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QUANTIZED MASSIVE FIELDS AND SEMICLASSICALELECTRICALLY CHARGED BLACK HOLESWaldemar Berejy and Jerzy MatyjasekzInstitute of Physis, Maria Curie-Skªodowska University,pl. Marii Curie-Skªodowskiej 1, 20-031 Lublin, Poland(Reeived April 28, 2003)Construted within the framework of the Shwinger�DeWitt method,the renormalized stress-energy tensor of the quantized massive salar, spinorand vetor �elds in a general spherially-symmetri and stati spaetime isemployed as a soure term of the Einstein �eld equations. The semilassialsolutions desribing the eletrially harged blak holes are obtained andtheir properties are studied. Speial emphasis is put on the semilassialextremal on�gurations: it is shown that the near-horizon geometry, whenexpanded into a whole manifold, is desribed by the Bertotti�Robinson lineelement.PACS numbers: 04.62.+v, 04.70.Dy1. IntrodutionOne of the most important, but still unresolved issues of modern theo-retial physis is the question of a �nal point of a blak hole evaporation.Unfortunately, aording to our present understanding, the de�nite answerto this extremely ompliated problem may be obtained only within thefull mahinery of the (nonexisting as yet) quantum theory of gravity. Itis natural, therefore, that as a preliminary step in our way to build up aomplete piture of the blak hole evolution some simpler models should beonsidered. It is expeted that as long as a blak hole mass, M , is greaterthan the Plank mass, MPl, the semilassial approah may be safely usedand the in�uene of the quantized �elds on the spaetime geometry ould bee�etively studied. Unfortunately, even this simpli�ed program is hard toexeute as the semilassial approah requires knowledge of the stress-energytensor of the quantized �elds, both massive and massless, for a wide lassy berej�tytan.ums.lublin.plz matyjase�tytan.ums.lublin.pl, jurek�kft.ums.lublin.pl(3957)



3958 W. Berej, J. Matyjasekof nonstati bakgrounds, and, moreover, the resulting equations ompriserather ompliated system of partial nonlinear di�erential equations.For a stati blak hole and the stress-energy tensor of the quantized�elds in the Hartle�Hawking state one has onsiderable simpli�ations andthe problem beomes tratable. Moreover, as the quantum part of the to-tal stress-energy tensor is expeted to be of order O (~), the bak reationequations ould be solved perturbatively with the small parameter taken tobe � = (MPl=M)2 : Sine the stress-energy tensor is O (�) one expets thatthe loation of the true event horizon of the semialssial blak hole is loseto its lassial ounterpart and so is the horizon de�ned mass.It is evident that the suess of the method ritially depends on theknowledge of the stress-energy tensor itself. And although there exists vastliterature devoted solely to onstrutions of the renormalized stress-energytensor of quantized �elds propagating in the blak holes geometries, it is fairto say that at present we are unable to go beyond the linearized version ofthe semilassial equations.For a massless �eld in the spaetime of the Shwarzshild blak hole thisprogram, initiated by York [1℄, has been arried out in numerous papersinvestigating various aspets of the bak reation [2�7℄. As the stress-energytensor of the massless �eld approahes at large distanes the formT ba = p (h) �290T 4diag [�3; 1; 1; 1℄ ; (1.1)where T is a blak hole temperature and p (h) is the number of heliitystates, it is neessary to impose some sort of boundaries.Typially, in the bak reation alulations one onstruts the stress-energy tensor in the lassial (unperturbed) spaetime of the blak holeharaterized by a (bare) mass and seeks for a orreted geometry. Theintegration onstant resulting from integration of the (tt) omponent of thesemilassial Einstein �eld equations ould be absorbed in the de�nition ofthe e�etive massM in a proess of the �nite renormalization. Suh a rede�-nition leads to O ��2� e�ets in the stress-energy tensor, whih are, of ourse,unimportant in the linearized semilassial Einstein �eld equations. This iswhy it su�es in this approah to onstrut T ba in the lassial bakground.Reent alulations arried out in the bakground of the Reissner�Nord-ström blak hole strongly suggest, however, that this approah, i.e. bakreation of the quantized �elds evaluated in the bakground of the lassialblak hole should be abandoned in favor of a self-onsistent analysis [8℄.Indeed, having at one's disposal the funtional dependene of hT ba i on themetri tensor, one may attempt to solve the system of the semilassial �eldequations for a semilassial line element. This, of ourse, would allow a



