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ON FRIEDMANN EQUATION AND THE RADIONSTABILIZATION IN TWO-BRANE MODELSWITH DYNAMICAL MATTERKamila Kowalska and Krzysztof Turzy«skiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00-681 Warszawa, Polande-mail: Kamila.Kowalska�fuw.edu.pl,Krzysztof-Jan.Turzynski�fuw.edu.pl(Reeived April 2, 2003)The onsequenes of a gravitational stabilization of a two-brane systemare studied in the presene of matter and tensions of both branes as well asthe osmologial onstant in the bulk. An expliit alulation shows thatthe usual form of the Friedmann equation an be retained in this situation,even though the model is not a realisti one.PACS numbers: 04.50.+h, 11.25.Wx, 98.80.Jk1. IntrodutionThe string-motivated idea that our Universe is on�ned to a submanifoldof a higher-dimensional spae (a brane) onstitutes a potential solution tothe hierarhy problem [1�3℄. In suh models the enormous hiatus betweenthe eletroweak sale and the Plank sale, whih results in large radiativeorretions to the Higgs salar mass, an be less troublesome, sine newphysis is expeted at the TeV sale.On the other hand, addition of the spatial dimensions usually stronglya�ets osmology (see e.g. [4�7℄). In partiular, in the ase of models withbranes, Friedmann equation, desribing the evolution of the size of theUniverse �lled with matter and vauum energy density, exhibits unusual,quadrati dependene on the energy density, when derived from a higher-dimension formalism.In the ontext of the brane senarios another question arises, whetherthe separation of the branes is made onstant by some underlying, yet un-known physis (stabilization mehanism) or slowly varying. It is onvenientto investigate this issue in terms of an additional �eld, a so-alled radion,whih is just the (55) omponent of the �ve-dimensional metri.(3947)



3948 K. Kowalska, K. Turzy«skiThere has been a debate in the literature, whether the unusual formof Friedmann equation in �ve-dimensional osmologies results from the fatthat the extra dimension is impliitly stabilized [9℄ (whih is supported byour alulations) or that the �ve-dimensional spae-time is assumed to beonformally �at [10℄.In this work we examine along the lines of Refs. [5�7℄ the possibility ofpurely gravitational stabilization of a two-brane system with time-dependentenergy density of a one-omponent perfet �uid on eah brane. This isa modest generalization of the models presented in the abovementioned ref-erenes (in whih the ase without the �uid was thoroughly disussed), whihgoes beyond the approximate results of Refs. [9,10℄. Our plan is the follow-ing. In Se. 2 we reall Einstein equations in �ve dimensions and theirsolutions. Se. 3 is devoted to studying possible matter ontent of thebranes whih allows an equilibrium position for the branes. Se. 4 ontainsdisussion of the results and the onlusions are presented in Se. 5.2. The setupIn this setion we reall Einstein equations in �ve dimensions, as wellas their solutions. These results have been more thoroughly disussed in [7℄and [4℄ and we present them for larity of the following onsiderations.We shall onsider �ve-dimensional, Z2-symmetri models with a osmo-logial onstant � in the bulk. We shall only onsider the anti-de-Sitterbulk (� > 0 in our notation), sine in this ase the hierarhy problem anpotentially be solved. There are also two parallel 3-branes: the referenebrane, with tension �1 and the moving brane, with tension �2. These namesresult from the fat that it is onvenient to hoose the referene frame inwhih the former brane is at rest and the latter brane moves in the dire-tion perpendiular to the branes' spae diretions. In addition, both branesontain a perfet �uid of energy density �1 and �2, respetively. We assumethat the branes are maximally symmetri four-dimensional manifolds. Thisis equivalent to the following ansatz on the �ve-dimensional metrids2 = �n2(t; y) dt2 + a2(t; y)� dr21� kr2 + r2d
2�+ dy2 ; (2.1)with the referene brane and the moving brane loated at y = 0 and y =R(t), respetively. This is a straightforward generalization of Friedmann�Robertson�Walker (FRW) metri.



