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Employing the approximate effective action constructed from the co-
incidence limit of the Hadamard-Minakshisundaram-DeWitt (HaMiDeW)
coefficient ag, the renormalized stress-energy tensor of the quantized mas-
sive scalar field in the spacetime of a static and electrically charged dila-
tonic black hole is calculated. Special attention is paid to the minimally
and conformally coupled fields propagating in geometries with a = 1, and
to the power expansion of the general stress-energy tensor for small values
of charge. A compact expression for the trace of the stress-energy tensor is
presented. Finally, various pointwise energy conditions are considered.

PACS numbers: 04.62.+v, 04.70.Dy

1. Introduction

According to our present understanding the physical content of quantum
field theory formulated in a spacetime describing black hole is contained in
the renormalized stress-energy tensor, (T'%), evaluated in a physically moti-
vated state [1]. And although interesting in its own, the stress-energy tensor
plays a crucial role in various applications, most important of which is the
problem of back reaction on the metric. Indeed, treating the stress-energy
tensor as a source term of the semi-classical Einstein fields equations, one
may, in principle, investigate the evolution of the system unless the quantum
gravity effects become dominant. Unfortunately, this program is hard to ex-
ecute as the semi-classical field equations comprise rather complicated set of
nonlinear partial differential equations, and, moreover, it requires knowledge
of functional dependence of (T%) on a wide class of metrics. It is natural,
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therefore, that in order to answer — at least partially — this question, one
should refer either to approximations or to numerical methods.

It seems that for the massive fields in a large mass limit, 4.e., when
the Compton length, [¢, is much smaller than the characteristic radius of
curvature, L, (where the latter means any characteristic length scale of the
spacetime), the approximation based on the asymptotic Schwinger-DeWitt
expansion is of the required generality [2-4]. Since the nonlocal contribution
to the effective action could be neglected it is expected that the method
yields reasonable results provided the gravitational field is weak and its
temporal changes remain small. Despite of the above restrictions there is still
a wide class of geometries in which the approximation could be successfully
applied.

For a neutral massive scalar field with an arbitrary curvature coupling
satisfying

(O—¢R-m?) ¢ =0, (1.1)

where £ is the coupling constant and m is the mass of the field, the ap-
proximate renormalized effective action, Wx, may be expanded in powers
of m~2 [5-7]. The n-th term of the expansion involves coincidence limit of
the Hadamard—-Minakshisundaram-DeWitt (HaMiDeW [8]) coefficient [ay]
constructed solely from the curvature tensor, its covariant derivatives up to
2n — 2 order and appropriate contractions [3, 9-15]. As the complexity of
the ‘HaMiDeW?’ coefficients rapidly grows with increasing n their practical
use is limited to n = 3, perhaps n = 4. Moreover, it should be emphasized
that the Schwinger-DeWitt expansion is asymptotic and adding more terms
does not necessarily improve the approximation. Here we shall confine our-
selves to the simplest yet calculationally involved case n = 3, in which the
approximate effective action could be written as

1o, 1
Wh:3%y/d%@5ﬂwy (1.2)

Having at one’s disposal the approximation of the renormalized effective
action, the stress-energy tensor could be evaluated by means of the standard
formula

%%R;Wy (1.3)

Since the coefficient [a3] is rather complicated so is the stress-energy tensor
and the question arose of a practical applicability of the thus obtained re-
sults. Fortunately it could be used in a number of physically interesting and
important cases. The method has been employed by Frolov and Zel’'nikov
in a series of papers [5-7] devoted to construction of (T%) of the massive
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scalar, spinor and vector fields in vacuum type-D spacetimes and general-
ized recently to arbitrary geometries in [16,17]. General formulas describing
(T*) consist of over 100 local terms.

The effective action technique that we employ in this paper requires
the metric of the spacetime to be positively defined. Hence, to obtain the
physical stress-energy tensor one has to analytically continue at the final
stage of calculations its Euclidean counterpart.

An alternative approach based on the WKB approximation of the so-
lutions to the radial equation and summation of the mode functions has
been developed by Anderson, Hiscock, and Samuel [18] (see also [19]), who,
among other things, succeeded in construction of the general form of the
stress-energy tensor of the scalar field in a large mass limit in a static and
spherically-symmetric geometry. Both approaches give, as expected, identi-
cal results and the detailed numerical analyses carried out by these authors
show that for mM 2 2 (M is the black hole mass) the accuracy of the
Schwinger—-DeWitt approximation in the Reissner—Nordstrém geometry is
quite good (1% or better) [20]. The Schwinger-DeWitt method has been
employed in various contexts in [16-18, 20-26]. (The case of the massive
spinor field is currently actively investigated [27].)

In this article we shall study the stress-energy tensor of the quantized
massive scalar field with an arbitrary curvature coupling in a background of
the static spherically-symmetric charged dilatonic black holes which are the
solutions of the coupled system of the Einstein—-Maxwell-dilaton equations.
Such solutions are characterized by mass M and by electric ) and dilatonic
a charges [28,29]. For some particular choices of the parameter a the so-
lutions of the system are especially interesting. Indeed, a = 0 corresponds
to the Reissner—Nordstrom solution, & = 1 to the solution obtained from
the low energy limit of the string effective action, whereas a = v/3 to the
four dimensional effective model reduced from the Kaluza—Klein theory in
five dimensions. Despite of this we do not relate our considerations with the
specific model, rather, we shall concentrate on the influence of the geometry
on the approximate renormalized stress-energy tensor. Although all infor-
mations regarding quantized fields in the curved background are encoded
in the components of the stress-energy tensor themselves, to gain a better
understanding of the nature of quantized fields we shall examine pointwise
energy conditions and show that in the spacetime of the dilatonic black hole
they are violated in an interesting way.

