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FERMIONS IN 2d LORENTZIAN QUANTUM GRAVITYL. Boga
z, Z. Burda and J. Jurkiewi
zM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived June 17, 2003)We implement Wilson fermions on 2d Lorentzian triangulation and de-termine the spe
trum of the Dira
�Wilson operator. We 
ompare it to thespe
trum of the 
orresponding operator in the Eu
lidean ba
kground. Weuse fermioni
 parti
le to probe the fra
tal properties of Lorentzian grav-ity 
oupled to 
 = 1=2 and 
 = 4 matter. We numeri
ally determine thes
aling exponent of the mass gap M � N�1=dH to be dH = 2:11(5), anddH = 1:77(3) for 
 = 1=2 and 
 = 4, respe
tively.PACS numbers: 04.20.Gz, 04.60.Kz, 04.60.N
, 05.50.+q1. Introdu
tionThe formulation of a theory of quantum gravity is one of the most
hallenging problems in theoreti
al physi
s. Simpli
ial gravity is a non-perturbative approa
h to this problem. It is a natural extension of Feyn-man's idea of de�ning quantum amplitudes via fun
tional path integrals.Simpli
ial gravity is a latti
e regularization of Feynman integrals overa set of geometries [1�3℄. The idea is to look for non-perturbative �xedpoints of the renormalization group at whi
h a 
ontinuum limit 
an be taken.It is 
ru
ial in a latti
e regularization to preserve the gauge invarian
e ofthe underlying 
ontinuum theory. Simpli
ial gravity, similarly as latti
eregularization of QCD, properly treats the problem of gauge invarian
e.The underlying 
ontinuum theory is invariant with respe
t to the 
hangeof 
oordinates. Latti
e formulation is 
oordinate free by 
onstru
tion. Aremnant of 
oordinates are labels on latti
e simpli
es and verti
es. Latti
etheory is de�ned in a way whi
h is invariant with respe
t to relabeling. Thisinvarian
e is a left over of the di�eomorphism invarian
e of the 
ontinuousformulation. Statisti
al weights of simpli
ial manifolds take into a

ount thevolume of the dis
rete symmetry group. For example, in two dimensions,were the sum over simpli
ial diagrams (dynami
al triangulations) 
an beexpli
itly generated by a perturbative expansion of a matrix model [4, 5℄,(3987)
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al weights are automati
ally generated as 
ombinatorial fa
torsof the 
orresponding Feynman diagrams. These fa
tors play the role of theFaddeev�Popov determinants. The 2d 
ase is analyti
ally solvable. The
ontinuum limit of 2d latti
e gravity [6℄ is equivalent to Liouville theorybeing a quantum version of Eu
lidean gravity regularized by 
ompletelydi�erent means [7, 8℄. This equivalen
e is treated as a strong indi
ationthat the sum over simpli
ial manifolds provides a proper de�nition of theintegration measure over Riemannian manifolds.Real gravity has the Lorentzian signature. One 
an obtain this signatureby Wi
k rotation. One way of doing this is to 
al
ulate quantities in the Eu-
lidean se
tor and then perform analyti
 
ontinuation to the Lorentzian one.This strategy is used in quantum �eld theory but it is not 
lear whether it 
anbe straightforwardly applied to quantum gravity. An alternative approa
h isto impose the 
ausal stru
ture on simpli
ial manifolds whi
h enter the Feyn-man integrals [9,10℄. This leads to a formulation 
alled Lorentzian simpli
ialgravity for whi
h the 
ausality is a
hieved by introdu
ing a time-sli
ing intothe latti
e stru
ture. This formulation is very 
lose in spirit to the Hamil-tonian formulation in the temporal gauge. In two dimensional 
ase one 
andetermine an expli
it form of the Hamiltonian of the underlying 
ontinuumtheory [11℄. Similarly as for the Eu
lidean 
ase the model is analyti
allysolvable in two dimensions [11�13℄. The resulting 
ontinuum theory di�ersfrom Liouville gravity. One 
an determine mathemati
al relations betweenEu
lidean and Lorentzian gravity in terms of a singular renormalization of
oupling 
onstants [13℄.Both the Eu
lidean [1�3℄ and Lorentzian models [14�16℄ have naturalextensions to higher dimensional 
ases. It is a matter of debate whi
h of thetwo versions may serve as a theory of quantum gravity in higher dimensional
