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QUANTIZED MASSIVE FIELDS AND SEMICLASSICALELECTRICALLY CHARGED BLACK HOLESWaldemar Berejy and Jerzy MatyjasekzInstitute of Physi
s, Maria Curie-Skªodowska University,pl. Marii Curie-Skªodowskiej 1, 20-031 Lublin, Poland(Re
eived April 28, 2003)Constru
ted within the framework of the S
hwinger�DeWitt method,the renormalized stress-energy tensor of the quantized massive s
alar, spinorand ve
tor �elds in a general spheri
ally-symmetri
 and stati
 spa
etime isemployed as a sour
e term of the Einstein �eld equations. The semi
lassi
alsolutions des
ribing the ele
tri
ally 
harged bla
k holes are obtained andtheir properties are studied. Spe
ial emphasis is put on the semi
lassi
alextremal 
on�gurations: it is shown that the near-horizon geometry, whenexpanded into a whole manifold, is des
ribed by the Bertotti�Robinson lineelement.PACS numbers: 04.62.+v, 04.70.Dy1. Introdu
tionOne of the most important, but still unresolved issues of modern theo-reti
al physi
s is the question of a �nal point of a bla
k hole evaporation.Unfortunately, a

ording to our present understanding, the de�nite answerto this extremely 
ompli
ated problem may be obtained only within thefull ma
hinery of the (nonexisting as yet) quantum theory of gravity. Itis natural, therefore, that as a preliminary step in our way to build up a
omplete pi
ture of the bla
k hole evolution some simpler models should be
onsidered. It is expe
ted that as long as a bla
k hole mass, M , is greaterthan the Plan
k mass, MPl, the semi
lassi
al approa
h may be safely usedand the in�uen
e of the quantized �elds on the spa
etime geometry 
ould bee�e
tively studied. Unfortunately, even this simpli�ed program is hard toexe
ute as the semi
lassi
al approa
h requires knowledge of the stress-energytensor of the quantized �elds, both massive and massless, for a wide 
lassy berej�tytan.um
s.lublin.plz matyjase�tytan.um
s.lublin.pl, jurek�kft.um
s.lublin.pl(3957)



3958 W. Berej, J. Matyjasekof nonstati
 ba
kgrounds, and, moreover, the resulting equations 
ompriserather 
ompli
ated system of partial nonlinear di�erential equations.For a stati
 bla
k hole and the stress-energy tensor of the quantized�elds in the Hartle�Hawking state one has 
onsiderable simpli�
ations andthe problem be
omes tra
table. Moreover, as the quantum part of the to-tal stress-energy tensor is expe
ted to be of order O (~), the ba
k rea
tionequations 
ould be solved perturbatively with the small parameter taken tobe � = (MPl=M)2 : Sin
e the stress-energy tensor is O (�) one expe
ts thatthe lo
ation of the true event horizon of the semi
alssi
al bla
k hole is 
loseto its 
lassi
al 
ounterpart and so is the horizon de�ned mass.It is evident that the su

