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1. Introduction

One of the most powerful methods of constructing integrable models in
classical as well as quantum theory is the so called method of Hamiltonian
reduction [1-3]. It allows to construct, with the help of symmetry arguments,
quite complicated dynamical systems out of a relatively simple ones. The
most prominent examples of such systems are Toda [4] and Calogero—Moser—
Sutherland ones [5]. The main advantages of the reduction method are: the
explicit form of “hidden” symmetry responsible for complete integrability,
“algebraization” of the procedure of integration of Hamiltonian equations
and the existence of quantum counterpart of the method.

The reduction method can be described as follows. One starts with some
symplectic manifold (M,w) which is a candidate for “large” phase space.
A Lie group G acts on (M,w) in a symplectic way and it is assumed that
this action is strongly Hamiltonian. Let g be the Lie algebra of G and
let Fx(p) be the Hamiltonian corresponding to the element X € g. The
mapping u : M — g¢* defined by (u(p), X) = Fx(p) is called momentum
map. Let us select any G-invariant Hamiltonian H on M. It is easy to
see that pu(p) is aconstant of motion for the dynamics generated by H. Let
«a € g* be afixed vector; under some rather general assumptions

Py={p € M| pulp) = a}
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is a submanifold of M and is obviously invariant under the flow generated
by H. The trouble here is that, typically, P, is not symplectic, w |p, being
degenerate. However, this degeneracy can be easily described. Let G, C G
be the stability subgroup of a with respect to co-adjoint action. It appears
that the null vectors of w |p, are exactly the vectors tangent to the orbits of
G in P,. Therefore, if Q, = P,/G, is a submanifold (which, again, holds
true under quite general assumptions), (Qa,w |@, ) is a symplectic manifold.
The key point of the method is that the trajectories on P, when reduced to
Q. remain Hamiltonian with respect to its symplectic structure, the relevant
Hamiltonian being simply H |g,. The judicious choice of « allows often to
obtain integrable reduced theory.

The functions on (), can be viewed as G ,-invariant functions on P,. This
suggests that G, can be treated as a gauge group inherent in the problem.
Such an approach is explicitly described for CMS models in Refs. [6,7]. They
differ slightly in philosophy: in Ref. [6] special trick allows to put G, = G
while in Ref. [7] the gauge symmetry group G is explicitly broken to G4.

In most important examples M is a cotangent bundle, M = T*N,w
is a canonical form on M and the action of G on M is obtained by lifting
its action on configuration space N. In the present paper we describe, gen-
eralizing the results of Refs. [6, 7], the Lagrangian theory of Hamiltonian
reduction for such a case.

2. Lagrangian formalism

Let us start with a theory described by generalized coordinates ¢, i =
1,...,n and the Lagrangian

L =L(g,q). (1)

We assume that L is invariant under the action of m-dimensional Lie group
G which acts, in general nonlinearly, according to

¢ =" =fge), (30 =d (2)
or, in infinitesimal form

df (q;e)

F=d+ e, =55, a=t.m ()

The composition rule for the transformations (2), (3) reads

Fi(f(ge)n) = fiaemn,e), (4)

where ¢(n,¢) defines the composition rule for group elements.
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The velocities transform under (2), (3) as follows

d f'(q;€) .4

= ——=—q", 5
or infinitesimally
gi_ g, Ofa(a) .
17 i @ k_«
¢ =q+ qer. 6

The condition for L to remain invariant under (2), (3) and (5), (6) reads

OL ; - ILIfi(a)
a—qifé(Q)—i-a—q.i gk q" =0, a=1,..m. (7)
The conjugated momenta are given by
oL
i = S 8
p aqz ( )

The Poisson bracket and Hamiltonian are defined in standard way.
The action of G can be readily extended to phase space. The relevant
transformation rule for momenta reads

ofk
p= LWy )

It is also straightforward to find the Hamiltonians generating the action of G

Fa(g,p) = pifala).- (10)
Then
Fa(g,p) =0, (11)
as a consequence of Eq. (7). Also
{Fu(q,p); F5(q,p)} = cl5Fy(q,p), (12)

which is a consequence of Maurer equations (¢ 5 are the structure constants
of G).
If {X*} denote the basis in ¢g*, the mapping

(¢,p) = Falg,p)X?, (13)

is the momentum map.
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Let us now gauge the G symmetry. We assume that the group parameters
are arbitrary differentiable functions of time, e® = £*(7T'). The transforma-
tion rule for ¢'s is modified to

gk Oe®
We proceed in a standard way and introduce the gauge variables A%*. In order

to find their transformation properties we differentiate both sides of (4) with
respect to € or n and set e = 0 or n = 0, respectively. We get

