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QUANTIZED MASSIVE SCALAR FIELDSIN THE SPACETIME OF A CHARGED DILATONICBLACK HOLE. ENERGY CONDITIONSJerzy MatyjasekInstitute of Physis, Maria Curie-Skªodowska Universitypl. Marii Curie-Skªodowskiej 1, 20-031 Lublin, Polande-mail: matyjase�tytan.ums.lublin.pljurek�kft.ums.lublin.pl(Reeived February 24, 2003)Employing the approximate e�etive ation onstruted from the o-inidene limit of the Hadamard�Minakshisundaram�DeWitt (HaMiDeW)oe�ient a3; the renormalized stress-energy tensor of the quantized mas-sive salar �eld in the spaetime of a stati and eletrially harged dila-toni blak hole is alulated. Speial attention is paid to the minimallyand onformally oupled �elds propagating in geometries with a = 1; andto the power expansion of the general stress-energy tensor for small valuesof harge. A ompat expression for the trae of the stress-energy tensor ispresented. Finally, various pointwise energy onditions are onsidered.PACS numbers: 04.62.+v, 04.70.Dy1. IntrodutionAording to our present understanding the physial ontent of quantum�eld theory formulated in a spaetime desribing blak hole is ontained inthe renormalized stress-energy tensor, hT abi; evaluated in a physially moti-vated state [1℄. And although interesting in its own, the stress-energy tensorplays a ruial role in various appliations, most important of whih is theproblem of bak reation on the metri. Indeed, treating the stress-energytensor as a soure term of the semi-lassial Einstein �elds equations, onemay, in priniple, investigate the evolution of the system unless the quantumgravity e�ets beome dominant. Unfortunately, this program is hard to ex-eute as the semi-lassial �eld equations omprise rather ompliated set ofnonlinear partial di�erential equations, and, moreover, it requires knowledgeof funtional dependene of hT abi on a wide lass of metris. It is natural,(3921)



3922 J. Matyjasektherefore, that in order to answer � at least partially � this question, oneshould refer either to approximations or to numerial methods.It seems that for the massive �elds in a large mass limit, i.e., whenthe Compton length, lC, is muh smaller than the harateristi radius ofurvature, L; (where the latter means any harateristi length sale of thespaetime), the approximation based on the asymptoti Shwinger�DeWittexpansion is of the required generality [2�4℄. Sine the nonloal ontributionto the e�etive ation ould be negleted it is expeted that the methodyields reasonable results provided the gravitational �eld is weak and itstemporal hanges remain small. Despite of the above restritions there is stilla wide lass of geometries in whih the approximation ould be suessfullyapplied.For a neutral massive salar �eld with an arbitrary urvature ouplingsatisfying �2� �R�m2�� = 0 ; (1.1)where � is the oupling onstant and m is the mass of the �eld, the ap-proximate renormalized e�etive ation, WR; may be expanded in powersof m�2 [5�7℄. The n-th term of the expansion involves oinidene limit ofthe Hadamard�Minakshisundaram�DeWitt (HaMiDeW [8℄) oe�ient [an℄onstruted solely from the urvature tensor, its ovariant derivatives up to2n � 2 order and appropriate ontrations [3, 9�15℄. As the omplexity ofthe `HaMiDeW' oe�ients rapidly grows with inreasing n their pratialuse is limited to n = 3; perhaps n = 4. Moreover, it should be emphasizedthat the Shwinger�DeWitt expansion is asymptoti and adding more termsdoes not neessarily improve the approximation. Here we shall on�ne our-selves to the simplest yet alulationally involved ase n = 3; in whih theapproximate e�etive ation ould be written asWR = 132�2 Z d4xpg 1m2 [a3℄ : (1.2)Having at one's disposal the approximation of the renormalized e�etiveation, the stress-energy tensor ould be evaluated by means of the standardformula 2pg ÆÆgabWR = hT abi : (1.3)Sine the oe�ient [a3℄ is rather ompliated so is the stress-energy tensorand the question arose of a pratial appliability of the thus obtained re-sults. Fortunately it ould be used in a number of physially interesting andimportant ases. The method has been employed by Frolov and Zel'nikovin a series of papers [5�7℄ devoted to onstrution of hT abi of the massive



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3923salar, spinor and vetor �elds in vauum type-D spaetimes and general-ized reently to arbitrary geometries in [16,17℄. General formulas desribinghT abi onsist of over 100 loal terms.The e�etive ation tehnique that we employ in this paper requiresthe metri of the spaetime to be positively de�ned. Hene, to obtain thephysial stress-energy tensor one has to analytially ontinue at the �nalstage of alulations its Eulidean ounterpart.An alternative approah based on the WKB approximation of the so-lutions to the radial equation and summation of the mode funtions hasbeen developed by Anderson, Hisok, and Samuel [18℄ (see also [19℄), who,among other things, sueeded in onstrution of the general form of thestress-energy tensor of the salar �eld in a large mass limit in a stati andspherially-symmetri geometry. Both approahes give, as expeted, identi-al results and the detailed numerial analyses arried out by these authorsshow that for mM & 2 (M is the blak hole mass) the auray of theShwinger�DeWitt approximation in the Reissner�Nordström geometry isquite good (1% or better) [20℄. The Shwinger�DeWitt method has beenemployed in various ontexts in [16�18, 20�26℄. (The ase of the massivespinor �eld is urrently atively investigated [27℄.)In this artile we shall study the stress-energy tensor of the quantizedmassive salar �eld with an arbitrary urvature oupling in a bakground ofthe stati spherially-symmetri harged dilatoni blak holes whih are thesolutions of the oupled system of the Einstein�Maxwell-dilaton equations.Suh solutions are haraterized by mass M and by eletri Q and dilatonia harges [28, 29℄. For some partiular hoies of the parameter a the so-lutions of the system are espeially interesting. Indeed, a = 0 orrespondsto the Reissner�Nordström solution, a = 1 to the solution obtained fromthe low energy limit of the string e�etive ation, whereas a = p3 to thefour dimensional e�etive model redued from the Kaluza�Klein theory in�ve dimensions. Despite of this we do not relate our onsiderations with thespei� model, rather, we shall onentrate on the in�uene of the geometryon the approximate renormalized stress-energy tensor. Although all infor-mations regarding quantized �elds in the urved bakground are enodedin the omponents of the stress-energy tensor themselves, to gain a betterunderstanding of the nature of quantized �elds we shall examine pointwiseenergy onditions and show that in the spaetime of the dilatoni blak holethey are violated in an interesting way.Various properties of harged dilatoni blak holes have been examinedin a numerous papers. On the other hand however, quantum e�ets in4D dilatoni blak hole are � to the best of my knowledge � pratiallyunexplored. This does not mean that this group of problems is uninteresting:belonging to the realm of the low-energy approximation to string theory