ess of the method 
riti
ally depends on theknowledge of the stress-energy tensor itself. And although there exists vastliterature devoted solely to 
onstru
tions of the renormalized stress-energytensor of quantized �elds propagating in the bla
k holes geometries, it is fairto say that at present we are unable to go beyond the linearized version ofthe semi
lassi
al equations.For a massless �eld in the spa
etime of the S
hwarzs
hild bla
k hole thisprogram, initiated by York [1℄, has been 
arried out in numerous papersinvestigating various aspe
ts of the ba
k rea
tion [2�7℄. As the stress-energytensor of the massless �eld approa
hes at large distan
es the formT ba = p (h) �290T 4diag [�3; 1; 1; 1℄ ; (1.1)where T is a bla
k hole temperature and p (h) is the number of heli
itystates, it is ne
essary to impose some sort of boundaries.Typi
ally, in the ba
k rea
tion 
al
ulations one 
onstru
ts the stress-energy tensor in the 
lassi
al (unperturbed) spa
etime of the bla
k hole
hara
terized by a (bare) mass and seeks for a 
orre
ted geometry. Theintegration 
onstant resulting from integration of the (tt) 
omponent of thesemi
lassi
al Einstein �eld equations 
ould be absorbed in the de�nition ofthe e�e
tive massM in a pro
ess of the �nite renormalization. Su
h a rede�-nition leads to O ��2� e�e
ts in the stress-energy tensor, whi
h are, of 
ourse,unimportant in the linearized semi
lassi
al Einstein �eld equations. This iswhy it su�
es in this approa
h to 
onstru
t T ba in the 
lassi
al ba
kground.Re
ent 
al
ulations 
arried out in the ba
kground of the Reissner�Nord-ström bla
k hole strongly suggest, however, that this approa
h, i.e. ba
krea
tion of the quantized �elds evaluated in the ba
kground of the 
lassi
albla
k hole should be abandoned in favor of a self-
onsistent analysis [8℄.Indeed, having at one's disposal the fun
tional dependen
e of hT ba i on themetri
 tensor, one may attempt to solve the system of the semi
lassi
al �eldequations for a semi
lassi
al line element. This, of 
ourse, would allow a
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k Holes 3959more profound analyses of the resulting bla
k hole solutions espe
ially inthe extremality limit.It seems that obvious 
andidates for su
h an approa
h are massive �eldsthat � as is well known � possess some attra
tive features that make 
on-stru
tion of the �eld �u
tuation and stress-energy tensor possible. Indeed,when the Compton length asso
iated with the massive �eld is mu
h smallerthat a 
hara
teristi
 radius of 
urvature � a 
ase usually referred to as alarge mass limit, the parti
le 
reation phenomena 
ould be negle
ted andthe e�e
tive a
tion, W; may be expanded in inverse powers of m2. The ex-pansion involves the well-known Hadamard�DeWitt 
oe�
ients whi
h arelo
al quantities and are 
onstru
ted solely from the Riemann tensor, its
ovariant derivatives to required order and appropriate 
ontra
tions. Thisfeature opens a possibility to analyze the in�uen
e of the quantized �eldsupon geometry in a self-
onsistent manner.This method has been su

essfully employed in the 
lassi
al geometriesof the S
hwarzs
hild and Reissner�Nordström bla
k holes as well as in thespa
etime of the nonlinear bla
k hole [8�14℄.Re
ently the ba
k rea
tion of the quantized massive s
alar �eld with anarbitrary 
urvature 
oupling [15℄ and 
onformally invariant massless s
alar�eld [16℄ on the Reissner�Nordström ba
k hole of a (bare) mass M0 and anele
tri
 
harge e has been examined. The stress-energy tensor 
al
ulated ina 
lassi
al spa
etime of RN bla
k hole has been employed as a sour
e termof the Einstein equations. In this approa
h one starts with the 
lassi
alReissner�Nordströn solution and subsequently introdu
es quantum 
orre
-tions.Here we intend to extend the 
al
ulations to the massive spinor andve
tor �elds and investigate the problem from a di�erent perspe
tive. Themain obje
tive of this paper is to solve the semi
lassi
al �eld equations withthe total stress-energy tensor des
ribing the 
lassi
al (ele
tromagneti
) �eldand the quantized neutral massive �eld self-
onsistently and to examine thethus obtained bla
k hole solution with spe
ial emphasis put on the extremal
on�gurations. Spe
i�
ally, we shall expand the dis
ussion of the extremalele
tri
ally 
harged bla
k hole given in Ref. [8℄.In what follows we shall 
on�ne ourselves to the operators(�2+ �R+m2)�(0) = 0 ; (1.2)(
�r� +m)�(1=2) = 0 ; (1.3)(Æ��2�r�r� �R�� � Æ��m2)�(1) = 0 ; (1.4)a
ting on the s
alar, spinor, and ve
tor �elds, respe
tively. Here � is the
urvature 
oupling 
onstant, and 
� are the Dira
 matri
es obeying standardrelations.