Quantized Massive Fields and . . . Blak Holes 3959more profound analyses of the resulting blak hole solutions espeially inthe extremality limit.It seems that obvious andidates for suh an approah are massive �eldsthat � as is well known � possess some attrative features that make on-strution of the �eld �utuation and stress-energy tensor possible. Indeed,when the Compton length assoiated with the massive �eld is muh smallerthat a harateristi radius of urvature � a ase usually referred to as alarge mass limit, the partile reation phenomena ould be negleted andthe e�etive ation, W; may be expanded in inverse powers of m2. The ex-pansion involves the well-known Hadamard�DeWitt oe�ients whih areloal quantities and are onstruted solely from the Riemann tensor, itsovariant derivatives to required order and appropriate ontrations. Thisfeature opens a possibility to analyze the in�uene of the quantized �eldsupon geometry in a self-onsistent manner.This method has been suessfully employed in the lassial geometriesof the Shwarzshild and Reissner�Nordström blak holes as well as in thespaetime of the nonlinear blak hole [8�14℄.Reently the bak reation of the quantized massive salar �eld with anarbitrary urvature oupling [15℄ and onformally invariant massless salar�eld [16℄ on the Reissner�Nordström bak hole of a (bare) mass M0 and aneletri harge e has been examined. The stress-energy tensor alulated ina lassial spaetime of RN blak hole has been employed as a soure termof the Einstein equations. In this approah one starts with the lassialReissner�Nordströn solution and subsequently introdues quantum orre-tions.Here we intend to extend the alulations to the massive spinor andvetor �elds and investigate the problem from a di�erent perspetive. Themain objetive of this paper is to solve the semilassial �eld equations withthe total stress-energy tensor desribing the lassial (eletromagneti) �eldand the quantized neutral massive �eld self-onsistently and to examine thethus obtained blak hole solution with speial emphasis put on the extremalon�gurations. Spei�ally, we shall expand the disussion of the extremaleletrially harged blak hole given in Ref. [8℄.In what follows we shall on�ne ourselves to the operators(�2+ �R+m2)�(0) = 0 ; (1.2)(�r� +m)�(1=2) = 0 ; (1.3)(Æ��2�r�r� �R�� � Æ��m2)�(1) = 0 ; (1.4)ating on the salar, spinor, and vetor �elds, respetively. Here � is theurvature oupling onstant, and � are the Dira matries obeying standardrelations.



3960 W. Berej, J. Matyjasek2. The renormalized stress-energy tensorThe �rst nonvanishing term of the renormalized e�etive ation of thequantized massive �eld in a large mass limit onstruted from the (traed)oinidene limit of the Hadamard�Minakshisundaram�DeWitt (HaMiDeW)oe�ient a3 (x; x0) is simply [9�11, 17℄:W (1)ren = 132�2m2 Z g1=2d4x8><>: [a(0)3 ℄�tr[a(1=2)3 ℄tr[a(1)3 ℄� [a(0)3j�=0℄ : (2.1)The oe�ients a0; a1 and a2 ontribute to the divergent part of the ationand have to be absorbed into the (quadrati) gravitational ationS = Z d4x g1=2 ��+R+ �R2 + �RabRab� (2.2)by renormalization of the bare oupling onstants. The term ontaining theKretshmann salar, RabdRabd; has been eliminated through the use of theGauss�Bonnett invariant in four dimensions.Upon inserting the exat form of [a3℄ and performing elementary simpli-�ations one obtains the approximate WR of the quantized salar, spinor,and vetor �eld:WR = 1192�2m2 Z d4xg1=2 ��(s)1 R2R+ �(s)2 Rpq2Rpq + �(s)3 R3��(s)4 RRpqRpq + �(s)5 RRpqabRpqab � �(s)6 RpqRqaRap+�(s)7 RpqRabRa bp q + �(s)8 RpqRpabRqab+ �(s)9 RabpqRpqdRdab � �(s)10 Ra bp qRp q dR da b�= 1192�2m2 10Xi=1 �(s)i Wi ; (2.3)where the spin-dependent numerial oe�ients �(s)i are tabulated in Table I.One the approximate e�etive ation is known, the stress-energy tensorould be obtained by funtional di�erentiation of WR with respet to themetri tensor: hT abi = 2g1=2 ÆÆgabWR: (2.4)It should be noted, however, that the thus onstruted hT bai is rather om-pliated as it onsists of over 100 loal geometri terms onstruted from