Various properties of charged dilatonic black holes have been examined
in a numerous papers. On the other hand however, quantum effects in
4D dilatonic black hole are — to the best of my knowledge — practically
unexplored. This does not mean that this group of problems is uninteresting:
belonging to the realm of the low-energy approximation to string theory
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or the Kaluza—Klein theory, the dilatonic black holes would interact with
various quantized fields. The main obstacle preventing construction of the
renormalized stress-energy tensor is the computational complexity of the
problem.

The evaporation process of the massless scalar field noninteracting with
a dilaton field has been analyzed in [30, 31] whereas the field fluctuation,
(¢?), of the minimally coupled massless scalar field in the vicinity of the
event horizon of the dilatonic black hole has been studied by Shiraishi [32].
Specifically, it was shown that the emission rate of the Hawking radiation
blows up near the extremality limit for ¢ > 1. On the other hand it is finite
for a = 1 and zero for a < 1. The field fluctuation diverges for a > 0 for the
extremal configuration.

Some aspects of the massless quantum fields in the spacetime of 2D
dilatonic black holes have been discussed in Ref. [33]. Specifically, it was
shown that in order for the stress-energy tensor to be regular in the geometry
of the extreme string metric it is necessary to assign a definite nonzero
temperature.

2. The geometry

Let us consider the action:

S = /d4x V=g [R —2(Ve)? —e 20¢F?| (2.1)

where ¢ is the massless dilatonic field, F' is the strength of the Maxwell
field (Fp = 2V[aAb}) and @ is the coupling constant. We recall that the
choice @ = 1 corresponds to the low energy limit of the string effective
action, a = v/3 to the four dimensional effective model reduced from the
Kaluza—Klein theory in five dimensions, and the Einstein—-Maxwell system
is obtained with a = 0. Modifications of the action (2.1) are considered, for
example, in |34, 35].

For each value of the parameter a there exists a black hole solution de-
pending on the electric charge and the mass [28,29]. Indeed, functionally dif-
ferentiating S with respect to the metric tensor, dilaton field, and Maxwell
field one obtains the system of the Einstein—-Maxwell-dilaton equations of
motion that could be solved exactly. Static and spherically-symmetric so-
lution has been found by Gibbons [28], and by Garfinkle, Horowitz and
Strominger [29]:

dr?
A(r)

ds® = A(r)dt® + + B?(r) d2?, (2.2)
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where ,
l1—a
. . T_—I— . T_— 14+a?
Alr) = ( r ) (1 r ) (2:3)
and ,
2a
B2 = (1- )T (2.4)
r

The integration constants ry and r_ are related to the mass and charge of
the dilatonic black hole according to

1—a?
2M =71y + T a2 )" (2.5)
and oy
Q%= 11;2 . (2.6)
The dilaton field is given by
2a°
o206 _ (1 - TT*) Tfa? 2.7)
Q

whereas the electric field is simply F = —dt A dr. Inspection of the line

2
T

element shows that the event horizon is located at r4; at » = r_ one has
a coordinate singularity that could be ignored so long one considers region

r > ry > r_. The choice ¢ = 0 leads to the Reissner—Nordstrom solution. At

Q| /M = (1 + a2) 1/2, a case usually addressed to as an extremal black hole,
the event horizon and r_ coincide and in this limit the surface r = r, = r_ is
zero except a = 0. Although more realistic models require massive ¢ field, the
dilatonic solutions (2.2)—(2.4) are of principal interest as they provide useful
models for studies of the consequences of modifications of the geometries of
the classical black holes. Finally, observe that the Kretschmann scalar K
computed at the event horizon near the extremality limit behaves as

402

K~ (ry —r) THe® (2.8)

3. The renormalized stress-energy tensor

3.1. Approzimate effective action

In the framework of the Schwinger-DeWitt approximation the first order
effective action of the massive scalar field is constructed from the coincidence
limit of the coefficient a3 (x,z'). Inserting [a3] as given in Appendix into
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(1.2), integrating by parts and finally making use of the elementary proper-
ties of the Riemann tensor, after necessary simplifications one has [12-14]:

1 1 1 1
M - - [ 4 - _n O RPY
Wien 1927r2m2/ x*/g[z <” 15 315>R B+ fagftn DR

_.3p3 - pq pgab _ D RJ RO
PR + 30nRquR 30nRquabR 5 453 RIRS
]' Cca, 7 Ci a
+315RMR‘1”R + Tago B+ g Ban” B Rea”

ab ppq
270R RCdR]

1
= Togi3 Zaiw(,-) , (3.1)
=1

were n = £ —1/6 and «; are equal to the numerical coefficients that stand in
front of the geometrical terms in the right-hand side of the equation (3.1).

Differentiating functionally Wr(elg with respect to a metric tensor one
obtains rather complicated expression which schematically may be written
as

0 1 W

aby — T — N,

() ; i 96m2m?2,/g Zz_; 5 gap
_ T(O)ab + nT(l)ab 4 772T(2)ab + ,'73T(3)ab . (32)

Each 7™ ig constructed solely from the curvature tensor, its covariant
derivatives and appropriate contractions. Because of the complexity of the
resulting stress-energy tensor it will be not presented here and for its full
form as well as the technical details the reader is referred to [16, 17].
should be emphasized that because of the form of the dilatonic metric, the
method presented in Refs [16] and [17] is the only one capable of the direct
evaluation of the stress-energy tensor in the large mass limit. Moreover, this
results may be easily extended to fields of other spins as the appropriate
tensors differ by the numerical coefficients «a; only.

