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Constructed within the framework of the Schwinger-DeWitt method,
the renormalized stress-energy tensor of the quantized massive scalar, spinor
and vector fields in a general spherically-symmetric and static spacetime is
employed as a source term of the Einstein field equations. The semiclassical
solutions describing the electrically charged black holes are obtained and
their properties are studied. Special emphasis is put on the semiclassical
extremal configurations: it is shown that the near-horizon geometry, when
expanded into a whole manifold, is described by the Bertotti-Robinson line
element.

PACS numbers: 04.62.+v, 04.70.Dy

1. Introduction

One of the most important, but still unresolved issues of modern theo-
retical physics is the question of a final point of a black hole evaporation.
Unfortunately, according to our present understanding, the definite answer
to this extremely complicated problem may be obtained only within the
full machinery of the (nonexisting as yet) quantum theory of gravity. It
is natural, therefore, that as a preliminary step in our way to build up a
complete picture of the black hole evolution some simpler models should be
considered. It is expected that as long as a black hole mass, M, is greater
than the Planck mass, Mp;, the semiclassical approach may be safely used
and the influence of the quantized fields on the spacetime geometry could be
effectively studied. Unfortunately, even this simplified program is hard to
execute as the semiclassical approach requires knowledge of the stress-energy
tensor of the quantized fields, both massive and massless, for a wide class
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of nonstatic backgrounds, and, moreover, the resulting equations comprise
rather complicated system of partial nonlinear differential equations.

For a static black hole and the stress-energy tensor of the quantized
fields in the Hartle-Hawking state one has considerable simplifications and
the problem becomes tractable. Moreover, as the quantum part of the to-
tal stress-energy tensor is expected to be of order O (f), the back reaction
equations could be solved perturbatively with the small parameter taken to
be € = (Mp)/M)?. Since the stress-energy tensor is O (€) one expects that
the location of the true event horizon of the semicalssical black hole is close
to its classical counterpart and so is the horizon defined mass.

It is evident that the success of the method critically depends on the
knowledge of the stress-energy tensor itself. And although there exists vast
literature devoted solely to constructions of the renormalized stress-energy
tensor of quantized fields propagating in the black holes geometries, it is fair
to say that at present we are unable to go beyond the linearized version of
the semiclassical equations.

For a massless field in the spacetime of the Schwarzschild black hole this
program, initiated by York [1], has been carried out in numerous papers
investigating various aspects of the back reaction [2-7|. As the stress-energy
tensor of the massless field approaches at large distances the form

7'{'2

T = p(h
:0()90

0 T'diag[-3, 1, 1, 1], (1.1)
where T is a black hole temperature and p (h) is the number of helicity
states, it is necessary to impose some sort of boundaries.

Typically, in the back reaction calculations one constructs the stress-
energy tensor in the classical (unperturbed) spacetime of the black hole
characterized by a (bare) mass and seeks for a corrected geometry. The
integration constant resulting from integration of the (¢¢) component of the
semiclassical Einstein field equations could be absorbed in the definition of
the effective mass M in a process of the finite renormalization. Such a redefi-
nition leads to O (62) effects in the stress-energy tensor, which are, of course,
unimportant in the linearized semiclassical Einstein field equations. This is
why it suffices in this approach to construct TGIL’ in the classical background.

Recent calculations carried out in the background of the Reissner—Nord-
strom black hole strongly suggest, however, that this approach, i.e. back
reaction of the quantized fields evaluated in the background of the classical
black hole should be abandoned in favor of a self-consistent analysis [8].
Indeed, having at one’s disposal the functional dependence of (T,f) on the
metric tensor, one may attempt to solve the system of the semiclassical field
equations for a semiclassical line element. This, of course, would allow a



Quantized Massive Fields and ... Black Holes 3959

more profound analyses of the resulting black hole solutions especially in
the extremality limit.

It seems that obvious candidates for such an approach are massive fields
that — as is well known — possess some attractive features that make con-
struction of the field fluctuation and stress-energy tensor possible. Indeed,
when the Compton length associated with the massive field is much smaller
that a characteristic radius of curvature — a case usually referred to as a
large mass limit, the particle creation phenomena could be neglected and
the effective action, W, may be expanded in inverse powers of m?. The ex-
pansion involves the well-known Hadamard-DeWitt coefficients which are
local quantities and are constructed solely from the Riemann tensor, its
covariant derivatives to required order and appropriate contractions. This
feature opens a possibility to analyze the influence of the quantized fields
upon geometry in a self-consistent manner.