Quantized Massive Fields and . . . Blak Holes 3961TABLE IThe oe�ients �(s)i for the massive salar, spinor, and vetor �elds. Note that inorder to obtain the result for the massive neutral spinor �eld one has to multiplythe e�etive ation by the fator 1/2.s = 0 s = 1=2 s = 1�(s)1 12�2 � 15 �+ 156 � 3140 � 27280�(s)2 1140 114 928�(s)3 � 16 � ��3 1432 � 572�(s)4 � 130 � 16 � �� � 190 3160�(s)5 130 � 16 � �� � 7720 � 110�(s)6 � 8945 � 25378 � 5263�(s)7 2315 47630 � 19105�(s)8 11260 19630 61140�(s)9 177560 293780 � 672520�(s)10 � 1270 � 154 118the urvature tensor, its ovariant derivatives and appropriate ontrations.This result, for obvious reasons, will not be presented here, and for its exatform as well as the tehnial details the reader is referred to [12,13℄. Fortu-nately, despite its omplexity there is a wide lass of geometries of physialinterest in whih the result ould be suessfully applied.Inspetion of Eq. (2.3) reveals some general features of the thus obtainedstress-energy tensor. First, it should be noted that hT bai naturally dividesinto 10 purely geometri terms onstruted from WiT (i)ab = ÆÆgabWi (2.5)that are idential for salar, spinor and vetor �elds. The spin of the �eld isenoded in the numerial oe�ients �(s)i : Moreover, one expets that eahT (i)ab is ovariantly onserved and is regular for regular geometries.3. Semilassial Einstein �eld equationsIn this setion we shall apply the general formalism to a partiular physi-al situation of the semilassial eletrially harged and spherially symmet-ri stati blak hole. We shall assume that the soure term of the Einstein



3962 W. Berej, J. Matyjasek�eld equations onsists of both the lassial and the quantum part, i.e. T bais the sum of the stress-energy tensor of the (lassial) eletromagneti �eld,T (em)ba ; and the stress-energy tensor of the massive quantized salar, spinoror vetor �eld, hT bai:Without loss of generality the stati and spherially symmetri line el-ement may be written in the form that is useful in the alulations of thistype: ds2 = �e2 (r)f (r) dt2 + dr2f (r) + r2d
2 ; (3.1)where f (r) = 1� 2M (r)r : (3.2)We intend to solve the semilassial (quadrati) Einstein�Maxwell equationsRba[g℄� 12R[g℄Æba+�Iba[g℄+�Hba[g℄+�Æba = 8� �T (em)ba [g℄ + hT ba [g℄i� ; (3.3)where Iab = 1g1=2 ÆÆgab Z d4x g1=2R2= 2R;ab � 2RRab + 12gab �R2 � 42R� ; (3.4)and Hab = 1g1=2 ÆÆgab Z d4x g1=2RabRab= R;ab �2Rab � 2RdRbda + 12gab �RdRd �2R� : (3.5)The eletromagneti part of the total stress-energy tensor for the line element(3.1) is simplyT (em)tt = T (em)rr = �T (em)�� = �T (em)�� = � C218�r4 ; (3.6)that is independent of the funtions M (r) and  (r) : The integration on-stant C1 is interpreted as an eletri harge e. On the other hand, theexat form of the quantum part is generally unknown and, therefore, oneis fored to refer to some approximations. In this paper we shall employthe Shwinger�DeWitt method, whih an be used as long as the Comptonlength � = m�1 of the massive �eld is muh less than the harateristisale of a urvature L. The parameters �, �; and � should be determined