The coincidence limit of a4 (z,2') is known: it has been calculated by
Avramidi [12-14] and by Amsterdamski, Berkin and O’Connor [15]. Conse-
quently the method could be extended, in principle, to include m~* terms.
Unfortunately, since the effective action constructed from [a4] is extremely
complicated, so is its functional derivative and the practical use of the thus
obtained result may be a real challenge. However, [a4] still could be em-
ployed in the analyses of the field fluctuation. The general structure of [a4]
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indicates that the second-order stress-energy tensor divides naturally into
five terms Z?:o niT(iab,

In order to simplify our discussion let us define ¢ = |Q| /M, x4+ =ry /M
and z = r/M. The Schwinger-DeWitt technique may be used when the
characteristic radius of curvature is much greater than the Compton length.
Simple considerations indicate that for » > r, it could be used for arbitrary
value of a. Assuming that L is related to the Kretschmann scalar as

Rapea R ~ 174 (3.3)

the condition of applicability of the approximation near the event horizon
could be written as

2c - 2a22 2
iR (4 —z-) 40> <m”, (3.4)
+

where ¢ = 222 + [m, — (1 + a2) $+]2. It is evident that for a > 0 the
Schwinger—-DeWitt approximation is inapplicable for r close to r_. For the
extremal Reissner-Nordstrém black hole this condition becomes M?m? >>
2V/2.

The temperature of the dilatonic black hole obtained by means of stan-
dard methods is given by

1—a?

1 x_\ 1+a?
Th=——(1-— :
i dnMz < $+) (35)

and for given ¢ it depends on the dilatonic coupling. Inspection of (3.5)
shows that

Ty < (87M)! (a<1),

Ty = 87M) ' (a=1),

Ta > (8aM)™! (a>1).
The temperature of the extremal configuration is zero for a < 1, takes the
same value as for a Schwarzschild black hole for ¢ = 1, and diverges for

a > 0. Moreover, it is easily seen that the condition Ty < m is violated for
a > 1 near the extremality limit.

3.2. General case

Solving the system (2.5) and (2.6) one easily obtains

ey =14++1-(1-a?¢? (3.6)
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and )
1+a N 3
7 a2<1_ 1—(1—a)q). (3.7)

Before proceeding further let us observe that R = 0 for ¢ = 0, and, con-
sequently, 6W(1y/dgq and W 3y/dgap is zero. The stress-energy tensor has
therefore a s1mp1e form

xr_ =

(Ta)*=" = T + TV (3.8)

On the other hand, the curvature scalar vanishes at the event horizon for any
a and is O (q4) for small q elsewhere. Moreover, since 9, R is the only nonzero

component of V,R one concludes that TP (r4) = 0 and is negligible in the

closest vicinity of r4.. It is because the only non-vanishing in this limit term
is proportional to
V.RV’R — (VR)? 8. (3.9)

(3)b

A closer examination indicates that Tg™" is O (qg) . Similarly, one expects

that for small ¢ the term TUS?)b is of order O (q4) . On the other hand, the
contribution of the last two terms in the right-hand side of equation (3.2)
could be made arbitrarily large by a suitable choice of the curvature coupling.
It should be noted however that such values of 5 are clearly unphysical and
should be rejected.

Restricting to the exterior region and calculating components of the Rie-
mann tensor, its contractions and covariant derivatives to the required order,
after some algebra, one arrives at the rather complicated result, that for ob-
vious reasons will not be presented here. However, it could be schematically
written in surprisingly simple form

(311 —|—1)

b p T-\" 1+a? k
(T)) = T+ a2) o (1 - ?> ¢ Zdzﬂcb n, a*| =" m+$ (3.10)
ijk

with 0 < ¢ <7 0< 35 <3and 0 <k < 6 subjected to the condition

1+ 7+k=29. Here
1

19272m2 M6
and djf;, for given a and n are numerical coefficients. Some extra work shows

p= (3.11)

that the tensor (3.10) is covariantly conserved and is regular for regular
geometries. Moreover, the difference (T}) — (T factors

3(3a2+1)

T - = e (1-5) (-5) 7 f@, 612)
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where the regular function f ~ (r; — z_)? as x_ — x, and consequently
within the domain of applicability of the Schwinger-DeWitt approximation
the stress-energy tensor is regular in a freely falling frame.

It could be demonstrated that the trace of the stress-energy tensor of
the quantized massive scalar field has a simple form

(1) = 15z {3 (6~ ) Bloal —fal | 313)

This equation together with
VTP =0 (3.14)

may serve as an independent check of the calculations. On the other hand
however, it suffices to calculate only one component of the stress-energy
tensor, say (T}), as the remaining ones could be obtained with the aid of
(3.13) and (3.14).

For conformally coupled fields the trace is proportional to the coinci-
dence limit of [ag]. We remark here that for conformally invariant massless
scalar field the anomalous trace is proportional to [as]; it should be noted
however, that (3.13) has been calculated for (T?) given by (3.2) whereas the
trace of the conformally invariant massless fields is a general property of the
regularized stress-energy tensor.

Since the practical use of the general result is limited, it is instructive
to analyze the stress-energy tensor in some specific cases. In the latter we
shall confine our analysis to 0 < a < v/3 with the special emphasis put on
the case a = 1. However, before proceeding to examination of some concrete
choices of a let us analyze a general (T?) for small q.