This method has been successfully employed in the classical geometries
of the Schwarzschild and Reissner—Nordstrom black holes as well as in the
spacetime of the nonlinear black hole [8-14].

Recently the back reaction of the quantized massive scalar field with an
arbitrary curvature coupling [15] and conformally invariant massless scalar
field [16] on the Reissner—Nordstrom back hole of a (bare) mass My and an
electric charge e has been examined. The stress-energy tensor calculated in
a classical spacetime of RN black hole has been employed as a source term
of the Einstein equations. In this approach one starts with the classical
Reissner—Nordstron solution and subsequently introduces quantum correc-
tions.

Here we intend to extend the calculations to the massive spinor and
vector fields and investigate the problem from a different perspective. The
main objective of this paper is to solve the semiclassical field equations with
the total stress-energy tensor describing the classical (electromagnetic) field
and the quantized neutral massive field self-consistently and to examine the
thus obtained black hole solution with special emphasis put on the extremal
configurations. Specifically, we shall expand the discussion of the extremal
electrically charged black hole given in Ref. [8].

In what follows we shall confine ourselves to the operators

(—O4¢R+m?)$" = 0, (1.2)
(Y"Vu+m)gl/?) =0,
(60— V,V* — R* — §tm?)p() = 0, (1.4)

acting on the scalar, spinor, and vector fields, respectively. Here £ is the
curvature coupling constant, and «* are the Dirac matrices obeying standard
relations.
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2. The renormalized stress-energy tensor

The first nonvanishing term of the renormalized effective action of the
quantized massive field in a large mass limit constructed from the (traced)

coincidence limit of the Hadamard-Minakshisundaram-DeWitt (HaMiDeW)
coefficient a3 (z, ') is simply [9-11,17]:

o]
1
Wr(elg = 35772 /91/2d4x —trg?)glﬂ)] o (2.1)
triay’] — [a3|§:0] .

The coefficients ag, a1 and as contribute to the divergent part of the action
and have to be absorbed into the (quadratic) gravitational action

S = / A gt? (A + R+ aR?+ 53,1,,1%“”) (2.2)

by renormalization of the bare coupling constants. The term containing the
Kretschmann scalar, Rg.qR%°?, has been eliminated through the use of the
Gauss—Bonnett invariant in four dimensions.

Upon inserting the exact form of [a3] and performing elementary simpli-
fications one obtains the approximate Wpg of the quantized scalar, spinor,
and vector field:

1 4, 1/2 () (5) (5) p3
Wr = m/d 29"/ (o{) ROR + of By DR + of R
—a{ RRyg R + o) RRygap RP — o) R? R4 RS

+a(75)quRabRapblI + agS) quRpcaqucab

+ OKE()S)RabququdRcdab _ Oég%) RapbquchRcadb>
1 = (o)
= 19272m? > oW, (2.3)
=1

where the spin-dependent numerical coefficients ozl(-s) are tabulated in Table I.
Once the approximate effective action is known, the stress-energy tensor
could be obtained by functional differentiation of Wx with respect to the

metric tensor:
2 9

g'/2 6gap

It should be noted, however, that the thus constructed (T?) is rather com-
plicated as it consists of over 100 local geometric terms constructed from

(1) = (2.4)
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TABLE 1
The coefficients ags) for the massive scalar, spinor, and vector fields. Note that in
order to obtain the result for the massive neutral spinor field one has to multiply
the effective action by the factor 1/2.

s=0 s=1/2 s=1
(8) | 1¢2 1 1 3 27
ar | 38 —58t5  “Tim w0
(s) 1 1 9
Q3 140 14 28
(s) 1 3 1 5
oy (-9 T
(s) 1 (1 1 31
oy —30 (5 —¢) — % 60
(s) 1 (1 1
Qg 30 (E - f) 720 10
al®) _ 8 25 _52
6 945 378 63
al®) 2 AT 19
7 315 630 105
al® 1 19 61
8 1260 630 140
al®) 29 67
9 7560 3780 2520
(s) 1 1 1
Q19 270 54 18

the curvature tensor, its covariant derivatives and appropriate contractions.
This result, for obvious reasons, will not be presented here, and for its exact
form as well as the technical details the reader is referred to [12,13|. Fortu-
nately, despite its complexity there is a wide class of geometries of physical
interest in which the result could be successfully applied.