On Friedmann Equation and the Radion Stabilization in . . . 39492.1. Einstein equationsHeneforth, we shall use the onvention _x = �x�t and x0 = �x�y . Havingwritten the Einstein equations in the bulkRAB = TAB � 13TgAB + �gAB ; (2.2)we obtain the only nontrivial and independent equations for (�; �) = (0; 0);(5,5), (0,5), (r; r)23n2� = �3a00a + nn00 + 3 _n _ana + 3nn0a0a ; (2.3)�23� = �n00n � 3a00a ; (2.4)0 = _a0a � n0n _aa ; (2.5)�23a2� = 2 _a2n2 + a00an2 � a _a _nn3 � 2a02 � aa00 � aa0n0n � 2k : (2.6)Conservation of energy in the bulk (Bianhi identities) is implied by equa-tions (2.3)�(2.6). There exists a �rst integral of the Einstein equations�a0a �2 �� _aan�2 � �6 � ka2 + Ca4 = 0 ; (2.7)where C is a onstant of integration. Using (2.5), we obtaina00 = �6 a+ Ca3 : (2.8)The solutions of (2.8) are� C = 0: a(t; y) = A(t) h �y +B(t) sh�y ; (2.9)where � =q�6 ,� C 6= 0: a(t; y) =pA(t) h �y +B(t) sh �y +D(t) ; (2.10)where �2 =q�6 , C = �6 �A2(t)�B2(t)�D2(t)� :



3950 K. Kowalska, K. Turzy«ski2.2. Israel onditions � referene braneSine Z2 symmetry is assumed, the solutions of the Einstein equation inthe bulk must also obey the following mathing onditions.limy!0+ a0a = �16 (�1 + �1) ; (2.11)limy!0+ n0n = 16 (��1 + 2�1 + 3p1) ; (2.12)where pi denotes the pressure of the perfet �uid on i-th brane. When theonservation of energy is assumed on the referene brane, Eqs. (2.11) and(2.12) are equivalent.Israel onditions on the referene brane speify half of the initial ondi-tions for the equation (2.8). Substituting (2.11) into (2.9), we obtaina(t; y) = a0(t)�h�y � �1 + �16� sh�y� ; (2.13)where a0(t) is the sale fator of the FRW metri on the referene brane.Similarly, substituting (2.11) into (2.10), we obtain the following onditionspA+D = a0 ; �2 BA+D = �16 (�1 + �1) : (2.14)2.3. Friedmann equationSubstituting (2.11) into (2.7) at y = 0 and hoosing the osmi time tobe the proper time on the referene brane (i.e. n(t; y = 0) = 1), we obtainH20 = � _a0a0�2 = ��6 + (�1 + �1)236 � ka20 + Ca40 ; (2.15)where the last term is sometimes referred to as dark radiation [5℄. Note theintriguing quadrati dependene of the square of the Hubble onstant onthe energy density on the referene brane. It is also striking that Friedmannequation (2.15) does not depend expliitly on the matter ontent nor veloityof the moving brane. There has been a dispute in the literature whether thesefeatures are artifats of the lak of an expliit mehanism for the stabilizationof the extra dimension (see e.g. [8�10℄).



On Friedmann Equation and the Radion Stabilization in . . . 39512.4. Israel onditions � moving braneWe shall denote � = _R=n, i.e. � is the veloity of the moving brane withrespet to the referene brane, but this veloity is expressed in terms of theproper time on the moving brane. The mathing onditions read1n _� + n0n �1� 2�2� = 16 (��2 + 2�2 + 3p2) �1� �2�3=2 ; (2.16)a0a + _aan� = �2 + �26 p1� �2 : (2.17)Similarly as before, these equations are related to the onservation of energyon the moving brane.3. Equilibrium of the radionIn this setion, we shall investigate the onsequenes of the two branesbeing at rest with respet to eah other. We denote � = th � �R2 .Substituting the mathing onditions (2.11) into the solution (2.10) ofEinstein equations, we obtaina(t; y) = a0(t)vuuut Ca40(t) th2 �y2 + ���2 + ��16 + �1(t)6 � th�y2 �2�24 �1� th2 �y2 � : (3.1)The evolution of a0(t) is given by the Friedmann equation (2.15). Energyonservation and the equation of state p1 = w1�1 for the matter on thereferene brane yield _�1 = �3H0(1 + w1)�1 ;_a0 = H0a0 : (3.2)The Eqs. (3.2) result in a power dependenea�3(1+w1)0 / �1 : (3.3)When the �moving� brane does not move, _R = 0, the Eq. (2.17) beomes�2 Ca40 � + �24 � � �1 + �2� �2 ��16 + �16 �+ � (�1+�1)236Ca40 �2 + ���2 + ��16 + �16 � ��2 = �26 + �26 : (3.4)