3.8. Arbitrary a, ¢ < 1

Assuming ¢ < 1, expanding (T) into a power series, and finally collect-
ing the terms with the like powers of ¢ one has

a2

seoge @ gt + % ), (3.15)

(12) = (T8)"=" +
where (Té’)“zo is evaluated for @ = 0 and coincides with the expression de-
scribing the stress-energy tensor in the geometry of the Reissner—Nordstrém
black hole [16,18]. The explicit expressions for the coefficients t((f)b as well as
the components of (T7)*=° are listed in the appendix. A closer examination
shows that for ¢ < 0.7 the expansion (3.15) reproduces the general result
satisfactorily, and, moreover, for ¢ < 1/3 the results weakly depend on the
coupling a. From (3.15) it is evident that for = 0 and ¢ = 0 the stress-
energy tensor reduces to the expression derived by Frolov and Zel’'nikov in
the geometry of the Schwarzschild black hole [5,36].
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3.4. Dilatonic black hole a =1

In this subsection we shall construct and investigate the stress-energy
tensor of the massive scalar field resulting from (3.10) for the particular
combinations of couplings. Consider a = 1. Since the second factor in A (r)
vanishes, we expect considerable simplifications as the event horizon is now
located at 2M whereas the ‘inner’ one at ¢ M. Indeed, defining y = r/r,,
equation (3.10 ) could be written in a simple form:

(1) = gyt g 2l a7 (3.16)

with 0 <7 <6 and 0 < j < 7, where b” . are numerical coefficients. From
(3.12) it could be shown that for any 7 the difference (T}) — (T") factorizes
as

l-y
y? (¢% — 29)°

where, for 0 < ¢ < /2 the function f (y) is regular at the event horizon.
Equation (3.16) could be contrasted to the analogous expression evaluated
in the Reissner-Nordstrom geometry (a = 0) :

a GZ zya QZ _j 2 (3'18)

(T}) —(T7) = f ), (3.17)

where 0 <1 <3,0<75<4, and czj . is another set of numerical coefficients.
To perform quantitative analysis however, we have to refer to exact for-

mulas. For n = 0 it suffices to compute only Téo)b as the other terms do not
contribute to the final result. Moreover, it suffices to know only one com-
ponent of the stress-energy tensor, say (T}), as the remaining ones could be
easily obtained solving equations (3.13) and (3.14) and putting the integra-
tion constant to zero. The conservation equation for the line element (2.2)

has the following form

d%(Tf) —wy (r) (T3) + ws (r) (T}') + ws (r) (T}) = 0, (3.19)

r—r_+a’r
wy (r) = CErRIETSE (3.20)

wy (r) = 6a?r? — bryr — br_r +4ryr_ +6r2 —a’r_r — 5a27'+7" (3.21)
r(L+a?) (r—ry) (r— 1)
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and

(r) 6r r_ —5ryr — 5r_r +4a?r? + a®r_r — 5a’ryr + 4r? (3.22)
wsy (r) = . .
3 r(1+a?) (r—ry)(r—ro)

After some algebra one has

6
p 2
T = —— Q% 3.23
< t) (2y . q6) Zz_;fz ( )
where
313 19 61 31 9
foly) = W_@a fl(y)__w_m_ﬁa
) = M8, T8 57T ]
W T 34045 T 25204 21043 2842
a(y) = 1381 B 6607 n 1813 n 1
SWT 112046~ 168045 | 7204F | 2843
fily) = — 9277 n 43837 _ 1007 _ 139
W= 71008047 T 2016045 84045 1008041
fsly) = 1817 B 479 n 559 n 7
ST 672045 84047 | 192045 | 288045
1783 473 11 1
fey) =

6048019 + 8064y®  384y7  6912¢6
(3.24)

To avoid unnecessary proliferation of long formulas we displayed only one
component of the stress-energy tensor.

Despite its similarity with the Schwarzschild line element, the non-
extremal ¢ = 1 dilatonic black holes have much in common with the Reissner
—Nordstrom solution. We shall, therefore, address the question of how the
differences between the geometry of the Reissner-Nordstrém black hole on
the one hand and the dilatonic black hole on the other are reflected in the
overall behavior of our approximate stress-energy tensors. First, from the
form of the stress-energy tensor it could be easily inferred that (T?) evalu-
ated for the extremal configuration is divergent as y — 1. Indeed, for ¢ = v/2
the components of the stress-energy tensor behave as (y — 1)_3 . Thisisin a
sharp contrast with the Reissner-Nordstrom case, in which the stress-energy
tensor approaches

1 16 1
b - =2 = : 1
(T2) = seggoanpe [21 <g 6)]d1ag[1,1, 1,—1] (3.25)
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as y — 1. It should be noted however, that, except ¢ = 0, the region in the
vicinity of the degenerate horizon of the extremal geometry is beyond the
applicability of the Schwinger-DeWitt approximation. On the other hand,
however, one expects that in the opposite limit, i.e. for ¢ < 1, the appro-
priate components of the stress-energy tensor are almost indistinguishable.

