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LAGRANGIAN THEORY OF HAMILTONIANREDUCTION�C. Gonera and P. Kosi«skiDepartment of Theoretial Physis II, University of �ódzPomorska 149/153, 90-236 �ódz, Poland(Reeived April 29, 2003)Lagrangian formalism orresponding to Hamiltonian redution proe-dure is presented. Two versions are onsidered whih lead to unbroken orexpliitly broken gauge symmetries, respetively.PACS numbers: 03.20.+i 1. IntrodutionOne of the most powerful methods of onstruting integrable models inlassial as well as quantum theory is the so alled method of Hamiltonianredution [1�3℄. It allows to onstrut, with the help of symmetry arguments,quite ompliated dynamial systems out of a relatively simple ones. Themost prominent examples of suh systems are Toda [4℄ and Calogero�Moser�Sutherland ones [5℄. The main advantages of the redution method are: theexpliit form of �hidden� symmetry responsible for omplete integrability,�algebraization� of the proedure of integration of Hamiltonian equationsand the existene of quantum ounterpart of the method.The redution method an be desribed as follows. One starts with somesympleti manifold (M;!) whih is a andidate for �large� phase spae.A Lie group G ats on (M;!) in a sympleti way and it is assumed thatthis ation is strongly Hamiltonian. Let g be the Lie algebra of G andlet FX(p) be the Hamiltonian orresponding to the element X 2 g: Themapping � : M ! g� de�ned by h�(p);Xi � FX(p) is alled momentummap. Let us selet any G-invariant Hamiltonian H on M . It is easy tosee that �(p) is a onstant of motion for the dynamis generated by H. Let� 2 g� be a �xed vetor; under some rather general assumptionsP� = fp 2M j �(p) = �g� Supported by the Polish State Committee for Sienti� Researh (KBN) grant no. 5P03B 06 021. (3977)



3978 C. Gonera, P. Kosi«skiis a submanifold of M and is obviously invariant under the �ow generatedby H: The trouble here is that, typially, P� is not sympleti, ! jP� beingdegenerate. However, this degeneray an be easily desribed. Let G� � Gbe the stability subgroup of � with respet to o-adjoint ation. It appearsthat the null vetors of ! jP� are exatly the vetors tangent to the orbits ofG� in P�: Therefore, if Q� = P�=G� is a submanifold (whih, again, holdstrue under quite general assumptions), (Q�; ! jQ�) is a sympleti manifold.The key point of the method is that the trajetories on P� when redued toQ� remain Hamiltonian with respet to its sympleti struture, the relevantHamiltonian being simply H jQ� . The judiious hoie of � allows often toobtain integrable redued theory.The funtions onQ� an be viewed asG�-invariant funtions on P�. Thissuggests that G� an be treated as a gauge group inherent in the problem.Suh an approah is expliitly desribed for CMS models in Refs. [6,7℄. Theydi�er slightly in philosophy: in Ref. [6℄ speial trik allows to put G� = Gwhile in Ref. [7℄ the gauge symmetry group G is expliitly broken to G�:In most important examples M is a otangent bundle, M = T �N;!is a anonial form on M and the ation of G on M is obtained by liftingits ation on on�guration spae N: In the present paper we desribe, gen-eralizing the results of Refs. [6, 7℄, the Lagrangian theory of Hamiltonianredution for suh a ase.2. Lagrangian formalismLet us start with a theory desribed by generalized oordinates qi; i =1; :::; n and the Lagrangian L = L(q; _q) : (1)We assume that L is invariant under the ation of m-dimensional Lie groupG whih ats, in general nonlinearly, aording toqi ! q0i = f i(q; ") ; f i(q; 0) = qi (2)or, in in�nitesimal formq0i = qi + f i�(q)"�; f i�(q) � �f i(q; ")�"� j"=0 ; � = 1; :::;m: (3)The omposition rule for the transformations (2), (3) readsf i(f(q; "); �) = f i(q;'(�; ")) ; (4)where '(�; ") de�nes the omposition rule for group elements.



Lagrangian Theory of Hamiltonian Redution 3979The veloities transform under (2), (3) as follows_q0i = �f i(q; ")�qk _qk ; (5)or in�nitesimally _q0i = _qi + �f i�(q)�qk _qk"� : (6)The ondition for L to remain invariant under (2), (3) and (5), (6) reads�L�qi f i�(q) + �L� _qi �f i�(q)�qk _qk = 0 ; � = 1; :::;m : (7)The onjugated momenta are given bypi � �L� _qi : (8)The Poisson braket and Hamiltonian are de�ned in standard way.The ation of G an be readily extended to phase spae. The relevanttransformation rule for momenta readspi = �fk(q)�qi p0k : (9)It is also straightforward to �nd the Hamiltonians generating the ation ofGF�(q; p) = pif i�(q) : (10)Then _F�(q; p) = 0 ; (11)as a onsequene of Eq. (7). AlsofF�(q; p); F�(q; p)g = ��F(q; p) ; (12)whih is a onsequene of Maurer equations (�� are the struture onstantsof G).If fX�g denote the basis in g�; the mapping(q; p) ! F�(q; p)X� ; (13)is the momentum map.