ase. Both have been a subje
t of intensive studies. In the ultimate theory ofgravity an important role is played by the intera
tion of gravity with matter�elds. Matter �elds are known to modify fra
tal properties of gravity ands
aling properties of the underlying theory. Results of expli
it 
al
ulationsof 2d Eu
lidean 
ase, are summarized in the KPZ formula [8℄. They showthat the s
aling properties of matter �eld are indeed modi�ed by Eu
lideangravity. On the 
ontrary, numeri
al simulations of Lorentzian 
ase indi
atethat the s
aling properties of matter in Lorentzian ba
kground stay inta
teven if one 
rosses the 
 = 1 barrier [17, 18℄.Numeri
al studies of higher-dimensional Eu
lidean gravity have shownthe importan
e of matter �elds for of the 
riti
al properties of the underlying
ontinuum theory. For example, matter �elds remove the 
onformal instabil-ity of Eu
lidean se
tor and modify the phase stru
ture of the model [19�21℄.So far numeri
al simulations have been performed only for bosoni
 mat-ter. An introdu
tion of fermioni
 matter may be 
ru
ial for de�ning a �xed
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h a 
ontinuum limit 
an be taken. First step towardsde�ning fermions on simpli
ial quantum gravity was done in 2d Eu
lideangravity [22�24℄. In this paper we extend these studies to the 2d Lorentzian
ase. We shall use fermions to probe fra
tal properties of geometry.2. The modelLet us brie�y re
all the model of 2d Lorentzian gravity [9, 10℄. Theintegration measure of the 2d Lorentzian gravity is de�ned as a sum overtriangulations whi
h have a time sli
ed stru
ture. Additionally, for te
hni
alreasons this stru
ture is periodi
 in temporal dire
tion.Ea
h time sli
e 
onsists of a random number of verti
es on a 
ir
le. Thenumber of verti
es Vt on a sli
e t and Vt+1 on the 
onse
utive sli
e give thenumber of triangles Nt+1=2 = Vt+Vt+1 lying in between. The strip betweensli
es 
onsists of a random 
ombination of triangles built of edges whi
hjoin verti
es of the two time sli
es (see Fig. 1). The temporal index runs

PSfrag repla
ementsRe�Im�Fig. 1. S
hemati
 drawing of the 2d Lorentzian latti
e.periodi
ally over t = 1; : : : ; T . Consequently, the total numbers of trianglesand verti
es are related to ea
h other as N = 2V . Topology of ea
h timesli
e is that of 
ir
le in 
ontrast to Eu
lidean gravity where it 
an be a set ofdis
onne
ted 
ir
les. The e�e
t of bran
hing, whi
h plays a dominant role inEu
lidean 
ase, is thus suppressed here. In 
onsequen
e, fra
tal properties ofLorentzian gravity are 
ompletely di�erent from those of Eu
lidean gravity,as re�e
ted by the Hausdor� dimension whi
h 
hanges from DH = 2 [17,18℄for the former to DH = 4 [25℄ for the latter 
ase. In a sense, Lorentzian grav-ity has not enough freedom to produ
e stru
tures whi
h would signi�
antly
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anoni
al dimension d = 2. It is generallyvery di�
ult to 
hange fra
tal properties of the Lorentzian gravity. This 
anbe a
hieved by strengthening the in�uen
e of the matter se
tor on geometryby in
reasing its 
onformal 
harge 
. It was shown in [17,18℄ that a multipleIsing �eld with q-families, and the 
onformal 
harge 
 = q=2 > 1, modi�esfra
tal properties of the underlying geometry leading to a spa
e�time withthe Hausdor� dimension DH � 3. The MC simulations [17,18℄ were done for
 = 4 whi
h is for te
hni
al reasons an optimal 
hoi
e: 
 = 4 is large enoughto allow for observing for relatively small latti
es the e�e
ts of 
rossing the
 = 1 barrier and on the other hand it is still not very large from the pointof view of MC simulations, in parti
ular of the 
omputer time needed toupdate the matter se
tor, whi
h grows linearly with 
. We sti
k here to
 = 4.As mentioned we shall use fermioni
 parti
le to probe geometri
al prop-erties of the Lorentzian ba
kground. More pre
isely, we shall do this bystudying the s
aling properties of the lowest part of the spe
trum of theDira
�Wilson operator.We 
onsider a system of q spe
ies of Ising �elds on dynami
