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We prove that if g’ is a contraction of a Lie algebra g then the number of
functionally independent invariants of g’ is at least that of g. This allows to
obtain some criteria to ensure the non-existence of non-trivial invariants for
Lie algebras, as well as to deduce some results on the number of derivations
of a Lie algebra. In particular, it is shown that almost any even dimensional
solvable complete Lie algebra has only trivial invariants. Moreover, with
the contraction formula we determine explicitly the number of invariants
of Lie algebras carrying a supplementary structure, such as linear contact
or linear forms whose differential is symplectic, without having explicit
knowledge on the structure of the contracting algebra. This in particular
enables us to construct Lie algebras with non-trivial Levi decomposition
and none invariants for the coadjoint representation as deformations of
frobeniusian model Lie algebras.

PACS numbers: 02.20.Sv

1. Introduction

Invariants of the coadjoint representation of Lie algebras, also called gen-
eralized Casimir invariants, are rather important in physics, since they are
related to some preserved quantities in any theory described in terms of
symmetry algebras [1]. In any case, these invariants provide various infor-
mation on the irreducible representations of the considered Lie algebras [1],
and characterize specific properties of a physical system, like mass formulae
for dynamical groups. For the classical Lie algebras the problem was solved
long ago by Racah, and by the Levi decomposition the class which must be
analyzed is that of solvable Lie algebras, joint with the representations of
the Levi subalgebra on the radical. Various authors have approached the
problem in recent years, and the difficulty of finding or even characterizing
the invariants of solvable Lie algebras has been pointed out [2,3].
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Another crucial feature in the study of a physical system is the determi-
nation of its symmetries, more specifically, of the symmetry group of the
system [4,5]. This leads naturally to the comparison of systems having simi-
lar groups. Contractions of Lie algebras were introduced as a tool to explain
formally why some theories arise as limiting cases of other theories, like the
passage from the de Sitter algebra to the Poincaré algebra or from the latter
to the Galilei algebra, and were further developed by various authors [6-8].
Endowed with these methods, it is natural to ask which is the relation of
the invariants of a Lie algebra and the invariants of its contractions. For the
special case of classical Casimir invariants, the question reduces to relate the
corresponding universal enveloping algebras. This question was analyzed in
detail in [9] for the special case of the simple Lie algebra s[(3, C). This prob-
lem is definitively interesting for physical applications, since contractions
can be interpreted in some sense as approximations, and the understand-
ing of the behaviour of the invariants could provide useful interpretations of
physical phenomena. One could argue that, since any Lie algebra contracts
to the Abelian Lie algebra, a contraction will obviously have more invariants
than the contracted algebra. This pattern coincides also with the (few) Lie
algebras analyzed with respect to this observation, thus could be taken as
an “experimental proof”. However, such a conclusion is formally non rigor-
ous, and can easily lead to mistakes. Until 1999, basing on the theory of
semisimple Lie algebras and all constructions known, it was implicitly ac-
cepted that any rigid Lie algebra was rational (i.e., defined over the field
of rational numbers), which also seemed to be a quite natural consequence
of this theory. However, so obvious the fact appeared, it was pointed out
that this conclusion is false, since there exist rigid Lie algebras which are
not only non-rational, but even non-real [10]. Therefore, if the observation
on the number of invariants of contractions is to be sustained, it must be
proven formally for nonpolynomial invariants (for polynomials the assertion
follows from the properties of the universal enveloping algebras).

Among other interesting problems related to the invariants of Lie al-
gebras, a characterization of solvable Lie algebras with Abelian nilradical
admitting only trivial invariants was presented in [11|. In the same paper,
the author commented the importance of finding a corresponding character-
ization for solvable Lie algebras with non-Abelian nilradical. In view of the
cases treated and other examples, such a characterization probably does not
exist, as it should comprise simultaneously the solvable and the non-solvable
Lie algebras with nonzero Levi subalgebra. However, sufficiency conditions
to ensure the non-existence of non-trivial invariants can be found [2, 3].

In this paper we approach the problem of analyzing the relation between
the number of invariants of a Lie algebra and the number of invariants of its
contractions. In Section 2 we recall the general results on contractions of Lie
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algebras and the generalized Casimir invariants. In Section 3 we prove for-
mally, making use of the Beltrametti-Blasi formula [12], that a contraction
of a Lie algebras has at least as many functionally independent invariants as
the algebra it comes from. This generalizes the pattern observed for some
special types of algebras to arbitrary Lie algebras. As consequences of this
result, we deduce criteria to ensure that a Lie algebra has no non-trivial
invariants. The formula can also be used to determine upper bounds for the
number of invariants in the case where a direct computation becomes too
difficult. In Section 4 we apply the result to the study of derivations of Lie
algebras. In particular, we prove that any Lie algebra with less derivations
than its dimension necessarily has a fundamental set of invariants formed by
rational functions, of which at least one corresponds to a degree one poly-
nomial. This also tells that in absence of a fundamental set of invariants
formed by rational invariants, a Lie algebra cannot be complete [13]. The
latter case is of special interest, since most of the even-dimensional solv-
able complete Lie algebras in dimensions n < 9 have only trivial invariants,
showing that this class is, in even dimension, an adequate starting point
to search for criteria on the non-existence of non-trivial invariants. Even
some of their contractions, which are not complete any more, are strong
candidates for admitting only trivial invariants.

