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FERMIONS IN 2d LORENTZIAN QUANTUM GRAVITYL. Bogaz, Z. Burda and J. JurkiewizM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived June 17, 2003)We implement Wilson fermions on 2d Lorentzian triangulation and de-termine the spetrum of the Dira�Wilson operator. We ompare it to thespetrum of the orresponding operator in the Eulidean bakground. Weuse fermioni partile to probe the fratal properties of Lorentzian grav-ity oupled to  = 1=2 and  = 4 matter. We numerially determine thesaling exponent of the mass gap M � N�1=dH to be dH = 2:11(5), anddH = 1:77(3) for  = 1=2 and  = 4, respetively.PACS numbers: 04.20.Gz, 04.60.Kz, 04.60.N, 05.50.+q1. IntrodutionThe formulation of a theory of quantum gravity is one of the mosthallenging problems in theoretial physis. Simpliial gravity is a non-perturbative approah to this problem. It is a natural extension of Feyn-man's idea of de�ning quantum amplitudes via funtional path integrals.Simpliial gravity is a lattie regularization of Feynman integrals overa set of geometries [1�3℄. The idea is to look for non-perturbative �xedpoints of the renormalization group at whih a ontinuum limit an be taken.It is ruial in a lattie regularization to preserve the gauge invariane ofthe underlying ontinuum theory. Simpliial gravity, similarly as lattieregularization of QCD, properly treats the problem of gauge invariane.The underlying ontinuum theory is invariant with respet to the hangeof oordinates. Lattie formulation is oordinate free by onstrution. Aremnant of oordinates are labels on lattie simplies and verties. Lattietheory is de�ned in a way whih is invariant with respet to relabeling. Thisinvariane is a left over of the di�eomorphism invariane of the ontinuousformulation. Statistial weights of simpliial manifolds take into aount thevolume of the disrete symmetry group. For example, in two dimensions,were the sum over simpliial diagrams (dynamial triangulations) an beexpliitly generated by a perturbative expansion of a matrix model [4, 5℄,(3987)



3988 L. Bogaz, Z. Burda, J. Jurkiewizthe statistial weights are automatially generated as ombinatorial fatorsof the orresponding Feynman diagrams. These fators play the role of theFaddeev�Popov determinants. The 2d ase is analytially solvable. Theontinuum limit of 2d lattie gravity [6℄ is equivalent to Liouville theorybeing a quantum version of Eulidean gravity regularized by ompletelydi�erent means [7, 8℄. This equivalene is treated as a strong indiationthat the sum over simpliial manifolds provides a proper de�nition of theintegration measure over Riemannian manifolds.Real gravity has the Lorentzian signature. One an obtain this signatureby Wik rotation. One way of doing this is to alulate quantities in the Eu-lidean setor and then perform analyti ontinuation to the Lorentzian one.This strategy is used in quantum �eld theory but it is not lear whether it anbe straightforwardly applied to quantum gravity. An alternative approah isto impose the ausal struture on simpliial manifolds whih enter the Feyn-man integrals [9,10℄. This leads to a formulation alled Lorentzian simpliialgravity for whih the ausality is ahieved by introduing a time-sliing intothe lattie struture. This formulation is very lose in spirit to the Hamil-tonian formulation in the temporal gauge. In two dimensional ase one andetermine an expliit form of the Hamiltonian of the underlying ontinuumtheory [11℄. Similarly as for the Eulidean ase the model is analytiallysolvable in two dimensions [11�13℄. The resulting ontinuum theory di�ersfrom Liouville gravity. One an determine mathematial relations betweenEulidean and Lorentzian gravity in terms of a singular renormalization ofoupling onstants [13℄.Both the Eulidean [1�3℄ and Lorentzian models [14�16℄ have naturalextensions to higher dimensional ases. It is a matter of debate whih of thetwo versions may serve as a theory of quantum gravity in higher dimensionalase. Both have been a subjet of intensive studies. In the ultimate theory ofgravity an important role is played by the interation of gravity with matter�elds. Matter �elds are known to modify fratal properties of gravity andsaling properties of the underlying theory. Results of expliit alulationsof 2d Eulidean ase, are summarized in the KPZ formula [8℄. They showthat the saling properties of matter �eld are indeed modi�ed by Eulideangravity. On the ontrary, numerial simulations of Lorentzian ase indiatethat the saling properties of matter in Lorentzian bakground stay intateven if one rosses the  = 1 barrier [17, 18℄.Numerial studies of higher-dimensional Eulidean gravity have shownthe importane of matter �elds for of the ritial properties of the underlyingontinuum theory. For example, matter �elds remove the onformal instabil-ity of Eulidean setor and modify the phase struture of the model [19�21℄.So far numerial simulations have been performed only for bosoni mat-ter. An introdution of fermioni matter may be ruial for de�ning a �xed



