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ON FRIEDMANN EQUATION AND THE RADIONSTABILIZATION IN TWO-BRANE MODELSWITH DYNAMICAL MATTERKamila Kowalska and Krzysztof Turzy«skiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00-681 Warszawa, Polande-mail: Kamila.Kowalska�fuw.edu.pl,Krzysztof-Jan.Turzynski�fuw.edu.pl(Re
eived April 2, 2003)The 
onsequen
es of a gravitational stabilization of a two-brane systemare studied in the presen
e of matter and tensions of both branes as well asthe 
osmologi
al 
onstant in the bulk. An expli
it 
al
ulation shows thatthe usual form of the Friedmann equation 
an be retained in this situation,even though the model is not a realisti
 one.PACS numbers: 04.50.+h, 11.25.Wx, 98.80.Jk1. Introdu
tionThe string-motivated idea that our Universe is 
on�ned to a submanifoldof a higher-dimensional spa
e (a brane) 
onstitutes a potential solution tothe hierar
hy problem [1�3℄. In su
h models the enormous hiatus betweenthe ele
troweak s
ale and the Plan
k s
ale, whi
h results in large radiative
orre
tions to the Higgs s
alar mass, 
an be less troublesome, sin
e newphysi
s is expe
ted at the TeV s
ale.On the other hand, addition of the spatial dimensions usually stronglya�e
ts 
osmology (see e.g. [4�7℄). In parti
ular, in the 
ase of models withbranes, Friedmann equation, des
ribing the evolution of the size of theUniverse �lled with matter and va
uum energy density, exhibits unusual,quadrati
 dependen
e on the energy density, when derived from a higher-dimension formalism.In the 
ontext of the brane s
enarios another question arises, whetherthe separation of the branes is made 
onstant by some underlying, yet un-known physi
s (stabilization me
hanism) or slowly varying. It is 
onvenientto investigate this issue in terms of an additional �eld, a so-
alled radion,whi
h is just the (55) 
omponent of the �ve-dimensional metri
.(3947)



3948 K. Kowalska, K. Turzy«skiThere has been a debate in the literature, whether the unusual formof Friedmann equation in �ve-dimensional 
osmologies results from the fa
tthat the extra dimension is impli
itly stabilized [9℄ (whi
h is supported byour 
al
ulations) or that the �ve-dimensional spa
e-time is assumed to be
onformally �at [10℄.In this work we examine along the lines of Refs. [5�7℄ the possibility ofpurely gravitational stabilization of a two-brane system with time-dependentenergy density of a one-
omponent perfe
t �uid on ea
h brane. This isa modest generalization of the models presented in the abovementioned ref-eren
es (in whi
h the 
ase without the �uid was thoroughly dis
ussed), whi
hgoes beyond the approximate results of Refs. [9,10℄. Our plan is the follow-ing. In Se
. 2 we re
all Einstein equations in �ve dimensions and theirsolutions. Se
. 3 is devoted to studying possible matter 
ontent of thebranes whi
h allows an equilibrium position for the branes. Se
. 4 
ontainsdis
ussion of the results and the 
on
lusions are presented in Se
. 5.2. The setupIn this se
tion we re
all Einstein equations in �ve dimensions, as wellas their solutions. These results have been more thoroughly dis
ussed in [7℄and [4℄ and we present them for 
larity of the following 
onsiderations.We shall 
onsider �ve-dimensional, Z2-symmetri
 models with a 
osmo-logi
al 
onstant � in the bulk. We shall only 
onsider the anti-de-Sitterbulk (� > 0 in our notation), sin
e in this 
ase the hierar
hy problem 
anpotentially be solved. There are also two parallel 3-branes: the referen
ebrane, with tension �1 and the moving brane, with tension �2. These namesresult from the fa
t that it is 
onvenient to 
hoose the referen
e frame inwhi
h the former brane is at rest and the latter brane moves in the dire
-tion perpendi
ular to the branes' spa
e dire
tions. In addition, both branes
ontain a perfe
t �uid of energy density �1 and �2, respe
tively. We assumethat the branes are maximally symmetri
 four-dimensional manifolds. Thisis equivalent to the following ansatz on the �ve-dimensional metri
ds2 = �n2(t; y) dt2 + a2(t; y)� dr21� kr2 + r2d
2�+ dy2 ; (2.1)with the referen
e brane and the moving brane lo
ated at y = 0 and y =R(t), respe
tively. This is a straightforward generalization of Friedmann�Robertson�Walker (FRW) metri
.