3924 J. Matyjasekor the Kaluza�Klein theory, the dilatoni blak holes would interat withvarious quantized �elds. The main obstale preventing onstrution of therenormalized stress-energy tensor is the omputational omplexity of theproblem.The evaporation proess of the massless salar �eld noninterating witha dilaton �eld has been analyzed in [30, 31℄ whereas the �eld �utuation,h�2i; of the minimally oupled massless salar �eld in the viinity of theevent horizon of the dilatoni blak hole has been studied by Shiraishi [32℄.Spei�ally, it was shown that the emission rate of the Hawking radiationblows up near the extremality limit for a > 1: On the other hand it is �nitefor a = 1 and zero for a < 1: The �eld �utuation diverges for a > 0 for theextremal on�guration.Some aspets of the massless quantum �elds in the spaetime of 2Ddilatoni blak holes have been disussed in Ref. [33℄. Spei�ally, it wasshown that in order for the stress-energy tensor to be regular in the geometryof the extreme string metri it is neessary to assign a de�nite nonzerotemperature. 2. The geometryLet us onsider the ation:S = Z d4xp�g hR� 2 (r�)2 � e�2a�F 2i ; (2.1)where � is the massless dilatoni �eld, F is the strength of the Maxwell�eld (Fab = 2r[aAb℄) and a is the oupling onstant. We reall that thehoie a = 1 orresponds to the low energy limit of the string e�etiveation, a = p3 to the four dimensional e�etive model redued from theKaluza�Klein theory in �ve dimensions, and the Einstein�Maxwell systemis obtained with a = 0: Modi�ations of the ation (2.1) are onsidered, forexample, in [34, 35℄.For eah value of the parameter a there exists a blak hole solution de-pending on the eletri harge and the mass [28,29℄. Indeed, funtionally dif-ferentiating S with respet to the metri tensor, dilaton �eld, and Maxwell�eld one obtains the system of the Einstein�Maxwell-dilaton equations ofmotion that ould be solved exatly. Stati and spherially-symmetri so-lution has been found by Gibbons [28℄, and by Gar�nkle, Horowitz andStrominger [29℄: ds2 = A (r) dt2 + dr2A (r) +B2 (r) d
2 ; (2.2)



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3925where A (r) = �1� r+r ��1� r�r �1�a21+a2 (2.3)and B2 = r2 �1� r�r � 2a21+a2 : (2.4)The integration onstants r+ and r� are related to the mass and harge ofthe dilatoni blak hole aording to2M = r+ +�1� a21 + a2� r� (2.5)and Q2 = r+r�1 + a2 : (2.6)The dilaton �eld is given bye2a� = �1� r�r � 2a21+a2 ; (2.7)whereas the eletri �eld is simply F = Qr2dt ^ dr: Inspetion of the lineelement shows that the event horizon is loated at r+; at r = r� one hasa oordinate singularity that ould be ignored so long one onsiders regionr � r+ > r�: The hoie a = 0 leads to the Reissner�Nordström solution. AtjQj =M = �1 + a2�1=2, a ase usually addressed to as an extremal blak hole,the event horizon and r� oinide and in this limit the surfae r = r+ = r� iszero exept a = 0: Although more realisti models require massive � �eld, thedilatoni solutions (2.2)�(2.4) are of prinipal interest as they provide usefulmodels for studies of the onsequenes of modi�ations of the geometries ofthe lassial blak holes. Finally, observe that the Kretshmann salar Komputed at the event horizon near the extremality limit behaves asK � (r+ � r�)� 4a21+a2 : (2.8)3. The renormalized stress-energy tensor3.1. Approximate e�etive ationIn the framework of the Shwinger�DeWitt approximation the �rst ordere�etive ation of the massive salar �eld is onstruted from the oinidenelimit of the oe�ient a3 (x; x0) : Inserting [a3℄ as given in Appendix into



