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QUANTIZED MASSIVE SCALAR FIELDSIN THE SPACETIME OF A CHARGED DILATONICBLACK HOLE. ENERGY CONDITIONSJerzy MatyjasekInstitute of Physi
s, Maria Curie-Skªodowska Universitypl. Marii Curie-Skªodowskiej 1, 20-031 Lublin, Polande-mail: matyjase�tytan.um
s.lublin.pljurek�kft.um
s.lublin.pl(Re
eived February 24, 2003)Employing the approximate e�e
tive a
tion 
onstru
ted from the 
o-in
iden
e limit of the Hadamard�Minakshisundaram�DeWitt (HaMiDeW)
oe�
ient a3; the renormalized stress-energy tensor of the quantized mas-sive s
alar �eld in the spa
etime of a stati
 and ele
tri
ally 
harged dila-toni
 bla
k hole is 
al
ulated. Spe
ial attention is paid to the minimallyand 
onformally 
oupled �elds propagating in geometries with a = 1; andto the power expansion of the general stress-energy tensor for small valuesof 
harge. A 
ompa
t expression for the tra
e of the stress-energy tensor ispresented. Finally, various pointwise energy 
onditions are 
onsidered.PACS numbers: 04.62.+v, 04.70.Dy1. Introdu
tionA

ording to our present understanding the physi
al 
ontent of quantum�eld theory formulated in a spa
etime des
ribing bla
k hole is 
ontained inthe renormalized stress-energy tensor, hT abi; evaluated in a physi
ally moti-vated state [1℄. And although interesting in its own, the stress-energy tensorplays a 
ru
ial role in various appli
ations, most important of whi
h is theproblem of ba
k rea
tion on the metri
. Indeed, treating the stress-energytensor as a sour
e term of the semi-
lassi
al Einstein �elds equations, onemay, in prin
iple, investigate the evolution of the system unless the quantumgravity e�e
ts be
ome dominant. Unfortunately, this program is hard to ex-e
ute as the semi-
lassi
al �eld equations 
omprise rather 
ompli
ated set ofnonlinear partial di�erential equations, and, moreover, it requires knowledgeof fun
tional dependen
e of hT abi on a wide 
lass of metri
s. It is natural,(3921)



3922 J. Matyjasektherefore, that in order to answer � at least partially � this question, oneshould refer either to approximations or to numeri
al methods.It seems that for the massive �elds in a large mass limit, i.e., whenthe Compton length, lC, is mu
h smaller than the 
hara
teristi
 radius of
urvature, L; (where the latter means any 
hara
teristi
 length s
ale of thespa
etime), the approximation based on the asymptoti
 S
hwinger�DeWittexpansion is of the required generality [2�4℄. Sin
e the nonlo
al 
ontributionto the e�e
tive a
tion 
ould be negle
ted it is expe
ted that the methodyields reasonable results provided the gravitational �eld is weak and itstemporal 
hanges remain small. Despite of the above restri
tions there is stilla wide 
lass of geometries in whi
h the approximation 
ould be su

essfullyapplied.For a neutral massive s
alar �eld with an arbitrary 
urvature 
ouplingsatisfying �2� �R�m2�� = 0 ; (1.1)where � is the 
oupling 
onstant and m is the mass of the �eld, the ap-proximate renormalized e�e
tive a
tion, WR; may be expanded in powersof m�2 [5�7℄. The n-th term of the expansion involves 
oin
iden
e limit ofthe Hadamard�Minakshisundaram�DeWitt (HaMiDeW [8℄) 
oe�
ient [an℄
onstru
ted solely from the 
urvature tensor, its 
ovariant derivatives up to2n � 2 order and appropriate 
ontra
tions [3, 9�15℄. As the 
omplexity ofthe `HaMiDeW' 
oe�
ients rapidly grows with in
reasing n their pra
ti
aluse is limited to n = 3; perhaps n = 4. Moreover, it should be emphasizedthat the S
hwinger�DeWitt expansion is asymptoti
 and adding more termsdoes not ne
essarily improve the approximation. Here we shall 
on�ne our-selves to the simplest yet 
al
ulationally involved 
ase n = 3; in whi
h theapproximate e�e
tive a
tion 
ould be written asWR = 132�2 Z d4xpg 1m2 [a3℄ : (1.2)Having at one's disposal the approximation of the renormalized e�e
tivea
tion, the stress-energy tensor 
ould be evaluated by means of the standardformula 2pg ÆÆgabWR = hT abi : (1.3)Sin
e the 
oe�
ient [a3℄ is rather 
ompli
ated so is the stress-energy tensorand the question arose of a pra
ti
al appli
ability of the thus obtained re-sults. Fortunately it 
ould be used in a number of physi
ally interesting andimportant 
ases. The method has been employed by Frolov and Zel'nikovin a series of papers [5�7℄ devoted to 
onstru
tion of hT abi of the massive
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alar, spinor and ve
tor �elds in va
uum type-D spa
etimes and general-ized re
ently to arbitrary geometries in [16,17℄. General formulas des
ribinghT abi 
onsist of over 100 lo
al terms.The e�e
tive a
tion te
hnique that we employ in this paper requiresthe metri
 of the spa
etime to be positively de�ned. Hen
e, to obtain thephysi
al stress-energy tensor one has to analyti
ally 
ontinue at the �nalstage of 
al
ulations its Eu
lidean 
ounterpart.An alternative approa
h based on the WKB approximation of the so-lutions to the radial equation and summation of the mode fun
tions hasbeen developed by Anderson, His
o
k, and Samuel [18℄ (see also [19℄), who,among other things, su

eeded in 
onstru
tion of the general form of thestress-energy tensor of the s
alar �eld in a large mass limit in a stati
 andspheri
ally-symmetri
 geometry. Both approa
hes give, as expe
ted, identi-
al results and the detailed numeri
al analyses 
arried out by these authorsshow that for mM & 2 (M is the bla
k hole mass) the a

ura
y of theS
hwinger�DeWitt approximation in the Reissner�Nordström geometry isquite good (1% or better) [20℄. The S
hwinger�DeWitt method has beenemployed in various 
ontexts in [16�18, 20�26℄. (The 
ase of the massivespinor �eld is 
urrently a
tively investigated [27℄.)In this arti
le we shall study the stress-energy tensor of the quantizedmassive s
alar �eld with an arbitrary 
urvature 
oupling in a ba
kground ofthe stati
 spheri
ally-symmetri
 
harged dilatoni
 bla
k holes whi
h are thesolutions of the 
oupled system of the Einstein�Maxwell-dilaton equations.Su
h solutions are 
hara
terized by mass M and by ele
tri
 Q and dilatoni
a 
harges [28, 29℄. For some parti
ular 
hoi
es of the parameter a the so-lutions of the system are espe
ially interesting. Indeed, a = 0 
orrespondsto the Reissner�Nordström solution, a = 1 to the solution obtained fromthe low energy limit of the string e�e
tive a
tion, whereas a = p3 to thefour dimensional e�e
tive model redu
ed from the Kaluza�Klein theory in�ve dimensions. Despite of this we do not relate our 
onsiderations with thespe
i�
 model, rather, we shall 
on
entrate on the in�uen
e of the geometryon the approximate renormalized stress-energy tensor. Although all infor-mations regarding quantized �elds in the 
urved ba
kground are en
odedin the 
omponents of the stress-energy tensor themselves, to gain a betterunderstanding of the nature of quantized �elds we shall examine pointwiseenergy 
onditions and show that in the spa
etime of the dilatoni
 bla
k holethey are violated in an interesting way.Various properties of 
harged dilatoni
 bla
k holes have been examinedin a numerous papers. On the other hand however, quantum e�e
ts in4D dilatoni
 bla
k hole are � to the best of my knowledge � pra
ti
allyunexplored. This does not mean that this group of problems is uninteresting:belonging to the realm of the low-energy approximation to string theory