3960 W. Berej, J. Matyjasek2. The renormalized stress-energy tensorThe �rst nonvanishing term of the renormalized e�e
tive a
tion of thequantized massive �eld in a large mass limit 
onstru
ted from the (tra
ed)
oin
iden
e limit of the Hadamard�Minakshisundaram�DeWitt (HaMiDeW)
oe�
ient a3 (x; x0) is simply [9�11, 17℄:W (1)ren = 132�2m2 Z g1=2d4x8><>: [a(0)3 ℄�tr[a(1=2)3 ℄tr[a(1)3 ℄� [a(0)3j�=0℄ : (2.1)The 
oe�
ients a0; a1 and a2 
ontribute to the divergent part of the a
tionand have to be absorbed into the (quadrati
) gravitational a
tionS = Z d4x g1=2 ��+R+ �R2 + �RabRab� (2.2)by renormalization of the bare 
oupling 
onstants. The term 
ontaining theKrets
hmann s
alar, Rab
dRab
d; has been eliminated through the use of theGauss�Bonnett invariant in four dimensions.Upon inserting the exa
t form of [a3℄ and performing elementary simpli-�
ations one obtains the approximate WR of the quantized s
alar, spinor,and ve
tor �eld:WR = 1192�2m2 Z d4xg1=2 ��(s)1 R2R+ �(s)2 Rpq2Rpq + �(s)3 R3��(s)4 RRpqRpq + �(s)5 RRpqabRpqab � �(s)6 RpqRqaRap+�(s)7 RpqRabRa bp q + �(s)8 RpqRp
abRq
ab+ �(s)9 RabpqRpq
dR
dab � �(s)10 Ra bp qRp q
 dR
 da b�= 1192�2m2 10Xi=1 �(s)i Wi ; (2.3)where the spin-dependent numeri
al 
oe�
ients �(s)i are tabulated in Table I.On
e the approximate e�e
tive a
tion is known, the stress-energy tensor
ould be obtained by fun
tional di�erentiation of WR with respe
t to themetri
 tensor: hT abi = 2g1=2 ÆÆgabWR: (2.4)It should be noted, however, that the thus 
onstru
ted hT bai is rather 
om-pli
ated as it 
onsists of over 100 lo
al geometri
 terms 
onstru
ted from
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k Holes 3961TABLE IThe 
oe�
ients �(s)i for the massive s
alar, spinor, and ve
tor �elds. Note that inorder to obtain the result for the massive neutral spinor �eld one has to multiplythe e�e
tive a
tion by the fa
tor 1/2.s = 0 s = 1=2 s = 1�(s)1 12�2 � 15 �+ 156 � 3140 � 27280�(s)2 1140 114 928�(s)3 � 16 � ��3 1432 � 572�(s)4 � 130 � 16 � �� � 190 3160�(s)5 130 � 16 � �� � 7720 � 110�(s)6 � 8945 � 25378 � 5263�(s)7 2315 47630 � 19105�(s)8 11260 19630 61140�(s)9 177560 293780 � 672520�(s)10 � 1270 � 154 118the 
urvature tensor, its 
ovariant derivatives and appropriate 
ontra
tions.This result, for obvious reasons, will not be presented here, and for its exa
tform as well as the te
hni
al details the reader is referred to [12,13℄. Fortu-nately, despite its 
omplexity there is a wide 
lass of geometries of physi
alinterest in whi
h the result 
ould be su

essfully applied.Inspe
tion of Eq. (2.3) reveals some general features of the thus obtainedstress-energy tensor. First, it should be noted that hT bai naturally dividesinto 10 purely geometri
 terms 
onstru
ted from WiT (i)ab = ÆÆgabWi (2.5)that are identi
al for s
alar, spinor and ve
tor �elds. The spin of the �eld isen
oded in the numeri
al 
oe�
ients �(s)i : Moreover, one expe
ts that ea
hT (i)ab is 
ovariantly 
onserved and is regular for regular geometries.3. Semi
lassi
al Einstein �eld equationsIn this se
tion we shall apply the general formalism to a parti
ular physi-
al situation of the semi
lassi
al ele
tri
ally 
harged and spheri
ally symmet-ri
 stati
 bla
k hole. We shall assume that the sour
e term of the Einstein
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onsists of both the 
lassi
al and the quantum part, i.e. T bais the sum of the stress-energy tensor of the (
lassi
al) ele
tromagneti
 �eld,T (em)ba ; and the stress-energy tensor of the massive quantized s
alar, spinoror ve
tor �eld, hT bai:Without loss of generality the stati
 and spheri
ally symmetri
 line el-ement may be written in the form that is useful in the 
al
ulations of thistype: ds2 = �e2 (r)f (r) dt2 + dr2f (r) + r2d
2 ; (3.1)where f (r) = 1� 2M (r)r : (3.2)We intend to solve the semi
lassi
al (quadrati
) Einstein�Maxwell equationsRba[g℄� 12R[g℄Æba+�Iba[g℄+�Hba[g℄+�Æba = 8� �T (em)ba [g℄ + hT ba [g℄i� ; (3.3)where Iab = 1g1=2 ÆÆgab Z d4x g1=2R2= 2R;ab � 2RRab + 12gab �R2 � 42R� ; (3.4)and Hab = 1g1=2 ÆÆgab Z d4x g1=2RabRab= R;ab �2Rab � 2R
dR
bda + 12gab �R
dR
d �2R� : (3.5)The ele
tromagneti
 part of the total stress-energy tensor for the line element(3.1) is simplyT (em)tt = T (em)rr = �T (em)�� = �T (em)�� = � C218�r4 ; (3.6)that is independent of the fun
tions M (r) and  (r) : The integration 
on-stant C1 is interpreted as an ele
tri
 
