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LAGRANGIAN THEORY OF HAMILTONIANREDUCTION�C. Gonera and P. Kosi«skiDepartment of Theoreti
al Physi
s II, University of �ódzPomorska 149/153, 90-236 �ódz, Poland(Re
eived April 29, 2003)Lagrangian formalism 
orresponding to Hamiltonian redu
tion pro
e-dure is presented. Two versions are 
onsidered whi
h lead to unbroken orexpli
itly broken gauge symmetries, respe
tively.PACS numbers: 03.20.+i 1. Introdu
tionOne of the most powerful methods of 
onstru
ting integrable models in
lassi
al as well as quantum theory is the so 
alled method of Hamiltonianredu
tion [1�3℄. It allows to 
onstru
t, with the help of symmetry arguments,quite 
ompli
ated dynami
al systems out of a relatively simple ones. Themost prominent examples of su
h systems are Toda [4℄ and Calogero�Moser�Sutherland ones [5℄. The main advantages of the redu
tion method are: theexpli
it form of �hidden� symmetry responsible for 
omplete integrability,�algebraization� of the pro
edure of integration of Hamiltonian equationsand the existen
e of quantum 
ounterpart of the method.The redu
tion method 
an be des
ribed as follows. One starts with somesymple
ti
 manifold (M;!) whi
h is a 
andidate for �large� phase spa
e.A Lie group G a
ts on (M;!) in a symple
ti
 way and it is assumed thatthis a
tion is strongly Hamiltonian. Let g be the Lie algebra of G andlet FX(p) be the Hamiltonian 
orresponding to the element X 2 g: Themapping � : M ! g� de�ned by h�(p);Xi � FX(p) is 
alled momentummap. Let us sele
t any G-invariant Hamiltonian H on M . It is easy tosee that �(p) is a 
onstant of motion for the dynami
s generated by H. Let� 2 g� be a �xed ve
tor; under some rather general assumptionsP� = fp 2M j �(p) = �g� Supported by the Polish State Committee for S
ienti�
 Resear
h (KBN) grant no. 5P03B 06 021. (3977)



3978 C. Gonera, P. Kosi«skiis a submanifold of M and is obviously invariant under the �ow generatedby H: The trouble here is that, typi
ally, P� is not symple
ti
, ! jP� beingdegenerate. However, this degenera
y 
an be easily des
ribed. Let G� � Gbe the stability subgroup of � with respe
t to 
o-adjoint a
tion. It appearsthat the null ve
tors of ! jP� are exa
tly the ve
tors tangent to the orbits ofG� in P�: Therefore, if Q� = P�=G� is a submanifold (whi
h, again, holdstrue under quite general assumptions), (Q�; ! jQ�) is a symple
ti
 manifold.The key point of the method is that the traje
tories on P� when redu
ed toQ� remain Hamiltonian with respe
t to its symple
ti
 stru
ture, the relevantHamiltonian being simply H jQ� . The judi
ious 
hoi
e of � allows often toobtain integrable redu
ed theory.The fun
tions onQ� 
an be viewed asG�-invariant fun
tions on P�. Thissuggests that G� 
an be treated as a gauge group inherent in the problem.Su
h an approa
h is expli
itly des
ribed for CMS models in Refs. [6,7℄. Theydi�er slightly in philosophy: in Ref. [6℄ spe
ial tri
k allows to put G� = Gwhile in Ref. [7℄ the gauge symmetry group G is expli
itly broken to G�:In most important examples M is a 
otangent bundle, M = T �N;!is a 
anoni
al form on M and the a
tion of G on M is obtained by liftingits a
tion on 
on�guration spa
e N: In the present paper we des
ribe, gen-eralizing the results of Refs. [6, 7℄, the Lagrangian theory of Hamiltonianredu
tion for su
h a 
ase.2. Lagrangian formalismLet us start with a theory des
ribed by generalized 
oordinates qi; i =1; :::; n and the Lagrangian L = L(q; _q) : (1)We assume that L is invariant under the a
tion of m-dimensional Lie groupG whi
h a
ts, in general nonlinearly, a