al Lorentziantriangulations with N triangles and T time sli
es. The 
anoni
al partitionfun
tion of this system reads:Z(q)(�) = Xl2LN;T �Zl(�)�q; (1)where the sum runs over all triangulations l from the set of Lorentziantriangulations LN;T with N triangles and T time sli
es. Ea
h triangulationl is dressed with q spe
ies of independent Ising spins and thus the weight ofea
h triangulation in the ensemble is given by the q-th power of the partitionfun
tion of a single Ising �eld on this triangulation:Zl(�) =Xf�gl exp �X(ab) �a�b!: (2)Here a; b and (ab) denote verti
es and links of the Lorentzian triangulationl, respe
tively. Spins live on verti
es. Ea
h spin �a assumes two values�a = �1. The sum f�gl runs over all 2N=2 spin 
on�gurations of one spinfamily on the latti
e l. Although spin families are independent on a giventriangulation, they are not independent in the ensemble of triangulatonssin
e they intera
t through dynami
al latti
es, whi
h are summed over inthe partition fun
tion (1).The partition fun
tion for an individual spin family 
an be rewritten asa partition fun
tion for Ising spins living on verti
es of the dual latti
e l or
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e. The dual temperature �� isrelated to � as tanh�� = exp�2�. The equivalen
e between the originaland dual model holds up to �nite size e�e
ts [23℄. The Ising model is alsoequivalent to a model of Wilson fermions for Majorana �elds lo
ated ontriangles: Z(K) = Xl2LN;T �Zl(K)�q; (3)where ea
h Zl stands for for the partition fun
tion for Majorana fermionson a latti
e l:Zl(K) = Z Yi d �	 id	i exp � 12Xi �	i	i +KXhiji �	iHij	j!= Z Yi d �	id	i exp �Xij �	iDij	i! (4)with fermions lo
ated at the 
enters of triangles i; j; : : : . The Dira
�Wilsonoperator D = 1=2 +KH 
onsists of a mass part and a hopping term 
on-trolled by the hopping parameter K. The sum in the hopping term runsover all oriented pairs hiji of nearest triangles on the triangulation l. Thehopping operator Hij 
an be expressed in lo
al frames as:Hij = 12 (1 + ~nij~
)Uij ; (5)where ~nij is a ve
tor of the lo
al derivative whi
h goes between the neigh-bours i and j and Uij is a spin 
onne
tion in the spinorial representation. The
omponents of the spinors 	i are given in the lo
al frames. The spin 
onne
-tion matri
es allow for parallel transport of spinors between neighbouringframes and for re
al
ulating spinor 
omponents. The hopping parameter Kis related to the Ising temperature as:K = e�2�p3 = tanh(��)p3 : (6)The 
riti
al temperature of the Ising model 
orresponds to the 
riti
al valueof the hopping parameter for whi
h fermions be
ome massless. The 
rit-i
al value for the Eu
lidean gravity 
an be analyti
ally determined �
r =12 ln 13185 = 0:21627 : : : [26℄. It 
orresponds to the 
riti
al value of the hoppingparameter K
r = 85p3=393 = 0:3746 : : : whi
h should be 
ompared with the
riti
al value on the regular triangulated latti
e: K
r = 1=3 = 0:3333 : : : [26℄.As one 
an see, the intera
tion with a random latti
e dresses the 
riti
al value
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tions with gauge �elds in latti
eQCD. As we shall see the dressing of the hopping parameter is di�erent forLorentzian gravity.The matrix of the Dira
�Wilson operator 
an be easily read o� from theequation (4). The spe
trum of the Dira
 operator is related to the propaga-tion of a fermioni
 parti
le through the latti
e. The smallest eigenvalues arerelated to the e�e
tive mass of this parti
le. For an in�nite latti
e and atthe 
riti
al value of the hopping parameter the theory des
ribes a masslessMajorana fermion. For a �nite latti
e there exists a non-vanishing mass gapwhi
h separates the lowest part of the spe
trum from zero. This mass gap isminimal for 
ertain value of the hopping parameter whi
h we will refer to aspseudo-
riti
al. We will denote this value as K� and the 
orresponding massgap as M�. The two values 
hange with the latti
e size N and are expe
tedto approa
h their limiting values K� ! K
r and M� ! 0 for N ! 1. Inparti
ular one expe
ts the s