3924 J. Matyjasekor the Kaluza�Klein theory, the dilatoni
 bla
k holes would intera
t withvarious quantized �elds. The main obsta
le preventing 
onstru
tion of therenormalized stress-energy tensor is the 
omputational 
omplexity of theproblem.The evaporation pro
ess of the massless s
alar �eld nonintera
ting witha dilaton �eld has been analyzed in [30, 31℄ whereas the �eld �u
tuation,h�2i; of the minimally 
oupled massless s
alar �eld in the vi
inity of theevent horizon of the dilatoni
 bla
k hole has been studied by Shiraishi [32℄.Spe
i�
ally, it was shown that the emission rate of the Hawking radiationblows up near the extremality limit for a > 1: On the other hand it is �nitefor a = 1 and zero for a < 1: The �eld �u
tuation diverges for a > 0 for theextremal 
on�guration.Some aspe
ts of the massless quantum �elds in the spa
etime of 2Ddilatoni
 bla
k holes have been dis
ussed in Ref. [33℄. Spe
i�
ally, it wasshown that in order for the stress-energy tensor to be regular in the geometryof the extreme string metri
 it is ne
essary to assign a de�nite nonzerotemperature. 2. The geometryLet us 
onsider the a
tion:S = Z d4xp�g hR� 2 (r�)2 � e�2a�F 2i ; (2.1)where � is the massless dilatoni
 �eld, F is the strength of the Maxwell�eld (Fab = 2r[aAb℄) and a is the 
oupling 
onstant. We re
all that the
hoi
e a = 1 
orresponds to the low energy limit of the string e�e
tivea
tion, a = p3 to the four dimensional e�e
tive model redu
ed from theKaluza�Klein theory in �ve dimensions, and the Einstein�Maxwell systemis obtained with a = 0: Modi�
ations of the a
tion (2.1) are 
onsidered, forexample, in [34, 35℄.For ea
h value of the parameter a there exists a bla
k hole solution de-pending on the ele
tri
 
harge and the mass [28,29℄. Indeed, fun
tionally dif-ferentiating S with respe
t to the metri
 tensor, dilaton �eld, and Maxwell�eld one obtains the system of the Einstein�Maxwell-dilaton equations ofmotion that 
ould be solved exa
tly. Stati
 and spheri
ally-symmetri
 so-lution has been found by Gibbons [28℄, and by Gar�nkle, Horowitz andStrominger [29℄: ds2 = A (r) dt2 + dr2A (r) +B2 (r) d
2 ; (2.2)
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etime of a Charged . . . 3925where A (r) = �1� r+r ��1� r�r �1�a21+a2 (2.3)and B2 = r2 �1� r�r � 2a21+a2 : (2.4)The integration 
onstants r+ and r� are related to the mass and 
harge ofthe dilatoni
 bla
k hole a

ording to2M = r+ +�1� a21 + a2� r� (2.5)and Q2 = r+r�1 + a2 : (2.6)The dilaton �eld is given bye2a� = �1� r�r � 2a21+a2 ; (2.7)whereas the ele
tri
 �eld is simply F = Qr2dt ^ dr: Inspe
tion of the lineelement shows that the event horizon is lo
ated at r+; at r = r� one hasa 
oordinate singularity that 
ould be ignored so long one 
onsiders regionr � r+ > r�: The 
hoi
e a = 0 leads to the Reissner�Nordström solution. AtjQj =M = �1 + a2�1=2, a 
ase usually addressed to as an extremal bla
k hole,the event horizon and r� 
oin
ide and in this limit the surfa
e r = r+ = r� iszero ex
ept a = 0: Although more realisti
 models require massive � �eld, thedilatoni
 solutions (2.2)�(2.4) are of prin
ipal interest as they provide usefulmodels for studies of the 
onsequen
es of modi�
ations of the geometries ofthe 
lassi
al bla
k holes. Finally, observe that the Krets
hmann s
alar K
omputed at the event horizon near the extremality limit behaves asK � (r+ � r�)� 4a21+a2 : (2.8)3. The renormalized stress-energy tensor3.1. Approximate e�e
tive a
tionIn the framework of the S
hwinger�DeWitt approximation the �rst ordere�e
tive a
tion of the massive s
alar �eld is 
onstru
ted from the 
oin
iden
elimit of the 
oe�
ient a3 (x; x0) : Inserting [a3℄ as given in Appendix into