3926 J. Matyjasek(1.2), integrating by parts and �nally making use of the elementary proper-ties of the Riemann tensor, after neessary simpli�ations one has [12�14℄:W (1)ren = 1192�2m2 Z d4xpg �12 ��2 � �15 � 1315�R2R+ 1140Rpq2Rpq��3R3 + 130�RRpqRpq � 130�RRpqabRpqab � 8945RpqRqaRap+ 2315RpqRabRa bp q + 11260RpqRpabRqab + 177560RabpqRpqdRdab� 1270Ra bp qRp q dR�= 1192�2m2 10Xi=1 �iW(i) ; (3.1)were � = ��1=6 and �i are equal to the numerial oe�ients that stand infront of the geometrial terms in the right-hand side of the equation (3.1).Di�erentiating funtionally W (1)ren with respet to a metri tensor oneobtains rather ompliated expression whih shematially may be writtenas hT abi = 10Xi=1 �i ~T (i)ab = 196�2m2pg 10Xi=1 �i ÆW(i)Ægab= T (0)ab + �T (1)ab + �2T (2)ab + �3T (3)ab : (3.2)Eah ~T (i)ab is onstruted solely from the urvature tensor, its ovariantderivatives and appropriate ontrations. Beause of the omplexity of theresulting stress-energy tensor it will be not presented here and for its fullform as well as the tehnial details the reader is referred to [16, 17℄. Itshould be emphasized that beause of the form of the dilatoni metri, themethod presented in Refs [16℄ and [17℄ is the only one apable of the diretevaluation of the stress-energy tensor in the large mass limit. Moreover, thisresults may be easily extended to �elds of other spins as the appropriatetensors di�er by the numerial oe�ients �i only.The oinidene limit of a4 (x; x0) is known: it has been alulated byAvramidi [12�14℄ and by Amsterdamski, Berkin and O'Connor [15℄. Conse-quently the method ould be extended, in priniple, to inlude m�4 terms.Unfortunately, sine the e�etive ation onstruted from [a4℄ is extremelyompliated, so is its funtional derivative and the pratial use of the thusobtained result may be a real hallenge. However, [a4℄ still ould be em-ployed in the analyses of the �eld �utuation. The general struture of [a4℄



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3927indiates that the seond-order stress-energy tensor divides naturally into�ve terms P4i=0 �iT (i)ab:In order to simplify our disussion let us de�ne q = jQj =M , x� = r�=Mand x = r=M . The Shwinger�DeWitt tehnique may be used when theharateristi radius of urvature is muh greater than the Compton length.Simple onsiderations indiate that for r � r+ it ould be used for arbitraryvalue of a: Assuming that L is related to the Kretshmann salar asRabdRabd � L�4 ; (3.3)the ondition of appliability of the approximation near the event horizonould be written as 2M2x3+ (x+ � x�)� 2a21+a2 � m2 ; (3.4)where 2 = 2x2� + �x� � �1 + a2�x+�2 : It is evident that for a > 0 theShwinger�DeWitt approximation is inappliable for r+ lose to r�: For theextremal Reissner�Nordström blak hole this ondition beomes M2m2 �2p2:The temperature of the dilatoni blak hole obtained by means of stan-dard methods is given byTH = 14�Mx+ �1� x�x+�1�a21+a2 (3.5)and for given q it depends on the dilatoni oupling. Inspetion of (3.5)shows that TH < (8�M)�1 (a < 1) ;TH = (8�M)�1 (a = 1) ;TH > (8�M)�1 (a > 1) :The temperature of the extremal on�guration is zero for a < 1; takes thesame value as for a Shwarzshild blak hole for a = 1; and diverges fora > 0: Moreover, it is easily seen that the ondition TH � m is violated fora > 1 near the extremality limit.3.2. General aseSolving the system (2.5) and (2.6) one easily obtainsx+ = 1 +p1� (1� a2) q2 (3.6)



3928 J. Matyjasekand x� = 1 + a21� a2 �1�p1� (1� a2) q2� : (3.7)Before proeeding further let us observe that R = 0 for a = 0; and, on-sequently, ÆW(1)=Ægab and ÆW(3)=Ægab is zero. The stress-energy tensor hastherefore a simple form hT ba ia=0 = T (0)ba + �T (1)ba : (3.8)On the other hand, the urvature salar vanishes at the event horizon for anya and isO �q4� for small q elsewhere. Moreover, sine �rR is the only nonzeroomponent of raR one onludes that T (3)ba (r+) = 0 and is negligible in thelosest viinity of r+: It is beause the only non-vanishing in this limit termis proportional to raRrbR� (rR)2 Æba : (3.9)A loser examination indiates that T (3)ba is O �q8� : Similarly, one expetsthat for small q the term T (2)ba is of order O �q4� : On the other hand, theontribution of the last two terms in the right-hand side of equation (3.2)ould be made arbitrarily large by a suitable hoie of the urvature oupling.It should be noted however that suh values of � are learly unphysial andshould be rejeted.Restriting to the exterior region and alulating omponents of the Rie-mann tensor, its ontrations and ovariant derivatives to the required order,after some algebra, one arrives at the rather ompliated result, that for ob-vious reasons will not be presented here. However, it ould be shematiallywritten in surprisingly simple formhT ba i = p(1 + a2) x15 �1� x�x ��3(3a2+1)1+a2 Xijk daijkb ��; a2� xixj+xk�; (3.10)with 0 � i � 7, 0 � j � 3 and 0 � k � 6 subjeted to the onditioni+ j + k = 9: Here p = 1192�2m2M6 (3.11)and daijkb for given a and � are numerial oe�ients. Some extra work showsthat the tensor (3.10) is ovariantly onserved and is regular for regulargeometries. Moreover, the di�erene hT tt i � hT rr i fatorshT tt i � hT rr i = p(1 + a2) x14 �1� x+x ��1� x�x ��3(3a2+1)1+a2 f (x) ; (3.12)



