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The consequences of a gravitational stabilization of a two-brane system
are studied in the presence of matter and tensions of both branes as well as
the cosmological constant in the bulk. An explicit calculation shows that
the usual form of the Friedmann equation can be retained in this situation,
even though the model is not a realistic one.
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1. Introduction

The string-motivated idea that our Universe is confined to a submanifold
of a higher-dimensional space (a brane) constitutes a potential solution to
the hierarchy problem [1-3]. In such models the enormous hiatus between
the electroweak scale and the Planck scale, which results in large radiative
corrections to the Higgs scalar mass, can be less troublesome, since new
physics is expected at the TeV scale.

On the other hand, addition of the spatial dimensions usually strongly
affects cosmology (see e.g. [4-7]). In particular, in the case of models with
branes, Friedmann equation, describing the evolution of the size of the
Universe filled with matter and vacuum energy density, exhibits unusual,
quadratic dependence on the energy density, when derived from a higher-
dimension formalism.

In the context of the brane scenarios another question arises, whether
the separation of the branes is made constant by some underlying, yet un-
known physics (stabilization mechanism) or slowly varying. It is convenient
to investigate this issue in terms of an additional field, a so-called radion,
which is just the (55) component of the five-dimensional metric.
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There has been a debate in the literature, whether the unusual form
of Friedmann equation in five-dimensional cosmologies results from the fact
that the extra dimension is implicitly stabilized [9] (which is supported by
our calculations) or that the five-dimensional space-time is assumed to be
conformally flat [10].

In this work we examine along the lines of Refs. [5-7| the possibility of
purely gravitational stabilization of a two-brane system with time-dependent
energy density of a one-component perfect fluid on each brane. This is
a modest generalization of the models presented in the abovementioned ref-
erences (in which the case without the fluid was thoroughly discussed), which
goes beyond the approximate results of Refs. [9,10]. Our plan is the follow-
ing. In Sec. 2 we recall Einstein equations in five dimensions and their
solutions. Sec. 3 is devoted to studying possible matter content of the
branes which allows an equilibrium position for the branes. Sec. 4 contains
discussion of the results and the conclusions are presented in Sec. 5.

2. The setup

In this section we recall Einstein equations in five dimensions, as well
as their solutions. These results have been more thoroughly discussed in [7]
and [4] and we present them for clarity of the following considerations.

We shall consider five-dimensional, Zs-symmetric models with a cosmo-
logical constant A in the bulk. We shall only consider the anti-de-Sitter
bulk (4 > 0 in our notation), since in this case the hierarchy problem can
potentially be solved. There are also two parallel 3-branes: the reference
brane, with tension A; and the mowving brane, with tension As. These names
result from the fact that it is convenient to choose the reference frame in
which the former brane is at rest and the latter brane moves in the direc-
tion perpendicular to the branes’ space directions. In addition, both branes
contain a perfect fluid of energy density p; and po, respectively. We assume
that the branes are maximally symmetric four-dimensional manifolds. This
is equivalent to the following ansatz on the five-dimensional metric

2

,
1 — kr?

ds? = —n2(t,y) dt* + a*(t,y) < + r2d02) + dy?, (2.1)

with the reference brane and the moving brane located at y = 0 and y =
R(t), respectively. This is a straightforward generalization of Friedmann—
Robertson-Walker (FRW) metric.
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2.1. Finstein equations

ox ox

Henceforth, we shall use the convention # = %7 and z' = 3y Having
written the Einstein equations in the bulk
1
Rap =Tap — 3T9ap + Agag (2.2)

we obtain the only nontrivial and independent equations for (u,v) = (0,0),
(5,5), (0,5), (r,7)

2 " .. !
024 = =35 o + 372 4 3’ L (2.3)
3 a na a
2 n// a//
—A = —-—— -3 24
3 p o (2.4)
o na
0= & _ma 2.5
P (2.5)
2 -2 n .ot 1.1
—Za’A = 2a—2+%—@—2a'2—aa”—aan —2k. (2.6)
3 n n n n

Conservation of energy in the bulk (Bianchi identities) is implied by equa-
tions (2.3)—(2.6). There exists a first integral of the Einstein equations

a\? a\? A4 k C
(z) ‘(?) a2 ta 27)

where C' is a constant of integration. Using (2.5), we obtain

A C
CL” = ECL + a,_'?’ . (28)
The solutions of (2.8) are

e C=0:

a(t,y) = A(t) ch uy + B(t) shpy,, (2.9)
where = %,

e C#0:

a(t,y) = \/A(t)chvy + B(t)shvy + D(t), (2.10)

where £ = /4. C = 4 (A%(t) — B(t) — D*(t)) .
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2.2. Israel conditions — reference brane

Since Z5 symmetry is assumed, the solutions of the Einstein equation in
the bulk must also obey the following matching conditions.

a 1

ylilggr P (A +p1) (2.11)
.oon 1
yl_lf(% e (=A1 +2p1 +3p1) (2.12)

where p; denotes the pressure of the perfect fluid on i-th brane. When the
conservation of energy is assumed on the reference brane, Eqs. (2.11) and
(2.12) are equivalent.