Finally, in Section 5, we analyze the invariants for some Lie algebras
carrying an additional structure, such as linear contact forms or symplectic
forms. The interest of such properties is out of discussion in view of the
importance of symplectic structures in physics [14] The advantage of Lie
algebras having supplementary structures like these lies in the fact that
they can always be classified up to contraction [15,16], which enables us
to determine the number of invariants without any information about the
precise structure of the contracting algebra. This method is also of interest
for deformation theory, which, under certain restrictions, is deeply related
with contraction theory [17,18].

Unless otherwise stated, any Lie algebra g considered here is defined over
the field K = R, C and nonsplit, i.e., g does not decompose as a direct sum
of ideals.

2. Contractions of Lie algebras. Generalized Casimir invariants

2.1. Contractions of Lie algebras

Traditionally contractions of Lie algebras are presented as limits [7, 8|,
although other authors have approached the contraction problem from the
point of view of group actions [17,18].
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A Lie algebra g = (K", ) may be considered as an element p of the
variety Hom( /\2 K”,K”) via the skew-symmetric bilinear map p: g® g —
g defining the Lie bracket on g. Thus we can identify the Lie algebra g
with its law pu. The set L™ of Lie algebras is then a subset of the variety

Hom(/\2 K”,K”) on which the general linear group GL (n,K) acts by :

(gom)(z,y) =g " (u(gz,9y)), g€ GL(n,K);z,yecK".

Clearly the orbit under this action are the isomorphism classes of u. Now
a Lie algebra ju is called a contraction of a Lie algebra pg if poo € O (120),
the Zariski closure of the orbit. The contraction is called nontrivial if pu
lies in the boundary of the orbit. This geometrical definition is nothing
more than a topological reformulation of the classical concept of Inonii—
Wigner contractions and its variations [7,8]. As known, these contrac-
tions can be viewed as singular changes of basis, starting from a fixed basis
{X1,...,Xn} of a Lie algebra g. That is, considering a sequence of endo-
morphisms {f, (e1,... ’ET)}peNu{o} (where fy can be taken as the identity

and ¢; designate the parameters), for any p we have:

Hp = fp_lolio (fpafp) . (1)

Thus, if the limit exists, it also represents a Lie algebra, and the law of the
contraction is given by

proo = Lim piy . (2)

Therefore, if {Cf]} are the structure constants of go = (K", pg) over a

basis {X1,..., X} and {Cf](p)} the structure constants of g, = (K", s1p),
the law of p is given by

Cfy = Jim Cri(p) . (3)

The most elementary example is the well known fact that any Lie algebra

contracts to the Abelian algebra of the same dimension. The contraction

is easily seen to be realized by the endomorphisms { fi = t_lid}, where id

denotes the identity matrix. This special kind of contraction, depending on
an unique parameter, is called one-parameter subgroup contraction [18].

2.2. Generalized Casimir invariants

The standard method to obtain the Casimir operators and its general-
izations of a Lie algebra is their interpretation as invariants of the coadjoint
representation of the corresponding Lie group [1,11,19].
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The problem of finding its invariants is indeed reduced to that of solv-
ing a system of linear first order partial differential equations. If B =
{X1,...,Xn} is a basis of the n-dimensional Lie algebra g and {z1,...,z,}
a coordinate system on the dual space, then the infinitesimal generators of
the action are denoted by X;. If moreover the structure constants of g are
given by [X;, X;] = Czlijk over the basis B, a function F' € C* (g*) is an
invariant of the coadjoint representation if and only if it satisfies the two
following conditions:

2. F is a solution of the system {)?ZF = 0} o
1<i<n

Solutions to this system are usually found by integration of the corre-
sponding system of characteristic equations or other standard integration
procedures [4]. If the solutions are polynomials, then they correspond to the
classical Casimir operators. If the solutions are rational or transcendental
functions, we call them generalized Casimir operators. The latter type of
solutions has shown its importance in the theory of integrable Hamiltonian
systems, as pointed out in [20].