Inspection of Eq. (2.3) reveals some general features of the thus obtained
stress-energy tensor. First, it should be noted that (T?) naturally divides
into 10 purely geometric terms constructed from W;

)
5gab
that are identical for scalar, spinor and vector fields. The spin of the field is

(s)
R 2
T(ab ig covariantly conserved and is regular for regular geometries.

T(ab W; (2.5)

encoded in the numerical coefficients «; . Moreover, one expects that each

3. Semiclassical Einstein field equations

In this section we shall apply the general formalism to a particular physi-
cal situation of the semiclassical electrically charged and spherically symmet-
ric static black hole. We shall assume that the source term of the Einstein
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field equations consists of both the classical and the quantum part, i.e. T
is the sum of the stress-energy tensor of the (classical) electromagnetic field,
T,gem)b, and the stress-energy tensor of the massive quantized scalar, spinor
or vector field, (T?).

Without loss of generality the static and spherically symmetric line el-
ement may be written in the form that is useful in the calculations of this
type:

ds? = =) f (r) dt? + dr” + r2d? (3.1)
f(r) ’
where
Flr)y=1- QMT(’”) . (3.2)

We intend to solve the semiclassical (quadratic) Einstein-Maxwell equations

RYlg] ~ 5 RIS, +alble] + BHLlg)+ sk = 8m (TC™ [g] + (T2 [g))) . (33)

where
1 4
Iab - - - d4 1/2R2
g'/? 5gab/ v
= 2R —2RR" + 1¢** (R* - 40R) , (3.4)
and
1 4
ab _ -~ Y 4, 1/2 ab
" g'72 dgap /d zg " Hak

— R;ab _ DRab _ 2RCdRdea + %gab (RCdRCd _ DR) . (35)

The electromagnetic part of the total stress-energy tensor for the line element
(3.1) is simply

2
Tt(em)t _ Tr(em)r _ _Ta(em)a _ _T(;emﬁﬁ _ _;ﬁ’ (3.6)

that is independent of the functions M (r) and 4 (r). The integration con-
stant C is interpreted as an electric charge e. On the other hand, the
exact form of the quantum part is generally unknown and, therefore, one
is forced to refer to some approximations. In this paper we shall employ
the Schwinger-DeWitt method, which can be used as long as the Compton
length A, = m™"! of the massive field is much less than the characteristic
scale of a curvature . The parameters «, 8, and A should be determined
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experimentally and their present values are unknown. It is expected, how-
ever, that they are small, otherwise they would lead to various observational
effects. In the latter we shall assume that renormalized a, 8 and A vanish.
Employing the stress-energy tensor of the quantized field that function-
ally depends on the metric tensor we can slightly modify the back reaction
program. Indeed, instead of starting from the classical geometry and sub-
sequently constructing the quantum corrections to the metric we can try
to solve the semiclassical equations self-consistently. This approach should
lead to a physical interpretation of the integration constants.
Because of the Bianchi identities, the semiclassical field equations for the
line element (3.1)
Ry — %Rgab =81y, (37)

where the total stress-energy tensor is the sum of

T = T™b 4 e(T?) (3.8)
reduce to the system
2 dM (r)
b _ ¢
Gt = _T_2 d?" = 87TTt (39)
. M (r)\ dy(r)
2 2 T r
r_ oyt 2 _ — T
G, =G} + " <1 " ) o 8T, . (3.10)

Here we have introduced the auxiliary parameter € (not to be confused with
the parameter €) that is to be set to 1 at the final stage of calculations.

4. Semiclassical geometry

Let us observe that because of the special form of the stress-energy tensor
of the electromagnetic field the difference between time and radial compo-
nents is zero, and, consequently,

T} —T! ~ O(e). (4.1)
Now the equation (3.9) could be solved iteratively with the initial condition

MmJ:%. (4.2)

Indeed, assuming the following expansions

M(r) = M(O) + (:‘M(l) + 0(62) (4.3)
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and
P(r) =y + ey + O(e?), (4.4)
and collecting the terms with the like powers of € one obtains
2
To_ (4.5)
and
_Tiadjz(l) = 4m (T} (Mg, (o)) = am(Ty . (4.6)

Here the stress-energy tensor (Tt(o)t) is constructed for M (r) = Mg)(r) and
Y(r) = 10y = 0. It should be noted that in this approach we do not ascribe
any particular physical meaning to the function M.