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3929where the regular funtion f � (x+ � x�)2 as x� ! x+ and onsequentlywithin the domain of appliability of the Shwinger�DeWitt approximationthe stress-energy tensor is regular in a freely falling frame.It ould be demonstrated that the trae of the stress-energy tensor ofthe quantized massive salar �eld has a simple formhT aa i = 116�2m2 �3�� � 16�2[a2℄� [a3℄� : (3.13)This equation together with rbT ba = 0 (3.14)may serve as an independent hek of the alulations. On the other handhowever, it su�es to alulate only one omponent of the stress-energytensor, say hT tt i; as the remaining ones ould be obtained with the aid of(3.13) and (3.14).For onformally oupled �elds the trae is proportional to the oini-dene limit of [a3℄: We remark here that for onformally invariant masslesssalar �eld the anomalous trae is proportional to [a2℄; it should be notedhowever, that (3.13) has been alulated for hT bai given by (3.2) whereas thetrae of the onformally invariant massless �elds is a general property of theregularized stress-energy tensor.Sine the pratial use of the general result is limited, it is instrutiveto analyze the stress-energy tensor in some spei� ases. In the latter weshall on�ne our analysis to 0 � a � p3 with the speial emphasis put onthe ase a = 1: However, before proeeding to examination of some onretehoies of a let us analyze a general hT bai for small q:3.3. Arbitrary a; q � 1Assuming q � 1, expanding hT bai into a power series, and �nally ollet-ing the terms with the like powers of q one hashT ba i = hT ba ia=0 + a296�2m2x10M6 (q2t(1)ba + q4t(2)ba + q6t(3)ba + : : :) ; (3.15)where hT bb ia=0 is evaluated for a = 0 and oinides with the expression de-sribing the stress-energy tensor in the geometry of the Reissner�Nordströmblak hole [16,18℄. The expliit expressions for the oe�ients t(i)ba as well asthe omponents of hT bb ia=0 are listed in the appendix. A loser examinationshows that for q . 0:7 the expansion (3.15) reprodues the general resultsatisfatorily, and, moreover, for q . 1=3 the results weakly depend on theoupling a: From (3.15) it is evident that for a = 0 and q = 0 the stress-energy tensor redues to the expression derived by Frolov and Zel'nikov inthe geometry of the Shwarzshild blak hole [5, 36℄.



3930 J. Matyjasek3.4. Dilatoni blak hole a = 1In this subsetion we shall onstrut and investigate the stress-energytensor of the massive salar �eld resulting from (3.10) for the partiularombinations of ouplings. Consider a = 1: Sine the seond fator in A (r)vanishes, we expet onsiderable simpli�ations as the event horizon is nowloated at 2M whereas the `inner' one at q2M . Indeed, de�ning y = r=r+;equation (3.10 ) ould be written in a simple form:hT bai = p(2y � q2)6 Xij bbija [�℄ q2iy�j�2 (3.16)with 0 � i � 6 and 0 � j � 7; where bbija are numerial oe�ients. From(3.12) it ould be shown that for any � the di�erene hT tt i � hT rr i fatorizesas hT tt i � hT rr i = 1� yy9 (q2 � 2y)6 f (y) ; (3.17)where, for 0 � q < p2 the funtion f (y) is regular at the event horizon.Equation (3.16) ould be ontrasted to the analogous expression evaluatedin the Reissner�Nordström geometry (a = 0) :hT bai = py6 Xij bija [�℄ q2iy�j�2; (3.18)where 0 � i � 3, 0 � j � 4, and bija is another set of numerial oe�ients.To perform quantitative analysis however, we have to refer to exat for-mulas. For � = 0 it su�es to ompute only T (0)ba as the other terms do notontribute to the �nal result. Moreover, it su�es to know only one om-ponent of the stress-energy tensor, say hT tt i; as the remaining ones ould beeasily obtained solving equations (3.13) and (3.14) and putting the integra-tion onstant to zero. The onservation equation for the line element (2.2)has the following formddr hT rr i �w1 (r) hT aa i+ w2 (r) hT rr i+ w3 (r) hT tt i = 0 ; (3.19)wherew1 (r) = r � r� + a2r(r � r�) (1 + a2) ; (3.20)w2 (r) = 6a2r2 � 5r+r � 5r�r + 4r+r� + 6r2 � a2r�r � 5a2r+rr (1 + a2) (r � r+) (r � r�) ; (3.21)



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3931andw3 (r) = 6r+r� � 5r+r � 5r�r + 4a2r2 + a2r�r � 5a2r+r + 4r2r (1 + a2) (r � r+) (r � r�) : (3.22)After some algebra one hashT tt i = p(2y � q6) 6Xi=0 fiq2i ; (3.23)where f0(y) = 313210 y3 � 1914 y2 ; f1(y) = � 6130 y4 = 3170 y3 = 97 y2 ;f2(y) = 143840 y5 + 73132520 y4 � 577210 y3 � 128 y2 ;f3(y) = 13811120 y6 � 66071680 y5 + 1813720 y4 + 128 y3 ;f4(y) = � 927710080 y7 + 4383720160 y6 � 1007840 y5 � 13910080 y4 ;f5(y) = 18176720 y8 � 479840 y7 + 5591920 y6 + 72880 y5 ;f6(y) = � 178360480 y9 + 4738064 y8 � 11384 y7 � 16912 y6 : (3.24)To avoid unneessary proliferation of long formulas we displayed only oneomponent of the stress-energy tensor.Despite its similarity with the Shwarzshild line element, the non-extremal a = 1 dilatoni blak holes have muh in ommon with the Reissner�Nordström solution. We shall, therefore, address the question of how thedi�erenes between the geometry of the Reissner�Nordström blak hole onthe one hand and the dilatoni blak hole on the other are re�eted in theoverall behavior of our approximate stress-energy tensors. First, from theform of the stress-energy tensor it ould be easily inferred that hT bai evalu-ated for the extremal on�guration is divergent as y ! 1. Indeed, for q = p2the omponents of the stress-energy tensor behave as (y � 1)�3 : This is in asharp ontrast with the Reissner�Nordström ase, in whih the stress-energytensor approaheshT ba i = 12880�2m2M6 �1621 ��� � 16��diag [1; 1;�1;�1℄ (3.25)