A maximal set of functionally independent solutions will be called a
fundamental set of invariants. Since a Lie algebra law is an alternated tensor
of type (2,1), this rank of the algebra does not depend on the basis chosen.
By antisymmetry, this rank must be even, and from the analysis undertaken
in [12] it follows that the number of invariants N satisfies the congruence
N = dim (g) (mod 2). Polynomial solutions will naturally correspond to the
classical Casimir operators ( possibly after symmetrizing ). In particular,
an odd dimensional Lie algebra has at least one nontrivial invariant.

3. The contraction formula

As told in the introduction, in [9] the authors studied the contractions
of the simple Lie algebra sl (3,C), and observed that invariants of the con-
tractions can be obtained as limits of the invariants of s[(3,C), at least in
the case of Inénii—Wigner contractions. In particular, from this analysis we
get that contractions are expected to have more invariants than the alge-
bra they come from. The known cases seem to agree with this observation,
which however does not constitute an evidence for its correctness. In this
section we prove that this important observation generalizes indeed to con-
tractions of any Lie algebra (the orbit closure argument allowing to deal
with all particular types of contractions simultaneously).

As follows from the work of Beltrametti and Blasi [12], the number of
functionally independent invariants of the coadjoint representation ad* of a
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Lie algebra g is given by N’ = dim (g) — 7 (g), where r (g) is the maximum
rank of the commutator table considered as a (n x n)-matrix, where n =

dim (g). That is, the matrix is A;j;, := (Cf]xk) over the basis
1<i<j,k<dim(g)

{X1,..., Xn}, {CZ’“]} being the structure constants over this basis. It is
clear that on the transformed basis {f,X1,..., f,Xp} we obtain the matrix

A?jk = (Czk] () Ik)

Theorem 1 Ifg; = (K", 1) is a contraction of go = (K™, po), then N (g1) >
N (go)-

Proof
Let {X,..., Xy} be a basis of gg and f, (¢1,...,&,) be the sequence of
endomorphisms such that

1 = lim p,
p—
By application of elementary properties of matrix analysis algebra we obtain
that:
rank (A;j;) > rank <plirglo (Afjk>) . (4)
This inequality holds for any representative ug of the Lie algebra gg and any
family f, € GL (n,K) realizing the contraction. This proves that starting
from the orbit of gy we preserve of decrease the rank of the matrices in (4).
As a consequence of the fact that contractions of Lie algebras over a
field k£ can be characterized in terms of discrete valuation k-algebras whose
quotient field has transcendence degree one over k, and that formal deforma-
tions can be described using inverse limits and the completion of valuation
algebras [18], we deduce that a contraction can be realized as a deforma-
tion [17], which ensures that the maximal rank of commutation matrices
A;ji of representatives py of gy is lower or equal to the rank of some com-
mutator matrix of a representative of gg. This shows that no representative
of the orbit of g; can reverse the inequality (4). Therefore we obtain that:

r(go) > 7 (g1) (5)

and from the formula for the number of invariants:

N (g0) <N (g1) , (6)

that is, the contraction g; has at least A (go) invariants. =
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This result constitutes a complete proof of the intuition that contractions
have “less brackets” than the Lie algebra they come from, and it is indepen-
dent of any experimental observation made on particular cases. Geometri-
cally this is more or less clear, as the dimension of the orbit of contracted
algebras is lower than the orbit dimension of the starting algebra, and there-
fore one should expect that the contraction has more invariants. Observe
further that this result cannot be formulated in terms of deformations, since
there exist deformations which are not related to a contraction:

Example 1 Let t@®&K be the solvable Lie algebra given by the brackets
(X1, Xo] = X1, [X4,X3] =[X9,X3]=0
over the basis {X1, Xo, X3}. The family of algebras L (a) given by
[X1, Xo] = X1, [X9, X3] = —aX3, [X1,X3]=0

with o # 1 is a deformation of v @ K, but none element of this family
contracts to v @ K [17].

From Theorem 1 we deduce a result which was anticipated in [9] for the
special case of sl (3,C):

Corollary 1 If g is a contraction of a simple Lie algebra of rank p, then g
has at least p functionally independent invariants.

Thus Theorem 1 establishes a necessary condition on the number of
invariants of contractions. This is specially of interest when we search for
Lie algebras admitting only trivial invariants [i.e., all whose invariants are
constant functions|:

Lemma 1 If g has a contraction without any non-trivial invariants, then g
itself has only trivial invariants.