harge e. On the other hand, theexa
t form of the quantum part is generally unknown and, therefore, oneis for
ed to refer to some approximations. In this paper we shall employthe S
hwinger�DeWitt method, whi
h 
an be used as long as the Comptonlength �
 = m�1 of the massive �eld is mu
h less than the 
hara
teristi
s
ale of a 
urvature L. The parameters �, �; and � should be determined
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k Holes 3963experimentally and their present values are unknown. It is expe
ted, how-ever, that they are small, otherwise they would lead to various observationale�e
ts. In the latter we shall assume that renormalized �; � and � vanish.Employing the stress-energy tensor of the quantized �eld that fun
tion-ally depends on the metri
 tensor we 
an slightly modify the ba
k rea
tionprogram. Indeed, instead of starting from the 
lassi
al geometry and sub-sequently 
onstru
ting the quantum 
orre
tions to the metri
 we 
an tryto solve the semi
lassi
al equations self-
onsistently. This approa
h shouldlead to a physi
al interpretation of the integration 
onstants.Be
ause of the Bian
hi identities, the semi
lassi
al �eld equations for theline element (3.1) Rab � 12Rgab = 8�Tab ; (3.7)where the total stress-energy tensor is the sum ofT ba = T (em)ba + "hT ba i ; (3.8)redu
e to the system Gtt = � 2r2 dM (r)dr = 8�T tt (3.9)and Grr = Gtt + 2r �1� 2M (r)r � d (r)dr = 8�T rr : (3.10)Here we have introdu
ed the auxiliary parameter " (not to be 
onfused withthe parameter �) that is to be set to 1 at the �nal stage of 
al
ulations.4. Semi
lassi
al geometryLet us observe that be
ause of the spe
ial form of the stress-energy tensorof the ele
tromagneti
 �eld the di�eren
e between time and radial 
ompo-nents is zero, and, 
onsequently,T tt � T rr � O(") : (4.1)Now the equation (3.9) 
ould be solved iteratively with the initial 
onditionM(r+) = r+2 : (4.2)Indeed, assuming the following expansionsM(r) =M(0) + "M(1) +O("2) (4.3)



3964 W. Berej, J. Matyjasekand  (r) =  (0) + " (1) +O("2) ; (4.4)and 
olle
ting the terms with the like powers of " one obtainsdM(0)dr = e22r2 (4.5)and � 1r2 dM(1)dr = 4�hT tt (M(0);  (0))i = 4�hT (0)tt i : (4.6)Here the stress-energy tensor hT (0)tt i is 
onstru
ted for M(r) =M(0)(r) and (r) =  (0) = 0 : It should be noted that in this approa
h we do not as
ribeany parti
ular physi
al meaning to the fun
tion M(0):Now, solving the Eq. (4.5) with the 
ondition (4.2) and subsequentlysolving the Eq. (4.6) one hasM(r) = r+2 + e22r+ � e22r � 4�" rZr+ dr0(r0)2hT (0)tt i+O("2) ; (4.7)and, 
onsequently, the fun
tion f (r) assumes the following formf (r) = 1� r+r + e2r2 � e2rr+ + 8�"r rZr+ dr0(r0)2hT (0)tt i : (4.8)Moreover, from the foregoing analyses it is evident that r+ may be inter-preted as the lo
ation of the exa
t event horizon.The fun
tion M(r) 
ould be written in an alternative formM (r) = r+2 + ~m (r) = m (r)� e22r : (4.9)It should be noted that ~m (r+) = 0 ; (4.10)whi
h means that at the event horizon there is no room for quantum e�e
ts,and m (r) = r+2 + e22r+ � 4�" rZr+ dr0(r0)2hT (0)tt i : (4.11)
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k Holes 3965Let us return to the se
ond equation of the system (Eq. 3.10), that, afteremploying the parti
ular form of the ele
tromagneti
 stress-energy tensorand simple rearrangements 
ould be written as follows (r) = " 1 = 4�" rZ1 r0 �hT rr i � hT tt i�1� 2M(r0)r0 dr0 ; (4.12)where the 
omponents of the renormalized stress-energy tensor fun
tionallydepend on the metri
 potential of the general spheri
ally symmetri
 lineelement (3.1).Now we are in a position to determine the semi
lassi
al line element.Indeed, inserting the metri
 tensor (3.1) into the general expressions thatdes
ribe the renormalized stress-energy tensor of the massive �eld in a largemass limit, and, subsequently, employing expansions (4.3) and (4.4) in thethus obtained formulae, 
olle
ting the terms with the like powers of ", and,�nally, retaining only the terms that are linear in the auxiliary parameter,after some algebra and massive simpli�
ations, one obtainsf (r) = 1� r+r � e2rr+ + e2r2 + "�m2 �A(s) (r) + �B(s) (r)� ; (4.13)whereA(0)(r) = 11531960 e4r8 + 5112 r+2r6 + 13280 e2r6 � 123730240 r+3r7 � 11330240 1rr+3+ 232711340 e6r10 � 6131680 e4r+r9 � 6131680 e6r9r+ � 123730240 e6r7r+3+ 87770560 e2rr+5 � 106970560 e4rr+7 + 4169635040 e6rr+9 � 254910080 e2r+r7+ 5112 e4r+2r6 � 254910080 e4r+ r7 + 13697056 e2r+2r8 + 13697056 e6r8r+2 ;(4.14)A(1=2) (r) = 3280 r+2r6 � 27140 e2r6 + 3280 e4r+2r6 � 14915120 r+3r7 + 17235040 e2r+r7+17235040 e4r+ r7 � 14915120 e6r7r+3 � 272917640 e2r+2r8 � 10731764 e4r8� 272917640 e6r8r+2 + 268710080 e4r+r9 + 268710080 e6r9r+ � 163915120 e6r10+ 6711760 e2rr+5 � 1315120 1rr+3 � 76770560 e4rr+7 + 45170560 e6rr+9 ;(4.15)



