) (this implies severe restri
tionson the representations R des
ribing the semidire
t produ
t s�!�Rr, wherer is the radi
al). With some e�ort it 
an be shown that solutions to this
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h as for example the parametrized family of Lie algebrasL(
1; : : : ; 
7) de�ned, over the basis fX1; : : : ;X10g, by the bra
kets:[X1;X2℄ = X3; [X1;X3℄ = �X2; [X2;X3℄ = X1;[X1;X4℄ = 12X7; [X1;X5℄ = 12X6; [X1;X6℄ = �12X5;[X1;X7℄ = �12X4; [X2;X4℄ = 12X5; [X2;X5℄ = �12X4;[X2;X6℄ = 12X7; [X2;X7℄ = �12X6; [X3;X4℄ = 12X6;[X3;X5℄ = �12X7; [X3;X6℄ = �12X4; [X3;X7℄ = 12X5;[X4;X8℄ = 
5X4; [X5;X8℄ = 
5X5; [X6;X8℄ = 
5X6;[X7;X8℄ = 
5X7; [X8;X10℄ = 
6X10; [X9;X10℄ = 
7X10;[X4;X9℄ = 
1X4 + 
2X5 + 
3X6 + 
4X7;[X5;X9℄ = �
2X4 + 
1X5 � 
4X6 + 
2X7;[X6;X9℄ = �
3X4 + 
4X5 + 
1X6 � 
2X7;[X7;X9℄ = �
4X4 � 
3X5 + 
2X6 + 
1X7:
9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>; ; (18)

where (
1; : : : ; 
7) 2 R7 . It follows at on
e that the Levi de
ompositionof these algebras is so(3)�!�R4�3D0r (
1; : : : ; 
7), where R4 is the irredu
iblerepresentation of so(3) of degree four, D0 is the trivial representation andr (
1; : : : ; 
7) denotes the radi
al.Proposition 8 The Lie algebras L(
1; :::; 
7) are deformations of the frobe-niusian model Lie algebras g(�1; :::; �s; �1; :::; �n�s�1) if and only if
1
6 � 
5
7 6= 0 (19)holds.Proof The proof follows at on
e observing that a 
losed form! 2 (L(
1; :::; 
7))� of maximal rank 
an be redu
ed to a �
anoni
al form�! = (
6!8 ^ !10 + 
7!9 ^ !10) + 4Xi=1 !i ; (20)
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tions of Lie Algebras and Generalized Casimir Invariants 3917where !1 = �12!1 ^ !7 � 12!2 ^ !5 � 12!3 ^ !6 + 
5!4 ^ !8+ 
1!4 ^ !9 � 
2!5 ^ !9 � 
3!6 ^ !9 � 
4!7 ^ !9 ;!2 = �12!1 ^ !6 + 12!2 ^ !4 + 12!3 ^ !7 + 
5!5 ^ !8+ 
2!4 ^ !9 + 
1!5 ^ !9 + 
4!6 ^ !9 � 
3!7 ^ !9 ;!3 = 12!1 ^ !5 � 12!2 ^ !7 + 12!3 ^ !4 + 
5!6 ^ !8+ 
3!4 ^ !9 � 
4!5 ^ !9 + 
1!6 ^ !9 + 
2!7 ^ !9 ;!4 = 12!1 ^ !4 + 12!2 ^ !6 � 12!3 ^ !5 ++
5!7 ^ !8+ 
4!4 ^ !9 + 
3!5 ^ !9 � 
2!6 ^ !9 + 
1!7 ^ !9 :It follows at on
e that the form being of maximal rank, i.e., satisfying5̂ ! 6= 0 ; (21)is equivalent to impose 
5
7 � 
6
1 6= 0 : (22)Therefore the Lie algebras L(
1; : : : ; 
7) 
onstitute a parametrized familyof non-semisimple Lie algebras with Levi subalgebra isomorphi
 to so(3) andhaving no non-trivial invariants for the 
oadjoint representation. We mayremark that this is the �rst example of non-solvable algebras having thisproperty that has appeared in the literature.Con
luding remarksTheorem 1 provides a ne
essary 
ondition for a Lie algebra g to be a
ontra
tion of a Lie algebra g0 in terms of the number of invariants of the
oadjoint orbit. This result was anti
ipated for the 
ontra
tions of the simpleLie algebra sp (3; C ) in [9℄, and has been proved formally here for arbi-trary Lie algebras.The pra
ti
al utility of Theorem 1 is its appli
ation to the study of(solvable) Lie algebras having only trivial invariants, by the study of its
ontra
tions. Sin
e 
ontra
tions are also transitive [7, 18℄, the result 
an beused to establish lower and upper bounds for the number of invariants of Liealgebras. This 
ould be of interest for those 
lasses of algebras for whi
h adire
t determination of the number of invariants is a very di�
ult problem,



3918 R. Campoamor-Stursbergdue to 
omputational limitations [21℄. For 
ertain 
lasses of solvable Liealgebras, whose nilradi
al generalizes in some sense the nilradi
als of Borelsubalgebras of simple Lie algebras [29℄ or metasolvable Lie algebras [30℄ ,the method should also provide useful 
on
lusions. In parti
ular, the use ofthe formula has provided us with a ten dimensional family of Lie algebraswith nontrivial Levi de
omposition whi
h are frobeniusian, showing thatthese algebras 
onstitute an interesting 
lass of algebras for 
onstru
ting Liealgebras with only trivial invariants for ad�.We have also seen that the 
ontra
tion formula 
an be used to prove somequestions about Lie algebras having less derivations than its dimension, andto prove that the existen
e of a fundamental set of invariants formed byrational fun
tions is a ne
essary 
ondition for a Lie algebra to be 
omplete.In parti
ular, the latter algebras seem to form an adequate 
lass to obtain Liealgebras without any non-trivial invariants, as follows from Table II. Their
ontra
tions are also of interest, sin
e 
ontra
tions of solvable Lie algebrasare also solvable.For parti
ular groups, su
h as the 
onformal group of spa
e time, where(real) Lie algebras in high dimension appear as subalgebras, the 
ontra
tionmethod 
ould be of interest to determine the maximal possible number ofinvariants.On the other hand, for 
ertain additional properties, mainly arising fromdi�erential geometry, we 
an always 
lassify the Lie algebras satisfying theproperty up to 
ontra
tion, usually obtaining a parametrized family F. Inorder to obtain an upper bound for the number of fun
tionally independentinvariants for the algebras satisfying the property, it su�
es to determineN (F) for the elements of the family. Con
erning the properties analyzedhere, linear 
onta
t form and frobeniusian Lie algebras, both model familiesare of importan
e for physi
al appli
ations, sin
e they are deeply relatedwith the Heisenberg Lie algebra. Spe
i�
ally, one 
ould ask whether anyfrobeniusian Lie algebra is a subalgebra of sp (2n;K )�hn, and whether otherproperties, su
h as the existen
e of a symple
ti
 form on the nilradi
al, 
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