aling:M� � N�1=dH (7)with an exponent dH whi
h is related to the fra
tal properties of the under-lying geometry. For an isotropi
 system, like for instan
e Eu
lidean gravityon a regular latti
e, this exponent 
orresponds to the Hausdor� dimensionDH. Lorentzian latti
e is anisotropi
. Its fra
tal dimensions in the temporaland spatial dire
tions 
hange with the matter 
ontent [17, 18℄. The spatialand temporal asymmetry be
omes very transparent when one 
rosses the
 = 1 barrier. In this 
ase the system forms a bubble whi
h is supplementedby a narrow long ne
k. Denote the temporal extension of the bubble by TBand spatial by LB. The temporal and spatial extensions of the bubble s
aledi�erently with the size, NB, of the bubble TB � N1=DHB and LB � N1=ÆhB .The fra
tal dimensions DH and Æh are not independent. Using the relationNB � TBLB one 
an see that 1DH + 1Æh = 1 : (8)In parti
ular, for 
 = 1=2 the two exponents are DH = 2 and Æh = 2, merelyre�e
ting the fa
t that the bubble is not developed and the temporal size ofthe bubble 
orresponds to the temporal extension of the system TB � T and
orrespondingly LB � N=T . The situation 
hanges dramati
ally for 
 = 4.In this 
ase, DH = 3 and Æh = 3=2. In view of this asymmetry the followingquestion arises. The s
aling of the lowest part of the spe
trum of the Dira
operator is expe
ted to be 
ontrolled by the lowest momentum and thus inthis 
ase one 
an expe
t the mass exponent to be dH = Æh. On the otherhand as dis
ussed in [17,18℄ matter �elds 
oupled to Lorentzian gravity even



Fermions in 2D Lorentzian Quantum Gravity 3993above 
 = 1 barrier have �at spa
e exponents whi
h means that the �eldsbehave e�e
tively as in a �at 2d ba
kground. A

ording to this hypothesisone should observe the value dH = 2 of the mass exponent. Whi
h of thes
enarios is realized in the system, is one of the questions addressed here.3. Numeri
al set-upLet us shortly des
ribe our `experimental' set-up. We use a MC generatorto simulate a system of a given size N and a given temporal extent T . Theaverage number of verti
es per sli
e is L = N=2T and hen
e the latti
easymmetry is � = T=L = 2T 2=N . The bulk thermodynami
 properties ofthe system are expe
ted to be independent of � . This parameter 
an be thusused to minimize �nite size e�e
ts.Geometry of the latti
e is updated by the standard lo
al algorithm basedon a pair of mutually re
ipro
al moves: split and join operations [17℄. Thetransformations preserve the temporal length of the system T but 
hangethe latti
e size N $ N + 2. In order to ensure ergodi
ity of this algorithmone allows the system size to �u
tuate. In pra
ti
e one does it by simulatinga system with a partition fun
tionz(�) = Xl2LT exp���n� 12�2 (n�N)2��Zl(�)�q (9)with a volume n whi
h may �u
tuate. In order to avoid too large �u
tuationsan external potential U(n) = �n+ (n�N)2=(2�2) is added to the a
tion in(9). This potential 
onstrains the volume �u
tuations to a neighbourhoodof N . The width of the distribution of n is of order �. If the parameter � isoptimally tuned, the maximum of the distribution lies exa
tly at N .The algorithm generates a smeared distribution of volumes n but mea-surements are performed only at n = N . The 
ondition n = N 
uts outfrom the ensemble (9) a sub-ensemble with the partition fun
tion whi
h isequal to (1) up to a 
onstant fa
tor irrelevant for statisti
al averages at N .We 
on
entrate the MC measurements on the spe
trum of the Dira
�Wilson operator Dij (4). Ea
h triangle on the latti
e is dressed with atwo-
omponent spinor, and hen
e for a latti
e with N triangles the operatoris represented by a 2N�2N matrix. The evaluation of the spe
trum requiresa time proportional to N3. This is a very time 
onsuming operation. Weuse the redu
tion to the Hessenberg form and then QR de
omposition pro-
edure [27℄. Many problems of interest are related to the behaviour of thelowest part of the spe
trum. We use the Lan
zos algorithm to determine theposition of the lowest eigenvalues. The Lan
zos algorithm is most e�
ientfor this purpose [27℄.