3980 C. Gonera, P. Kosi«skiLet us now gauge theG symmetry. We assume that the group parametersare arbitrary di�erentiable funtions of time, "� = "�(T ): The transforma-tion rule for _q0s is modi�ed to_q0i = �f i(q; ")�qk _qk + �f i(q; ")�"� _"� : (14)We proeed in a standard way and introdue the gauge variables A�. In orderto �nd their transformation properties we di�erentiate both sides of (4) withrespet to " or � and set " = 0 or � = 0, respetively. We get�f i(q; ")�qk fk�(q) = �f i(q; ")�"� ���(") ;��� � �'�("; �)��� j�=0 ; (15)f i�(q0) = �f i(q; ")�"� ~���" ;~���(") � �'�(�; ")��� j�=0 ; (16)and q0i = f i(q; "): Combining both equations we derivef i�(q0) = ~���(")��(")fk (q)�f i(q; ")�qk (17)with ��(")���(") = Æ�.Therefore, if A� transforms asA� = �� (")~��(")A0� + ���(") _"� ; (18)the ovariant derivative Dtqi � _qi + f i�(q)A� (19)transforms then aording to Eq. (5)(Dtqi)0 = �f i(q; ")�qk (Dtqk) : (20)Now, we an onstrut the Lagrangian invariant under time-dependentG-transformations L = L(q;Dtq) : (21)However, we are not yet ready to write out the Lagrangian theory equivalentto the formalism of Hamiltonian redution. To this end we an proeed ineither of two ways presented in Se. 3 and 4, respetively.



Lagrangian Theory of Hamiltonian Redution 39813. Unbroken gauge symmetryTypially, the momentum map ondition breaks G-invariane. It is how-ever, advantageous to keep G-invariane exat, G� = G. This an beahieved by viewing the value of momentum map as dynamial variable.It is easy to see from Eqs. (10), (17) that F� transforms aording toadjoint representation of GF�(q0; p0) = ~��(")�� (")F�(q; p) : (22)Let fT�g be any matrix representation of g and let the omposition rulerefers to exponential parametrizationei"�T�ei��T� = ei'�(";�)T� : (23)It is straightforward to hek that the transformation rule (18) is equivalentto A0 = UAU�1 � i�tUU�1 ; (24)where U � ei"�T� ; A � A�T� : (25)Let us introdue new dynamial variables vi; �vi transforming aording tov ! v0 = Uv ; �v ! �v0 = �vU�1 : (26)We supply (21) with the additional term yielding trivial dynamis for v0s~L = L(q;Dtq) + �v(i�t +A�T�)v : (27)Lagrangian (27) is invariant under the gauge transformations (24) supple-mented by qi ! q0i = f i(q; "(t)) ;va ! v0a = Uab (t)vb ;�va ! �v0a = (U�1)ba(t)�vb : (28)The representationU remains up to now unspei�ed. In our 1+0-dimensionalgauge theory A�'s are not dynamial � they an be eliminated by gaugetransformations altogether.



3982 C. Gonera, P. Kosi«skiThe system de�ned in Eq. (27) is obviously onstrained. Let us performa standard Dira analysis. We havepi � � ~L� _qi = � ~L�(Dtqi) ;�� � � ~L� _A� = 0 ;!a � � ~L� _va = i�va ;�!a � � ~L� _�va = 0 : (29)Therefore, the primary onstraints read�� � 0 ;�!a � 0 ;!a � i�va � 0 : (30)Let us impose standard Poisson braketsfqi; pjg = Æij ; fA�;��g = Æ�� ; fva; !bg = Æab ; f�va; �!bg = Æba (31)and onstrut the HamiltonianH = pi _qi � L(q;Dtq) + !a _va � �v(i�t +A�T�)v + u���+ �ua(!a � i�va) + ua�!a ;or H = pi _qi � L(q;Dtq)� �vA�T�v + u��� + �ua(!a � i�va)+ua�!a ; (32)where ua and �u� are the appropriate Lagrange multipliers.Let us look for seondary onstraints. Equationf��;Hg = 0 (33)gives seondary onstraintF�(q; p) + �vT�v = 0 : (34)On the other hand f�!a;Hg = 0 ;f!a � i�va;Hg = 0 ; (35)