3932 J. Matyjasekas y ! 1. It should be noted however, that, exept a = 0; the region in theviinity of the degenerate horizon of the extremal geometry is beyond theappliability of the Shwinger�DeWitt approximation. On the other hand,however, one expets that in the opposite limit, i.e. for q � 1, the appro-priate omponents of the stress-energy tensor are almost indistinguishable.To analyze hT bai for intermediate values of q let us refer to the numerialalulations. The plots of the time, radial and angular omponents of thestress-energy tensor of the quantized massive salar �eld as a funtion of theresaled radial oordinate for q = i=10 (i = 0; : : : ; 13) in the most interest-ing region are displayed in �gures 1�3. This graphs are supplemented by�gure 4, where the dependene of the horizon values of hT tt i = hT rr i andhT �� i = hT �� i on q is presented. Inspetion of the �gures and omparisonwith the analogous results obtained for the Reissner�Nordström geometryindiates that even for the intermediate values of q there are still qualita-tive similarities. Indeed, the time and angular omponents attain (positive)maximum at the event horizon, derease with r and approah (negative)minimum. The magnitude of the maximum and the modulus of the mini-mum inrease with inreasing q; and, onsequently, so does the slope of theurves.
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Fig. 1. This graph shows the radial dependene of the resaled omponent hT tt i;(� = 192�2M6m2) of the stress-energy tensor of the massive onformally oupledsalar �eld in the geometry of the dilatoni blak hole with a = 1 for q = i=10;(i = 0; : : : ; 13): In eah ase hT tt i has its positive maximum at r+ and attainsnegative minimum away from the event horizon. The magnitude of the maximumand the modulus of the minimum inrease with inreasing q.
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Fig. 2. This graph shows the radial dependene of the resaled omponent hT rr i(� = 192�2M6m2) of the stress-energy tensor of the massive onformally oupledsalar �eld in the geometry of the dilatoni blak hole with a = 1 for q = i=10;(i = 0; : : : ; 13): Top to bottom the urves are plotted for dereasing values of q: Ineah ase hT rr i has its positive maximum at r+ and monotonially dereases with r.
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Fig. 3. This graph shows the radial dependene of the resaled omponent hT �� i;(� = 192�2M6m2) of the stress-energy tensor of the massive onformally oupledsalar �eld in the geometry of the dilatoni blak hole with a = 1 for q = i=10;(i = 0; : : : ; 13): In eah ase hT tt i has its positive maximum at r+ and attainsnegative minimum away from the event horizon. The magnitude of the maximumand the modulus of the minimum inrease with inreasing q;
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Fig. 4. This graph shows the horizon values of hT �� i (upper urve) and hT tt i (lowerurve) as funtions of q. On the event horizon hT tt i = hT rr i and beause of thespherial symmetry one has hT �� i = hT�� i.Before proeeding to physially interesting and important ase � = �1=6,it is useful to study a role played by eah T (i)ba separately. First, it ouldbe easily shown that T (3)ba is negligible with respet to other terms, and,therefore, it does not ontribute to the �nal result for reasonable values of theurvature oupling. The run of the resulting stress-energy tensor depends ona ompetition between remaining omponents. Indeed, inspetion of �gure 5in whih we exhibited T (i)tt as a funtion of the resaled radial oordinatefor fourteen exemplar values of q indiates that the term�T (1)ba produesthe most prominent maximum at the event horizon for q . 0:9 whereas forgreater values of q this role is played by T (2)ba : General features of T (i)rr andT (i)�� are essentially the same.Now the run of the stress-energy tensor as a funtion of q ould be easilyantiipated. The general struture remains, of ourse, of the form (3.16), butnow the dominant ontribution to the result is provided initially by the term�T (1)ba and subsequently with inreasing q by the sum�1=6T (1)ba +1=36T (2)ba :Moreover, sine osillatory-like behavior of T (3)ba does not play a signi�antrole we have also qualitative similarities with the tensor evaluated for theonformal oupling.