ording toqi ! q0i = f i(q; ") ; f i(q; 0) = qi (2)or, in in�nitesimal formq0i = qi + f i�(q)"�; f i�(q) � �f i(q; ")�"� j"=0 ; � = 1; :::;m: (3)The 
omposition rule for the transformations (2), (3) readsf i(f(q; "); �) = f i(q;'(�; ")) ; (4)where '(�; ") de�nes the 
omposition rule for group elements.
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tion 3979The velo
ities transform under (2), (3) as follows_q0i = �f i(q; ")�qk _qk ; (5)or in�nitesimally _q0i = _qi + �f i�(q)�qk _qk"� : (6)The 
ondition for L to remain invariant under (2), (3) and (5), (6) reads�L�qi f i�(q) + �L� _qi �f i�(q)�qk _qk = 0 ; � = 1; :::;m : (7)The 
onjugated momenta are given bypi � �L� _qi : (8)The Poisson bra
ket and Hamiltonian are de�ned in standard way.The a
tion of G 
an be readily extended to phase spa
e. The relevanttransformation rule for momenta readspi = �fk(q)�qi p0k : (9)It is also straightforward to �nd the Hamiltonians generating the a
tion ofGF�(q; p) = pif i�(q) : (10)Then _F�(q; p) = 0 ; (11)as a 
onsequen
e of Eq. (7). AlsofF�(q; p); F�(q; p)g = 

��F
(q; p) ; (12)whi
h is a 
onsequen
e of Maurer equations (

�� are the stru
ture 
onstantsof G).If fX�g denote the basis in g�; the mapping(q; p) ! F�(q; p)X� ; (13)is the momentum map.



3980 C. Gonera, P. Kosi«skiLet us now gauge theG symmetry. We assume that the group parametersare arbitrary di�erentiable fun
tions of time, "� = "�(T ): The transforma-tion rule for _q0s is modi�ed to_q0i = �f i(q; ")�qk _qk + �f i(q; ")�"� _"� : (14)We pro
eed in a standard way and introdu
e the gauge variables A�. In orderto �nd their transformation properties we di�erentiate both sides of (4) withrespe
t to " or � and set " = 0 or � = 0, respe
tively. We get�f i(q; ")�qk fk�(q) = �f i(q; ")�"� ���(") ;��� � �'�("; �)��� j�=0 ; (15)f i�(q0) = �f i(q; ")�"� ~���" ;~���(") � �'�(�; ")��� j�=0 ; (16)and q0i = f i(q; "): Combining both equations we derivef i�(q0) = ~���(")�
�(")fk
 (q)�f i(q; ")�qk (17)with �
�(")���(") = Æ
�.Therefore, if A� transforms asA� = ��
 (")~�
�(")A0� + ���(") _"� ; (18)the 
ovariant derivative Dtqi � _qi + f i�(q)A� (19)transforms then a

ording to Eq. (5)(Dtqi)0 = �f i(q; ")�qk (Dtqk) : (20)Now, we 
an 
onstru
t the Lagrangian invariant under time-dependentG-transformations L = L(q;Dtq) : (21)However, we are not yet ready to write out the Lagrangian theory equivalentto the formalism of Hamiltonian redu
tion. To this end we 
an pro
eed ineither of two ways presented in Se
. 3 and 4, respe
tively.
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tion 39813. Unbroken gauge symmetryTypi
ally, the momentum map 
ondition breaks G-invarian
e. It is how-ever, advantageous to keep G-invarian
e exa
t, G� = G. This 
an bea
hieved by viewing the value of momentum map as dynami
al variable.It is easy to see from Eqs. (10), (17) that F� transforms a