On Friedmann Equation and the Radion Stabilization in . . . 39492.1. Einstein equationsHen
eforth, we shall use the 
onvention _x = �x�t and x0 = �x�y . Havingwritten the Einstein equations in the bulkRAB = TAB � 13TgAB + �gAB ; (2.2)we obtain the only nontrivial and independent equations for (�; �) = (0; 0);(5,5), (0,5), (r; r)23n2� = �3a00a + nn00 + 3 _n _ana + 3nn0a0a ; (2.3)�23� = �n00n � 3a00a ; (2.4)0 = _a0a � n0n _aa ; (2.5)�23a2� = 2 _a2n2 + a00an2 � a _a _nn3 � 2a02 � aa00 � aa0n0n � 2k : (2.6)Conservation of energy in the bulk (Bian
hi identities) is implied by equa-tions (2.3)�(2.6). There exists a �rst integral of the Einstein equations�a0a �2 �� _aan�2 � �6 � ka2 + Ca4 = 0 ; (2.7)where C is a 
onstant of integration. Using (2.5), we obtaina00 = �6 a+ Ca3 : (2.8)The solutions of (2.8) are� C = 0: a(t; y) = A(t) 
h �y +B(t) sh�y ; (2.9)where � =q�6 ,� C 6= 0: a(t; y) =pA(t) 
h �y +B(t) sh �y +D(t) ; (2.10)where �2 =q�6 , C = �6 �A2(t)�B2(t)�D2(t)� :



3950 K. Kowalska, K. Turzy«ski2.2. Israel 
onditions � referen
e braneSin
e Z2 symmetry is assumed, the solutions of the Einstein equation inthe bulk must also obey the following mat
hing 
onditions.limy!0+ a0a = �16 (�1 + �1) ; (2.11)limy!0+ n0n = 16 (��1 + 2�1 + 3p1) ; (2.12)where pi denotes the pressure of the perfe
t �uid on i-th brane. When the
onservation of energy is assumed on the referen
e brane, Eqs. (2.11) and(2.12) are equivalent.Israel 
onditions on the referen
e brane spe
ify half of the initial 
ondi-tions for the equation (2.8). Substituting (2.11) into (2.9), we obtaina(t; y) = a0(t)�
h�y � �1 + �16� sh�y� ; (2.13)where a0(t) is the s
ale fa
tor of the FRW metri
 on the referen
e brane.Similarly, substituting (2.11) into (2.10), we obtain the following 
onditionspA+D = a0 ; �2 BA+D = �16 (�1 + �1) : (2.14)2.3. Friedmann equationSubstituting (2.11) into (2.7) at y = 0 and 
hoosing the 
osmi
 time tobe the proper time on the referen
e brane (i.e. n(t; y = 0) = 1), we obtainH20 = � _a0a0�2 = ��6 + (�1 + �1)236 � ka20 + Ca40 ; (2.15)where the last term is sometimes referred to as dark radiation [5℄. Note theintriguing quadrati
 dependen
e of the square of the Hubble 
onstant onthe energy density on the referen
e brane. It is also striking that Friedmannequation (2.15) does not depend expli
itly on the matter 
ontent nor velo
ityof the moving brane. There has been a dispute in the literature whether thesefeatures are artifa
ts of the la
k of an expli
it me
hanism for the stabilizationof the extra dimension (see e.g. [8�10℄).



On Friedmann Equation and the Radion Stabilization in . . . 39512.4. Israel 
onditions � moving braneWe shall denote � = _R=n, i.e. � is the velo
ity of the moving brane withrespe
t to the referen
e brane, but this velo
ity is expressed in terms of theproper time on the moving brane. The mat
hing 
onditions read1n _� + n0n �1� 2�2� = 16 (��2 + 2�2 + 3p2) �1� �2�3=2 ; (2.16)a0a + _aan� = �2 + �26 p1� �2 : (2.17)Similarly as before, these equations are related to the 
onservation of energyon the moving brane.3. Equilibrium of the radionIn this se
tion, we shall investigate the 
onsequen
es of the two branesbeing at rest with respe
t to ea
h other. We denote � = th � �R2 .Substituting the mat
hing 
onditions (2.11) into the solution (2.10) ofEinstein equations, we obtaina(t; y) = a0(t)vuuut Ca40(t) th2 �y2 + ���2 + ��16 + �1(t)6 � th�y2 �2�24 �1� th2 �y2 � : (3.1)The evolution of a0(t) is given by the Friedmann equation (2.15). Energy
onservation and the equation of state p1 = w1�1 for the matter on thereferen
e brane yield _�1 = �3H0(1 + w1)�1 ;_a0 = H0a0 : (3.2)The Eqs. (3.2) result in a power dependen
ea�3(1+w1)0 / �1 : (3.3)When the �moving� brane does not move, _R = 0, the Eq. (2.17) be
omes�2 Ca40 � + �24 � � �1 + �2� �2 ��16 + �16 �+ � (�1+�1)236Ca40 �2 + ���2 + ��16 + �16 � ��2 = �26 + �26 : (3.4)