3966 W. Berej, J. MatyjasekA(1) (r) = 4784910080 e2r+r7 + 4784910080 e4r+ r7 � 577280 e2r6 � 37560 r+2r6 � 37560 e4r+2r6+ 61110080 r+3r7 + 61110080 e6r7r+3 � 103933920 e2r+2r8 � 354493528 e4r8�103933920 e6r8r+2 + 268795040 e4r+r9 + 268795040 e6r9r+ � 3105711340 e6r10� 49314112 e2rr+5 + 112016 1rr+3 + 239370560 e4rr+7 � 2389635040 e6rr+9 ;(4.16)B(0) (r) = 1160 r+3r7 � 15 r+2r6 � 2e25r6 � 9190 e6r10 + 160 1rr+3 � 299 e4r8 + 8960 e4r+ r7+8960 e2r+r7 + e418rr+7 � 3130 e6r8r+2 � 3130 e2r+2r8 + 1160 e6r7r+3+11360 e6r9r+ � e220rr+5 � e645rr+9 + 11360 e4r+r9 � e45r+2r6 ; (4.17)and B(1=2) (r) = B(1) (r) = 0 : (4.18)Inspe
tion of Eq. (3.10) indi
ates that knowledge of the fun
tion f(r)is su�
ient to 
onstru
t the fun
tion  (r) to the required order. However,before attempting to solve this equation let us observe that the di�eren
ebetween the (rr) and (tt) 
omponents of the stress-energy tensor fa
torizesas hT (0)rr i � hT (0)tt i = �1� r+r + e2rr+ � e2r2�F (r) ; (4.19)where F (r) is a regular fun
tion, and, 
onsequently, the integral is expe
tedto be �nite. Indeed, retaining the O(") terms in (4.12) one has (r) = " (1) = 4�" rZ1 r0 �hT (0)rr i � hT (0)tt i�1� r+r0 + e2r0r+ � e2r02 dr0= 4�" rZ1 F (r0)r0dr0 : (4.20)



Quantized Massive Fields and . . . Bla
k Holes 3967After rather lengthy 
al
ulations one obtains remarkably simple results: (0) = "�m2 �� 291120 r+2r6 � 380 e2r6 � 291120 e4r+2r6+ 46441 e2r+r7 + 46441 e4r+ r7 � 2291680 e4r8�+ "��m2 � 760 r+2r6 � 815 e2r+r7 + 730 e2r6+ � 815 e4r+ r7 1320 e4r8 + 760 e4r+2r6� ; (4.21) (1=2) = "�m2 �� 111680 e4r+2r6 � 13245 e4r+ r7 + 371120 e4r8+ 7120 e2r6 � 13245 e2r+r7 � 111680 r+2r6 � (4.22)and  (1) = "�m2 � 1313360 e4r+2r6 � 24462205 e4r+ r7 + 21411680 e4r8+173240 e2r6 � 24462205 e2r+r7 + 1313360 r+2r6 � : (4.23)The form of the line element (3.1) with (4.13)�(4.18) and (4.21)�(4.23)for s
alar, spinor and ve
tor �elds are the prin
ipal results of this paper.The s
alar 
ase has been dis
ussed within the framework of the perturbativeapproa
h in Ref. [15℄.5. Properties of the semi
lassi
al bla
k hole solutions5.1. Hawking temperatureThe Eu
lidean form of the line element (3.1) obtained from the Wi
krotation (t! �it) has no 
oni
al singularity as r ! r+, provided the `time'
oordinate is periodi
 with a period � given by� = 4� limr!r+ (gttgrr)1=2� ddrgtt��1 : (5.1)The surfa
e gravity, �; is then related to � by means of the standard formula� = 2�� ; (5.2)