This lemma gives an alternative procedure to ensure the non-existence
of non-trivial invariants: to find a contraction which has only trivial invari-
ants. On the other hand, it also provides us a geometrical consequence: the
orbits of such Lie algebras are not included in the orbit closure of simple Lie
algebras, since they cannot be contractions of them. However, its interest is
the possibility of applying it to Lie algebras for which we know contractions
whose invariants have already been determined. An elementary example
illustrates this fact: For m > 2 let ¢ be a (2m 4+ 2)-dimensional solvable
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Lie algebra whose nilradical is isomorphic to the parametrized nilpotent Lie
algebra Moy, aqm 4o given by:
2

[Xotj, Xomy1—j] = X1, 0>2j5>m—1

[(Xoyj, Xom1] =a; X, 1<j<m-2 ’ (7)
1y, QMY S K7 1+2
where {X1,..., Xom+y1, Xomyo} is a basis of ¢ and o + agy,—j = 0 for 1 <

j<Zl+2

Observe that X1 belongs to the centre of the nilradical, and therefore ¢
has trivial centre whenever [Xo;,19, X1] # 0. Let f; € GL(2m+2,K) be the
sequence defined by

fr (X)) ="270X; 1<j<2m+2.

Clearly these endomorphisms define a one-parameter subgroup contraction,
at it can easily be seen that limy o ( f{lt( fts ft)) is a solvable Lie algebra
whose nilradical is isomorphic to the Heisenberg Lie algebra

b = (X1, -+, Xomy1|[Xovg, Xomy1-5] = X1) -

If we suppose, moreover, that [Xom42, X1] # 0, then the contracted alge-
bra is of type L (m,1) [21], and either from a direct computation or by
application of the formulae given there, since the centre is trivial, we obtain
that N (L(m,1)) = 0, and therefore t has only trivial invariants. A direct
computation of the invariants of t is much more complicated, due to the pres-
ence of the [%] 4- 2 parameters depending on the dimension. Although in
general the preceding result cannot be announced using deformations, it ap-
plies in particular to deformations which are related to contractions. Recall
that a jump deformation p; of a Lie algebra (V. ug) is a formal deformation
pe = po + toy + t2po + .. .. (gbi € Hom (/\QV, V)) which remains constant
for generic t # 0. That is, if v is an additional variable and coefficient are
extended to K(())[[u]], we have an isomorphism p1y = fi(14)¢-

Proposition 1 Let g be a Lie algebra satisfying N (g) = 0. Then any jump
deformation g’ also satisfies N (g') = 0.

The applicability of this consequence is constrained by the necessity con-
ditions for the existence of jump deformations, such as the non-nullity of the
cohomology group H' (g, g).
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4. Invariants and derivations of Lie algebras

In this paragraph we analyze some questions relating the invariants of a
Lie algebra g with the structure of its Lie algebra of derivations Der(g). In
particular, we are interested on the invariants of Lie algebras satisfying the
inequality dim Der(g) < dim g.

Among the multiple properties of contractions of Lie algebras existing,
we emphasize the following, which will be used in this section and whose
proof is straightforward:

Lemma 2 Let g1 be a contraction of the Lie algebra gg. Then the following
conditions are satisfied:

1. dim[gg, go] > dim[g1, g1],

2. dim Z(go) < dim Z(g1) ,

3. dimDer(gg) < dim Der(g;),
where Z(g) denotes the centre of g.

Recall that a Lie algebra g is said algebraic if it is isomorphic to the Lie
algebra of a linear algebraic group. Among the Lie algebras satisfying the
condition presented at the beginning of this section, we obtain the complete
Lie algebras [centerless Lie algebras all whose derivations are inner|, which
in particular cover semisimple Lie algebras, whose invariants are perfectly
known. Now the existence of Lie algebras satisfying dimDer(g) < dimg
has been a conjecture for long time, until the first examples were found in
1971 [22]. The central structural result was obtained by Carles in 1984 [23]:

Theorem 2 Let dimDer(g) < dimg. Then g is an algebraic Lie algebra
(with non-trivial centre if dimDer(g) < dimg). Moreover, in this case g is

perf66t7 i'e'i g = I:g’ g])'

From this Theorem we immediately deduce an interesting result on the
invariants of such Lie algebras:

Proposition 2 Let g be a Lie algebra such that dimDer(g) < dimg. Then
g admits a fundamental set of invariants formed by rational functions, of
which at least one can be taken as a polynomial of degree one.

This tells in particular that a Lie algebra with less derivations than its
dimension can never contract to a complete Lie algebra. More precisely, a
complete Lie algebra can never arise as a contraction of a Lie algebra. This
makes these algebras more difficult to localize, since the orbit closure method
fails. However, using the invariants we can deduce the following property:
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Proposition 3 If the Lie algebra g does mot admit a fundamental set of
invariants formed by rational functions, then dimDer(g) > dimg. In par-
ticular g cannot be complete.

The proof follows immediately from Theorem 2. For the special case
of Lie algebras with trivial centre, the proposition ensures the existence of
an outer derivation (i.e., a derivation which is not of the form ad(X) for
some X € g). The result is remarkable since it relates the structure of the
invariants with the number of derivations of g.