(14)

W) i) = 28D o),
u = 22, (15)
i) = 2@
e = 220D, (16

and ¢"* = f%(q;€). Combining both equations we derive
af'(g;e)

fild) = (e)Nj(e) f5(q) o (17)
with )\7( ) ( ) = da.
Therefore if A® transforms as
A% = N3 (e)fif(e) A + A§(e)e” (18)
the covariant derivative
Dyq' = 4" + fl(q)A (19)
transforms then according to Eq. (5)
. Ifi(q;e
(D) = LG (). (20)

gk

Now, we can construct the Lagrangian invariant under time-dependent
G-transformations

L = L(q, D1q) - (21)

However, we are not yet ready to write out the Lagrangian theory equivalent
to the formalism of Hamiltonian reduction. To this end we can proceed in
either of two ways presented in Sec. 3 and 4, respectively.
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3. Unbroken gauge symmetry

Typically, the momentum map condition breaks G-invariance. It is how-
ever, advantageous to keep G-invariance exact, G, = G. This can be
achieved by viewing the value of momentum map as dynamical variable.

It is easy to see from Eqs. (10), (17) that F,, transforms according to
adjoint representation of G

Fo(q',p) = il ()N (e) F(q, p) - (22)

Let {T,} be any matrix representation of g and let the composition rule
refers to exponential parametrization

y ~ X 3 X A
ole Taezn Ta — el ()T ) (23)

It is straightforward to check that the transformation rule (18) is equivalent
to

A =UAU' -, UU!, (24)
where

U=eTo, A= AT,. (25)

Let us introduce new dynamical variables v*, 7; transforming according to
v =o' =Uv, oo =oU"". (26)

We supply (21) with the additional term yielding trivial dynamics for v's

L = L(q, Dyq) + 9(i0; + AT, )v . (27)

Lagrangian (27) is invariant under the gauge transformations (24) supple-
mented by

¢ =dq" = ge),
v? = ' = UR(t)®,
To = 7, = (U)o (t)5y. (28)
The representation U remains up to now unspecified. In our 14+0-dimensional

gauge theory A%’s are not dynamical — they can be eliminated by gauge
transformations altogether.
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The system defined in Eq. (27) is obviously constrained. Let us perform
a standard Dirac analysis. We have

oL oL

¢~ d(Dyq?)’
oL
DA
oL
00
oL
00,

Therefore, the primary constraints read

MM

Di

I,

=0,

Wq, =17, ,

=0. (29)

I, =~ 0,

G}a

Qo
SIS
w
=

Wq — 17g
Let us impose standard Poisson brackets
{d'ps} = 0, {A% Mg} = 0§, {v",wp} = 0f, {T.0"} = (31)
and construct the Hamiltonian
H = pi¢" — L(q, Dsq) + wav® — 0(i0; + A°Tp)v + u®Il,
+ 0% (wg — 10q) + Ug@®
or

H = pi¢' — L(q, Dyq) — 1AYT 0 + vl 4 1% (wq — i74)
+ uew®, (32)

where u, and 4® are the appropriate Lagrange multipliers.
Let us look for secondary constraints. Equation

{Il,,H} =0 (33)
gives secondary constraint
Fo(q,p) + 9Tqv =0. (34)
On the other hand
{0, H} =0,

{wo — ivg, H} =0, (35)
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give constraints on Lagrange multipliers u,, 4®

7 =i(A"T,)v, (36)
u=—iv(ATy,).
Therefore,
H = p;§* — L(q, Dyq) + u®II, + iw(A°T,)v — io(A°T,)w . (37)
Moreover,
{Fo + 9Tov, H} = —c 3 AP(F) + 0Ty) (38)

so there are no new constraints.
In order to find the classification into first- and second-class constraints
we pass to the equivalent system of constraints. They read

I, ~ 0, (39)

We — iU, = 0, (40)

&~ 0, (41)

Fo(q,p) —iwThv + itTaw ~ 0. (42)

It is easy to check that (40) and (41) are second-class constraints while (39)
and (42) first-class ones. We define standard Dirac brackets. They read

{Ua,f)b}]) = —z’é,‘},
{d",pj}p = 9}, (43)

other variables are eliminated by the constraints (40), (41). Therefore we
get finally

H = pig' — L(q, Dyq) + 011, — DA Ty,
I, = 0, (44)
Folq,p) +Tav ~ 0.