3968 W. Berej, J. Matyjasekwhereas the Hawking temperature of the bla
k hole, TH; is simply given byTH = �2� : (5.3)Restri
ting the general formula (5.1) to the line element (3.1) one easilyobtains � = 12 e (r+) dfdr jr=r+ ; (5.4)or, equivalently, making use of the Einstein equations� �= �0 �1 +  (r+) + 4�"r+�0 hT (0)tt ijr=r+� ; (5.5)where �0 = 12r+ �1� e2r2+� : (5.6)The Hawking temperature expressed in terms of the integration 
onstantsfor neutral massive s
alar, spinor and ve
tor �eld isT (0)H = T0 + "4�m2r5+ ��� 160 � 112 e2r2+ + 1190 e4r4+ + 115 e6r6+�� 3710080 + 46323520 e2r2+ � 331120 e4r4+ + 122990560 e6r6+� ; (5.7)T (1=2)H = T0 � "4�m2r5+ � 11008 � 27735280 e2r2+ + 11310080 e4r4+ � 554704 e6r6+� (5.8)andT (1)H = T0 + "4�m2r5+ � 193360 � 328170560 e2r2+ + 25224 e4r4+ � 180170560 e6r6+� ; (5.9)where T0 = 14�r+ �1� e2r2+� : (5.10)
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k Holes 39695.2. Extremal bla
k holeIn order to dis
uss the semi
lassi
al extremal bla
k holes let us returnto the equation (5.4). First, we shall explore the 
onsequen
es of vanishingof the surfa
e gravity (temperature). Sin
e the surfa
e gravity is de�ned atthe event horizon we have a system of two equations, the �rst of whi
h issatis�ed automati
ally as f(r+) = 0; whereas the se
ond one1r+ � e2r3+ + 8�"r+hT (0)tt ijr=r+ = 0 (5.11)is to be used to relate the integration 
onstants r+ and e: Assuming thatthe lo
ation of event horizon 
ould be expanded asr+ = r0 + "r1 +O("2) ; (5.12)where, as before, we do not as
ribe any parti
ular physi
al meaning to r0and r1; one has r0 = jej (5.13)and r1 = � �r403e2 � r20 ; (5.14)where � = 8�r0hT (0)tt i : (5.15)The lo
ation of the event horizon expressed in terms of the ele
tri
 
hargeis given by r+ = jej � "�(s)720�m2jej3 ; (5.16)where �(s) = 8>>><>>>: 1621 � 4(� � 16)37141147 (5.17)for s
alar, ve
tor and spinor �elds, respe
tively. Note that the above result
ould be easily obtained setting T (s)H = 0 in (5.7)�(5.9), making use of theexpansion (5.12) and retaining O(") terms.The problem of the existen
e of the quantum 
orre
ted extremal bla
kholes has re
ently been a subje
t of some 
ontroversy. On the basis of theperturbative approa
h 
arried out in Ref. [18℄ it was stated that ma
ros
opi
zero temperature bla
k holes do not exist, whereas Lowe [19℄ dis
ussing the