Taking together the above results, it follows that for Lie algebras sat-
isfying dimDer(g) < dimg, only the complete case can provide us with
Lie algebras having no non-trivial invariants (in even dimension). Since all
known examples are solvable, one can ask whether any algebra satisfying
N (g) = 0 and the conditions above must be solvable.

4.1. Solvable complete Lie algebras in dimension n < 8

Solvable complete Lie algebras have been completely classified up to
dimension 9, while non-solvable complete Lie algebras are classified up to
dimension 7 [13]. Since solvable complete Lie algebras t decompose as a
semidirect product v = n @ t of its nilradical n and a maximal toral subal-
gebra t [i.e., an Abelian subalgebra formed by ad-semisimple elements]| [13],
the classification reduces to the case where n is nonsplit. Following [13],
the solvable complete Lie algebras with nonsplit nilradical are called simple
complete. The distribution of isomorphism N classes by dimension is given
in Table I.

TABLE 1
Number N of isomorphism classes.

Dimension |2 3 4 5 6 7 & 9
N 1 0 01 2 6 11 9

From Table I we see that in low dimension the even dimensional case has
more isomorphism classes. Table IT presents the isomorphism class, labelled
like in [13], and the number of invariants of these algebras for the even
dimensions:

The remarkable fact from this table is that most of these algebras have
only non-trivial invariants, which leads to the question whether for higher
dimensions this pattern is preserved. In any case, this shows that solvable
complete Lie algebras in even dimension is a class which is worthy to be
analyzed, as well as its contractions (see also the solvable rigid Lie algebras
in even dimensions [2,3]).
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TABLE II
Number of invariants of solvable complete Lie algebras in even dimension < 8.

Algebra  Brackets dim  N(v)

th X5, Xi]=X;, i=1,3 6 0
X5, X4] = 2Xy, [Xe, Xi] = X;, 1=2,3,4
X1,X7;] = Xi+1, 1= 2,3

8 Xo, Xs]=iX;, 1<i<5 6 0
X1,Xi]| = Xiy1,i=2,3,4  [X2, X3] = X5,

s Xo, Xs]=iX;, 1<i<5 8 2
X7, Xi|=Xi, i=2,4,5, [Xs,Xi]=2X:, i=3,4,5,
X1, Xu] = [Xo, X3] = X5

t? X, Xi]=X;, i=1,3,5 8 0
X73X'i :Xi: 12234 [XS;Xi]:Xi, 2:3,5
X1,X7; :Xi+2, 1= 2,3

2 X7, X;]=iX;, 1<i<4 8 2
X7,X5] = 3X5, X7, X6] = 5X¢
Xs, Xi]=X;, 1=2,3,4,6 [X1,X;] = X541 12,3
Xo, X5] = X6

t X, X =X;, i=1,3 8 0
X7, Xi] = 2X;,i=4,5 X7, X6] =3X56
Xs, X;]=X;, 1=2,3,5,6 [X7,X4] =2X4
X1, X;] = Xi41,1=2,5 X1, X3] = X5
Xi,X4 = Xi+3,i = 2,3

tg X7,X¢ —Xi, ’i:1,3 8 0
X7, X;] = 3X;,i=5,6 X7, X4 =2X,y
Xs, X;]=X;, 2<1<5 X7, X6 =2X5
X1,X7; —Xi+1722273 XQ,XE, :Xe
X3, X4] = —Xe.

9 X7, X =iX:, 1<i<6, 8 2
X, Xi|=X;, 2<i<6, [X1,Xi]=2Xit1, 2<i<5.

30 (X7, Xi]=X;, i=1,4 8 0
X7,X3] = %X3 [X7,X5] = %X{,
X7, Xe6] = 2X56 [Xs, Xi] = Xi,1=2,4,6
Xs, X;]=1X;,i=3,5 [X3, X5] = X,
X1, Xi] = Xiy2,1=2,3,4

! X7, X;]=X;, i=1,3,5 8 2
X7, Xi] =2X4,i=2,4 X6, Xi] = X5, 1=2,3,4
X1, X;] = Xig1, 1=2,3

e X7, X]=X;, i=1,3,6 8 0
X7, X;] =2X;,i1=4,5 Xs, Xi] = X;,1=2,3,5
Xz, X6] = 2X6 X1, Xo] = Xa,
X1, Xi] = Xig2,1=3,4 Xa, X3] = X,

20 X, X =X;, i=1,3 8 0
X7, X;] =2X;,i1=4,5 X7, X6] = 3Xs
Xs, Xi]=X;,i=2,3,5 X1, Xo] = X3
X1, Xi| = Xiyo,1=3,4 Xo, Xa] = X5