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3935Having omputed ~T (i)ba and ombining them with appropriate values ofthe oe�ients �i for i = 1 : : : 10; after simpli�ations and rearrangementone hasf0(y) = 1237210 y3 � 7514 y2 ; f1(y) = �q2 � 37730 y4 � 70370 y3 � 97 y2� ;f2(y) = q4 � 3637140 y5 � 5219140 y4 + 2259140 y3 � 9928 y2� ;f3(y) = �q6 � 844073360 y6 � 11311280 y5 + 117760 y4 � 9928 y3� ;f4(y) = q8 � 21883917920 y7 � 109766953760 y6 + 114791120 y5 � 38912240 y4� ;f5(y) = �q10 � 318457107520 y8 � 339196720 y7 + 26391024 y6 � 273640 y5� ;f6(y) = q12 � 2468586016 y9 � 4255786016 y8 + 313912288 y7 � 51512288 y6� : (3.26)The qualitative behavior of the stress-energy tensor of the minimallyoupled salar �eld is similar to the onformally oupled ase, and, oneagain, for the intermediate values of q one has quantitative similarities withthe Reissner�Nordström ase. Moreover, from �gure 5 one an easily deduethe general behavior of the stress-energy tensor for arbitrary oupling forq < 0:9:Finally we remark, that the dilatoni blak holes with a = 1 or a = 0 donot exhaust physially important solutions. For example for a = p3 one hasa four dimensional e�etive model redued from the Kaluza�Klein theory in�ve dimensions. By (3.10) the approximate stress-energy tensor expressedin term of x, x+ and x� ould be shematially written ashT bai = p[x (x� x�)℄15=2 Xijk daijkb [�℄ xixj+xk� ; (3.27)where 0 � i � 7, 0 � j � 3 and 0 � k � 6 subjeted to the onditioni+ j + k = 9: The qualitative behavior of the stress-energy tensor for both� = 0 and � = �1=6 is similar to hT bai onstruted in the geometry ofa dilatoni blak hole with a = 1 and its run for small q ould be easilyinferred form (3.15).
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Fig. 5. This graph shows radial dependene of the resaled T (0)tt (panel A), T (1)tt(panel B), T (2)tt (panel C) and T (3)tt (panel D) for q = i=10 (i = 0; : : : ; 13): Thesaling fator is 192�2M6m2: The magnitude of T (k)tt grows with inreasing q fork = 0; 2; and 3: 4. Energy onditionsIn the proofs of various theorems suh as singularity theorems, positivityof mass or topologial ensorship it is assumed that the omponents of thestress-energy tensor of the matter �elds do satisfy some restritions usuallyaddressed to as the energy onditions. And although the present statusof the pointwise energy ondition vary from disfavor to disbelief, to saythe least, their detailed studies are worthwhile as their violation frequentlyleads to exoti yet physially interesting situations. It is well-known thatthe quantum �elds violate the energy onditions, and, moreover, similarviolations has been enountered even at the lassial level. Hene, in spite ofthe fat that all available informations of the quantum �eld theory in urved



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3937bakground are enoded in the omponents of the stress-energy tensor, onean get a better understanding of the physial nature of the quantized �eldspropagating in the spaetime of the dilatoni blak hole analyzing the rateof possible violations of the energy onditions.Here we brie�y analyze various pointwise energy onditions but beforeproeeding further we shall examine the energy density itself. Sine theomponents of the stress-energy tensor depend in general on the eletriand dilatoni harges, the oupling onstant and radial oordinate in ratherompliated form we shall onentrate on the partiular ombinations ofharges and ouplings. It should be noted that the results for extremaland near-extremal dilatoni blak hole should not be treated too seriouslyas geometries of suh on�gurations are beyond the appliability of theShwinger�DeWitt approximation. Therefore, in the following, we shall re-strit ourselves to the solutions with 0 � q � 1:3 (although sometimes wequote the appropriate results for the extremal on�gurations as they provideuseful bounds).To simplify disussion let us introdue the energy density of the quantized�elds, �; de�ned as � = �hT tt i ; (4.1)and the three prinipal pressures, pi; onneted to the diagonal omponentsof the stress-energy tensor as p1 = � = �hT rr i (4.2)and p2 = p3 = p = hT �� i : (4.3)For a = 1 and onformal oupling with urvature one has to onsidertwo ases: 0 � q < q and q � q < p2; where q = p18 �p286 � 1:043:For q � q the energy density is negative in the narrow strip near the eventhorizon, 1 � x < x1 and positive elsewhere, whereas for q > q the energydensity is positive in the region x1 � x � x2: Numerially, x1 = 1:098 forq = 0 and x1 = 1:2479 for q = p2; in the extremality limit x2 = 1:747: Onthe other hand for a minimal oupling, the energy density � funtion hasonly one real root, x1 > 1; loated slightly outside the event horizon and ispositive for x � x1: 4.1. Null energy onditionIt is said that the matter �eld satis�es the null energy onditions if forany null vetor ka Tabkakb � 0 ; (4.4)



3938 J. Matyjasekor, equivalently �+ pi � 0 ; (4.5)for i = 1; 2; 3: In the spaetime at hand onditions (4.5) redue to�� � � 0 (4.6)and �+ p � 0 : (4.7)Inspetion of the exat results indiate that the �rst ondition is satis�edfor all distanes, as �� � � x� 1(2x� q2)x9W6(x; q) (4.8)and the 6-th order polynomial W6(x; q) has no real roots for x � 1: Theseond one is satis�ed only in a �nite region 1 � x � x3; where x3(q) is adereasing funtion of q; with x3 = 9=5 for q = 0. Therefore, the null energyondition is satis�ed in a narrow strip in the viinity of the event horizon.Similarly, for the minimal oupling the question of whether or not thenull energy ondition is satis�ed is in fat the question of non-negativityof � + p as the seond onstraint is always satis�ed. A loser examinationindiates that �+p is positive near the event horizon and negative elsewhere.4.2. Weak energy onditionThe stress-energy tensor satis�es the weak energy ondition if for anytimelike vetor Xa TabXaXb � 0 (4.9)or in terms of the energy density and prinipal pressures�+ pi � 0 ;� � 0 ; (4.10)and, onsequently, the weak energy ondition is equivalent to the null en-ergy ondition supplemented by the onstraint � > 0 that has already beendisussed. It follows then that for q > 1:01 the weak energy ondition isviolated everywhere, whereas for 0 < q < 1:01 it is satis�ed in a small regionnear the event horizon. On the other hand, for � = 0; the weak energyondition is satis�ed only in a narrow strip loated near the event horizonand is violated in its losest viinity.