3952 K. Kowalska, K. Turzy«skiIt is 
onvenient to keep only �2 as a dimensionful parameter and rewrite(3.4) in terms of dimensionless quantities �24 ~Ca40 = Ca40 , �2�i = �i6 , �2�i = �i6 fori = 1; 2 ~Ca40 � + � � (1 + �2) (�1 + �1) + � (�1 + �1)2~Ca40 �2 + (�1 + (�1 + �1) �)2 = �2 + �2 : (3.5)The Eq. (3.5) imposes an algebrai
 relation between two dynami
al quan-tities a0 and �2 whose time evolutions are a priori independent1. Even ifthe 
ondition (3.5) is imposed at 
ertain time t0, it does not have to hold atlater times. In order to 
he
k that (3.5) is preserved in the time evolution,one must also 
he
k the equality of the �rst time derivatives of both sides ofthis equation.Energy 
onservation on the moving brane reads_�2 + 3 _a0(t; �R)a0(t; �R) (�2 + p2) = _�2 + 3H2(1 + w2)�2 = 0 ; (3.6)where the Hubble parameter H2 on the moving brane as it is seen by theobserver sitting on the referen
e brane readsH2 = H0� ~Ca40 �2 + (1� (�1 + �1) �) (1 + (2 + 3w1)�1� � �1�)~Ca40 �2 + (�1 + (�1 + �1) �)2 : (3.7)The time derivative of the left hand side of (3.5) 
an be 
al
ulated using(3.2). The time derivative of the right hand side of (3.5) 
an be 
al
ulatedusing (3.6), (3.7) and (3.5). The resulting equation 
an be written in thefollowing form �2 + �1a�40 + �0a�80 = 0 ; (3.8)where�0 = � ~C2�3(1 +w2)(�1 + �2�) ; (3.9)�1 = ~C� (��(1+w2)(�1+�1�+�1�)(��2+� + (�1+�1)(�1+�2�))+ 13(�1+�2�)(1+w2)(�1+�1�+�1�)(�1+�1� � �(2+3w1)�1)+ (�1 + �2)(4(�1 + �1�) + (1� 3w1)�1�)� ; (3.10)�2 = (�1 + �1� + �1�)2�(�1 + �2)(1 + w1)�1 + (1 + w2)� (��2+�+(�1+�1)(�1+�2�))(�1+�1���(2 + 3w1)�1� : (3.11)1 The relation between �1 and a0 is established by Eq. (3.2).



On Friedmann Equation and the Radion Stabilization in . . . 3953If we assume that �1 = 0, i.e. there is no matter on the referen
e brane, then�i are 
onstant 
oe�
ients and, a

ording to Eq. (3.8), must all vanish. ForC 6= 0 this 
an only be true for �1 = �2 = 1� . Then �2 = 0. For C = 0 thereis another solution with �2 = �1���1+�1� . Then �2 = 0, again.When �1 6= 0, the 
oe�
ients �1 and �2 are in general fun
tions of �1.However, there exists a solution, for whi
h all the 
oe�
ients �i vanish�1 = �2 = 1� ; w1 = w2 = �13 : (3.12)Let us �rst 
he
k if these parameters 
orrespond to a non-singular metri
.The s
ale fa
tor (3.1) on the se
ond brane reads thena(t; �R) = a0(t)vuut �21� �2  ~Ca40 + �21! : (3.13)On the other hand, the parameter n(t; �R) whi
h establishes the relationbetween the proper times on both branes readsn(t; �R) = �vuut �21� �2  ~Ca40 + �21! = �a(t; �R)a0(t) < 0 : (3.14)Sin
e n(t; 0) = 1, this solution is singular.When the 
oe�
ients �i do not vanish simultaneously (in parti
ular,�0 6= 0, sin
e the 
ase C = 0 yields w1 = w2 = �1, 
ontrarily to theassumption), we require the solution of the quadrati
 equation (3.8)a�40 = ���p�21 � 4�0�22�0 (3.15)be 
onsistent with the Eq. (3.3), i.e.a�40 = ��21 : (3.16)This yields the following 
ondition�21 � 4�0�2 = �2�0��21 + �1�2 : (3.17)The 
oe�
ient � 
an be 
al
ulated by 
omparing the 
oe�
ients of thepowers of �1 in (3.17). This gives � = � 136 ~C ;�2+3w136 ~C . Relation (3.17)between two fourth-rank polynomials in �1 
an be satis�ed for �1 
hanging