ording toadjoint representation of GF�(q0; p0) = ~�
�(")��
 (")F�(q; p) : (22)Let fT�g be any matrix representation of g and let the 
omposition rulerefers to exponential parametrizationei"�T�ei��T� = ei'�(";�)T� : (23)It is straightforward to 
he
k that the transformation rule (18) is equivalentto A0 = UAU�1 � i�tUU�1 ; (24)where U � ei"�T� ; A � A�T� : (25)Let us introdu
e new dynami
al variables vi; �vi transforming a

ording tov ! v0 = Uv ; �v ! �v0 = �vU�1 : (26)We supply (21) with the additional term yielding trivial dynami
s for v0s~L = L(q;Dtq) + �v(i�t +A�T�)v : (27)Lagrangian (27) is invariant under the gauge transformations (24) supple-mented by qi ! q0i = f i(q; "(t)) ;va ! v0a = Uab (t)vb ;�va ! �v0a = (U�1)ba(t)�vb : (28)The representationU remains up to now unspe
i�ed. In our 1+0-dimensionalgauge theory A�'s are not dynami
al � they 
an be eliminated by gaugetransformations altogether.



3982 C. Gonera, P. Kosi«skiThe system de�ned in Eq. (27) is obviously 
onstrained. Let us performa standard Dira
 analysis. We havepi � � ~L� _qi = � ~L�(Dtqi) ;�� � � ~L� _A� = 0 ;!a � � ~L� _va = i�va ;�!a � � ~L� _�va = 0 : (29)Therefore, the primary 
onstraints read�� � 0 ;�!a � 0 ;!a � i�va � 0 : (30)Let us impose standard Poisson bra
ketsfqi; pjg = Æij ; fA�;��g = Æ�� ; fva; !bg = Æab ; f�va; �!bg = Æba (31)and 
onstru
t the HamiltonianH = pi _qi � L(q;Dtq) + !a _va � �v(i�t +A�T�)v + u���+ �ua(!a � i�va) + ua�!a ;or H = pi _qi � L(q;Dtq)� �vA�T�v + u��� + �ua(!a � i�va)+ua�!a ; (32)where ua and �u� are the appropriate Lagrange multipliers.Let us look for se
ondary 
onstraints. Equationf��;Hg = 0 (33)gives se
ondary 
onstraintF�(q; p) + �vT�v = 0 : (34)On the other hand f�!a;Hg = 0 ;f!a � i�va;Hg = 0 ; (35)
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tion 3983give 
onstraints on Lagrange multipliers ua, �ua�u = i(A�T�)v ; (36)u = �i�v(A�T�) :Therefore,H = pi _qi � L(q;Dtq) + u��� + i!(A�T�)v � i�v(A�T�)�! : (37)Moreover, fF� + �vT�v;Hg = �

��A�(F
 + �vT
v) ; (38)so there are no new 
onstraints.In order to �nd the 
lassi�
ation into �rst- and se
ond-
lass 
onstraintswe pass to the equivalent system of 
onstraints. They read�� � 0 ; (39)!a � i�va � 0 ; (40)�!a � 0 ; (41)F�(q; p)� i!T�v + i�vT��! � 0 : (42)It is easy to 
he
k that (40) and (41) are se
ond-
lass 
onstraints while (39)and (42) �rst-
lass ones. We de�ne standard Dira
 bra
kets. They readfva; �vbgD = �iÆab ;fqi; pjgD = Æij ; (43)other variables are eliminated by the 
onstraints (40), (41). Therefore weget �nally H = pi _qi � L(q;Dtq) + �u��� � �vA�T�v ;�� � 0 ; (44)F�(q; p) + �vT�v � 0 :It is also easy to see thatpi _qi � L(q;Dtq) = H0(q; p)�A�F�(q; p) ; (45)where H0(q; p) is the Hamiltonian 
orresponding to rigid G-symmetry.Using this we 
an writeH = H0(q; p)�A�(F�(q; p) + �vT�v) + �u��� : (46)
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hoosing a gauge A� = 0 one �nds dynami
s determined by H0(q; p) andrestri
ted to the submanifold P� given byF�(q; p) = ��vT�v = 
onst : (47)Moreover, the observables O(q; p) should be gauge invariant; for that it issu�
ient that they are invariant under rigid G symmetry. So the a
tualphase spa
e is the submanifold (47) divided by the a
tion of G.Up to now we have not spe
i�ed the representation (25). It 
an be anyrepresentation provided one 
an sele
t ve
tors v; �v su
h that �vT�v attainsdesired form di
tated by the (strong) 
ondition that the redu
ed theory isintegrable. We shall not tou
h upon the question whether this is generallypossible. This is at least the 
ase for most interesting examples.4. Broken gauge symmetryAn alternative approa
h is based on expli
it symmetry breaking. Let us
onsider the Lagrangian L = L(q;Dtq)� %�A� ; (48)where %� is a �xed element of adjoint representation of G. Let us denote byG% � G the stability subgroup of %�; for simpli
ity we assume that the Liealgebra of G% is spanned by X�; � = 1; :::; r � m. Then
��
%� = 0 ; � = 1; :::; r ; 
 = 1; :::;m : (49)The primary 
onstraints are �� � 0 ; (50)while the Hamiltonian readsH = pi _qi � L(q;Dtq) + %�A� + u��� ; (51)or H = H0(q; p) +A�(%� � F�(q; p)) + u��� ; (52)here again U� are Lagrange multipliers related to the 
onstraints (51). Now0 � _�� = f��;Hg (53)implies F�(q; p)� %� � 0 : (54)



Lagrangian Theory of Hamiltonian Redu
tion 3985Di�erentiating again with respe
t to time we get0 � _F�(q; p) = fF�(q; p);Hg = �

��((F
 � %
) + %
)A� : (55)Therefore, we get new 
onstraints

��%
A� = 0; � = r + 1; :::;m : (56)Di�erentiating on
e more one arrives at the 
onstraints on Lagrange multi-pliers 

��%
u� = 0; � = r + 1; :::;m : (57)By assumption G% is the maximal stability subgroup of %�: Therefore, 

��%�,�; � = r + 1; :::;m is a nonsingular matrix. Eqs. (57) and (58) imply nowA� = 0 ;u� = 0 ; � = r + 1; :::;m : (58)So, �nally, we have the following set of 
onstraints�� � 0 ; � = r + 1; :::;m ; primary 
onstraintsF�(q; p)� %� � 0 ; � = r + 1; :::;m se
ondary 
onstraintsA� � 0 ; � = r + 1; :::;m ; se
ondary 
onstraints (59)while Hamiltonian takes the formH = H0(q; p) +A�(%� � F�(q; p)) + rX�=1 u��� : (60)The 
lassi�
ation into �rst- and se
ond-
lass 
onstraints is also easy�� � 0; � = 1; :::; r ; �rst-
lass 
onstraintsF�(q; p)� %� � 0 ; � = 1; :::; r ; �rst-
lass 
onstraints�� � 0 ; � = r + 1; :::;m ; se
ond-
lass 
onstraintsA� � 0 ; � = r + 1; :::;m ; se
ond-
lass 
onstraintsF�(q; p)� %��0 ; �=r+1; :::;m ; se
ond-
lass 
onstraints : (61)Dira
 bra
kets allow us to negle
t altogether A�;��; � = r + 1; :::m , whilefor the remaining variables we obtainfA;BgD = fA;Bg � mX�;�=r+1(
�1)��fA;F�gfF� ; Bg ; (62)
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�� � 

��%
 : Hamiltonian redu
es now toH = H0(q; p) + rX�=1A�(%� � F�(q; p)) + rX�=1u��� (63)and the �rst-
lass 
onstraints are related to G% gauge symmetry. Again itis easy to 
he
k that our theory implies Hamiltonian redu
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