Now, solving the Eq. (4.5) with the condition (4.2) and subsequently
solving the Eq. (4.6) one has

r

62 2

L i [arera® o), @

T+

and, consequently, the function f (r) assumes the following form

) =1-"24 5 - 7 a2, (4.8)

T4

Moreover, from the foregoing analyses it is evident that r, may be inter-
preted as the location of the exact event horizon.
The function M(r) could be written in an alternative form

M(r)z%%—rﬁ(r)zm(r)—;. (4.9)

It should be noted that
m(ry) =0, (4.10)

which means that at the event horizon there is no room for quantum effects,

and
T

2
m(r) = % + ;ﬂ—+ - 47T5/d7"l(7"l)2<Tt(0)t>- (4.11)

T4
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Let us return to the second equation of the system (Eq. 3.10), that, after
employing the particular form of the electromagnetic stress-energy tensor
and simple rearrangements could be written as follows

) ( r t
' ((T7) = (T}))
P (r) = e = 471'5/ h _T e dr’, (4.12)

7"

o0

where the components of the renormalized stress-energy tensor functionally
depend on the metric potential of the general spherically symmetric line
element (3.1).

Now we are in a position to determine the semiclassical line element.
Indeed, inserting the metric tensor (3.1) into the general expressions that
describe the renormalized stress-energy tensor of the massive field in a large
mass limit, and, subsequently, employing expansions (4.3) and (4.4) in the
thus obtained formulae, collecting the terms with the like powers of ¢, and,
finally, retaining only the terms that are linear in the auxiliary parameter,
after some algebra and massive simplifications, one obtains

2 2
foy=1= s S S (A0 B m) )
where
A0y = W33t 5 ry? 13 e 17 gy 113 ]
1960 8 112 6 280 6 30240 77 30240 rr3
2327 €% 613 e'ry 613 €S 1237 €°
11340 10 1680 r° 1680 r9, 30240 r7r,3
N 877 e 1069 ! N 4169 5 2549 e’ry
70560 rr,.5 70560 rr 7 = 635040 rr % 10080 r7
+i et 2549 & N 1369 e*r? N 1369 €8
112 r. 276 10080 ror7 7056 18 7056 r8r 2’
(4.14)
AUy = 37’ e, 3 e 149 vyt 1723y
280 6 140 r6 © 280 r,2r6 15120 77 5040 7
1723 ¢* 149 €8 2729 e*r 2 1073 €

5040 ro 7 15120 r7ry 3 17640 8 1764 r®
2729 €6 2687 e*r, 2687 €° 1639 €6
17640 rér 2 * 10080 79 T 10080 rry 15120 710
+67 e 13 1 767 e4+451 ef
11760 rr > 15120 rry 3 70560 rr.7 70560 rr, 9’
(4.15)
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A0 (r) = 47849 ery . 47849 ¢* B @f B ETLQ B ﬁi
10080 7 ' 10080 rr7 280 r6 560 r6 560 r,. 26
611 r.3 611 € 10393 e%r 2 35449 et
10080 r7 ' 10080 r7r 3 3920 r® 3528 r®
10393 €6 26879 e'r, 26879 €8 31057 €8
773920 51,2 T 5040 79 5040 rOr, 11340 710
493 €2 11 2393 et 2389 b
14112 71y 5 T 2016 rrys * 70560 rry? 635040 719

(4.16)

By o L 1n? 2 98 11 w8 e
60 r7 5 6 576 90710 60 rr 3 9 8 0 60 ror7
89 e’r et 31 € 31 e?r 2 11 €8
60 17 18rr 7 307832 30 78 60 r7ry3
113 €° e? eb 113 e*ry et
60 ror.  20rr.® 45,9 ' 60 9 Br 26’
(4.17)
and
BY? (ry = BW (1) = 0. (4.18)

Inspection of Eq. (3.10) indicates that knowledge of the function f(r)
is sufficient to construct the function ) (r) to the required order. However,
before attempting to solve this equation let us observe that the difference
between the (rr) and (¢t) components of the stress-energy tensor factorizes

as
2

@) @™ = (1= S-S Fe, @

roorry 12

where F(r) is a regular function, and, consequently, the integral is expected
to be finite. Indeed, retaining the O(¢e) terms in (4.12) one has