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 39394.3. Strong energy onditionThe strong energy ondition is equivalent to the three onstraints�+ pi � 0 ;�+Xi pi � 0 (4.11)or, equivalently to (4.6) and (4.7), supplemented by�� � + 2p � 0 : (4.12)Numerial alulations arried out for � = 1=6 indiate that for q � q1 =0:6345 the onstraint (4.12) is more restritive than (4.7). On the otherhand, for q � q1 the strong energy ondition is equivalent to the null energyondition. It follows then that the strong energy ondition is violated every-where outside the narrow strip in the viinity of the event horizon and themagnitude of this region is dereasing funtion of q: For the minimal ou-pling the qualitative behavior of the stress-energy tensor remains the same.4.4. Dominant energy onditionThe stress-energy tensor satis�es the dominant energy ondition if theloally measured energy density is positive and the energy �ux is timelike ornull. In terms of the energy density and prinipal pressures one has � � 0and �� � pj � � : (4.13)Qualitative behavior of the energy density and the prinipal pressures forboth onsidered ouplings is similar: for small q and small as well as inter-mediate values of the radial oordinate there are regions where the energydensity dominates the prinipal pressures, whereas for large r this energyondition is violated for any value of q: It is beause the funtion �+ p hasonly one real root, say xa; and is negative for x > xa:From the above analysis one an draw a onlusion that even in the aseof the weakest of the energy onditions, namely the null one, the region inwhih the energy ondition is satis�ed is small. It is therefore of prinipalinterest to analyze the averaged energy onditions, and, what is even moreimportant, the quantum inequalities.5. Conluding remarksIn this paper we have onstruted and examined the approximate renor-malized stress-energy tensor of the massive salar �eld in the spaetime ofthe stati eletrially harged dilatoni blak hole with the speial emphasis



3940 J. Matyjasekput on the string inspired ase a = 1: The method employed here is based onthe observation that the lowest order of the expansion of the e�etive ationin m�2 ould be expressed in terms of the integrated oinidene limit ofoe�ient a3 (x; x0) : Although the line element of the dilatoni blak holehas a simple form, the analytial formulas desribing the stress-energy ten-sor for a general a onstruted within the Shwinger�DeWitt framework areextremely ompliated and hene hard to utilize. Fortunately, for a onretehoie of a there are massive simpli�ations.Expanding for q � 1 the stress-energy tensor into a power series it ispossible to analyze the in�uene of a on hT ba i: For q = 0 it redues to theresult derived by Frolov and Zel'nikov whereas for small values of q thestress-energy tensor resembles that evaluated in the Reissner�Nordströmgeometry. The disrepanies between the tensors grow with q: It should bestressed however that in the opposite limit the Shwinger�DeWitt tehniqueis inappliable.The problem of the massless �elds ertainly deserves separate treatment,this however would require extensive numerial alulations as even for sim-plest ase of the Shwarzshild geometry existing analytial approximationsgive, at best, only qualitative agreement with the exat results. At themoment we only know that the horizon value of the �eld �utuation [32℄h�2i = 148�2M2x2+ �1� x�(1 + a2) x+��1� x�x+�� 2a21+a2 ; (5.1)whih is divergent in the extremality limit for a > 0: This suggests thatthe stress-energy tensor is also divergent at r+ of the extremal ase. Onthe other hand, a �rst non-vanishing term of the approximation to the �eld�utuation for a massive �eld is simplyh�2i = 116�2m2 [a2℄ +O �m�4� ; (5.2)and it ould be easily shown thath�2i = f (a; r+; r�)720�2m2M4x6+ �1 + a2��2�1� x�x+�� 4a21+a2 +O �m�4� ; (5.3)wheref (a; r+; r�) = �4 + 3a2 (1� 5�)�x2� � 6 �1 + a2�x+x� + 3 �1 + a2�2 x2+:(5.4)As the realisti alulations of the stress-energy tensor of the quantizedmassless �elds are expeted to be extremely ompliated, it is natural to



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3941analyze some simpler models �rst. Suh alulations in a spaetime of 2Ddilatoni blak holes with the emphasis put on the extremal on�gurationshave been arried out in Ref. [33℄. It should be noted, however, that thesolution of the Einstein�Maxwell-dilaton system when speialized to twodimensions redues to 2D Shwarzshild line element, and, unfortunately,all interesting physis onneted with the angular term is lost. On the otherhand the string metri solution analyzed at length in [33℄ is not onsideredhere.Finally, we make some omments regarding appliations and generaliza-tions of the results presented in this paper. The question of the massless�eld has been addressed above. A areful analysis arried out for a = 0 inRef. [41℄ shows that at least up to O �m�4� the adapted method approxi-mates well the �eld �utuation of the massive �eld in the thermal state oftemperature TH: It would be interesting to extend this analysis for any valueof a:It should be stressed that beause of speial harater of the line element(2.2) the approximation derived in Refs [16℄ and [17℄ is the only one thatallows onstrution of the renormalized stress-energy tensor in the geometryof the dilaton blak hole. Moreover, it ould be easily modi�ed to inorporatequantized massive spinor and vetor �elds. We also remark that the derivedstress-energy tensors may be employed as a soure term of the semilassialEinstein �eld equations. Indeed, preliminary alulations indiate that it ispossible to onstrut the solution to the linearized semilassial Einstein�Maxwell-dilaton equations. We hope that presented results will be of usein subsequent appliations. We intend to return to this group of problemselsewhere. AppendixCoinidene limits of the oe�ients a2 (x; x0) and a3 (x; x0)In this appendix we list oinidene limits of the oe�ients a2 (x; x0)and a3 (x; x0) for the salar �eld equation (1.1). With the normalizationemployed in this paper the oe�ient [a2℄ reads[a2℄ = �16 �� � 15�2R+ 12 �� � 16�2R2 + 1180 �RabdRabd �RabRab� ;(A.1)whereas [a3℄ ould be written as[a3℄ = b37! + 3360 ; (A.2)