Quantized Massive Fields and . . . Blak Holes 3963experimentally and their present values are unknown. It is expeted, how-ever, that they are small, otherwise they would lead to various observationale�ets. In the latter we shall assume that renormalized �; � and � vanish.Employing the stress-energy tensor of the quantized �eld that funtion-ally depends on the metri tensor we an slightly modify the bak reationprogram. Indeed, instead of starting from the lassial geometry and sub-sequently onstruting the quantum orretions to the metri we an tryto solve the semilassial equations self-onsistently. This approah shouldlead to a physial interpretation of the integration onstants.Beause of the Bianhi identities, the semilassial �eld equations for theline element (3.1) Rab � 12Rgab = 8�Tab ; (3.7)where the total stress-energy tensor is the sum ofT ba = T (em)ba + "hT ba i ; (3.8)redue to the system Gtt = � 2r2 dM (r)dr = 8�T tt (3.9)and Grr = Gtt + 2r �1� 2M (r)r � d (r)dr = 8�T rr : (3.10)Here we have introdued the auxiliary parameter " (not to be onfused withthe parameter �) that is to be set to 1 at the �nal stage of alulations.4. Semilassial geometryLet us observe that beause of the speial form of the stress-energy tensorof the eletromagneti �eld the di�erene between time and radial ompo-nents is zero, and, onsequently,T tt � T rr � O(") : (4.1)Now the equation (3.9) ould be solved iteratively with the initial onditionM(r+) = r+2 : (4.2)Indeed, assuming the following expansionsM(r) =M(0) + "M(1) +O("2) (4.3)



3964 W. Berej, J. Matyjasekand  (r) =  (0) + " (1) +O("2) ; (4.4)and olleting the terms with the like powers of " one obtainsdM(0)dr = e22r2 (4.5)and � 1r2 dM(1)dr = 4�hT tt (M(0);  (0))i = 4�hT (0)tt i : (4.6)Here the stress-energy tensor hT (0)tt i is onstruted for M(r) =M(0)(r) and (r) =  (0) = 0 : It should be noted that in this approah we do not asribeany partiular physial meaning to the funtion M(0):Now, solving the Eq. (4.5) with the ondition (4.2) and subsequentlysolving the Eq. (4.6) one hasM(r) = r+2 + e22r+ � e22r � 4�" rZr+ dr0(r0)2hT (0)tt i+O("2) ; (4.7)and, onsequently, the funtion f (r) assumes the following formf (r) = 1� r+r + e2r2 � e2rr+ + 8�"r rZr+ dr0(r0)2hT (0)tt i : (4.8)Moreover, from the foregoing analyses it is evident that r+ may be inter-preted as the loation of the exat event horizon.The funtion M(r) ould be written in an alternative formM (r) = r+2 + ~m (r) = m (r)� e22r : (4.9)It should be noted that ~m (r+) = 0 ; (4.10)whih means that at the event horizon there is no room for quantum e�ets,and m (r) = r+2 + e22r+ � 4�" rZr+ dr0(r0)2hT (0)tt i : (4.11)