Israel conditions on the reference brane specify half of the initial condi-
tions for the equation (2.8). Substituting (2.11) into (2.9), we obtain

A
a(t,y) = ao(?) <ch 1y — % sh uy) ; (2.13)

where ag(t) is the scale factor of the FRW metric on the reference brane.
Similarly, substituting (2.11) into (2.10), we obtain the following conditions

B j—

v 1
VA+ D = _ - __
+ @0 2A+D 6

(M1 +p1) - (2.14)

2.3. Friedmann equation

Substituting (2.11) into (2.7) at ¥y = 0 and choosing the cosmic time to
be the proper time on the reference brane (i.e. n(t,y = 0) = 1), we obtain

. 2 2
A

Hg:<a_0> :__+M_£+g4’ (2.15)
ag

where the last term is sometimes referred to as dark radiation [5]. Note the
intriguing quadratic dependence of the square of the Hubble constant on
the energy density on the reference brane. It is also striking that Friedmann
equation (2.15) does not depend explicitly on the matter content nor velocity
of the moving brane. There has been a dispute in the literature whether these
features are artifacts of the lack of an explicit mechanism for the stabilization
of the extra dimension (see e.g. [8-10]).
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2.4. Israel conditions — moving brane

We shall denote & = R/n, i.e. & is the velocity of the moving brane with
respect to the reference brane, but this velocity is expressed in terms of the
proper time on the moving brane. The matching conditions read

£+ % (1 - 252) = % (—A2 +2p2 + 3p2) (1 — 52)3/2 , (2.16)
a/
a

+%£ _Nte gTa (2.17)

1
n

6

Similarly as before, these equations are related to the conservation of energy
on the moving brane.

3. Equilibrium of the radion

In this section, we shall investigate the consequences of the two branes
being at rest with respect to each other. We denote 7 = th %

Substituting the matching conditions (2.11) into the solution (2.10) of
Einstein equations, we obtain

2
ORI (—g + (% + "16(”) thg—y>
2
T (1—th?)

a(t,y) = ao(t)

The evolution of ag(t) is given by the Friedmann equation (2.15). Energy
conservation and the equation of state p; = wip; for the matter on the
reference brane yield

pr = —3Ho(1+wi)p1,

The Egs. (3.2) result in a power dependence
aag(le) x p1 . (3.3)

When the “moving” brane does not move, R = 0, the Eq. (2.17) becomes

: 2
Srafr— (L4725 (3 +h)+rlgpl

v
2 2
2 %72—1—(—%—#(%—1—%—1)7) 6 6
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It is convenient to keep only & as a dimensionful parameter and rewrite
. . . e 20 , .
(3.4) in terms of dimensionless quantities VT% =< 50, = %, v = & for

@ g
1=1,2

ST = (1+72) (01 +m) + 7 (01 +m)

= 09 + n2 . (35)
T2+ (=1+ (o1 +m) 7)°

S

The Eq. (3.5) imposes an algebraic relation between two dynamical quan-
tities ap and 79 whose time evolutions are a priori independent!. Even if
the condition (3.5) is imposed at certain time #p, it does not have to hold at
later times. In order to check that (3.5) is preserved in the time evolution,
one must also check the equality of the first time derivatives of both sides of
this equation.
Energy conservation on the moving brane reads
P2+ 3a0(t,7_%) (p2 + p2) = p2 + 3Ha(1 +wa)p2 =0, (3.6)
ao (ta R)

where the Hubble parameter Hs on the moving brane as it is seen by the
observer sitting on the reference brane reads

—%7‘24-(1 — (01+7]1)7') (1+ (2+3w1)mr—017)

Ho = H, (3.7)

T2+ (=14 (o1 +m)7)

og.la| Qe

The time derivative of the left hand side of (3.5) can be calculated using
(3.2). The time derivative of the right hand side of (3.5) can be calculated
using (3.6), (3.7) and (3.5). The resulting equation can be written in the
following form

Ko + maa4 + Koaag =0, (3.8)
where
ko = —C?m3(1 +wy) (=1 + 097), (3.9)
K1 =

Cr (—T(1+w2))(—1+alr+nlr)(—02+r + (o14m)(=1+097))

+ 3 (L) (L) (= Lborr +mr) (~ 1+orT = 7(2-+ 3w )

+ (=1 +7)A(=1 +o17) + (1 — 3wi)mT)), (3.10)
ke = (—l+oy7+ mr)2<(—1 +72) (1 +wi)m + (1 + wo)

X (oo +T+(o1+m) (= 1+027)) (= 1+ 017 —7(2 + 3w1)n1) . (3.11)

I The relation between m and ao is established by Eq. (3.2).
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If we assume that n; = 0, 7.e. there is no matter on the reference brane, then
k; are constant coefficients and, according to Eq. (3.8), must all vanish. For
C # 0 this can only be true for o1 = 09 = % Then 19 = 0. For C' = 0 there
is another solution with oy = —f17—. Then 7, = 0, again.
When 71 # 0, the coefficients k1 and k9 are in general functions of 7;.