3926 J. Matyjasek(1.2), integrating by parts and �nally making use of the elementary proper-ties of the Riemann tensor, after ne
essary simpli�
ations one has [12�14℄:W (1)ren = 1192�2m2 Z d4xpg �12 ��2 � �15 � 1315�R2R+ 1140Rpq2Rpq��3R3 + 130�RRpqRpq � 130�RRpqabRpqab � 8945RpqRqaRap+ 2315RpqRabRa bp q + 11260RpqRp
abRq
ab + 177560RabpqRpq
dR
dab� 1270Ra bp qRp q
 dR�= 1192�2m2 10Xi=1 �iW(i) ; (3.1)were � = ��1=6 and �i are equal to the numeri
al 
oe�
ients that stand infront of the geometri
al terms in the right-hand side of the equation (3.1).Di�erentiating fun
tionally W (1)ren with respe
t to a metri
 tensor oneobtains rather 
ompli
ated expression whi
h s
hemati
ally may be writtenas hT abi = 10Xi=1 �i ~T (i)ab = 196�2m2pg 10Xi=1 �i ÆW(i)Ægab= T (0)ab + �T (1)ab + �2T (2)ab + �3T (3)ab : (3.2)Ea
h ~T (i)ab is 
onstru
ted solely from the 
urvature tensor, its 
ovariantderivatives and appropriate 
ontra
tions. Be
ause of the 
omplexity of theresulting stress-energy tensor it will be not presented here and for its fullform as well as the te
hni
al details the reader is referred to [16, 17℄. Itshould be emphasized that be
ause of the form of the dilatoni
 metri
, themethod presented in Refs [16℄ and [17℄ is the only one 
apable of the dire
tevaluation of the stress-energy tensor in the large mass limit. Moreover, thisresults may be easily extended to �elds of other spins as the appropriatetensors di�er by the numeri
al 
oe�
ients �i only.The 
oin
iden
e limit of a4 (x; x0) is known: it has been 
al
ulated byAvramidi [12�14℄ and by Amsterdamski, Berkin and O'Connor [15℄. Conse-quently the method 
ould be extended, in prin
iple, to in
lude m�4 terms.Unfortunately, sin
e the e�e
tive a
tion 
onstru
ted from [a4℄ is extremely
ompli
ated, so is its fun
tional derivative and the pra
ti
al use of the thusobtained result may be a real 
hallenge. However, [a4℄ still 
ould be em-ployed in the analyses of the �eld �u
tuation. The general stru
ture of [a4℄
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ates that the se
ond-order stress-energy tensor divides naturally into�ve terms P4i=0 �iT (i)ab:In order to simplify our dis
ussion let us de�ne q = jQj =M , x� = r�=Mand x = r=M . The S
hwinger�DeWitt te
hnique may be used when the
hara
teristi
 radius of 
urvature is mu
h greater than the Compton length.Simple 
onsiderations indi
ate that for r � r+ it 
ould be used for arbitraryvalue of a: Assuming that L is related to the Krets
hmann s
alar asRab
dRab
d � L�4 ; (3.3)the 
ondition of appli
ability of the approximation near the event horizon
ould be written as 2
M2x3+ (x+ � x�)� 2a21+a2 � m2 ; (3.4)where 
2 = 2x2� + �x� � �1 + a2�x+�2 : It is evident that for a > 0 theS
hwinger�DeWitt approximation is inappli
able for r+ 
lose to r�: For theextremal Reissner�Nordström bla
k hole this 
ondition be
omes M2m2 �2p2:The temperature of the dilatoni
 bla
k hole obtained by means of stan-dard methods is given byTH = 14�Mx+ �1� x�x+�1�a21+a2 (3.5)and for given q it depends on the dilatoni
 
oupling. Inspe
tion of (3.5)shows that TH < (8�M)�1 (a < 1) ;TH = (8�M)�1 (a = 1) ;TH > (8�M)�1 (a > 1) :The temperature of the extremal 
on�guration is zero for a < 1; takes thesame value as for a S
hwarzs
hild bla
k hole for a = 1; and diverges fora > 0: Moreover, it is easily seen that the 
ondition TH � m is violated fora > 1 near the extremality limit.3.2. General 
aseSolving the system (2.5) and (2.6) one easily obtainsx+ = 1 +p1� (1� a2) q2 (3.6)



3928 J. Matyjasekand x� = 1 + a21� a2 �1�p1� (1� a2) q2� : (3.7)Before pro
eeding further let us observe that R = 0 for a = 0; and, 
on-sequently, ÆW(1)=Ægab and ÆW(3)=Ægab is zero. The stress-energy tensor hastherefore a simple form hT ba ia=0 = T (0)ba + �T (1)ba : (3.8)On the other hand, the 
urvature s
alar vanishes at the event horizon for anya and isO �q4� for small q elsewhere. Moreover, sin
e �rR is the only nonzero
omponent of raR one 
on
ludes that T (3)ba (r+) = 0 and is negligible in the
losest vi
inity of r+: It is be
ause the only non-vanishing in this limit termis proportional to raRrbR� (rR)2 Æba : (3.9)A 
loser examination indi
ates that T (3)ba is O �q8� : Similarly, one expe
tsthat for small q the term T (2)ba is of order O �q4� : On the other hand, the
ontribution of the last two terms in the right-hand side of equation (3.2)
ould be made arbitrarily large by a suitable 
hoi
e of the 
urvature 
oupling.It should be noted however that su
h values of � are 
learly unphysi
al andshould be reje
ted.Restri
ting to the exterior region and 
al
ulating 
omponents of the Rie-mann tensor, its 
ontra
tions and 
ovariant derivatives to the required order,after some algebra, one arrives at the rather 
ompli
ated result, that for ob-vious reasons will not be presented here. However, it 
ould be s
hemati
allywritten in surprisingly simple formhT ba i = p(1 + a2) x15 �1� x�x ��3(3a2+1)1+a2 Xijk daijkb ��; a2� xixj+xk�; (3.10)with 0 � i � 7, 0 � j � 3 and 0 � k � 6 subje
ted to the 
onditioni+ j + k = 9: Here p = 1192�2m2M6 (3.11)and daijkb for given a and � are numeri
al 
oe�
ients. Some extra work showsthat the tensor (3.10) is 
ovariantly 
onserved and is regular for regulargeometries. Moreover, the di�eren
e hT tt i � hT rr i fa
torshT tt i � hT rr i = p(1 + a2) x14 �1� x+x ��1� x�x ��3(3a2+1)1+a2 f (x) ; (3.12)
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alar Fields in the Spa
etime of a Charged . . . 3929where the regular fun
tion f � (x+ � x�)2 as x� ! x+ and 
onsequentlywithin the domain of appli
ability of the S
hwinger�DeWitt approximationthe stress-energy tensor is regular in a freely falling frame.It 
ould be demonstrated that the tra
e of the stress-energy tensor ofthe quantized massive s
alar �eld has a simple formhT aa i = 116�2m2 �3�� � 16�2[a2℄� [a3℄� : (3.13)This equation together with rbT ba = 0 (3.14)may serve as an independent 
he
k of the 
al
ulations. On the other handhowever, it su�
es to 
al
ulate only one 
omponent of the stress-energytensor, say hT tt i; as the remaining ones 
ould be obtained with the aid of(3.13) and (3.14).For 
onformally 
oupled �elds the tra
e is proportional to the 
oin
i-den
e limit of [a3℄: We remark here that for 
onformally invariant masslesss
alar �eld the anomalous tra
e is proportional to [a2℄; it should be notedhowever, that (3.13) has been 
al
ulated for hT bai given by (3.2) whereas thetra
e of the 
onformally invariant massless �elds is a general property of theregularized stress-energy tensor.Sin
e the pra
ti
al use of the general result is limited, it is instru
tiveto analyze the stress-energy tensor in some spe
i�
 
ases. In the latter weshall 
on�ne our analysis to 0 � a � p3 with the spe
ial emphasis put onthe 
ase a = 1: However, before pro
eeding to examination of some 
on
rete
hoi
es of a let us analyze a general hT bai for small q:3.3. Arbitrary a; q � 1Assuming q � 1, expanding hT bai into a power series, and �nally 
olle
t-ing the terms with the like powers of q one hashT ba i = hT ba ia=0 + a296�2m2x10M6 (q2t(1)ba + q4t(2)ba + q6t(3)ba + : : :) ; (3.15)where hT bb ia=0 is evaluated for a = 0 and 
oin
ides with the expression de-s
ribing the stress-energy tensor in the geometry of the Reissner�Nordströmbla
k hole [16,18℄. The expli
it expressions for the 
oe�
ients t(i)ba as well asthe 
omponents of hT bb ia=0 are listed in the appendix. A 
loser examinationshows that for q . 0:7 the expansion (3.15) reprodu
es the general resultsatisfa
torily, and, moreover, for q . 1=3 the results weakly depend on the
oupling a: From (3.15) it is evident that for a = 0 and q = 0 the stress-energy tensor redu
es to the expression derived by Frolov and Zel'nikov inthe geometry of the S
hwarzs
hild bla
k hole [5, 36℄.