Quantized Massive Fields and . . . Blak Holes 3965Let us return to the seond equation of the system (Eq. 3.10), that, afteremploying the partiular form of the eletromagneti stress-energy tensorand simple rearrangements ould be written as follows (r) = " 1 = 4�" rZ1 r0 �hT rr i � hT tt i�1� 2M(r0)r0 dr0 ; (4.12)where the omponents of the renormalized stress-energy tensor funtionallydepend on the metri potential of the general spherially symmetri lineelement (3.1).Now we are in a position to determine the semilassial line element.Indeed, inserting the metri tensor (3.1) into the general expressions thatdesribe the renormalized stress-energy tensor of the massive �eld in a largemass limit, and, subsequently, employing expansions (4.3) and (4.4) in thethus obtained formulae, olleting the terms with the like powers of ", and,�nally, retaining only the terms that are linear in the auxiliary parameter,after some algebra and massive simpli�ations, one obtainsf (r) = 1� r+r � e2rr+ + e2r2 + "�m2 �A(s) (r) + �B(s) (r)� ; (4.13)whereA(0)(r) = 11531960 e4r8 + 5112 r+2r6 + 13280 e2r6 � 123730240 r+3r7 � 11330240 1rr+3+ 232711340 e6r10 � 6131680 e4r+r9 � 6131680 e6r9r+ � 123730240 e6r7r+3+ 87770560 e2rr+5 � 106970560 e4rr+7 + 4169635040 e6rr+9 � 254910080 e2r+r7+ 5112 e4r+2r6 � 254910080 e4r+ r7 + 13697056 e2r+2r8 + 13697056 e6r8r+2 ;(4.14)A(1=2) (r) = 3280 r+2r6 � 27140 e2r6 + 3280 e4r+2r6 � 14915120 r+3r7 + 17235040 e2r+r7+17235040 e4r+ r7 � 14915120 e6r7r+3 � 272917640 e2r+2r8 � 10731764 e4r8� 272917640 e6r8r+2 + 268710080 e4r+r9 + 268710080 e6r9r+ � 163915120 e6r10+ 6711760 e2rr+5 � 1315120 1rr+3 � 76770560 e4rr+7 + 45170560 e6rr+9 ;(4.15)



3966 W. Berej, J. MatyjasekA(1) (r) = 4784910080 e2r+r7 + 4784910080 e4r+ r7 � 577280 e2r6 � 37560 r+2r6 � 37560 e4r+2r6+ 61110080 r+3r7 + 61110080 e6r7r+3 � 103933920 e2r+2r8 � 354493528 e4r8�103933920 e6r8r+2 + 268795040 e4r+r9 + 268795040 e6r9r+ � 3105711340 e6r10� 49314112 e2rr+5 + 112016 1rr+3 + 239370560 e4rr+7 � 2389635040 e6rr+9 ;(4.16)B(0) (r) = 1160 r+3r7 � 15 r+2r6 � 2e25r6 � 9190 e6r10 + 160 1rr+3 � 299 e4r8 + 8960 e4r+ r7+8960 e2r+r7 + e418rr+7 � 3130 e6r8r+2 � 3130 e2r+2r8 + 1160 e6r7r+3+11360 e6r9r+ � e220rr+5 � e645rr+9 + 11360 e4r+r9 � e45r+2r6 ; (4.17)and B(1=2) (r) = B(1) (r) = 0 : (4.18)Inspetion of Eq. (3.10) indiates that knowledge of the funtion f(r)is su�ient to onstrut the funtion  (r) to the required order. However,before attempting to solve this equation let us observe that the di�erenebetween the (rr) and (tt) omponents of the stress-energy tensor fatorizesas hT (0)rr i � hT (0)tt i = �1� r+r + e2rr+ � e2r2�F (r) ; (4.19)where F (r) is a regular funtion, and, onsequently, the integral is expetedto be �nite. Indeed, retaining the O(") terms in (4.12) one has (r) = " (1) = 4�" rZ1 r0 �hT (0)rr i � hT (0)tt i�1� r+r0 + e2r0r+ � e2r02 dr0= 4�" rZ1 F (r0)r0dr0 : (4.20)



Quantized Massive Fields and . . . Blak Holes 3967After rather lengthy alulations one obtains remarkably simple results: (0) = "�m2 �� 291120 r+2r6 � 380 e2r6 � 291120 e4r+2r6+ 46441 e2r+r7 + 46441 e4r+ r7 � 2291680 e4r8�+ "��m2 � 760 r+2r6 � 815 e2r+r7 + 730 e2r6+ � 815 e4r+ r7 1320 e4r8 + 760 e4r+2r6� ; (4.21) (1=2) = "�m2 �� 111680 e4r+2r6 � 13245 e4r+ r7 + 371120 e4r8+ 7120 e2r6 � 13245 e2r+r7 � 111680 r+2r6 � (4.22)and  (1) = "�m2 � 1313360 e4r+2r6 � 24462205 e4r+ r7 + 21411680 e4r8+173240 e2r6 � 24462205 e2r+r7 + 1313360 r+2r6 � : (4.23)The form of the line element (3.1) with (4.13)�(4.18) and (4.21)�(4.23)for salar, spinor and vetor �elds are the prinipal results of this paper.The salar ase has been disussed within the framework of the perturbativeapproah in Ref. [15℄.5. Properties of the semilassial blak hole solutions5.1. Hawking temperatureThe Eulidean form of the line element (3.1) obtained from the Wikrotation (t! �it) has no onial singularity as r ! r+, provided the `time'oordinate is periodi with a period � given by� = 4� limr!r+ (gttgrr)1=2� ddrgtt��1 : (5.1)The surfae gravity, �; is then related to � by means of the standard formula� = 2�� ; (5.2)