33 X7, Xi]=X;, i=1,3,6 8 0
X7, Xi] = (G —2)X;, Xs, Xs] = 2X6
Xs, Xi]=X;, 2<i<5 X1,X:] = Xiq1, 1=2,3,4
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5. Linear contact forms and frobeniusian Lie algebras

The contraction formula enables us to obtain some criteria on the number
of invariants of a Lie algebra. This will be of special interest for those classes
of Lie algebras which, having an additional structure, can be classified up to
contraction. The examples of additional structure we present here are based
on properties appearing in differential geometry, such as linear contact forms
or a frobeniusian structure. These two properties are related to Heisenberg
Lie algebras b,, which are well known to be subalgebras of the extended
Galilei algebra [24,25].

5.1. Generalization of the Heisenberg Lie algebra

Given a Lie algebra g = (K", 1) and a linear form w over K*"*1 the
exterior differential of w relative to y is given by

dw, (X,Y) = —w (1 (X,Y)), VX,V € K"+ (8)
We say that w is a linear contact form relative to u if
w A (dw,)" #0, 9)

where (dw,)” = A"dw,. We observe that the left invariant Pfaff form
induced by w over the Lie groups having g as Lie algebra is a contact form
in the usual sense. We will simply say that g is equipped with a linear
contact form.

The motivation to study linear contact forms comes from the analysis of
the Lie algebra so(3) of the rotation group:

Proposition 4 Every nonzero linear form w on so0(3) is a linear contact
form.

This is easily seen by considering the basis { X1, X2, X3} such that
(X, Xi] = €iju X,
since for the linear forms w;, 1 <17 < 3 we have
w; ANdw; #0.
This gives a characterization of s0(3) in terms of contact forms [15]:

Proposition 5 A Lie algebra g oll whose linear forms w € g* are linear
contact forms is isomorphic to s0(3).
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This shows that for dimensions n > 3 we have to relax the condition in order
to obtain useful results. We will now see that Lie algebras having a linear
contact form can be classified up to contraction, i.e., we can find a family §
of Lie algebras ( the family can eventually reduce to an unique algebra) such
that any Lie algebra g with a linear contact form contracts to some element
of § [15].

Theorem 3 [15] Let g = (KQ"“,M) be a Lie algebra equipped with a linear
contact form w. Then the Heisenberg Lie algebra b, is a contraction of g.

We can enumerate two consequences of this Theorem:

1. If g has a linear contact form, then the dimension of its centre is at
most one.

2. If g is semisimple, then its rank is one.

By Theorems 1 and 3, to obtain an upper bound for N (g) it suffices to
determine N (h,,), which is easily checked to be 1. Observe that it coincides
with the dimension of the centre of h,. As a consequence we have that any
algebra g with a linear contact form satisfies

dimg=2n+1,n>1 }

N(g) <1 (10)

In particular, the latter equation provides us a proof of consequence 2.
above. Since the number of invariants of a semisimple Lie algebra is the
dimension h of a Cartan subalgebra [1], by Theorem 1 we obtain that A < 1.

5.2. Frobeniusian Lie algebras

Let g = (KQ",M) be a Lie algebra. We say that g is frobeniusian if there
exists a linear form w € g* such that

(dwy,)" #0. (11)

Frobeniusian Lie algebras have also been classified up to contraction [16]. In
contrast to the previous case, frobeniusian Lie algebras need not contract to
the same algebra, but to a parametrized family:
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Theorem 4 [16] Let g = (R*™, ;1) be a frobeniusian Lie algebra. Then g

contracts to some element of the following family g (a, ..., s, B1y -y PBr1—s)-

(X1, Xo] = X )

[Xori1, Xopyo] = X1, 1 <r<n—1

[Xo, Xap—1] = ap Xap—1 + BrpXag 11, k <5

[Xo, Xag] = (=1 — ap) Xag — BuXag42, k <'s

[ X2, Xap11] = =Bk Xar—1 + ap X1, b <5 ’

[ X2, Xy r2] = BuXar + (=1 — ag) Xgpqo, k< s

[Xo, Xusyon—1) = =3 Xagyor—1 + Brtrs—1Xasrom, 2 <k <n—2s

[Xo, Xusion] = —Bris—1Xaktos—1 — s Xuspon, 2<k<n—2s 1)

12

where 0 < s < ["771] and (ai,...,asP1,...,0n-1-s) € RV, The algebras
g, ...,05,01,...,0Bn-1-5) are called frobeniusian model Lie algebras.