3930 J. Matyjasek3.4. Dilatoni
 bla
k hole a = 1In this subse
tion we shall 
onstru
t and investigate the stress-energytensor of the massive s
alar �eld resulting from (3.10) for the parti
ular
ombinations of 
ouplings. Consider a = 1: Sin
e the se
ond fa
tor in A (r)vanishes, we expe
t 
onsiderable simpli�
ations as the event horizon is nowlo
ated at 2M whereas the `inner' one at q2M . Indeed, de�ning y = r=r+;equation (3.10 ) 
ould be written in a simple form:hT bai = p(2y � q2)6 Xij bbija [�℄ q2iy�j�2 (3.16)with 0 � i � 6 and 0 � j � 7; where bbija are numeri
al 
oe�
ients. From(3.12) it 
ould be shown that for any � the di�eren
e hT tt i � hT rr i fa
torizesas hT tt i � hT rr i = 1� yy9 (q2 � 2y)6 f (y) ; (3.17)where, for 0 � q < p2 the fun
tion f (y) is regular at the event horizon.Equation (3.16) 
ould be 
ontrasted to the analogous expression evaluatedin the Reissner�Nordström geometry (a = 0) :hT bai = py6 Xij 
bija [�℄ q2iy�j�2; (3.18)where 0 � i � 3, 0 � j � 4, and 
bija is another set of numeri
al 
oe�
ients.To perform quantitative analysis however, we have to refer to exa
t for-mulas. For � = 0 it su�
es to 
ompute only T (0)ba as the other terms do not
ontribute to the �nal result. Moreover, it su�
es to know only one 
om-ponent of the stress-energy tensor, say hT tt i; as the remaining ones 
ould beeasily obtained solving equations (3.13) and (3.14) and putting the integra-tion 
onstant to zero. The 
onservation equation for the line element (2.2)has the following formddr hT rr i �w1 (r) hT aa i+ w2 (r) hT rr i+ w3 (r) hT tt i = 0 ; (3.19)wherew1 (r) = r � r� + a2r(r � r�) (1 + a2) ; (3.20)w2 (r) = 6a2r2 � 5r+r � 5r�r + 4r+r� + 6r2 � a2r�r � 5a2r+rr (1 + a2) (r � r+) (r � r�) ; (3.21)
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alar Fields in the Spa
etime of a Charged . . . 3931andw3 (r) = 6r+r� � 5r+r � 5r�r + 4a2r2 + a2r�r � 5a2r+r + 4r2r (1 + a2) (r � r+) (r � r�) : (3.22)After some algebra one hashT tt i = p(2y � q6) 6Xi=0 fiq2i ; (3.23)where f0(y) = 313210 y3 � 1914 y2 ; f1(y) = � 6130 y4 = 3170 y3 = 97 y2 ;f2(y) = 143840 y5 + 73132520 y4 � 577210 y3 � 128 y2 ;f3(y) = 13811120 y6 � 66071680 y5 + 1813720 y4 + 128 y3 ;f4(y) = � 927710080 y7 + 4383720160 y6 � 1007840 y5 � 13910080 y4 ;f5(y) = 18176720 y8 � 479840 y7 + 5591920 y6 + 72880 y5 ;f6(y) = � 178360480 y9 + 4738064 y8 � 11384 y7 � 16912 y6 : (3.24)To avoid unne
essary proliferation of long formulas we displayed only one
omponent of the stress-energy tensor.Despite its similarity with the S
hwarzs
hild line element, the non-extremal a = 1 dilatoni
 bla
k holes have mu
h in 
ommon with the Reissner�Nordström solution. We shall, therefore, address the question of how thedi�eren
es between the geometry of the Reissner�Nordström bla
k hole onthe one hand and the dilatoni
 bla
k hole on the other are re�e
ted in theoverall behavior of our approximate stress-energy tensors. First, from theform of the stress-energy tensor it 
ould be easily inferred that hT bai evalu-ated for the extremal 
on�guration is divergent as y ! 1. Indeed, for q = p2the 
omponents of the stress-energy tensor behave as (y � 1)�3 : This is in asharp 
ontrast with the Reissner�Nordström 
ase, in whi
h the stress-energytensor approa
heshT ba i = 12880�2m2M6 �1621 ��� � 16��diag [1; 1;�1;�1℄ (3.25)



3932 J. Matyjasekas y ! 1. It should be noted however, that, ex
ept a = 0; the region in thevi
inity of the degenerate horizon of the extremal geometry is beyond theappli
ability of the S
hwinger�DeWitt approximation. On the other hand,however, one expe
ts that in the opposite limit, i.e. for q � 1, the appro-priate 
omponents of the stress-energy tensor are almost indistinguishable.To analyze hT bai for intermediate values of q let us refer to the numeri
al
al
ulations. The plots of the time, radial and angular 
omponents of thestress-energy tensor of the quantized massive s
alar �eld as a fun
tion of theres
aled radial 
oordinate for q = i=10 (i = 0; : : : ; 13) in the most interest-ing region are displayed in �gures 1�3. This graphs are supplemented by�gure 4, where the dependen
e of the horizon values of hT tt i = hT rr i andhT �� i = hT �� i on q is presented. Inspe
tion of the �gures and 
omparisonwith the analogous results obtained for the Reissner�Nordström geometryindi
ates that even for the intermediate values of q there are still qualita-tive similarities. Indeed, the time and angular 
omponents attain (positive)maximum at the event horizon, de
rease with r and approa
h (negative)minimum. The magnitude of the maximum and the modulus of the mini-mum in
rease with in
reasing q; and, 
onsequently, so does the slope of the
urves.
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t
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Fig. 1. This graph shows the radial dependen
e of the res
aled 
omponent hT tt i;(� = 192�2M6m2) of the stress-energy tensor of the massive 
onformally 
oupleds
alar �eld in the geometry of the dilatoni
 bla
k hole with a = 1 for q = i=10;(i = 0; : : : ; 13): In ea
h 
ase hT tt i has its positive maximum at r+ and attainsnegative minimum away from the event horizon. The magnitude of the maximumand the modulus of the minimum in
rease with in
reasing q.
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0.001