To analyze (T?) for intermediate values of g let us refer to the numerical
calculations. The plots of the time, radial and angular components of the
stress-energy tensor of the quantized massive scalar field as a function of the
rescaled radial coordinate for ¢ =4/10 (i = 0,...,13) in the most interest-
ing region are displayed in figures 1-3. This graphs are supplemented by
figure 4, where the dependence of the horizon values of (T}) = (T7) and
(Tf) = (T(;)Zs ) on ¢ is presented. Inspection of the figures and comparison
with the analogous results obtained for the Reissner-Nordstrom geometry
indicates that even for the intermediate values of ¢ there are still qualita-
tive similarities. Indeed, the time and angular components attain (positive)
maximum at the event horizon, decrease with r and approach (negative)
minimum. The magnitude of the maximum and the modulus of the mini-
mum increase with increasing ¢, and, consequently, so does the slope of the
curves.

a< Ttt >
0.0005 | “

-0.0005 |

-0.001 ¢

-0.0015 |

Fig.1. This graph shows the radial dependence of the rescaled component (T}),
(a = 19272 M°®m?) of the stress-energy tensor of the massive conformally coupled
scalar field in the geometry of the dilatonic black hole with @ = 1 for ¢ = /10,
(i = 0,...,13). In each case (T}) has its positive maximum at r, and attains
negative minimum away from the event horizon. The magnitude of the maximum
and the modulus of the minimum increase with increasing q.
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a<T,">
0.006 |
0.005
0.004 ¢
0.003 |
0.002 }

0.001 ¢

11 12 13 14 15/

Fig.2. This graph shows the radial dependence of the rescaled component (7))
(o = 19272 M°®m?) of the stress-energy tensor of the massive conformally coupled
scalar field in the geometry of the dilatonic black hole with @ = 1 for ¢ = /10,
(i=0,...,13). Top to bottom the curves are plotted for decreasing values of ¢. In
each case (") has its positive maximum at r; and monotonically decreases with 7.

a<Ty>
0.001
0.0005
0
~0.0005
~0.001
~0.0015
-0.002

L ‘ ‘ ‘ -
1.1 12 13 1.4 15 /M

Fig.3. This graph shows the radial dependence of the rescaled component (T}),
(o = 192 w2 M®%m?) of the stress-energy tensor of the massive conformally coupled
scalar field in the geometry of the dilatonic black hole with @ = 1 for ¢ = /10,
(i = 0,...,13). In each case (T}) has its positive maximum at r, and attains
negative minimum away from the event horizon. The magnitude of the maximum
and the modulus of the minimum increase with increasing ¢,
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0.07 ¢
0.06 |
0.05 ¢
0.04 ¢
0.03 ¢
0.02 ¢
0.01 |

0.2 0.4 0.6 0.8 1 12
Fig.4. This graph shows the horizon values of (T) (upper curve) and (T}) (lower

curve) as functions of . On the event horizon (T}) = (T’) and because of the
spherical symmetry one has (Tf¢) = (Tf ).

Before proceeding to physically interesting and important case n = —1/6,
it is useful to study a role played by each T,gz)b separately. First, it could

be easily shown that Té‘g)b is negligible with respect to other terms, and,
therefore, it does not contribute to the final result for reasonable values of the
curvature coupling. The run of the resulting stress-energy tensor depends on
a competition between remaining components. Indeed, inspection of figure 5

in which we exhibited Tt(i)t as a function of the rescaled radial coordinate

for fourteen exemplar values of ¢ indicates that the term—Tél)b produces
the most prominent maximum at the event horizon for ¢ < 0.9 whereas for

greater values of ¢ this role is played by T,§2)b. General features of Tr(i)r and

Tg(z)a are essentially the same.

Now the run of the stress-energy tensor as a function of ¢ could be easily
anticipated. The general structure remains, of course, of the form (3.16), but
now the dominant contribution to the result is provided initially by the term
nTél)b and subsequently with increasing g by the sum —1/6 Tél)b+1/36 TUE?)b.
Moreover, since oscillatory-like behavior of T,§3)b does not play a significant
role we have also qualitative similarities with the tensor evaluated for the

conformal coupling.
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Having computed Téi)b and combining them with appropriate values of
the coefficients «; for 4 = 1...10, after simplifications and rearrangement
one has

1237 75 9 377 703 9
fo(y)—w—@, fily) = —q <W_Ty3_7—y?>’
3637 5219 2259 99 )

faly) = 4 <14Oy5 T 40yt T 14047 T 2842

o [ 84407 11311 1177 99
faly) = = <3360y6 T 28045 T 60yt 28y3)
o [ 218839 1097669 11479 3891
faly) =4 <17920y7 T 5376045 T 112048 2240y4)
o [ 318457 33919 2639 273
foly) = - <107520 y® 672047 + 102445 640 y5>
L [ 24685 42557 3139 515
foly) = <86016y9 T 3601645 | 1228847 12288y6>

(3.26)

The qualitative behavior of the stress-energy tensor of the minimally
coupled scalar field is similar to the conformally coupled case, and, once
again, for the intermediate values of ¢ one has quantitative similarities with
the Reissner—Nordstrém case. Moreover, from figure 5 one can easily deduce
the general behavior of the stress-energy tensor for arbitrary coupling for
q <0.9.

Finally we remark, that the dilatonic black holes with a =1 or ¢ = 0 do
not exhaust physically important solutions. For example for a = v/3 one has
a four dimensional effective model reduced from the Kaluza—Klein theory in
five dimensions. By (3.10) the approximate stress-energy tensor expressed
in term of z, 4 and z_ could be schematically written as

b
(Ta) = 2 (z — o_)|"/? Zd’mkb o'zl at (3.27)
ijk

where 0 <7 < 7,0 <75 <3and 0 < k < 6 subjected to the condition
i+ j+ k =9. The qualitative behavior of the stress-energy tensor for both
n =0 and n = —1/6 is similar to (T?) constructed in the geometry of
a dilatonic black hole with ¢ = 1 and its run for small ¢ could be easily
inferred form (3.15).
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Fig.5. This graph shows radial dependence of the rescaled Tt(o)t (panel A), Tt(l)t

(panel B), Tt(Q)t (panel C) and Tt(3)t (panel D) for ¢ =4/10(i = 0,...,13). The
scaling factor is 19272 M%m?. The magnitude of Tt(k)t grows with increasing q for
k=0, 2, and 3.