3968 W. Berej, J. Matyjasekwhereas the Hawking temperature of the blak hole, TH; is simply given byTH = �2� : (5.3)Restriting the general formula (5.1) to the line element (3.1) one easilyobtains � = 12 e (r+) dfdr jr=r+ ; (5.4)or, equivalently, making use of the Einstein equations� �= �0 �1 +  (r+) + 4�"r+�0 hT (0)tt ijr=r+� ; (5.5)where �0 = 12r+ �1� e2r2+� : (5.6)The Hawking temperature expressed in terms of the integration onstantsfor neutral massive salar, spinor and vetor �eld isT (0)H = T0 + "4�m2r5+ ��� 160 � 112 e2r2+ + 1190 e4r4+ + 115 e6r6+�� 3710080 + 46323520 e2r2+ � 331120 e4r4+ + 122990560 e6r6+� ; (5.7)T (1=2)H = T0 � "4�m2r5+ � 11008 � 27735280 e2r2+ + 11310080 e4r4+ � 554704 e6r6+� (5.8)andT (1)H = T0 + "4�m2r5+ � 193360 � 328170560 e2r2+ + 25224 e4r4+ � 180170560 e6r6+� ; (5.9)where T0 = 14�r+ �1� e2r2+� : (5.10)



Quantized Massive Fields and . . . Blak Holes 39695.2. Extremal blak holeIn order to disuss the semilassial extremal blak holes let us returnto the equation (5.4). First, we shall explore the onsequenes of vanishingof the surfae gravity (temperature). Sine the surfae gravity is de�ned atthe event horizon we have a system of two equations, the �rst of whih issatis�ed automatially as f(r+) = 0; whereas the seond one1r+ � e2r3+ + 8�"r+hT (0)tt ijr=r+ = 0 (5.11)is to be used to relate the integration onstants r+ and e: Assuming thatthe loation of event horizon ould be expanded asr+ = r0 + "r1 +O("2) ; (5.12)where, as before, we do not asribe any partiular physial meaning to r0and r1; one has r0 = jej (5.13)and r1 = � �r403e2 � r20 ; (5.14)where � = 8�r0hT (0)tt i : (5.15)The loation of the event horizon expressed in terms of the eletri hargeis given by r+ = jej � "�(s)720�m2jej3 ; (5.16)where �(s) = 8>>><>>>: 1621 � 4(� � 16)37141147 (5.17)for salar, vetor and spinor �elds, respetively. Note that the above resultould be easily obtained setting T (s)H = 0 in (5.7)�(5.9), making use of theexpansion (5.12) and retaining O(") terms.The problem of the existene of the quantum orreted extremal blakholes has reently been a subjet of some ontroversy. On the basis of theperturbative approah arried out in Ref. [18℄ it was stated that marosopizero temperature blak holes do not exist, whereas Lowe [19℄ disussing the