3952 K. Kowalska, K. Turzy«skiIt is onvenient to keep only �2 as a dimensionful parameter and rewrite(3.4) in terms of dimensionless quantities �24 ~Ca40 = Ca40 , �2�i = �i6 , �2�i = �i6 fori = 1; 2 ~Ca40 � + � � (1 + �2) (�1 + �1) + � (�1 + �1)2~Ca40 �2 + (�1 + (�1 + �1) �)2 = �2 + �2 : (3.5)The Eq. (3.5) imposes an algebrai relation between two dynamial quan-tities a0 and �2 whose time evolutions are a priori independent1. Even ifthe ondition (3.5) is imposed at ertain time t0, it does not have to hold atlater times. In order to hek that (3.5) is preserved in the time evolution,one must also hek the equality of the �rst time derivatives of both sides ofthis equation.Energy onservation on the moving brane reads_�2 + 3 _a0(t; �R)a0(t; �R) (�2 + p2) = _�2 + 3H2(1 + w2)�2 = 0 ; (3.6)where the Hubble parameter H2 on the moving brane as it is seen by theobserver sitting on the referene brane readsH2 = H0� ~Ca40 �2 + (1� (�1 + �1) �) (1 + (2 + 3w1)�1� � �1�)~Ca40 �2 + (�1 + (�1 + �1) �)2 : (3.7)The time derivative of the left hand side of (3.5) an be alulated using(3.2). The time derivative of the right hand side of (3.5) an be alulatedusing (3.6), (3.7) and (3.5). The resulting equation an be written in thefollowing form �2 + �1a�40 + �0a�80 = 0 ; (3.8)where�0 = � ~C2�3(1 +w2)(�1 + �2�) ; (3.9)�1 = ~C� (��(1+w2)(�1+�1�+�1�)(��2+� + (�1+�1)(�1+�2�))+ 13(�1+�2�)(1+w2)(�1+�1�+�1�)(�1+�1� � �(2+3w1)�1)+ (�1 + �2)(4(�1 + �1�) + (1� 3w1)�1�)� ; (3.10)�2 = (�1 + �1� + �1�)2�(�1 + �2)(1 + w1)�1 + (1 + w2)� (��2+�+(�1+�1)(�1+�2�))(�1+�1���(2 + 3w1)�1� : (3.11)1 The relation between �1 and a0 is established by Eq. (3.2).



On Friedmann Equation and the Radion Stabilization in . . . 3953If we assume that �1 = 0, i.e. there is no matter on the referene brane, then�i are onstant oe�ients and, aording to Eq. (3.8), must all vanish. ForC 6= 0 this an only be true for �1 = �2 = 1� . Then �2 = 0. For C = 0 thereis another solution with �2 = �1���1+�1� . Then �2 = 0, again.When �1 6= 0, the oe�ients �1 and �2 are in general funtions of �1.However, there exists a solution, for whih all the oe�ients �i vanish�1 = �2 = 1� ; w1 = w2 = �13 : (3.12)Let us �rst hek if these parameters orrespond to a non-singular metri.The sale fator (3.1) on the seond brane reads thena(t; �R) = a0(t)vuut �21� �2  ~Ca40 + �21! : (3.13)On the other hand, the parameter n(t; �R) whih establishes the relationbetween the proper times on both branes readsn(t; �R) = �vuut �21� �2  ~Ca40 + �21! = �a(t; �R)a0(t) < 0 : (3.14)Sine n(t; 0) = 1, this solution is singular.When the oe�ients �i do not vanish simultaneously (in partiular,�0 6= 0, sine the ase C = 0 yields w1 = w2 = �1, ontrarily to theassumption), we require the solution of the quadrati equation (3.8)a�40 = ���p�21 � 4�0�22�0 (3.15)be onsistent with the Eq. (3.3), i.e.a�40 = ��21 : (3.16)This yields the following ondition�21 � 4�0�2 = �2�0��21 + �1�2 : (3.17)The oe�ient � an be alulated by omparing the oe�ients of thepowers of �1 in (3.17). This gives � = � 136 ~C ;�2+3w136 ~C . Relation (3.17)between two fourth-rank polynomials in �1 an be satis�ed for �1 hanging