4. Energy conditions

In the proofs of various theorems such as singularity theorems, positivity
of mass or topological censorship it is assumed that the components of the
stress-energy tensor of the matter fields do satisfy some restrictions usually
addressed to as the energy conditions. And although the present status
of the pointwise energy condition vary from disfavor to disbelief, to say
the least, their detailed studies are worthwhile as their violation frequently
leads to exotic yet physically interesting situations. It is well-known that
the quantum fields violate the energy conditions, and, moreover, similar
violations has been encountered even at the classical level. Hence, in spite of
the fact that all available informations of the quantum field theory in curved
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background are encoded in the components of the stress-energy tensor, one
can get a better understanding of the physical nature of the quantized fields
propagating in the spacetime of the dilatonic black hole analyzing the rate
of possible violations of the energy conditions.

Here we briefly analyze various pointwise energy conditions but before
proceeding further we shall examine the energy density itself. Since the
components of the stress-energy tensor depend in general on the electric
and dilatonic charges, the coupling constant and radial coordinate in rather
complicated form we shall concentrate on the particular combinations of
charges and couplings. It should be noted that the results for extremal
and near-extremal dilatonic black hole should not be treated too seriously
as geometries of such configurations are beyond the applicability of the
Schwinger—-DeWitt approximation. Therefore, in the following, we shall re-
strict ourselves to the solutions with 0 < ¢ < 1.3 (although sometimes we
quote the appropriate results for the extremal configurations as they provide
useful bounds).

To simplify discussion let us introduce the energy density of the quantized
fields, p, defined as

p=—(T¢), (4.1)
and the three principal pressures, p;, connected to the diagonal components
of the stress-energy tensor as

p1=1=—(T;) (4.2)

T

and
p2=p3 =p=(T)). (4.3)

For ¢ = 1 and conformal coupling with curvature one has to consider
two cases: 0 < g < g. and ¢, < ¢ < V/2, where ¢, = /18 — /286 ~ 1.043.
For ¢ < g, the energy density is negative in the narrow strip near the event
horizon, 1 < z < x1 and positive elsewhere, whereas for ¢ > ¢, the energy
density is positive in the region z1 < x < xo. Numerically, ;1 = 1.098 for
g =0 and z; = 1.2479 for ¢ = v/2; in the extremality limit zo = 1.747. On
the other hand for a minimal coupling, the energy density p function has
only one real root, z; > 1, located slightly outside the event horizon and is
positive for z > x.

4.1. Null energy condition

It is said that the matter field satisfies the null energy conditions if for
any null vector k¢
Topk®k® >0, (4.4)
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or, equivalently

for i = 1,2,3. In the spacetime at hand conditions (4.5) reduce to
p—172>0 (4.6)

and
p+p=>0. (4.7)

Inspection of the exact results indicate that the first condition is satisfied
for all distances, as

z—1

@z =0 We(2; q) (4.8)

p—T~

and the 6-th order polynomial Ws(z;¢q) has no real roots for x > 1. The
second one is satisfied only in a finite region 1 < z < x3, where z3(q) is a
decreasing function of ¢, with z3 = 9/5 for ¢ = 0. Therefore, the null energy
condition is satisfied in a narrow strip in the vicinity of the event horizon.
Similarly, for the minimal coupling the question of whether or not the
null energy condition is satisfied is in fact the question of non-negativity
of p + p as the second constraint is always satisfied. A closer examination
indicates that p+p is positive near the event horizon and negative elsewhere.

4.2. Weak energy condition

The stress-energy tensor satisfies the weak energy condition if for any
timelike vector X

T XX" >0 (4.9)

or in terms of the energy density and principal pressures

0

p+pi ;
0, (4.10)

p

(AVARLYS

and, consequently, the weak energy condition is equivalent to the null en-
ergy condition supplemented by the constraint p > 0 that has already been
discussed. It follows then that for ¢ > 1.01 the weak energy condition is
violated everywhere, whereas for 0 < ¢ < 1.01 it is satisfied in a small region
near the event horizon. On the other hand, for £ = 0, the weak energy
condition is satisfied only in a narrow strip located near the event horizon
and is violated in its closest vicinity.
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4.8. Strong energy condition

The strong energy condition is equivalent to the three constraints

P-l—Zpi >0 (4.11)
i

or, equivalently to (4.6) and (4.7), supplemented by
p—T+2p>0. (4.12)

Numerical calculations carried out for £ = 1/6 indicate that for ¢ < ¢4 =
0.6345 the constraint (4.12) is more restrictive than (4.7). On the other
hand, for ¢ > ¢, the strong energy condition is equivalent to the null energy
condition. It follows then that the strong energy condition is violated every-
where outside the narrow strip in the vicinity of the event horizon and the
magnitude of this region is decreasing function of ¢q. For the minimal cou-
pling the qualitative behavior of the stress-energy tensor remains the same.