We observe that the complex models are obtained by complexification of
the preceding algebras. Specifically, for K = C we obtain that any complex
frobeniusian Lie algebra contracts to some algebra of the following family

(X1, Xo] = X4
[(Xors1, Xoppo] =X1, 1 <r<n-1
[Xo, Xopt1] = M Xopt1, 0< E<n—1 . (13)

[Xo, Xogto] = (=1 = A\g) Xopqo, 0<k <n-—1
(>\1’ L) >‘n—1) € (Cnil

Proposition 6 Let g be a frobeniusian Lie algebra over K =R, C. Then g
has no non-trivial generalized Casimir invariants.

Proof We prove it for K = R, the complex case being similar. Observe
from (12) that frobeniusian model Lie algebras are solvable with nilradical
isomorphic to the Heisenberg Lie algebra b, ;. Realizing the coadjoint rep-

resentation of g (aq,...,as,B1,...,Bn—1-s) in a functional space of (2n + 1)
variables denoted by {z1,...,zo,41}, we have
5(:1 = —IlamQ s (14)

which implies that an invariant F' does not depend on z5. Now, since for
any j > 3 we have

A~

Xj = f] (.’L‘3, . 7$2n) 812 + (—1)j71 Ila

Tjt(-1)i=17

(15)

the function f; (x3,...,29,) expressing the Lie brackets [ X2, X;] of (12), we
obtain that
0y, F'=0, j>3 (16)
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for any invariant F'. Finally, considering the representation of Xs:

2n
Xy = —Zgj(iﬁg,...,iﬁgn)amj —|—$1(9m1 , (17)
j=3
the functions g;(zs, ..., z2,) again expressing the brackets of (12), we deduce

0z, F' = 0, which shows that F' is a trivial invariant. m

Observe that frobeniusian model Lie algebras are subalgebras of the
semidirect product sp (2n,K) & b, sp (2n,K) being the simple symplectic
Lie algebra. This makes frobeniusian algebras interesting for the study of
nuclear collective motions [24,25].

From this result we obtain a sufficiency criterion for a Lie algebra to have
no non-trivial invariants:

Proposition 7 If g is a frobeniusian Lie algebra, then N (g) = 0.

Proof Since there exists a n-tuple (aq,...,as, 1, ..., fn—1—s) such that

g(aq,...,as,B1y .y fn—1-5) € O(g) , the result follows from Theorem 1. m

Thus the existence of a linear form whose differential is symplectic forces
the triviality of invariants of the coadjoint representation of g. This proposi-
tion gives a quite interesting class of algebras to be analyzed with respect to
the problem of invariants and deformations. The cohomology of frobeniusian
model algebras is known [26], and it has been proven that any nonsolvable
frobeniusian Lie algebra contracts on some model g (aq, ..., g, B1, ey Bn—1—5)
whose parameters (a4, ..., as, 81, ..., Bn—1—s) move on a finite union of hyper-
planes [26]. Therefore a detailed analysis of these nonsolvable Lie algebras
may be approached by cohomological means. We illustrate this by an ex-
ample. The classification of non-semisimple Lie algebras with nonzero Levi
subalgebra s in dimensions n < 9 [27] was motivated by the study of higher
dimensional versions of the Bianchi type-IX universe [28]. Obtaining of ten
dimensional models in full generality is however not possible due to the
great number of parameters involved and the nonexistence of a classifica-
tion of solvable Lie algebras in dimensions n > 7. This forces to consider
some additional assumption in order to reduce the number of parameters.
In the context of frobeniusian Lie algebras, one can ask whether there exist
frobeniusian Lie algebras with Levi subalgebra s isomorphic to the rotation
algebra s0(3). This reduces to analyze the cohomology of the model alge-
bras in order to obtain the Levi part so(3) (this implies severe restrictions
on the representations R describing the semidirect product 5@ Rrt, where
v is the radical). With some effort it can be shown that solutions to this
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problem exist, such as for example the parametrized family of Lie algebras
L(vi,...,77) defined, over the basis {X7,..., X0}, by the brackets:

(X1, Xo] = X3, (X1, X3] = —Xo, (X2, X3] = X1, )
(X1, X4) =1X7,  [X1,X5] = %Xﬁ, (X1, Xe] = —%XE),
(X1, X7] = —3X4, [Xo, X4] = 5X5, [Xo, X5] = —5 X4,
[Xo, X6) = X7, [X2,X7] = —%XG, (X3, X4] = %XG,

(X3, X5] = —5X7, [X3,Xe]=—5X4, [X3,X7]=35Xs,

(X4, Xg] = 15Xy, [X5,Xg] =7X5,  [Xe, Xg] = 15X, . (18)
(X7, Xg] = v X7, [Xg, Xi0] = v6X10, [Xo, X10] = v7X10,
(X4, Xo] = 71 X4 + X5 + 73 X6 + 71 X7,

[ X5, Xo] = =72 X4 +71 X5 — 74 X6 + 72 X7,

[ X6, Xo] = =13 X4 + 71 X5 + 71 X6 — 72 X7,

(X7, X9] = =74 X4 — 13 X5 + 12 X6 + 11 X7 J

where (y1,...,77) € R7. Tt follows at once that the Levi decomposition

of these algebras is $0(3) @ r,e30,t (71, - - -,77), where Ry is the irreducible
representation of so0(3) of degree four, Dy is the trivial representation and
t(y1,.-.,77) denotes the radical.