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z4. ResultsThe spe
trum of the Dira
�Wilson operator is 
omplex. As far as thelowest part of the spe
trum is 
on
erned it is more 
onvenient to study theMajorana�Wilson operator instead of the Dira
�Wilson oneD = CD (10)be
ause it has a purely imaginary spe
trum. C is the 
harge 
onjugationmatrix. Indeed, if one 
hooses a representation in whi
h the two-dimensional
 matri
es are real: 
1 = �3, 
2 = �1, so is the 
harge 
onjugation matrix,C = i�2 = � and the whole matrix of the Majorana�Wilson operator D.Sin
e the matrix D is also antisymmetri
, it is anti-Hermitian.From here on, when we refer to the lowest eigenvalues, we mean the
losest to zero eigenvalues of the Majorana�Wilson operator. In fa
t, asmentioned already, it is rather this operator than the Dira
�Wilson one,whi
h is related to the Ising spins and the 
onformal �eld with 
 = 1=2.The 
onstru
tion of the Dira
�Wilson operator requires an introdu
tionof a �eld of lo
al frames on a simpli
ial manifold whi
h lo
ally de�nes gammamatri
es and a spin 
onne
tion U . An expli
it 
onstru
tion of the operatoris given in [22, 23℄.A snapshot of the spe
trum of the Dira
�Wilson operator generated ina MC simulation of Lorentzian gravity is shown in Fig. 2. It should be
ompared with the spe
trum on Eu
lidean latti
e. As one 
an see thereare some visual di�eren
es for eigenvalues with large absolute values. Thedi�eren
es obviously have the origin in the di�erent properties of Lorentzianand Eu
lidean latti
es on small distan
es. What is of physi
al interest is thesmall eigenvalue behaviour of the spe
trum be
ause it is responsible for thelarge distan
e behaviour and the universal 
riti
al properties of the system.This behaviour is governed by the s
aling of the part of the spe
trum 
losestto the origin of the 
omplex plane. As will be shown, it is given by themass exponent whi
h has a di�erent value for the Lorentzian than for theEu
lidean 
ase. The spe
trum 
hanges with the hopping parameter K. Themain e�e
t of this 
hange on the shape of the spe
trum is that it gets res
aledin the 
omplex plane around the point (1=2; 0) as follows dire
tly from theform of the operator 1=2 +KH whi
h is a sum of a 
onstant operator 1=2and a random operator H multiplied by the fa
tor K. In addition to thise�e
t, the matter se
tor in�uen
es geometry of the latti
e and hen
e alsothe randomness en
oded in the operator H.When the hopping parameter 
hanges from K = 0 (whi
h 
orrespondsto � = 1) to K = 1=p3 (� = 0) the spe
trum broadens from a spe
trumlo
alized at the point (1=2; 0) to an extended shape. In the 
ourse of thebroadening the 
laws-shaped part of the spe
trum passes 
lose to the origin
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Fig. 2. Spe
tra of the Dira
�Wilson operator measured in MC simulations forLorentzian latti
e with N = 64 triangles, � = 2 and K = 0:3486 (top), and forEu
lidean latti
e with N = 64 triangles, K = 0:364 (bottom).of the 
omplex plane. The value ofK, at whi
h the distan
e of eigenvalues tothe origin is smallest, 
orresponds to a pseudo-
riti
al value K�. A similare�e
t is seen in the movement of the lowest end of the spe
trum of theMajorana�Wilson operator whi
h �rst moves towards zero when K growsfrom zero to K� and then moves away from zero when K� further in
reases.We use this observation to determine the mass gap M� for the system witha given volume in the following way. We determine the mean-value M ofthe distribution of the lowest eigenvalue of the Majorana�Wilson operatorfor the system with a size N and a hopping parameter K. Then we plot thedependen
e M = M(N;K) as a fun
tion of K (see Fig. 3). Combining thequadrati
 interpolation with the ja
k-knife method we �nd the minimumM�(N) of the plotted fun
tion We repeat the same pro
edure for di�erentvolumes N to obtain the dependen
e of the pseudo-mass on the volume ofthe system M�(N). Eventually we �t the experimentally determined pointsM�(N) to the s
aling formula (7) to determine the optimal value of the
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tion of latti
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es with deformation parameter � = 4 and 
onformal 
harge 
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 = 4 (lower line). The �t M�(N) = aN�1=dH gives a = 1:02(2) anddH = 2:11(5) for 
 = 1=2 and a = 1:44(2) and dH = 1:77(3).s
aling exponent dH. As an example, in Fig. 4 we show the experimentaldata points and the best �ts to (7) for 
 = 1=2 and 
 = 4. The system sizevaries in the range from N = 128 to N = 512 and the asymmetry parameteris � = 4 for the presented data. A value of the pseudo-
riti
al hoppingparameter depends on the matter 
ontent. For example for the latti
e sizeN = 128 it is K = 0:3482(2) and K = 0:3536(8) for 
 = 1=2 and 
 = 4,respe
tively. The 
orresponding value for Eu
lidean latti
e of the same sizeis K = 0:370(1).