0.002

0.003

0.004

0.005

0.006

α <Tr
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Fig. 2. This graph shows the radial dependen
e of the res
aled 
omponent hT rr i(� = 192�2M6m2) of the stress-energy tensor of the massive 
onformally 
oupleds
alar �eld in the geometry of the dilatoni
 bla
k hole with a = 1 for q = i=10;(i = 0; : : : ; 13): Top to bottom the 
urves are plotted for de
reasing values of q: Inea
h 
ase hT rr i has its positive maximum at r+ and monotoni
ally de
reases with r.
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Fig. 3. This graph shows the radial dependen
e of the res
aled 
omponent hT �� i;(� = 192�2M6m2) of the stress-energy tensor of the massive 
onformally 
oupleds
alar �eld in the geometry of the dilatoni
 bla
k hole with a = 1 for q = i=10;(i = 0; : : : ; 13): In ea
h 
ase hT tt i has its positive maximum at r+ and attainsnegative minimum away from the event horizon. The magnitude of the maximumand the modulus of the minimum in
rease with in
reasing q;
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Fig. 4. This graph shows the horizon values of hT �� i (upper 
urve) and hT tt i (lower
urve) as fun
tions of q. On the event horizon hT tt i = hT rr i and be
ause of thespheri
al symmetry one has hT �� i = hT�� i.Before pro
eeding to physi
ally interesting and important 
ase � = �1=6,it is useful to study a role played by ea
h T (i)ba separately. First, it 
ouldbe easily shown that T (3)ba is negligible with respe
t to other terms, and,therefore, it does not 
ontribute to the �nal result for reasonable values of the
urvature 
oupling. The run of the resulting stress-energy tensor depends ona 
ompetition between remaining 
omponents. Indeed, inspe
tion of �gure 5in whi
h we exhibited T (i)tt as a fun
tion of the res
aled radial 
oordinatefor fourteen exemplar values of q indi
ates that the term�T (1)ba produ
esthe most prominent maximum at the event horizon for q . 0:9 whereas forgreater values of q this role is played by T (2)ba : General features of T (i)rr andT (i)�� are essentially the same.Now the run of the stress-energy tensor as a fun
tion of q 
ould be easilyanti
ipated. The general stru
ture remains, of 
ourse, of the form (3.16), butnow the dominant 
ontribution to the result is provided initially by the term�T (1)ba and subsequently with in
reasing q by the sum�1=6T (1)ba +1=36T (2)ba :Moreover, sin
e os
illatory-like behavior of T (3)ba does not play a signi�
antrole we have also qualitative similarities with the tensor evaluated for the
onformal 
oupling.
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omputed ~T (i)ba and 
ombining them with appropriate values ofthe 
oe�
ients �i for i = 1 : : : 10; after simpli�
ations and rearrangementone hasf0(y) = 1237210 y3 � 7514 y2 ; f1(y) = �q2 � 37730 y4 � 70370 y3 � 97 y2� ;f2(y) = q4 � 3637140 y5 � 5219140 y4 + 2259140 y3 � 9928 y2� ;f3(y) = �q6 � 844073360 y6 � 11311280 y5 + 117760 y4 � 9928 y3� ;f4(y) = q8 � 21883917920 y7 � 109766953760 y6 + 114791120 y5 � 38912240 y4� ;f5(y) = �q10 � 318457107520 y8 � 339196720 y7 + 26391024 y6 � 273640 y5� ;f6(y) = q12 � 2468586016 y9 � 4255786016 y8 + 313912288 y7 � 51512288 y6� : (3.26)The qualitative behavior of the stress-energy tensor of the minimally
oupled s
alar �eld is similar to the 
onformally 
oupled 
ase, and, on
eagain, for the intermediate values of q one has quantitative similarities withthe Reissner�Nordström 
ase. Moreover, from �gure 5 one 
an easily dedu
ethe general behavior of the stress-energy tensor for arbitrary 
oupling forq < 0:9:Finally we remark, that the dilatoni
 bla
k holes with a = 1 or a = 0 donot exhaust physi
ally important solutions. For example for a = p3 one hasa four dimensional e�e
tive model redu
ed from the Kaluza�Klein theory in�ve dimensions. By (3.10) the approximate stress-energy tensor expressedin term of x, x+ and x� 
ould be s
hemati
ally written ashT bai = p[x (x� x�)℄15=2 Xijk daijkb [�℄ xixj+xk� ; (3.27)where 0 � i � 7, 0 � j � 3 and 0 � k � 6 subje
ted to the 
onditioni+ j + k = 9: The qualitative behavior of the stress-energy tensor for both� = 0 and � = �1=6 is similar to hT bai 
onstru
ted in the geometry ofa dilatoni
 bla
k hole with a = 1 and its run for small q 
ould be easilyinferred form (3.15).
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Fig. 5. This graph shows radial dependen
e of the res
aled T (0)tt (panel A), T (1)tt(panel B), T (2)tt (panel C) and T (3)tt (panel D) for q = i=10 (i = 0; : : : ; 13): Thes
aling fa
tor is 192�2M6m2: The magnitude of T (k)tt grows with in
reasing q fork = 0; 2; and 3: 4. Energy 
onditionsIn the proofs of various theorems su
h as singularity theorems, positivityof mass or topologi
al 
ensorship it is assumed that the 
omponents of thestress-energy tensor of the matter �elds do satisfy some restri
tions usuallyaddressed to as the energy 
onditions. And although the present statusof the pointwise energy 
ondition vary from disfavor to disbelief, to saythe least, their detailed studies are worthwhile as their violation frequentlyleads to exoti
 yet physi
ally interesting situations. It is well-known thatthe quantum �elds violate the energy 
onditions, and, moreover, similarviolations has been en
ountered even at the 
lassi
al level. Hen
e, in spite ofthe fa
t that all available informations of the quantum �eld theory in 
urved
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kground are en
oded in the 
omponents of the stress-energy tensor, one
an get a better understanding of the physi
al nature of the quantized �eldspropagating in the spa
etime of the dilatoni
 bla
k hole analyzing the rateof possible violations of the energy 
onditions.Here we brie�y analyze various pointwise energy 
onditions but beforepro
eeding further we shall examine the energy density itself. Sin
e the
omponents of the stress-energy tensor depend in general on the ele
tri
and dilatoni
 
harges, the 
oupling 
onstant and radial 
oordinate in rather
ompli
ated form we shall 
on
entrate on the parti
ular 
ombinations of
harges and 
ouplings. It should be noted that the results for extremaland near-extremal dilatoni
 bla
k hole should not be treated too seriouslyas geometries of su
h 
on�gurations are beyond the appli
ability of theS
hwinger�DeWitt approximation. Therefore, in the following, we shall re-stri
t ourselves to the solutions with 0 � q � 1:3 (although sometimes wequote the appropriate results for the extremal 
on�gurations as they provideuseful bounds).To simplify dis
ussion let us introdu
e the energy density of the quantized�elds, �; de�ned as � = �hT tt i ; (4.1)and the three prin
ipal pressures, pi; 
onne
ted to the diagonal 
omponentsof the stress-energy tensor as p1 = � = �hT rr i (4.2)and p2 = p3 = p = hT �� i : (4.3)For a = 1 and 
onformal 
oupling with 
urvature one has to 
onsidertwo 
ases: 0 � q < q
 and q
 � q < p2; where q
 = p18 �p286 � 1:043:For q � q
 the energy density is negative in the narrow strip near the eventhorizon, 1 � x < x1 and positive elsewhere, whereas for q > q
 the energydensity is positive in the region x1 � x � x2: Numeri
ally, x1 = 1:098 forq = 0 and x1 = 1:2479 for q = p2; in the extremality limit x2 = 1:747: Onthe other hand for a minimal 
oupling, the energy density � fun
tion hasonly one real root, x1 > 1; lo
ated slightly outside the event horizon and ispositive for x � x1: 4.1. Null energy 
onditionIt is said that the matter �eld satis�es the null energy 
onditions if forany null ve
tor ka Tabkakb � 0 ; (4.4)