3970 W. Berej, J. Matyjaseksimilar model has expli
itly demonstrated that su
h 
on�gurations 
ouldexist. This issue has been further investigated from a more general pointof view with the aid of the stress-energy tensor in the large mass limitin [8℄. The prin
ipal obje
tion to Lowe's demonstration raised in [20℄ 
onsistsin the observation that the 
orre
ted event horizon always lies inside theevent horizon of the unperturbed (
lassi
al) Reissner�Nordström solution.However, in order to determine the quantum 
orre
tions to the geometryone has to know the stress-energy tensor inside the event horizon (thatin the extremal 
ase also be
omes the Cau
hy horizon). As there is nopossible justi�
ation for extending validity of the formulas des
ribing thestress-energy 
onstru
ted in the exterior region to radii jej < r+; this, inturn, strongly suggests that the perturbative approa
h should be abandonedin favor of the self-
onsistent treatment [8℄.In our dis
ussion we employed the approximate stress-energy tensor 
on-stru
ted for a general line element (3.1) rather than the 
lassi
al Reissner�Nordström solution, and, therefore the obje
tions of Ref. [20℄ do not apply.One 
on
ludes, therefore, that the semi
lassi
al zero temperature bla
k holesdo exist, or, to be more exa
t, that the semi
lassi
al Einstein �eld equationswith the sour
e term given by the stress-energy tensor of the massive �eldsin the large mass limit allow solutions with vanishing surfa
e gravity (tem-perature), for whi
h the standard relation holds, although the degenerateevent horizon is now lo
ated in the 
lassi
ally forbidden region.5.3. The bla
k hole massTill now we have expressed the result in terms of the integration 
on-stants e and r+; whi
h are interpreted as the ele
tri
 
harge and the lo
ationof the `exa
t' event horizon, respe
tively. It is possible, however, to expressthe result in a more familiar form introdu
ing the horizon de�ned mass M:Indeed, denoting m (r+) =M one hasM = r+2 + e22r+ (5.18)and m (r) =M + ÆM (r) =M � 4�" rZr+ dr0(r0)2hT (0)tt i : (5.19)Now, the natural question arises: what is the relation between the hori-zon de�ned mass and the ele
tri
 
harge for the extremal 
on�guration. Theanswer 
ould be easily obtained by inserting (5.16) in the equation (5.18).After simple 
al
ulation one hasM = jej+O("2) ; (5.20)
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k Holes 3971that expli
itly demonstrates that for the extremal bla
k holes to order " the
lassi
al relation holds. Thus the ratio of the modulus of the ele
tri
 
hargeto the horizon de�ned mass is 1 but the event horizon is now lo
ated atr+ =M � "�(s)720�m2M3 ; (5.21)where �(s) is given by (5.17). Note that for the 
lassi
al Reissner�Nordströmbla
k hole with mass M the analogous relation readsr+ =M = jej : (5.22)It should be emphasized that M is not the mass that is measured by adistant observer. Indeed, the latter mass is de�ned asM1 = limr!1M (r)= M +�M ; (5.23)and �M for massive s
alar, spinor and ve
tor �elds is given by�M (0) = 1�m2 �� 4169M3158760r6+ + 461M26615r5+ � 6607M105840r4+ + 3007105840r3++ �� 4M345r6+ � 11M245r5+ + 41M180r4+ � 13180r3+�� ; (5.24)�M (1=2) = 1�m2 �� 451M317640r6+ + 53M2882r5+ � 3289M70560r4+ + 2521211680r3+� (5.25)and�M (1) = 1�m2 � 2389M3158760r6+ � 598M26615r5+ + 12071M105840r4+ � 6197158760r3+� : (5.26)For the extremal 
on�guration these formulas be
ome�M (0) = � 107317520�m2M3 ; (5.27)�M (1=2) = � 19317520�m2M3 (5.28)and �M (1) = � 17317520�m2M3 : (5.29)
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lassi
al Einstein �eld equations 
ould be solved with a di�erentset of boundary 
onditions. Indeed, takingM1 = limr!1M(r) ; (5.30)where M1 is interpreted as the total mass determined by a distant observerone has f(r) = 1� 2M1r + e2r2 + 8�"r rZ1 dr0(r0)2hT (0)tt i : (5.31)The lo
ation of the event horizon, rEH; as seen by a distant observer, 
ouldbe obtained from f(rEH) = 0 and it 
ould be easily shown that to O(")r+ = rEH : (5.32)5.4. The near-horizon geometryFinally, we shall investigate the near-horizon geometry of the extremalsemi
lassi
al bla
k hole. In the vi
inity of r+ the line element may be writtenas ds2 = �e2 (r+)P (r � r+)2dt2 + 1P (r � r+)2 dr2 + r2+d
2 ; (5.33)where P = 12 d2fdr2 jr=r+ : (5.34)To determine P we shall revert the relation (5.21) to obtainM = r+ + "�(s)720�m2r3+ (5.35)and express the result solely in terms of the exa
t lo
ation of the eventhorizon. Di�erentiating the fun
tion f twi
e with respe
t to the radial 
o-ordinate, taking the limit r = r+ and making use of (5.35) one arrives at asimple result P = 1r2+ +O("2) : (5.36)Introdu
ing a new 
oordinater = r+�1 + r+e (r+)y� (5.37)
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k Holes 3973one obtains ds2 = r2+y2 ��dt2 + dy2 + y2d
2� : (5.38)One 
on
ludes, therefore, that expanding the near-horizon geometry of theextremal semi
lassi
al bla
k hole into the whole manifold results in theBertotti�Robinson spa
etime [21, 22℄. This situation resembles the 
lassi-
al Reissner�Nordström solution.5.5. Null geodesi
sA further insight into the nature of the semi
lassi
al geometry may begained from the analysis of test parti
les. Here we shall limit ourselves tothe null geodesi
s in the extremal 
on�guration satisfyingE2 = e2 (r) _r2 + L2r2 e2 (r)f(r) ; (5.39)where the overdot denotes di�erentiation with respe
t to the a�ne param-eter, and E and L are the 
onstants of motion interpreted as the parti
le'stotal energy and orbital angular momentum, respe
tively. Restri
ting one-self to the 
ir
ular orbits, i.e. _r = 0 one 
on
ludes that the se
ond term inthe right hand side of (5.39) plays the role of the e�e
tive potential:V (r) = L2r2 e2 (r)f(r) : (5.40)It 
ould be easily shown that to O(") the equationddrV = 0 (5.41)has a minimum at r = r+: Again this behavior resembles the 
lassi
alReissner�Nordström spa
etime, where the minimum o