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trum of the Dira
�Wilson operator for the pseudo-
riti
al value of the hopping parameter K does not 
hange visually whenthe system size N grows, ex
ept for the two 
law ends whi
h approa
h theorigin of the 
omplex plane as N�1=dH . The two ends eventually 
lose at theorigin when N be
omes in�nite. This e�e
t 
orresponds to the appearan
eof a massless parti
le on an in�nite latti
e. The shape of the bulk part ofthe spe
trum does not 
hange but merely be
omes denser for larger latti
es,whi
h means that the typi
al distan
e between eigenvalues be
omes smallerfor larger system volumes.The best �t to the s
aling formula (7) gives a value dH = 2:11(5) for
 = 1=2. This value should be 
ompared with dH = 2:87(3) measured forEu
lidean gravity intera
ting with the 
 = 1=2 matter [24℄. Fermioni
 par-ti
le in the Lorentzian ba
kground, in 
ontrast to Eu
ildean gravity, dete
tsthus a �at spa
e exponent.For the 
ase 
 = 4 for whi
h geometry of the latti
e 
hanges dramati-
ally, the value of the mass exponent is dH = 1:77(3). Its value 
learly movestowards the spatial s
aling dimension Æh = 3=2 whi
h is di
tated by asymme-try of fra
tal properties of the latti
e (8). As mentioned before, Lorentzianlatti
e 
oupled with matter �eld for 
 = 4 
onsists of two distin
t parts: ofthe bubble whose extensions s
ale as TB � N1=DHB and LB � N1=ÆhB and of anarrow ne
k whose spatial width does not s
ale. The presen
e of the narrowne
k introdu
es a �nite size e�e
t to the measurements of the spe
trum ofthe Dira
 operator. This e�e
t is probably the sour
e of the deviation ofthe measured value dH = 1:77(3) from Æh = 3=2. One should try to redu
ethe �nite size e�e
t by going to larger latti
e for whi
h the 
ontribution ofthe ne
k to the spe
trum should gradually de
rease be
ause the number oftriangles on the bubble grows with latti
e size mu
h faster than the numberof triangles in the ne
k. This is however very time 
onsuming be
ause thetime for 
olle
ting the spe
trum grows typi
ally as the third power of thesystem size. 5. SummaryWe implemented fermions to Lorentzian gravity and determined thespe
trum of Dira
�Wilson operator. We 
al
ulated the mass gap expo-nent dH = 2:11(5) for a single massless fermioni
 parti
le propagating inthe Lorentzian ba
kground and intera
ting with it. The 
omputations weredone for latti
es of size up to N = 512 triangles. The measured value of themass exponent seems to be 
onsistent with the 
anoni
al dimension d = 2,if one takes into a

ount a possibility of �nite size e�e
ts. For 
 = 4, abovethe 
 = 1 barrier, we measured dH = 1:77(3). The value of the exponentmoved towards the index Æh = 3=2 whi
h 
ontrols the s
aling of the lowestspatial momentum. In fa
t, if we expli
itly introdu
e a �nite size 
orre
-
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=N) the value ofthe exponent gets shifted to dH = 1:7(1) indi
ating indeed the presen
e ofa deviation from the straight line in the measured volume range. It wouldbe very helpful to extend the simulations to larger systems to see whetherthe observed tenden
y will indeed bring the exponent to the expe
ted value3=2. As we mentioned, the measurements of the spe
trum for larger volumeare very time 
onsuming due to the strong dependen
e of the required CPUtime on the volume. We plan to perform these 
omputation in the future.The measurements of the spe
trum of the Dira
 operator enable oneto dire
tly dete
t in the matter se
tor 
hanges of the fra
tal stru
ture oftwo-dimensional Lorentzian gravity. In other measurements of the 
riti
alindi
es of the matter se
tor one namely sees the �at spa
e 
riti
al exponentseven above the 
 = 1 barrier, for example, the Onsager exponents [17, 18℄for the Ising model. The spe
trum of the Dira
�Wilson operator is sensitiveto 
hanges of fra
tal stru
ture and therefore it provides a pra
ti
al tool fora dete
tion of fra
tal properties of the geometri
al ba
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