3938 J. Matyjasekor, equivalently �+ pi � 0 ; (4.5)for i = 1; 2; 3: In the spa
etime at hand 
onditions (4.5) redu
e to�� � � 0 (4.6)and �+ p � 0 : (4.7)Inspe
tion of the exa
t results indi
ate that the �rst 
ondition is satis�edfor all distan
es, as �� � � x� 1(2x� q2)x9W6(x; q) (4.8)and the 6-th order polynomial W6(x; q) has no real roots for x � 1: These
ond one is satis�ed only in a �nite region 1 � x � x3; where x3(q) is ade
reasing fun
tion of q; with x3 = 9=5 for q = 0. Therefore, the null energy
ondition is satis�ed in a narrow strip in the vi
inity of the event horizon.Similarly, for the minimal 
oupling the question of whether or not thenull energy 
ondition is satis�ed is in fa
t the question of non-negativityof � + p as the se
ond 
onstraint is always satis�ed. A 
loser examinationindi
ates that �+p is positive near the event horizon and negative elsewhere.4.2. Weak energy 
onditionThe stress-energy tensor satis�es the weak energy 
ondition if for anytimelike ve
tor Xa TabXaXb � 0 (4.9)or in terms of the energy density and prin
ipal pressures�+ pi � 0 ;� � 0 ; (4.10)and, 
onsequently, the weak energy 
ondition is equivalent to the null en-ergy 
ondition supplemented by the 
onstraint � > 0 that has already beendis
ussed. It follows then that for q > 1:01 the weak energy 
ondition isviolated everywhere, whereas for 0 < q < 1:01 it is satis�ed in a small regionnear the event horizon. On the other hand, for � = 0; the weak energy
ondition is satis�ed only in a narrow strip lo
ated near the event horizonand is violated in its 
losest vi
inity.
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onditionThe strong energy 
ondition is equivalent to the three 
onstraints�+ pi � 0 ;�+Xi pi � 0 (4.11)or, equivalently to (4.6) and (4.7), supplemented by�� � + 2p � 0 : (4.12)Numeri
al 
al
ulations 
arried out for � = 1=6 indi
ate that for q � q1 =0:6345 the 
onstraint (4.12) is more restri
tive than (4.7). On the otherhand, for q � q1 the strong energy 
ondition is equivalent to the null energy
ondition. It follows then that the strong energy 
ondition is violated every-where outside the narrow strip in the vi
inity of the event horizon and themagnitude of this region is de
reasing fun
tion of q: For the minimal 
ou-pling the qualitative behavior of the stress-energy tensor remains the same.4.4. Dominant energy 
onditionThe stress-energy tensor satis�es the dominant energy 
ondition if thelo
ally measured energy density is positive and the energy �ux is timelike ornull. In terms of the energy density and prin
ipal pressures one has � � 0and �� � pj � � : (4.13)Qualitative behavior of the energy density and the prin
ipal pressures forboth 
onsidered 
ouplings is similar: for small q and small as well as inter-mediate values of the radial 
oordinate there are regions where the energydensity dominates the prin
ipal pressures, whereas for large r this energy
ondition is violated for any value of q: It is be
ause the fun
tion �+ p hasonly one real root, say xa; and is negative for x > xa:From the above analysis one 
an draw a 
on
lusion that even in the 
aseof the weakest of the energy 
onditions, namely the null one, the region inwhi
h the energy 
ondition is satis�ed is small. It is therefore of prin
ipalinterest to analyze the averaged energy 
onditions, and, what is even moreimportant, the quantum inequalities.5. Con
luding remarksIn this paper we have 
onstru
ted and examined the approximate renor-malized stress-energy tensor of the massive s
alar �eld in the spa
etime ofthe stati
 ele
tri
ally 
harged dilatoni
 bla
k hole with the spe
ial emphasis



3940 J. Matyjasekput on the string inspired 
ase a = 1: The method employed here is based onthe observation that the lowest order of the expansion of the e�e
tive a
tionin m�2 
ould be expressed in terms of the integrated 
oin
iden
e limit of
oe�
ient a3 (x; x0) : Although the line element of the dilatoni
 bla
k holehas a simple form, the analyti
al formulas des
ribing the stress-energy ten-sor for a general a 
onstru
ted within the S
hwinger�DeWitt framework areextremely 
ompli
ated and hen
e hard to utilize. Fortunately, for a 
on
rete
hoi
e of a there are massive simpli�
ations.Expanding for q � 1 the stress-energy tensor into a power series it ispossible to analyze the in�uen
e of a on hT ba i: For q = 0 it redu
es to theresult derived by Frolov and Zel'nikov whereas for small values of q thestress-energy tensor resembles that evaluated in the Reissner�Nordströmgeometry. The dis
repan
ies between the tensors grow with q: It should bestressed however that in the opposite limit the S
hwinger�DeWitt te
hniqueis inappli
able.The problem of the massless �elds 
ertainly deserves separate treatment,this however would require extensive numeri
al 
al
ulations as even for sim-plest 
ase of the S
hwarzs
hild geometry existing analyti
al approximationsgive, at best, only qualitative agreement with the exa
t results. At themoment we only know that the horizon value of the �eld �u
tuation [32℄h�2i = 148�2M2x2+ �1� x�(1 + a2) x+��1� x�x+�� 2a21+a2 ; (5.1)whi
h is divergent in the extremality limit for a > 0: This suggests thatthe stress-energy tensor is also divergent at r+ of the extremal 
ase. Onthe other hand, a �rst non-vanishing term of the approximation to the �eld�u
tuation for a massive �eld is simplyh�2i = 116�2m2 [a2℄ +O �m�4� ; (5.2)and it 
ould be easily shown thath�2i = f (a; r+; r�)720�2m2M4x6+ �1 + a2��2�1� x�x+�� 4a21+a2 +O �m�4� ; (5.3)wheref (a; r+; r�) = �4 + 3a2 (1� 5�)�x2� � 6 �1 + a2�x+x� + 3 �1 + a2�2 x2+:(5.4)As the realisti
 