T
P(r) =epu) = 47T€/

= 47r5/F(r')7“'d7". (4.20)
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After rather lengthy calculations one obtains remarkably simple results:

b0 — € < 29 r.2 3¢ 29 ¢t

60 76 15 7 + 30 6
8 e 13 ¢! . 7 €t
157, 7720 78 60 7,276

(4.21)

g = £ (L1 1B e 37 e
Tm? 1680 r 276 245 r 7T 1120 78
7 e 13 é*ry 11 7“+2>

2 x 4.22
12075 T 245 77 1680 19 (4.22)

and

p0 = _E <131 et 2446 €' 2141 ¢*

mm? \ 3360 r,2r6 2205 ro o7 * 1680 78
+173 e? 2446 e’r, 131 r.?
240 r6 2205 77 3360 76

The form of the line element (3.1) with (4.13)—(4.18) and (4.21)—(4.23)

for scalar, spinor and vector fields are the principal results of this paper.

The scalar case has been discussed within the framework of the perturbative
approach in Ref. [15].

(4.23)

5. Properties of the semiclassical black hole solutions

5.1. Hawking temperature

The Euclidean form of the line element (3.1) obtained from the Wick
rotation (¢ — —it) has no conical singularity as r — r, provided the ‘time’
coordinate is periodic with a period 3 given by

. d \!
B =4r lim (gttgrr)l/2 <$Qtt) . (5.1)

T—T4

The surface gravity, &, is then related to 8 by means of the standard formula

2
p=", (52
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whereas the Hawking temperature of the black hole, Ty, is simply given by

K

Ty = —. 5.3

h=5 (5.3)

Restricting the general formula (5.1) to the line element (3.1) one easily

obtains

1 df

_ L tr) Y 54

F 2 ¢ dr |r=r4 ’ ( )

or, equivalently, making use of the Einstein equations

4mer

o |14 () + T 55)
where )
1 e

=—(1-=]. 5.6

=g vﬁ) (56)

The Hawking temperature expressed in terms of the integration constants
for neutral massive scalar, spinor and vector field is

1 1e? 1le* 1 ¢°
70 _ 1 £ - 4
f ° +4wm2ri “\o0 " 12 2 90 i 15 s

a3 4635_ 33§+1229£
10080 = 2352072 112074 © 9056076 |’

(5.7)
1 277 €2 113 ¢* 55 €8
o (o e e
4rm?2rl \1008 35280 r2 ~ 10080 7% 4704 7S
(5.8)
and
€ 19 3281 €2 25 et 1801 €°
Ty =T + 25< ~ 705602 T 22401 _6>’
4m, Ty 3360 70560 r 2247’Jr 70560 Ty
(5.9)
where ,
1
Ty = <1 - 6—2) . (5.10)
dmry Ty
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5.2. Extremal black hole

In order to discuss the semiclassical extremal black holes let us return
to the equation (5.4). First, we shall explore the consequences of vanishing
of the surface gravity (temperature). Since the surface gravity is defined at
the event horizon we have a system of two equations, the first of which is
satisfied automatically as f(r;) = 0, whereas the second one

1 e? (0)t
E — 7"_3 + 87TE'I'+<Tt >‘r:7n+ =0 (511)
+

is to be used to relate the integration constants r; and e. Assuming that
the location of event horizon could be expanded as

r. =ro+er + O(?), (5.12)

where, as before, we do not ascribe any particular physical meaning to rg
and rq, one has

ro = le] (5.13)
and A
Arg
=7 5.14
" 3e2 —r}’ (5.14)
where
A = 8arg(T ") | (5.15)

The location of the event horizon expressed in terms of the electric charge
is given by

(s)
Ep
= - — 5.16
r4 = el 720mm?2|e|?’ (5.16)
where 6 .
8- )
p® =4 1 (5.17)
114
7

for scalar, vector and spinor fields, respectively. Note that the above result

could be easily obtained setting Tl(f) = 01in (5.7)-(5.9), making use of the
expansion (5.12) and retaining O(e) terms.