Q

It is also easy to see that

pid' — L(q, Dyq) = Ho(g,p) — A°Fa(q,p), (45)

where H(q,p) is the Hamiltonian corresponding to rigid G-symmetry.
Using this we can write

H = Ho(q,p) — A%(Fa(g, p) + vTav) + uIl, . (46)
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By choosing a gauge A® = 0 one finds dynamics determined by Hy(q,p) and
restricted to the submanifold P, given by

F.(q,p) = —9T,v = const . (47)

Moreover, the observables O(q,p) should be gauge invariant; for that it is
sufficient that they are invariant under rigid G symmetry. So the actual
phase space is the submanifold (47) divided by the action of G.

Up to now we have not specified the representation (25). It can be any
representation provided one can select vectors v,v such that vT,v attains
desired form dictated by the (strong) condition that the reduced theory is
integrable. We shall not touch upon the question whether this is generally
possible. This is at least the case for most interesting examples.

4. Broken gauge symmetry

An alternative approach is based on explicit symmetry breaking. Let us
consider the Lagrangian

L = L(q, Dyq) — 0, A”, (48)

where g, is a fixed element of adjoint representation of G. Let us denote by
G, C G the stability subgroup of g,; for simplicity we assume that the Lie
algebra of G, is spanned by X,, a =1,...,r <m. Then

Cy0a =0, g=1,..,r, ~v=1,..m. (49)

The primary constraints are

I, =0, (50)
while the Hamiltonian reads
H = pi§' — L(q, Dyq) + 0o A® + u® I, , (51)
or
H = Hy(q,p) + A%(0a — Fa(q,p)) +uIla, (52)

here again U are Lagrange multipliers related to the constraints (51). Now
0~ I, = {Il,, H} (53)
implies

Fo(q,p) — 0a = 0. (54)
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Differentiating again with respect to time we get
0~ Fualg,p) = {Falg,p), H} = —cl5((Fy — 0y) + 0,)A°. (55)
Therefore, we get new constraints
czﬁg,yAﬂ =0, a=r+1,...m. (56)

Differentiating once more one arrives at the constraints on Lagrange multi-
pliers

cgﬁgwuﬂ =0, a=r+1,...,m. (57)

By assumption G, is the maximal stability subgroup of g,. Therefore, cZé 50a;
a,f =r+1,..,m is a nonsingular matrix. Egs. (57) and (58) imply now
A® =0,
u* =0, a=r+1,..m. (58)
So, finally, we have the following set of constraints
I, =0, a=r+1,...m, primary constraints

Fo(q,p) — 0a =0, a=r+1,..,m secondary constraints
A*=0, a=r+1,..,m, secondary constraints (59)

while Hamiltonian takes the form

H = Hy(q,p) + A%(0a _Fa(Q7p))+ZUaHa- (60)

a=1

The classification into first- and second-class constraints is also easy

I, =0, a=1,..r, first-class constraints
Fo(q,p) — 0a =0, a=1,..r, first-class constraints
Iy, =0, a=r+1,...m, second-class constraints
A*=0, a=r+1,..m, second-class constraints

Fuy(q,p) — 0a=0, a=r+1,...,m, second-class constraints. (61)
Dirac brackets allow us to neglect altogether A%, I, =7+ 1,...m, while
for the remaining variables we obtain

m

{A,B}p ={A,B} — > (¢ "ap{A F.}{Fs,B}, (62)
a,f=r+1
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where c,5 = th 507 Hamiltonian reduces now to

H = Ho(q,p) + Y _ A%(0a — Fulq.p)) + Y _ u®Il, (63)

a=1 a=1

and the first-class constraints are related to G, gauge symmetry. Again it
is easy to check that our theory implies Hamiltonian reduction.

REFERENCES

[1] D.Kazdan, B. Kostant, S. Sternberg, Comm. Pure Appl. Math. 31, 481 (1978).
[2] V. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1978.
[3] M. Olshanetsky, A. Perelomov, Phys. Rep. 71, 313 (1981).

[4] M. Toda, J. Phys. Soc. Japan 29, 431 (1967); Prog. Theor. Phys., Suppl. 45,
174 (1970).

[5] F. Calogero, J. Math. Phys. 12, 419 (1871); B. Shuterland, Phys. Rev. A4,
2019 (1971); Phys. Rev. A5,1372 (1972); J. Moser, Adv. Math. 16, 174 (1975).

[6] A. Polychronakos, Phys. Lett. B266, 29 (1991).
[7] C. Gonera, P. Kosiniski, P. Maslanka, Phys. Lett. A289, 66 (2001).