4.4. Dominant energy condition

The stress-energy tensor satisfies the dominant energy condition if the
locally measured energy density is positive and the energy flux is timelike or
null. In terms of the energy density and principal pressures one has p > 0
and

—p<p;j<p. (4.13)

Qualitative behavior of the energy density and the principal pressures for
both considered couplings is similar: for small ¢ and small as well as inter-
mediate values of the radial coordinate there are regions where the energy
density dominates the principal pressures, whereas for large r this energy
condition is violated for any value of ¢. It is because the function p + p has
only one real root, say z,, and is negative for x > z,.

From the above analysis one can draw a conclusion that even in the case
of the weakest of the energy conditions, namely the null one, the region in
which the energy condition is satisfied is small. It is therefore of principal
interest to analyze the averaged energy conditions, and, what is even more
important, the quantum inequalities.

5. Concluding remarks

In this paper we have constructed and examined the approximate renor-
malized stress-energy tensor of the massive scalar field in the spacetime of
the static electrically charged dilatonic black hole with the special emphasis
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put on the string inspired case a = 1. The method employed here is based on
the observation that the lowest order of the expansion of the effective action
in m~2 could be expressed in terms of the integrated coincidence limit of
coefficient a3 (z,2’) . Although the line element of the dilatonic black hole
has a simple form, the analytical formulas describing the stress-energy ten-
sor for a general a constructed within the Schwinger-DeWitt framework are
extremely complicated and hence hard to utilize. Fortunately, for a concrete
choice of a there are massive simplifications.

Expanding for ¢ < 1 the stress-energy tensor into a power series it is
possible to analyze the influence of a on (T?). For ¢ = 0 it reduces to the
result derived by Frolov and Zel'nikov whereas for small values of ¢ the
stress-energy tensor resembles that evaluated in the Reissner—Nordstrom
geometry. The discrepancies between the tensors grow with ¢. It should be
stressed however that in the opposite limit the Schwinger-DeWitt technique
is inapplicable.

The problem of the massless fields certainly deserves separate treatment,
this however would require extensive numerical calculations as even for sim-
plest case of the Schwarzschild geometry existing analytical approximations
give, at best, only qualitative agreement with the exact results. At the
moment we only know that the horizon value of the field fluctuation [32]

2

0N 1 B T_ oz 7#
(97 = 4872 M?x? [1 (1+a?) $+] <1 m+> ’ (5:1)

which is divergent in the extremality limit for ¢ > 0. This suggests that
the stress-energy tensor is also divergent at ry of the extremal case. On
the other hand, a first non-vanishing term of the approximation to the field
fluctuation for a massive field is simply

() = rgy ] + O (m™), (52

and it could be easily shown that

<¢2>=75;ff§’£§}&4li 1+ (1-2) " rom ). 63

where

flary,ro)=[443a* (1-58)] 22 —6(1+a)ziz_ +3(1+ aQ)Qxi.
(5.4)
As the realistic calculations of the stress-energy tensor of the quantized
massless fields are expected to be extremely complicated, it is natural to
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analyze some simpler models first. Such calculations in a spacetime of 2D
dilatonic black holes with the emphasis put on the extremal configurations
have been carried out in Ref. [33]. It should be noted, however, that the
solution of the Einstein—-Maxwell-dilaton system when specialized to two
dimensions reduces to 2D Schwarzschild line element, and, unfortunately,
all interesting physics connected with the angular term is lost. On the other
hand the string metric solution analyzed at length in [33] is not considered
here.

Finally, we make some comments regarding applications and generaliza-
tions of the results presented in this paper. The question of the massless
field has been addressed above. A careful analysis carried out for ¢ = 0 in
Ref. [41] shows that at least up to O (m_4) the adapted method approxi-
mates well the field fluctuation of the massive field in the thermal state of
temperature Ty. It would be interesting to extend this analysis for any value
of a.

It should be stressed that because of special character of the line element
(2.2) the approximation derived in Refs [16] and [17] is the only one that
allows construction of the renormalized stress-energy tensor in the geometry
of the dilaton black hole. Moreover, it could be easily modified to incorporate
quantized massive spinor and vector fields. We also remark that the derived
stress-energy tensors may be employed as a source term of the semiclassical
Einstein field equations. Indeed, preliminary calculations indicate that it is
possible to construct the solution to the linearized semiclassical Einstein—
Maxwell-dilaton equations. We hope that presented results will be of use
in subsequent applications. We intend to return to this group of problems
elsewhere.

Appendix
Coincidence limits of the coefficients as (z,2') and a3 (x,z")

In this appendix we list coincidence limits of the coefficients as (z, ")
and ag (z,z") for the scalar field equation (1.1). With the normalization
employed in this paper the coefficient [as] reads

1 1 1 1N? , 1 bed X
- _ = N - - - abed a
[a2] 6 <£ 5) R+ 9 <£ 6) R* + 180 (RabcdR RabR ) s
(A1)
whereas [a3] could be written as
b
laa] = 27 + 565 (4.2)
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where

35 , ,
by = 5 ““R® +17TR,R" — R4y R1 — 4R, RP™1

: 14
+9R e R1PP + 2ROR + 180°R — 8R,,,ORP — ~ BBy R

208

64
+24R, AR — = =Ry R R +120R qa,,Ran” + —quRabRpaqb

16
_ ?quRpabchabc + ?quabchdaRqud + R qabR PqRabcd (A 3)
and

c3 = —(5¢ — 3062 + 60&%) R — (12¢ — 306%) R, R — (22¢ — 60¢*)ROR
—6£0%R — 4€Rp, RPY + 26 RR,,RP? — 26 RRyygqy RV . (A.4)