3970 W. Berej, J. Matyjaseksimilar model has expliitly demonstrated that suh on�gurations ouldexist. This issue has been further investigated from a more general pointof view with the aid of the stress-energy tensor in the large mass limitin [8℄. The prinipal objetion to Lowe's demonstration raised in [20℄ onsistsin the observation that the orreted event horizon always lies inside theevent horizon of the unperturbed (lassial) Reissner�Nordström solution.However, in order to determine the quantum orretions to the geometryone has to know the stress-energy tensor inside the event horizon (thatin the extremal ase also beomes the Cauhy horizon). As there is nopossible justi�ation for extending validity of the formulas desribing thestress-energy onstruted in the exterior region to radii jej < r+; this, inturn, strongly suggests that the perturbative approah should be abandonedin favor of the self-onsistent treatment [8℄.In our disussion we employed the approximate stress-energy tensor on-struted for a general line element (3.1) rather than the lassial Reissner�Nordström solution, and, therefore the objetions of Ref. [20℄ do not apply.One onludes, therefore, that the semilassial zero temperature blak holesdo exist, or, to be more exat, that the semilassial Einstein �eld equationswith the soure term given by the stress-energy tensor of the massive �eldsin the large mass limit allow solutions with vanishing surfae gravity (tem-perature), for whih the standard relation holds, although the degenerateevent horizon is now loated in the lassially forbidden region.5.3. The blak hole massTill now we have expressed the result in terms of the integration on-stants e and r+; whih are interpreted as the eletri harge and the loationof the `exat' event horizon, respetively. It is possible, however, to expressthe result in a more familiar form introduing the horizon de�ned mass M:Indeed, denoting m (r+) =M one hasM = r+2 + e22r+ (5.18)and m (r) =M + ÆM (r) =M � 4�" rZr+ dr0(r0)2hT (0)tt i : (5.19)Now, the natural question arises: what is the relation between the hori-zon de�ned mass and the eletri harge for the extremal on�guration. Theanswer ould be easily obtained by inserting (5.16) in the equation (5.18).After simple alulation one hasM = jej+O("2) ; (5.20)



Quantized Massive Fields and . . . Blak Holes 3971that expliitly demonstrates that for the extremal blak holes to order " thelassial relation holds. Thus the ratio of the modulus of the eletri hargeto the horizon de�ned mass is 1 but the event horizon is now loated atr+ =M � "�(s)720�m2M3 ; (5.21)where �(s) is given by (5.17). Note that for the lassial Reissner�Nordströmblak hole with mass M the analogous relation readsr+ =M = jej : (5.22)It should be emphasized that M is not the mass that is measured by adistant observer. Indeed, the latter mass is de�ned asM1 = limr!1M (r)= M +�M ; (5.23)and �M for massive salar, spinor and vetor �elds is given by�M (0) = 1�m2 �� 4169M3158760r6+ + 461M26615r5+ � 6607M105840r4+ + 3007105840r3++ �� 4M345r6+ � 11M245r5+ + 41M180r4+ � 13180r3+�� ; (5.24)�M (1=2) = 1�m2 �� 451M317640r6+ + 53M2882r5+ � 3289M70560r4+ + 2521211680r3+� (5.25)and�M (1) = 1�m2 � 2389M3158760r6+ � 598M26615r5+ + 12071M105840r4+ � 6197158760r3+� : (5.26)For the extremal on�guration these formulas beome�M (0) = � 107317520�m2M3 ; (5.27)�M (1=2) = � 19317520�m2M3 (5.28)and �M (1) = � 17317520�m2M3 : (5.29)



3972 W. Berej, J. MatyjasekThe semilassial Einstein �eld equations ould be solved with a di�erentset of boundary onditions. Indeed, takingM1 = limr!1M(r) ; (5.30)where M1 is interpreted as the total mass determined by a distant observerone has f(r) = 1� 2M1r + e2r2 + 8�"r rZ1 dr0(r0)2hT (0)tt i : (5.31)The loation of the event horizon, rEH; as seen by a distant observer, ouldbe obtained from f(rEH) = 0 and it ould be easily shown that to O(")r+ = rEH : (5.32)5.4. The near-horizon geometryFinally, we shall investigate the near-horizon geometry of the extremalsemilassial blak hole. In the viinity of r+ the line element may be writtenas ds2 = �e2 (r+)P (r � r+)2dt2 + 1P (r � r+)2 dr2 + r2+d
2 ; (5.33)where P = 12 d2fdr2 jr=r+ : (5.34)To determine P we shall revert the relation (5.21) to obtainM = r+ + "�(s)720�m2r3+ (5.35)and express the result solely in terms of the exat loation of the eventhorizon. Di�erentiating the funtion f twie with respet to the radial o-ordinate, taking the limit r = r+ and making use of (5.35) one arrives at asimple result P = 1r2+ +O("2) : (5.36)Introduing a new oordinater = r+�1 + r+e (r+)y� (5.37)