al
ulations of the stress-energy tensor of the quantizedmassless �elds are expe
ted to be extremely 
ompli
ated, it is natural to
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etime of a Charged . . . 3941analyze some simpler models �rst. Su
h 
al
ulations in a spa
etime of 2Ddilatoni
 bla
k holes with the emphasis put on the extremal 
on�gurationshave been 
arried out in Ref. [33℄. It should be noted, however, that thesolution of the Einstein�Maxwell-dilaton system when spe
ialized to twodimensions redu
es to 2D S
hwarzs
hild line element, and, unfortunately,all interesting physi
s 
onne
ted with the angular term is lost. On the otherhand the string metri
 solution analyzed at length in [33℄ is not 
onsideredhere.Finally, we make some 
omments regarding appli
ations and generaliza-tions of the results presented in this paper. The question of the massless�eld has been addressed above. A 
areful analysis 
arried out for a = 0 inRef. [41℄ shows that at least up to O �m�4� the adapted method approxi-mates well the �eld �u
tuation of the massive �eld in the thermal state oftemperature TH: It would be interesting to extend this analysis for any valueof a:It should be stressed that be
ause of spe
ial 
hara
ter of the line element(2.2) the approximation derived in Refs [16℄ and [17℄ is the only one thatallows 
onstru
tion of the renormalized stress-energy tensor in the geometryof the dilaton bla
k hole. Moreover, it 
ould be easily modi�ed to in
orporatequantized massive spinor and ve
tor �elds. We also remark that the derivedstress-energy tensors may be employed as a sour
e term of the semi
lassi
alEinstein �eld equations. Indeed, preliminary 
al
ulations indi
ate that it ispossible to 
onstru
t the solution to the linearized semi
lassi
al Einstein�Maxwell-dilaton equations. We hope that presented results will be of usein subsequent appli
ations. We intend to return to this group of problemselsewhere. AppendixCoin
iden
e limits of the 
oe�
ients a2 (x; x0) and a3 (x; x0)In this appendix we list 
oin
iden
e limits of the 
oe�
ients a2 (x; x0)and a3 (x; x0) for the s
alar �eld equation (1.1). With the normalizationemployed in this paper the 
oe�
ient [a2℄ reads[a2℄ = �16 �� � 15�2R+ 12 �� � 16�2R2 + 1180 �Rab
dRab
d �RabRab� ;(A.1)whereas [a3℄ 
ould be written as[a3℄ = b37! + 
3360 ; (A.2)



3942 J. Matyjasekwhereb3 = 359 R3 + 17R;pR;p �Rqa;pRqa;q � 4Rqa;pRpa;q+9Rqab
;pRqab
;p + 2R2R+ 1822R� 8Rpq2Rpq � 143 RRpqRpq+24R qpq;aRpa � 2089 RpqRqaR pa + 122RpqabRpqab + 643 RpqRabRpaqb�163 RpqRpab
Rqab
 + 809 RpqabR p a
 d Rq
bd + 449 RpqabR pq
d Rab
d (A.3)and
3 = �(5� � 30�2 + 60�3)R3 � (12� � 30�2)R;pR;p � (22� � 60�2)R2R�6�22R� 4�RpqRpq + 2�RRpqRpq � 2�RRpqabRpqab : (A.4)hT bai of the massive s
alar �elds in the spa
etime of theReissner�Nordström bla
k holeInserting 
urvature tensor and its 
ovariant derivatives into the gen-eral formulas obtained from fun
tional di�erentiation of the e�e
tive a
tion(3.1) with respe
t to the metri
 tensor one obtains the approximate stress-energy tensor of massive �elds. Sin
e the 
urvature s
alar of the Reissner�Nordström geometry is zero, one expe
ts 
onsiderable simpli�
ations. In-deed, it 
ould be easily shown that the tensors ~T (1)ba and ~T (3)ba do not 
on-tribute to the �nal result. The stress-energy tensor of the massive s
alar �eldwith arbitrary 
oupling with 
urvature in the Reissner�Nordström geometryhas the form (3.8), whereT (0)tt = 313x37 � 285x414 + q2��769x214 � 192x37 + 135x47 �+ q4 �514x7 � 101x221 �� 208 q67 ; (A.5)T ((0)rr = �11x3 + 15x42 + q2�709x214 � 248x37 + 27x47 �+ q4��46x+ 421x221 �+ 74 q67 ; (A.6)T (0)�� = 367x37 � 45x42 + q2 ��3303x214 + 814x37 � 81x47 �+ q4 �1726x7 � 1522x221 �� 73 q6 ; (A.7)
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alar Fields in the Spa
etime of a Charged . . . 3943T (1)tt = �792x3 + 360x4 + q2 �2604x2 � 1008x3�+ q4 ��2712x + 728x2�+ 819 q6 ; (A.8)T (1)rr = 216x3 � 144x4 + q2 ��588x2 + 336x3�+ q4 �504x � 208x2�� 117 q6 (A.9)and T (1)�� = �1008x3 + 432x4 + q2 �3276x2 � 1176x3�+ q4 ��3408x + 832x2�+ 1053 q6 : (A.10)Power expansion of the stress-energy tensor for q � 1Repeating the 
al
ulations for the line element (2.2)�(2.3) one obtains
omponents of the stress-energy tensor in the geometry of a general dilatoni
bla
k hole. Assuming q � 1 and expanding the result into a power series,after the ne
essary simpli�
ations (3.15), where the 
oe�
ients t(i)ba are givenby t(1)tt = 93935 � 76x7 + ��192x � 23765 � ; (A.11)t(1)rr = 4x� 335 + ��6485 � 384x5 � ; (A.12)t(1)�� = 110135 � 12x� ��30245 � 1152x5 � ; (A.13)t(2)tt = 1207140 � 4359 a2140 � 9773210x + 939 a214x + 181x105 + 19 a2 x7 � x214+� �2754 a25 � 159415 + 888x � 1188 a2x � 436x5 � 48 a2 x+ 12x2�+�2 ��6076 + 6000x + 1908x � 180x2� ; (A.14)t(2)rr = �120911260 + 213 a220 + 3793210x � 33 a22x + 83x315 � a2 x+ 11x270+� �58� 1026 a25 � 10325x + 324 a2x + 388x15 + 96 a2 x5 � 24x25 �+�2 �1556 � 1200x � 612x + 72x2� (A.15)