Lagrangian Theory of Hamiltonian Redution 3983give onstraints on Lagrange multipliers ua, �ua�u = i(A�T�)v ; (36)u = �i�v(A�T�) :Therefore,H = pi _qi � L(q;Dtq) + u��� + i!(A�T�)v � i�v(A�T�)�! : (37)Moreover, fF� + �vT�v;Hg = ���A�(F + �vTv) ; (38)so there are no new onstraints.In order to �nd the lassi�ation into �rst- and seond-lass onstraintswe pass to the equivalent system of onstraints. They read�� � 0 ; (39)!a � i�va � 0 ; (40)�!a � 0 ; (41)F�(q; p)� i!T�v + i�vT��! � 0 : (42)It is easy to hek that (40) and (41) are seond-lass onstraints while (39)and (42) �rst-lass ones. We de�ne standard Dira brakets. They readfva; �vbgD = �iÆab ;fqi; pjgD = Æij ; (43)other variables are eliminated by the onstraints (40), (41). Therefore weget �nally H = pi _qi � L(q;Dtq) + �u��� � �vA�T�v ;�� � 0 ; (44)F�(q; p) + �vT�v � 0 :It is also easy to see thatpi _qi � L(q;Dtq) = H0(q; p)�A�F�(q; p) ; (45)where H0(q; p) is the Hamiltonian orresponding to rigid G-symmetry.Using this we an writeH = H0(q; p)�A�(F�(q; p) + �vT�v) + �u��� : (46)



3984 C. Gonera, P. Kosi«skiBy hoosing a gauge A� = 0 one �nds dynamis determined by H0(q; p) andrestrited to the submanifold P� given byF�(q; p) = ��vT�v = onst : (47)Moreover, the observables O(q; p) should be gauge invariant; for that it issu�ient that they are invariant under rigid G symmetry. So the atualphase spae is the submanifold (47) divided by the ation of G.Up to now we have not spei�ed the representation (25). It an be anyrepresentation provided one an selet vetors v; �v suh that �vT�v attainsdesired form ditated by the (strong) ondition that the redued theory isintegrable. We shall not touh upon the question whether this is generallypossible. This is at least the ase for most interesting examples.4. Broken gauge symmetryAn alternative approah is based on expliit symmetry breaking. Let usonsider the Lagrangian L = L(q;Dtq)� %�A� ; (48)where %� is a �xed element of adjoint representation of G. Let us denote byG% � G the stability subgroup of %�; for simpliity we assume that the Liealgebra of G% is spanned by X�; � = 1; :::; r � m. Then��%� = 0 ; � = 1; :::; r ;  = 1; :::;m : (49)The primary onstraints are �� � 0 ; (50)while the Hamiltonian readsH = pi _qi � L(q;Dtq) + %�A� + u��� ; (51)or H = H0(q; p) +A�(%� � F�(q; p)) + u��� ; (52)here again U� are Lagrange multipliers related to the onstraints (51). Now0 � _�� = f��;Hg (53)implies F�(q; p)� %� � 0 : (54)



Lagrangian Theory of Hamiltonian Redution 3985Di�erentiating again with respet to time we get0 � _F�(q; p) = fF�(q; p);Hg = ���((F � %) + %)A� : (55)Therefore, we get new onstraints��%A� = 0; � = r + 1; :::;m : (56)Di�erentiating one more one arrives at the onstraints on Lagrange multi-pliers ��%u� = 0; � = r + 1; :::;m : (57)By assumption G% is the maximal stability subgroup of %�: Therefore, ��%�,�; � = r + 1; :::;m is a nonsingular matrix. Eqs. (57) and (58) imply nowA� = 0 ;u� = 0 ; � = r + 1; :::;m : (58)So, �nally, we have the following set of onstraints�� � 0 ; � = r + 1; :::;m ; primary onstraintsF�(q; p)� %� � 0 ; � = r + 1; :::;m seondary onstraintsA� � 0 ; � = r + 1; :::;m ; seondary onstraints (59)while Hamiltonian takes the formH = H0(q; p) +A�(%� � F�(q; p)) + rX�=1 u��� : (60)The lassi�ation into �rst- and seond-lass onstraints is also easy�� � 0; � = 1; :::; r ; �rst-lass onstraintsF�(q; p)� %� � 0 ; � = 1; :::; r ; �rst-lass onstraints�� � 0 ; � = r + 1; :::;m ; seond-lass onstraintsA� � 0 ; � = r + 1; :::;m ; seond-lass onstraintsF�(q; p)� %��0 ; �=r+1; :::;m ; seond-lass onstraints : (61)Dira brakets allow us to neglet altogether A�;��; � = r + 1; :::m , whilefor the remaining variables we obtainfA;BgD = fA;Bg � mX�;�=r+1(�1)��fA;F�gfF� ; Bg ; (62)
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