Proposition 8 The Lie algebras L(vy1,...,7y7) are deformations of the frobe-
niusian model Lie algebras g(aq, ..., s, B1y--vs Pn—s—1) if and only if

Y1Y6 — V57 7 0 (19)

holds.

Proof The proof follows at once observing that a closed form
w € (L(v1y---,v7))" of maximal rank can be reduced to a “canonical form”

4
w = (Yows A wig + Yrwo Awig) + Y w;, (20)
i=1
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where
1 1 1
wi = —5wi Awy — w2 Aws — gws Awe +Y5ws A ws
+ Yiws A wg — Yows A wg — y3we A wy — Yawr A wy ,
wp = —gwi A we + %WQ/\W4+ %WSAW7+75“}5/\“}8

+ Yows N\ wg + Yiws A wg + Yawe N wg — Y3wr A wg ,

1 1 1
w3 = w1 /\w5——wg/\w7+§w3/\w4+'y5w6/\w8

2 2
+ Y3wq A wg — yaws N\ wg + y1wg A wg + yowr A wy
1 1 1
wy = gwi Awy + gwy Awe = Jwz Aws + 507 Aws

+ Yawa N wg + y3ws N\ wg — Yowg A wg + yiwr N wy .

It follows at once that the form being of maximal rank, i.e., satisfying

5
N\w#0, (21)

is equivalent to impose
Y57 — Y671 # 0. (22)

]

Therefore the Lie algebras L(71,...,7y7) constitute a parametrized family
of non-semisimple Lie algebras with Levi subalgebra isomorphic to so(3) and
having no non-trivial invariants for the coadjoint representation. We may
remark that this is the first example of non-solvable algebras having this
property that has appeared in the literature.

Concluding remarks

Theorem 1 provides a necessary condition for a Lie algebra g to be a
contraction of a Lie algebra gg in terms of the number of invariants of the
coadjoint orbit. This result was anticipated for the contractions of the simple

Lie algebra sp (3,C) in [9], and has been proved formally here for arbi-
trary Lie algebras.

The practical utility of Theorem 1 is its application to the study of
(solvable) Lie algebras having only trivial invariants, by the study of its
contractions. Since contractions are also transitive [7,18], the result can be
used to establish lower and upper bounds for the number of invariants of Lie
algebras. This could be of interest for those classes of algebras for which a
direct determination of the number of invariants is a very difficult problem,
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due to computational limitations [21]. For certain classes of solvable Lie
algebras, whose nilradical generalizes in some sense the nilradicals of Borel
subalgebras of simple Lie algebras [29] or metasolvable Lie algebras [30] ,
the method should also provide useful conclusions. In particular, the use of
the formula has provided us with a ten dimensional family of Lie algebras
with nontrivial Levi decomposition which are frobeniusian, showing that
these algebras constitute an interesting class of algebras for constructing Lie
algebras with only trivial invariants for ad®.

We have also seen that the contraction formula can be used to prove some
questions about Lie algebras having less derivations than its dimension, and
to prove that the existence of a fundamental set of invariants formed by
rational functions is a necessary condition for a Lie algebra to be complete.
In particular, the latter algebras seem to form an adequate class to obtain Lie
algebras without any non-trivial invariants, as follows from Table II. Their
contractions are also of interest, since contractions of solvable Lie algebras
are also solvable.

For particular groups, such as the conformal group of space time, where
(real) Lie algebras in high dimension appear as subalgebras, the contraction
method could be of interest to determine the maximal possible number of
invariants.

On the other hand, for certain additional properties, mainly arising from
differential geometry, we can always classify the Lie algebras satisfying the
property up to contraction, usually obtaining a parametrized family §. In
order to obtain an upper bound for the number of functionally independent
invariants for the algebras satisfying the property, it suffices to determine
N (F) for the elements of the family. Concerning the properties analyzed
here, linear contact form and frobeniusian Lie algebras, both model families
are of importance for physical applications, since they are deeply related
with the Heisenberg Lie algebra. Specifically, one could ask whether any
frobeniusian Lie algebra is a subalgebra of sp (2n, K) ®h,,, and whether other
properties, such as the existence of a symplectic form on the nilradical, can
also be solved by this means.
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