3944 J. Matyjasekt(2)�� = 6841252 � 4881 a2140 � 18139210x + 1101 a214x + 227x315 + 3 a2 x� 33x270+� �3348 a25 + 55725x � 1512 a2x � 1628x15 � 288 a2 x5 + 72x25 � 2963 �+�2 ��7232 + 7200x + 2268x � 216x2� ; (A.16)t(3)tt = 4847840 � 4138 a2315 + 4359 a4280 + 20149420x2 � 24971 a2210x2 + 3443 a428x2� 9059420x + 6026 a2105x � 297 a44x � 79x210 + 152 a2 x105 � 19 a4 x14 � x228 + a2 x228+��5642 a25x2 � 129415 � 662 a25 � 1377 a45 � 43465x2 � 2178 a4x2 + 19365x�278 a215x + 1314 a4x � 78x5 + 198 a2 x5 + 24 a4 x+ 6x2 � 6 a2 x2�+�2�7634 a2 � 658� 2232x2 + 21984 a2x2 + 696x � 21596 a2x + 534x�1254 a2 x� 90x2 + 90 a2 x2� ; (A.17)t(3)rr = �1783840 + 187 a270 � 213 a440 � 5009420x2 + 5111 a2210x2 � 121 a44x2+ 40160x � 4352 a2315x + 93 a44x + 109x630 � 2 a2 x45 + a4 x2 + 11x2140 � 11 a2 x2140+��863 + 188 a25 + 513 a45 + 158x2 � 250 a2x2 + 594 a4x2 � 96x + 118 a25x� 450 a4x + 18x5 � 66 a2 x5 � 48 a4 x5 � 12x25 + 12 a2 x25 �+�2�130 � 2442 a2 + 288x2 � 4656 a2x2 � 60x + 5764 a2x�166x+ 454 a2 x+ 36x2 � 36 a2 x2� ; (A.18)



Quantized Massive S
alar Fields in the Spa
etime of a Charged . . . 3945t(3)�� = 2411360 � 7267 a21260 + 4881 a4280 + 29963420x2 � 8857 a270x2 + 4037 a428x2 � 13x315�11617420x + 2792 a263x � 2361 a428x � 31 a2 x90 � 3 a4 x2 � 33x2140 + 33 a2 x2140+��1378 a2x2 � 125215 � 926 a25 � 1674 a45 � 52145x2 � 2772 a4x2 + 20525x+ 976 a215x + 1620 a4x � 108x5 + 252 a2 x5 + 144 a4 x5 + 36x25 � 36 a2 x25 �+�2�9182 a2 � 870 � 2970x2 + 26640 a2x2 + 1098x � 26008 a2x+644x� 1508 a2 x� 108x2 + 108 a2 x2� : (A.19)The terms 
ontaining �3 appear starting from q8:REFERENCES[1℄ N.B. Birrell, P.C.W. Davies, Quantum Fields in Curved Spa
e, CambridgeUniversity Press, Cambridge 1982.[2℄ J.S. S
hwinger, Phys. Rev. 82, 664 (1951).[3℄ B.S. DeWitt, Dynami
al Theory of Groups and Fields, Gordon Brea
h, NewYork 1965.[4℄ B.S. DeWitt, Phys. Rep. 19C, 297 (1975).[5℄ V.P. Frolov, A.I. Zel'nikov, Phys. Lett. B115, 372 (1982).[6℄ V.P. Frolov, A.I. Zel'nikov, Phys. Lett. B123, 197 (1983).[7℄ V.P. Frolov, A.I. Zel'nikov, Phys. Rev. D29, 1057 (1984).[8℄ G.W. Gibbons, General Relativity: An Einstein Centenary Survey, ed.S.W. Hawking and W. Israel, Cambridge University Press, Cambridge 1979.[9℄ T. Sakai, Tohoku Math. J. 23, 589 (1971).[10℄ P.B. Gilkey, Di�erential Geometry 10, 601 (1975).[11℄ P.B. Gilkey, Trans. Am. Math. So
. 225, 341 (1977).[12℄ I.G. Avramidi, Ph. D. Thesis (1986).[13℄ I.G. Avramidi, Theor. Math. Phys. 79, 494 (1989).[14℄ I.G. Avramidi, Nu
l. Phys. B355, 712 (1991).[15℄ P. Amsterdamski, A.L. Berkin, D.J. O'Connor, Class. Quantum Grav. 6, 1981(1989).[16℄ J. Matyjasek, Phys. Rev. D61, 124019 (2000).



3946 J. Matyjasek[17℄ J. Matyjasek, Phys. Rev. D63, 084004 (2001).[18℄ P.R. Anderson, W.A. His
o
k, D.A. Samuel, Phys. Rev. D51, 4337 (1995).[19℄ A.A. Popov, Phys. Rev. D67, 044021 (2003).[20℄ B.E. Taylor, W.A. His
o
k, P.R. Anderson, Phys. Rev. D61, 084021 (2000).[21℄ W.A. His
o
k, S.L. Larson, P.R. Anderson, Phys. Rev. D56, 3571 (1997).[22℄ B.E. Taylor, W.A. His
o
k, P.R. Anderson, Phys. Rev. D55, 6116 (1997).[23℄ J. Matyjasek, O.B. Zaslavskii, Phys. Rev. D64, 104018 (2001).[24℄ W. Berej, J. Matyjasek, Phys. Rev. D66, 024022 (2002).[25℄ L.A. Kofman, V. Sahni, Phys. Lett. B127, 197 (1983).[26℄ A.A. Starobinsky, L.A. Kofman, V. Sahni, Zh. Eksp. Teor. Fiz. 85, 1876(1983).[27℄ P.B. Groves, P.R. Anderson, E.D. Carlson, Phys. Rev. D66, 124017 (2002).[28℄ G.W. Gibbons, K. Maeda, Nu
l. Phys. B298, 741 (1988).[29℄ D. Gar�nkle, G.T. Horowitz, A. Strominger, Phys. Rev. D43, 3140 (1991).[30℄ J. Koga, K. Maeda, Phys. Rev. D52, 7066 (1995).[31℄ S. Alexeyev, A. Barrau, O. Boudoul, O. Khovanskaya, M. Sazhin, Class. Quan-tum Grav. 19, 4431 (2002).[32℄ K. Shiraishi, Mod. Phys. Lett. A7, 3569 (1992).[33℄ D.J. Loranz, W.A. His
o
k, Phys. Rev. D55, 3893 (1997).[34℄ R.C. Myers, Nu
l. Phys. B289, 701 (1987).[35℄ C.G. Callan, R.C. Myers, M.J. Perry, Nu
l. Phys. B311, 373 (1989).[36℄ V.P. Frolov, I.D. Novikov, Physi
s of Bla
k Holes, Kluwer, New York 1999.[37℄ V.P. Frolov, Pro
eedings of the Lebedev Institute of the A
ademy of S
ien
eof USSR, 169.[38℄ S. W. Hawking, G.F.R. Ellis, The Large S
ale Stru
ture of Spa
e-Time, Cam-bridge University Press, Cambridge 1973.[39℄ M. Visser, Lorentzian Wormholes from Einstein to Hawking, Ameri
an Insti-tute of Physi
s, New York 1995.[40℄ C. Bar
elo, M. Visser, Int. J. Mod. Phys. D11, 1552 (2002).[41℄ H. Koyama, Y. Nambu, A. Tomimatsu, Mod. Phys. Lett. 15, 815 (2000).