However, there exists a solution, for which all the coefficients k; vanish

1
01 =02 = —, w) = w2 = —

1
. 5 (3.12)

Let us first check if these parameters correspond to a non-singular metric.
The scale factor (3.1) on the second brane reads then

ag

a(t,R) = ag(t) % (94 + n%) . (3.13)

On the other hand, the parameter n(#,R) which establishes the relation
between the proper times on both branes reads

_ 72 C a(t,R)
n(t,R) = — — 4P| =-—2L<0. 3.14
( ) 1— 7_2 (aé 7’1) ao(t) ( )
Since n(t,0) = 1, this solution is singular.
When the coefficients k; do not vanish simultaneously (in particular,
ko # 0, since the case C = 0 yields w; = we = —1, contrarily to the
assumption), we require the solution of the quadratic equation (3.8)

_4 —k=x /4% — 4Kokg
— .1
o 2K0 (3.15)

be consistent with the Eq. (3.3), i.e.

agt = an?. (3.16)

This yields the following condition

2
KT — dkgks = (26000t + K1) . (3.17)
The coefficient « can be calculated by comparing the coefficients of the
powers of p; in (3.17). This gives a = —ﬁ,—%. Relation (3.17)

between two fourth-rank polynomials in p; can be satisfied for p; changing
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in time if and only if the coefficients of these polynomials are equal. This is
equivalent to

o1 —T
= 3.18
72 —1+O’17” ( )
1
w =~z (3.19)

Since the choice of the reference brane is arbitrary, there must also be wy =
—%. Note that the Eq. (3.18) is equivalent to the condition obtained if there
are only cosmological constants present [7]. Equation (3.16) becomes then

= —n?. (3.20)

o%;| Qe

4. Discussion

Some physical situations, in which our solution might look viable, have
been discussed in the literature (see e.g. [11]). Although a perfect fluid with

w = —% cannot be matter nor radiation, it might correspond e.g. to a gas
of strings.
Substituting (3.20) to (3.1), we obtain
-1 -1 2
alt.y) = ao<t>\/ Clron)Clantinn -y
-,
y

where 7(y) = th% € [0,7]. The expression under the square root is non-zero
for all y, if and only if

1> o17(y) and 1> o17(y) + 2m7(y) . (4.2)

Since 7(y) < 7, it suffices that o1 < 1/7 to satisfy the first condition. In
order to satisfy the second condition, the initial value of matter density must
be appropriately chosen, namely 2n;(t9) < 1/7 — 01. As the Universe ex-
pands, the matter density decreases and (4.2) is then automatically satisfied
for ¢ > ty. Moreover,

(1-017(y)* ao(t)
1-7(y)? alt,y(r))

i.e. this solution is non-singular. Friedmann equation on the first brane
reads

n(t,y) = >0, (4.3)

1/2

k
H? = T (=1+0}) +voipr — %, (4.4)
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i.e. the C-term and the term quadratic in energy density cancel out and
the standard form of the Friedmann equation with effective cosmological
constant

= 2 (-1 +0}) (4.5)

is recovered. In the limit 01 — —1 our exact result (4.4) agrees with that
obtained in [9] for the Randall-Sundrum scenario with small addition of
matter.

Our result might seem contradictory to the approximate result obtained
for v,01,09 — 0 and k£ = 0 in Ref. [10]

R +
Hg _ —H0§ + PlGR,O2

+0(pi ), (4.6)

whereas our method gives for R=0
H =0+ 0(p}). (47)

However, when the two branes are at rest, p; and ps are not independent
quantities and the relation (2.17) implies that the second term in (4.6) van-
ishes up to corrections O(piQ). This confirms the hypothesis expressed in [9]
that it is the stabilization condition, and not vanishing of the bulk Weyl ten-
sor, as stated in [10], what results in the non-standard form of Friedmann
equation in this case. Note that, according to (3.20), the C-term vanishes
up to terms quadratic in energy density without assuming the bulk to be
a conformally flat space.

A disadvantage of our solution is its instability against small perturba-
tions around the equilibrium position of the second brane. This can be seen
explicitly for ¢ — oo, when p1,p2 — 0 and there are effectively only the
cosmological constants. As discussed in [7] such an equilibrium is unstable
for A > 0. A more detailed calculation proves the lack of stability for ¢ < oo,
too.

5. Conclusions

In this work, we attempted to check if a purely gravitational stabilization
of a two-brane system is possible with dynamical matter on the branes.
We have shown that, if the equilibrium condition is imposed on the exact
solutions of five-dimensional Einstein equations, the square of the energy
density is absent from the effective Friedmann equation. Our result support
the hypothesis that the quadratic dependence is an artifact of a lack of
a stabilization mechanism. Unfortunately, our solution is not stable so it
cannot be considered as a realistic one.
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