3954 K. Kowalska, K. Turzy«skiin time if and only if the 
oe�
ients of these polynomials are equal. This isequivalent to �2 = �1 � ��1 + �1� ; (3.18)w1 = �13 : (3.19)Sin
e the 
hoi
e of the referen
e brane is arbitrary, there must also be w2 =�13 . Note that the Eq. (3.18) is equivalent to the 
ondition obtained if thereare only 
osmologi
al 
onstants present [7℄. Equation (3.16) be
omes then~Ca40 = ��21 : (3.20)4. Dis
ussionSome physi
al situations, in whi
h our solution might look viable, havebeen dis
ussed in the literature (see e.g. [11℄). Although a perfe
t �uid withw = �13 
annot be matter nor radiation, it might 
orrespond e.g. to a gasof strings.Substituting (3.20) to (3.1), we obtaina(t; y) = a0(t)s(�1 + �1�y)(�1 + �1�y + 2�1�y)1� �2y ; (4.1)where �(y) = th�y2 2 [0; � ℄. The expression under the square root is non-zerofor all y, if and only if1 > �1�(y) and 1 > �1�(y) + 2�1�(y) : (4.2)Sin
e �(y) < � , it su�
es that �1 < 1=� to satisfy the �rst 
ondition. Inorder to satisfy the se
ond 
ondition, the initial value of matter density mustbe appropriately 
hosen, namely 2�1(t0) < 1=� � �1. As the Universe ex-pands, the matter density de
reases and (4.2) is then automati
ally satis�edfor t > t0. Moreover,n(t; y) = (1� �1�(y))21� �(y)2 a0(t)a(t; y(�)) > 0 ; (4.3)i.e. this solution is non-singular. Friedmann equation on the �rst branereads H20 = �24 ��1 + �21�+ ��1�1 � ka20 ; (4.4)



On Friedmann Equation and the Radion Stabilization in . . . 3955i.e. the C-term and the term quadrati
 in energy density 
an
el out andthe standard form of the Friedmann equation with e�e
tive 
osmologi
al
onstant �e�1 = �24 ��1 + �21� (4.5)is re
overed. In the limit �1 ! �1 our exa
t result (4.4) agrees with thatobtained in [9℄ for the Randall�Sundrum s
enario with small addition ofmatter.Our result might seem 
ontradi
tory to the approximate result obtainedfor �; �1; �2 ! 0 and k = 0 in Ref. [10℄H20 = �H0 _RR + �1 + �26R +O(�21;2) ; (4.6)whereas our method gives for _R = 0H20 = 0 +O(�21;2) : (4.7)However, when the two branes are at rest, �1 and �2 are not independentquantities and the relation (2.17) implies that the se
ond term in (4.6) van-ishes up to 
orre
tions O(�21;2). This 
on�rms the hypothesis expressed in [9℄that it is the stabilization 
ondition, and not vanishing of the bulk Weyl ten-sor, as stated in [10℄, what results in the non-standard form of Friedmannequation in this 
ase. Note that, a

ording to (3.20), the C-term vanishesup to terms quadrati
 in energy density without assuming the bulk to bea 
onformally �at spa
e.A disadvantage of our solution is its instability against small perturba-tions around the equilibrium position of the se
ond brane. This 
an be seenexpli
itly for t ! 1, when �1; �2 ! 0 and there are e�e
tively only the
osmologi
al 
onstants. As dis
ussed in [7℄ su
h an equilibrium is unstablefor � > 0. A more detailed 
al
ulation proves the la
k of stability for t <1,too. 5. Con
lusionsIn this work, we attempted to 
he
k if a purely gravitational stabilizationof a two-brane system is possible with dynami
al matter on the branes.We have shown that, if the equilibrium 
ondition is imposed on the exa
tsolutions of �ve-dimensional Einstein equations, the square of the energydensity is absent from the e�e
tive Friedmann equation. Our result supportthe hypothesis that the quadrati
 dependen
e is an artifa
t of a la
k ofa stabilization me
hanism. Unfortunately, our solution is not stable so it
annot be 
onsidered as a realisti
 one.
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