3954 K. Kowalska, K. Turzy«skiin time if and only if the oe�ients of these polynomials are equal. This isequivalent to �2 = �1 � ��1 + �1� ; (3.18)w1 = �13 : (3.19)Sine the hoie of the referene brane is arbitrary, there must also be w2 =�13 . Note that the Eq. (3.18) is equivalent to the ondition obtained if thereare only osmologial onstants present [7℄. Equation (3.16) beomes then~Ca40 = ��21 : (3.20)4. DisussionSome physial situations, in whih our solution might look viable, havebeen disussed in the literature (see e.g. [11℄). Although a perfet �uid withw = �13 annot be matter nor radiation, it might orrespond e.g. to a gasof strings.Substituting (3.20) to (3.1), we obtaina(t; y) = a0(t)s(�1 + �1�y)(�1 + �1�y + 2�1�y)1� �2y ; (4.1)where �(y) = th�y2 2 [0; � ℄. The expression under the square root is non-zerofor all y, if and only if1 > �1�(y) and 1 > �1�(y) + 2�1�(y) : (4.2)Sine �(y) < � , it su�es that �1 < 1=� to satisfy the �rst ondition. Inorder to satisfy the seond ondition, the initial value of matter density mustbe appropriately hosen, namely 2�1(t0) < 1=� � �1. As the Universe ex-pands, the matter density dereases and (4.2) is then automatially satis�edfor t > t0. Moreover,n(t; y) = (1� �1�(y))21� �(y)2 a0(t)a(t; y(�)) > 0 ; (4.3)i.e. this solution is non-singular. Friedmann equation on the �rst branereads H20 = �24 ��1 + �21�+ ��1�1 � ka20 ; (4.4)



On Friedmann Equation and the Radion Stabilization in . . . 3955i.e. the C-term and the term quadrati in energy density anel out andthe standard form of the Friedmann equation with e�etive osmologialonstant �e�1 = �24 ��1 + �21� (4.5)is reovered. In the limit �1 ! �1 our exat result (4.4) agrees with thatobtained in [9℄ for the Randall�Sundrum senario with small addition ofmatter.Our result might seem ontraditory to the approximate result obtainedfor �; �1; �2 ! 0 and k = 0 in Ref. [10℄H20 = �H0 _RR + �1 + �26R +O(�21;2) ; (4.6)whereas our method gives for _R = 0H20 = 0 +O(�21;2) : (4.7)However, when the two branes are at rest, �1 and �2 are not independentquantities and the relation (2.17) implies that the seond term in (4.6) van-ishes up to orretions O(�21;2). This on�rms the hypothesis expressed in [9℄that it is the stabilization ondition, and not vanishing of the bulk Weyl ten-sor, as stated in [10℄, what results in the non-standard form of Friedmannequation in this ase. Note that, aording to (3.20), the C-term vanishesup to terms quadrati in energy density without assuming the bulk to bea onformally �at spae.A disadvantage of our solution is its instability against small perturba-tions around the equilibrium position of the seond brane. This an be seenexpliitly for t ! 1, when �1; �2 ! 0 and there are e�etively only theosmologial onstants. As disussed in [7℄ suh an equilibrium is unstablefor � > 0. A more detailed alulation proves the lak of stability for t <1,too. 5. ConlusionsIn this work, we attempted to hek if a purely gravitational stabilizationof a two-brane system is possible with dynamial matter on the branes.We have shown that, if the equilibrium ondition is imposed on the exatsolutions of �ve-dimensional Einstein equations, the square of the energydensity is absent from the e�etive Friedmann equation. Our result supportthe hypothesis that the quadrati dependene is an artifat of a lak ofa stabilization mehanism. Unfortunately, our solution is not stable so itannot be onsidered as a realisti one.
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