The problem of the existence of the quantum corrected extremal black
holes has recently been a subject of some controversy. On the basis of the
perturbative approach carried out in Ref. [18] it was stated that macroscopic
zero temperature black holes do not exist, whereas Lowe [19] discussing the
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similar model has explicitly demonstrated that such configurations could
exist. This issue has been further investigated from a more general point
of view with the aid of the stress-energy tensor in the large mass limit
in [8]. The principal objection to Lowe’s demonstration raised in [20] consists
in the observation that the corrected event horizon always lies inside the
event horizon of the unperturbed (classical) Reissner-Nordstrom solution.
However, in order to determine the quantum corrections to the geometry
one has to know the stress-energy tensor inside the event horizon (that
in the extremal case also becomes the Cauchy horizon). As there is no
possible justification for extending validity of the formulas describing the
stress-energy constructed in the exterior region to radii |e|] < r4, this, in
turn, strongly suggests that the perturbative approach should be abandoned
in favor of the self-consistent treatment [8].

In our discussion we employed the approximate stress-energy tensor con-
structed for a general line element (3.1) rather than the classical Reissner—
Nordstrom solution, and, therefore the objections of Ref. [20] do not apply.
One concludes, therefore, that the semiclassical zero temperature black holes
do exist, or, to be more exact, that the semiclassical Einstein field equations
with the source term given by the stress-energy tensor of the massive fields
in the large mass limit allow solutions with vanishing surface gravity (tem-
perature), for which the standard relation holds, although the degenerate
event horizon is now located in the classically forbidden region.

5.3. The black hole mass

Till now we have expressed the result in terms of the integration con-
stants e and r, which are interpreted as the electric charge and the location
of the ‘exact’ event horizon, respectively. It is possible, however, to express
the result in a more familiar form introducing the horizon defined mass M.
Indeed, denoting m (ry) = M one has

2
e, @
M=ty (5.18)
and .
m(r) = M+ M (r) = M — dne / a2, (5.19)
T4

Now, the natural question arises: what is the relation between the hori-
zon defined mass and the electric charge for the extremal configuration. The
answer could be easily obtained by inserting (5.16) in the equation (5.18).
After simple calculation one has

M = |e| + O(¢?), (5.20)
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that explicitly demonstrates that for the extremal black holes to order € the
classical relation holds. Thus the ratio of the modulus of the electric charge
to the horizon defined mass is 1 but the event horizon is now located at

e

- M-
T+ 720mm2 M3’

(5.21)

where u(%) is given by (5.17). Note that for the classical Reissner—Nordstrom
black hole with mass M the analogous relation reads

ry=M=|e|. (5.22)

It should be emphasized that M is not the mass that is measured by a
distant observer. Indeed, the latter mass is defined as

My = lim M (r)
r—00

= M+ AM, (5.23)

and AM for massive scalar, spinor and vector fields is given by

) 1 4169M3  461M?  6607M 3007
AMY = - 5 T 5 T T 3
mm? | 158760r%  6615r7  105840r% 10584073
AM3  11M? 41M 13
é- 6 - 5 + 4 - 3 ):| bl (524)
4577 4577 180ry  180r7
1 451 M3 53M?  3289M 2521
AMI/?) = - - 5.25
mm? \ 17640r§ +882ri 7056074 +211680ri (5:25)
and
1 2389M3  598M?%  12071M 6197
AMD — SIMTSBME - -] (5.26)
mm? \ 158760r%  6615r7 ~ 105840r%  158760r3
For the extremal configuration these formulas become
107
AMO — - 77 5.27
317520mm2 M3’ (5:27)
19
AM©/2 = Y 2
317520mm?2 M3 (5.28)
and 17
AMW® = (5.29)

317520mm2 M3
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The semiclassical Einstein field equations could be solved with a different
set of boundary conditions. Indeed, taking

My = lim M(r), (5.30)

T—00

where M, is interpreted as the total mass determined by a distant observer

one has .
2M, 2 8
b= R ORCr (5.31)
(o)

fr) =1

The location of the event horizon, rgpm, as seen by a distant observer, could
be obtained from f(rgp) = 0 and it could be easily shown that to O(¢)

T4 = TEH - (5.32)

5.4. The near-horizon geometry

Finally, we shall investigate the near-horizon geometry of the extremal
semiclassical black hole. In the vicinity of r the line element may be written
as

2 2 2 742 2 2 2
ds® = —e T/J(T+)P('I" - 7’+) dt” + md'f' + 7'+d.Q s (533)
where )
1d2f
=-—3 . 5.34
2 d?"Q |r=r4 ( )