3942 J. Matyjasekwhereb3 = 359 R3 + 17R;pR;p �Rqa;pRqa;q � 4Rqa;pRpa;q+9Rqab;pRqab;p + 2R2R+ 1822R� 8Rpq2Rpq � 143 RRpqRpq+24R qpq;aRpa � 2089 RpqRqaR pa + 122RpqabRpqab + 643 RpqRabRpaqb�163 RpqRpabRqab + 809 RpqabR p a d Rqbd + 449 RpqabR pqd Rabd (A.3)and3 = �(5� � 30�2 + 60�3)R3 � (12� � 30�2)R;pR;p � (22� � 60�2)R2R�6�22R� 4�RpqRpq + 2�RRpqRpq � 2�RRpqabRpqab : (A.4)hT bai of the massive salar �elds in the spaetime of theReissner�Nordström blak holeInserting urvature tensor and its ovariant derivatives into the gen-eral formulas obtained from funtional di�erentiation of the e�etive ation(3.1) with respet to the metri tensor one obtains the approximate stress-energy tensor of massive �elds. Sine the urvature salar of the Reissner�Nordström geometry is zero, one expets onsiderable simpli�ations. In-deed, it ould be easily shown that the tensors ~T (1)ba and ~T (3)ba do not on-tribute to the �nal result. The stress-energy tensor of the massive salar �eldwith arbitrary oupling with urvature in the Reissner�Nordström geometryhas the form (3.8), whereT (0)tt = 313x37 � 285x414 + q2��769x214 � 192x37 + 135x47 �+ q4 �514x7 � 101x221 �� 208 q67 ; (A.5)T ((0)rr = �11x3 + 15x42 + q2�709x214 � 248x37 + 27x47 �+ q4��46x+ 421x221 �+ 74 q67 ; (A.6)T (0)�� = 367x37 � 45x42 + q2 ��3303x214 + 814x37 � 81x47 �+ q4 �1726x7 � 1522x221 �� 73 q6 ; (A.7)



Quantized Massive Salar Fields in the Spaetime of a Charged . . . 3943T (1)tt = �792x3 + 360x4 + q2 �2604x2 � 1008x3�+ q4 ��2712x + 728x2�+ 819 q6 ; (A.8)T (1)rr = 216x3 � 144x4 + q2 ��588x2 + 336x3�+ q4 �504x � 208x2�� 117 q6 (A.9)and T (1)�� = �1008x3 + 432x4 + q2 �3276x2 � 1176x3�+ q4 ��3408x + 832x2�+ 1053 q6 : (A.10)Power expansion of the stress-energy tensor for q � 1Repeating the alulations for the line element (2.2)�(2.3) one obtainsomponents of the stress-energy tensor in the geometry of a general dilatoniblak hole. Assuming q � 1 and expanding the result into a power series,after the neessary simpli�ations (3.15), where the oe�ients t(i)ba are givenby t(1)tt = 93935 � 76x7 + ��192x � 23765 � ; (A.11)t(1)rr = 4x� 335 + ��6485 � 384x5 � ; (A.12)t(1)�� = 110135 � 12x� ��30245 � 1152x5 � ; (A.13)t(2)tt = 1207140 � 4359 a2140 � 9773210x + 939 a214x + 181x105 + 19 a2 x7 � x214+� �2754 a25 � 159415 + 888x � 1188 a2x � 436x5 � 48 a2 x+ 12x2�+�2 ��6076 + 6000x + 1908x � 180x2� ; (A.14)t(2)rr = �120911260 + 213 a220 + 3793210x � 33 a22x + 83x315 � a2 x+ 11x270+� �58� 1026 a25 � 10325x + 324 a2x + 388x15 + 96 a2 x5 � 24x25 �+�2 �1556 � 1200x � 612x + 72x2� (A.15)



3944 J. Matyjasekt(2)�� = 6841252 � 4881 a2140 � 18139210x + 1101 a214x + 227x315 + 3 a2 x� 33x270+� �3348 a25 + 55725x � 1512 a2x � 1628x15 � 288 a2 x5 + 72x25 � 2963 �+�2 ��7232 + 7200x + 2268x � 216x2� ; (A.16)t(3)tt = 4847840 � 4138 a2315 + 4359 a4280 + 20149420x2 � 24971 a2210x2 + 3443 a428x2� 9059420x + 6026 a2105x � 297 a44x � 79x210 + 152 a2 x105 � 19 a4 x14 � x228 + a2 x228+��5642 a25x2 � 129415 � 662 a25 � 1377 a45 � 43465x2 � 2178 a4x2 + 19365x�278 a215x + 1314 a4x � 78x5 + 198 a2 x5 + 24 a4 x+ 6x2 � 6 a2 x2�+�2�7634 a2 � 658� 2232x2 + 21984 a2x2 + 696x � 21596 a2x + 534x�1254 a2 x� 90x2 + 90 a2 x2� ; (A.17)t(3)rr = �1783840 + 187 a270 � 213 a440 � 5009420x2 + 5111 a2210x2 � 121 a44x2+ 40160x � 4352 a2315x + 93 a44x + 109x630 � 2 a2 x45 + a4 x2 + 11x2140 � 11 a2 x2140+��863 + 188 a25 + 513 a45 + 158x2 � 250 a2x2 + 594 a4x2 � 96x + 118 a25x� 450 a4x + 18x5 � 66 a2 x5 � 48 a4 x5 � 12x25 + 12 a2 x25 �+�2�130 � 2442 a2 + 288x2 � 4656 a2x2 � 60x + 5764 a2x�166x+ 454 a2 x+ 36x2 � 36 a2 x2� ; (A.18)
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