(TUIL’) of the massive scalar fields in the spacetime of the
Reissner—Nordstrom black hole

Inserting curvature tensor and its covariant derivatives into the gen-
eral formulas obtained from functional differentiation of the effective action
(3.1) with respect to the metric tensor one obtains the approximate stress-
energy tensor of massive fields. Since the curvature scalar of the Reissner—
Nordstrom geometry is zero, one expects considerable simplifications. In-
deed, it could be easily shown that the tensors Té”” and Tf’”’ do not con-
tribute to the final result. The stress-energy tensor of the massive scalar field

with arbitrary coupling with curvature in the Reissner-Nordstrom geometry
has the form (3.8), where

—-734¢%, (A7)

_l’_

q

oy _ 313z% 285z —7692> 1922 1352
T — _
t 7 . T\ 7t %
14 101 208 ¢5
4<5 x_Ox)_OSq’ (A5)
7
T _ 1145 4 15 z* L 709 22 248x N 27 z*
oz 2 T\ 13 7
421 7445
+q4< 46 $)+ 7q . (A6)
9 367x3 45zt 9 3303.%2 814x _ 81g!
T, = -
o 7 g T4 7 7

4 1726m 1522m )
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T = —7922% + 3602 + ¢* (260422 — 1008 2°)

+ ¢" (—2712z + 72827) + 8194°, (A.8)
TV = 2162° — 1442 4 ¢ (—588 2% + 336 2%)
+ ¢ (5042 —20827) — 117¢° (A.9)
and
T = —100843 + 4322" + ¢* (327622 — 1176 2%)

+ ¢* (-3408z +8322%) +1053¢°.  (A.10)

Power expansion of the stress-energy tensor for ¢ < 1

Repeating the calculations for the line element (2.2)-(2.3) one obtains
components of the stress-energy tensor in the geometry of a general dilatonic
black hole. Assuming ¢ < 1 and expanding the result into a power series,
after the necessary simplifications (3.15), where the coefficients t,(f)b are given
by

e _ 939 T6z Lgg, 2376 T
33 648 3841

tOr = gy — 22 222 A12

r T -~ +n< . : ) (A.12)

me 1101 3024 1152z

Ot D Y R (i Al

0 35 TN\ 7y 5 ) (A-13)

O _ 1207 4359 a? 9773 N 939 ¢2 N 181z N 1942 x B x_2
t T 140 140 210 z 14z 105 7 14
2754 a2 1594 1188a% 4
754> 159 +@_ 88a> :3695_4%236“2362
5 15 T €z 5
+n? <—6076 4+ 8900 19084 — 180x2) , (A.14)
e
(o _ 12091 N 213 a? N 3793 334 N 83z o 1122
T 1260 20 210z 2z 315 70
(55— 1026 a? 1032 N 324 a2 N 388 N 96 o B 24 72
" 5 5 = 15 5 5

12
+n? <1556 — % — 6122 4 72 x2) (A.15)
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(209 6841  4881a? 18139 N 1101 a? L2 o 33 z?
= - - a” T —
o 252 140 210z~ ldz 315 70

(3348(12 5572 1512 a? _ 1628z 288 a’x 7222 B @)

5 5 T 15 5 T 5 3
2
+n? <—7232 + 7% + 2268 2 — 216x2) ,

(A.16)

(3 _ 4847 4138 a? L 4359 a' L 20149 24971 a? | 3443 a'
L7840 315 280 42022 210z2 28 12
9059 602642 297a* 79z 152’z  19a'z 2?2  a?a?
1202z T 106z 4z 210 T 105 14 28 28
<5642 a®> 1294 6620 1377a' 4346 21784 1936

5 2 15 5 5 522 22 s
_278a2 N 1314 a* Y N 198 a2 z
15z x 5 5

2232 2198402 696 21596 a2
2 + 2 t
e €T

+24a*z + 62> —6a2$2>

+ 534z

+n? <7634 a® — 658 —

xr xr

—1254a® z — 90 22 + 90 ¢? x2> ,

(A.17)

@)r 1783 187a® 213a® 5009  5111a®> 121a!
) == + — — + —
r 840 70 40 42022 21022 4 12
401 435242 93a* 109z 24?2z  a*z 1122 114222

60z 315z T T 630 45 5 Tt 140 140
<86 188a2 513a* 158 25042 N 594¢* 96 118a?
n _ _ —

3 5 + 5 +x2 2 2 x 5
450a* 18z 660’z  48a*zr 1222 12(12302)

: 5 "5 5 5 5

288 465642 60 5764qa2

+n?<130—2442a?+_2_72“__Jr a
X x X x

—166 = + 454 a® x + 36 22 —36a2$2> ,

(A.18)
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(@0 _ 2411 72674’  4881a* 29963  8857a? 4037a' 13z

6 =360 1260 | 280 42022  70z° | 2822 315
11617 2792a®> 236la* 31a’z 3a*z 3322 334’22
1202 T 63z 28z 90 2 140 T 140
137842 1252  9264? 1674a* 5214  2772a4* 2052
”( 2 15 5 5 322 & @ 5e
976 a> 1620a* 108z 2524’z 144a*z  362% 364’z
5z =z 5 T 5 T35 tT5 T )
o <9182 W2 870 — 2920 N 2664;) a? N 1098 26008 a*
e o o e
4644 — 1508 a® x — 108 % + 108 a? $2) . (A.19)

The terms containing 7 appear starting from ¢°.
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