Quantized Massive Fields and . . . Blak Holes 3973one obtains ds2 = r2+y2 ��dt2 + dy2 + y2d
2� : (5.38)One onludes, therefore, that expanding the near-horizon geometry of theextremal semilassial blak hole into the whole manifold results in theBertotti�Robinson spaetime [21, 22℄. This situation resembles the lassi-al Reissner�Nordström solution.5.5. Null geodesisA further insight into the nature of the semilassial geometry may begained from the analysis of test partiles. Here we shall limit ourselves tothe null geodesis in the extremal on�guration satisfyingE2 = e2 (r) _r2 + L2r2 e2 (r)f(r) ; (5.39)where the overdot denotes di�erentiation with respet to the a�ne param-eter, and E and L are the onstants of motion interpreted as the partile'stotal energy and orbital angular momentum, respetively. Restriting one-self to the irular orbits, i.e. _r = 0 one onludes that the seond term inthe right hand side of (5.39) plays the role of the e�etive potential:V (r) = L2r2 e2 (r)f(r) : (5.40)It ould be easily shown that to O(") the equationddrV = 0 (5.41)has a minimum at r = r+: Again this behavior resembles the lassialReissner�Nordström spaetime, where the minimum ours at the degen-erate event horizon. The seond solution, r; gives the loation of the maxi-mum of the e�etive potential (and the radius of an unstable irular orbit)that ould be found substituting expansionr = r1 + "r2 (5.42)into (5.41) and olleting the terms with the like powers of ": Solving thethus obtained system of equations one hasr(s) = 2r+ + ~a(s)720�m2r3+ ; (5.43)



3974 W. Berej, J. Matyjasekwhere ~a(s) = 8>>><>>>: 2821118816 � 24332 (� � 16)6986431254469163118816 (5.44)for salar, vetor and spinor �elds, respetively.Results propounded in this setion strongly indiate that in spite of evi-dent di�erenes between the lassial Reissner�Nordström and the quantum-orreted spherially-symmetri and eletrially harged blak hole solutionsthere are interesting qualitative similarities, espeially in the extremalitylimit. 6. Conluding remarksIn this paper we have onstruted solutions to the semilassial Ein-stein �eld equations desribing the spherially-symmetri and eletriallyharged stati blak holes with a soure term onsisting of both lassialand quantum parts. The lassial ontribution to the total stress-energytensor desribes the eletromagneti �eld whereas the quantum part is on-struted for the massive salar (with arbitrary urvature oupling), spinorand vetor �eld. Obtained solutions are parametrized by two integrationonstants: the eletri harge and the exat (to O(")) loation of the eventhorizon. Although the salar ase have been onsidered earlier in Ref. [15℄, itshould be noted that there are important di�erenes between the approahadopted in the present paper and that of Taylor, Hisok and Anderson.Indeed, instead of looking for quantum orretions of the lassial geome-try aused by the stress-energy tensor evaluated in the bakground of theReissner�Nordström geometry, and subsequently de�ning renormalized massand orreted loation of the event horizon, we employ hT bai onstruted fora general spherially-symmetri spaetime. Suh a hoie allows to solve thesemilassial Einstein �eld equations in a self-onsistent way, and makes amore profound treatment of the problem possible. The general forms of thethus obtained line elements have been utilized in the alulations of variousharateristis of the semilassial blak holes, suh as the temperature andits total mass as seen by a distant observer.The zero temperature limit of our general solutions leads to the extremalon�gurations, disussion of whih expands and systematizes that of Ref. [8℄.Spei�ally, it is shown that the near-horizon geometry when expanded intoa whole manifold is desribed by the Bertotti�Robinson line element. More-over, to gain a better understanding of the nature of the semilassial ex-tremal blak holes we study the null geodesis in this geometry.
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