urs at the degen-erate event horizon. The se
ond solution, r
; gives the lo
ation of the maxi-mum of the e�e
tive potential (and the radius of an unstable 
ir
ular orbit)that 
ould be found substituting expansionr
 = r1 + "r2 (5.42)into (5.41) and 
olle
ting the terms with the like powers of ": Solving thethus obtained system of equations one hasr(s)
 = 2r+ + ~a(s)720�m2r3+ ; (5.43)



3974 W. Berej, J. Matyjasekwhere ~a(s) = 8>>><>>>: 2821118816 � 24332 (� � 16)6986431254469163118816 (5.44)for s
alar, ve
tor and spinor �elds, respe
tively.Results propounded in this se
tion strongly indi
ate that in spite of evi-dent di�eren
es between the 
lassi
al Reissner�Nordström and the quantum-
orre
ted spheri
ally-symmetri
 and ele
tri
ally 
harged bla
k hole solutionsthere are interesting qualitative similarities, espe
ially in the extremalitylimit. 6. Con
luding remarksIn this paper we have 
onstru
ted solutions to the semi
lassi
al Ein-stein �eld equations des
ribing the spheri
ally-symmetri
 and ele
tri
ally
harged stati
 bla
k holes with a sour
e term 
onsisting of both 
lassi
aland quantum parts. The 
lassi
al 
ontribution to the total stress-energytensor des
ribes the ele
tromagneti
 �eld whereas the quantum part is 
on-stru
ted for the massive s
alar (with arbitrary 
urvature 
oupling), spinorand ve
tor �eld. Obtained solutions are parametrized by two integration
onstants: the ele
tri
 
harge and the exa
t (to O(")) lo
ation of the eventhorizon. Although the s
alar 
ase have been 
onsidered earlier in Ref. [15℄, itshould be noted that there are important di�eren
es between the approa
hadopted in the present paper and that of Taylor, His
o
k and Anderson.Indeed, instead of looking for quantum 
orre
tions of the 
lassi
al geome-try 
aused by the stress-energy tensor evaluated in the ba
kground of theReissner�Nordström geometry, and subsequently de�ning renormalized massand 
orre
ted lo
ation of the event horizon, we employ hT bai 
onstru
ted fora general spheri
ally-symmetri
 spa
etime. Su
h a 
hoi
e allows to solve thesemi
lassi
al Einstein �eld equations in a self-
onsistent way, and makes amore profound treatment of the problem possible. The general forms of thethus obtained line elements have been utilized in the 
al
ulations of various
hara
teristi
s of the semi
lassi
al bla
k holes, su
h as the temperature andits total mass as seen by a distant observer.The zero temperature limit of our general solutions leads to the extremal
on�gurations, dis
ussion of whi
h expands and systematizes that of Ref. [8℄.Spe
i�
ally, it is shown that the near-horizon geometry when expanded intoa whole manifold is des
ribed by the Bertotti�Robinson line element. More-over, to gain a better understanding of the nature of the semi
lassi
al ex-tremal bla
k holes we study the null geodesi
s in this geometry.



Quantized Massive Fields and . . . Bla
k Holes 3975Finally, we remark that it is possible to expand analyses presented inthis paper to the regular solutions of 
oupled equations of a nonlinear ele
-trodynami
s and gravitation. These issues are under a
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