To determine P we shall revert the relation (5.21) to obtain

e

M = _
T+t 7207rm2r1

(5.35)

and express the result solely in terms of the exact location of the event
horizon. Differentiating the function f twice with respect to the radial co-
ordinate, taking the limit » = r;, and making use of (5.35) one arrives at a
simple result

P=— +0(?). (5.36)

Introducing a new coordinate

— T+
r=rg <1 + e¢(r+)y> (5.37)
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one obtains

2
ds? = = (=i + dy® +12d2?) . (5.38)
Y
One concludes, therefore, that expanding the near-horizon geometry of the
extremal semiclassical black hole into the whole manifold results in the
Bertotti-Robinson spacetime [21,22]|. This situation resembles the classi-
cal Reissner—Nordstrom solution.

5.5. Null geodesics

A further insight into the nature of the semiclassical geometry may be
gained from the analysis of test particles. Here we shall limit ourselves to
the null geodesics in the extremal configuration satisfying

L2
E? =22 T—2e2¢<7“> Fr), (5.39)
where the overdot denotes differentiation with respect to the affine param-
eter, and F and L are the constants of motion interpreted as the particle’s
total energy and orbital angular momentum, respectively. Restricting one-
self to the circular orbits, 7.e. 7 = 0 one concludes that the second term in

the right hand side of (5.39) plays the role of the effective potential:

V(r) = L—Qewm f(r). (5.40)

It could be easily shown that to O(e) the equation

d

—V =0 5.41

o (5.41)
has a minimum at r = ry. Again this behavior resembles the classical

Reissner—Nordstrom spacetime, where the minimum occurs at the degen-
erate event horizon. The second solution, 7., gives the location of the maxi-
mum of the effective potential (and the radius of an unstable circular orbit)
that could be found substituting expansion

re =11 +er (5.42)

into (5.41) and collecting the terms with the like powers of €. Solving the
thus obtained system of equations one has

a(s)

(s) — 9 v
ry/ =2rp + ,
¢ + 720mm2rd

(5.43)
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where
28211 243 1
18816 W(f B 6)

MOJE - (5.44)

for scalar, vector and spinor fields, respectively.

Results propounded in this section strongly indicate that in spite of evi-
dent differences between the classical Reissner—Nordstrom and the quantum-
corrected spherically-symmetric and electrically charged black hole solutions
there are interesting qualitative similarities, especially in the extremality
limit.

6. Concluding remarks

In this paper we have constructed solutions to the semiclassical Ein-
stein field equations describing the spherically-symmetric and electrically
charged static black holes with a source term consisting of both classical
and quantum parts. The classical contribution to the total stress-energy
tensor describes the electromagnetic field whereas the quantum part is con-
structed for the massive scalar (with arbitrary curvature coupling), spinor
and vector field. Obtained solutions are parametrized by two integration
constants: the electric charge and the exact (to O(e)) location of the event
horizon. Although the scalar case have been considered earlier in Ref. [15], it
should be noted that there are important differences between the approach
adopted in the present paper and that of Taylor, Hiscock and Anderson.
Indeed, instead of looking for quantum corrections of the classical geome-
try caused by the stress-energy tensor evaluated in the background of the
Reissner—Nordstrom geometry, and subsequently defining renormalized mass
and corrected location of the event horizon, we employ (T) constructed for
a general spherically-symmetric spacetime. Such a choice allows to solve the
semiclassical Einstein field equations in a self-consistent way, and makes a
more profound treatment of the problem possible. The general forms of the
thus obtained line elements have been utilized in the calculations of various
characteristics of the semiclassical black holes, such as the temperature and
its total mass as seen by a distant observer.

The zero temperature limit of our general solutions leads to the extremal
configurations, discussion of which expands and systematizes that of Ref. [8].
Specifically, it is shown that the near-horizon geometry when expanded into
a whole manifold is described by the Bertotti-Robinson line element. More-
over, to gain a better understanding of the nature of the semiclassical ex-
tremal black holes we study the null geodesics in this geometry.
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Finally, we remark that it is possible to expand analyses presented in
this paper to the regular solutions of coupled equations of a nonlinear elec-
trodynamics and gravitation. These issues are under active investigations
and will be presented elsewhere.
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