Fermions in 2D Lorentzian Quantum Gravity 3989point of gravity at whih a ontinuum limit an be taken. First step towardsde�ning fermions on simpliial quantum gravity was done in 2d Eulideangravity [22�24℄. In this paper we extend these studies to the 2d Lorentzianase. We shall use fermions to probe fratal properties of geometry.2. The modelLet us brie�y reall the model of 2d Lorentzian gravity [9, 10℄. Theintegration measure of the 2d Lorentzian gravity is de�ned as a sum overtriangulations whih have a time slied struture. Additionally, for tehnialreasons this struture is periodi in temporal diretion.Eah time slie onsists of a random number of verties on a irle. Thenumber of verties Vt on a slie t and Vt+1 on the onseutive slie give thenumber of triangles Nt+1=2 = Vt+Vt+1 lying in between. The strip betweenslies onsists of a random ombination of triangles built of edges whihjoin verties of the two time slies (see Fig. 1). The temporal index runs

PSfrag replaementsRe�Im�Fig. 1. Shemati drawing of the 2d Lorentzian lattie.periodially over t = 1; : : : ; T . Consequently, the total numbers of trianglesand verties are related to eah other as N = 2V . Topology of eah timeslie is that of irle in ontrast to Eulidean gravity where it an be a set ofdisonneted irles. The e�et of branhing, whih plays a dominant role inEulidean ase, is thus suppressed here. In onsequene, fratal properties ofLorentzian gravity are ompletely di�erent from those of Eulidean gravity,as re�eted by the Hausdor� dimension whih hanges from DH = 2 [17,18℄for the former to DH = 4 [25℄ for the latter ase. In a sense, Lorentzian grav-ity has not enough freedom to produe strutures whih would signi�antly



3990 L. Bogaz, Z. Burda, J. Jurkiewizdeviate from �at geometry of the anonial dimension d = 2. It is generallyvery di�ult to hange fratal properties of the Lorentzian gravity. This anbe ahieved by strengthening the in�uene of the matter setor on geometryby inreasing its onformal harge . It was shown in [17,18℄ that a multipleIsing �eld with q-families, and the onformal harge  = q=2 > 1, modi�esfratal properties of the underlying geometry leading to a spae�time withthe Hausdor� dimension DH � 3. The MC simulations [17,18℄ were done for = 4 whih is for tehnial reasons an optimal hoie:  = 4 is large enoughto allow for observing for relatively small latties the e�ets of rossing the = 1 barrier and on the other hand it is still not very large from the pointof view of MC simulations, in partiular of the omputer time needed toupdate the matter setor, whih grows linearly with . We stik here to = 4.As mentioned we shall use fermioni partile to probe geometrial prop-erties of the Lorentzian bakground. More preisely, we shall do this bystudying the saling properties of the lowest part of the spetrum of theDira�Wilson operator.We onsider a system of q speies of Ising �elds on dynamial Lorentziantriangulations with N triangles and T time slies. The anonial partitionfuntion of this system reads:Z(q)(�) = Xl2LN;T �Zl(�)�q; (1)where the sum runs over all triangulations l from the set of Lorentziantriangulations LN;T with N triangles and T time slies. Eah triangulationl is dressed with q speies of independent Ising spins and thus the weight ofeah triangulation in the ensemble is given by the q-th power of the partitionfuntion of a single Ising �eld on this triangulation:Zl(�) =Xf�gl exp �X(ab) �a�b!: (2)Here a; b and (ab) denote verties and links of the Lorentzian triangulationl, respetively. Spins live on verties. Eah spin �a assumes two values�a = �1. The sum f�gl runs over all 2N=2 spin on�gurations of one spinfamily on the lattie l. Although spin families are independent on a giventriangulation, they are not independent in the ensemble of triangulatonssine they interat through dynamial latties, whih are summed over inthe partition funtion (1).The partition funtion for an individual spin family an be rewritten asa partition funtion for Ising spins living on verties of the dual lattie l or



Fermions in 2D Lorentzian Quantum Gravity 3991equivalently on triangles of the original lattie. The dual temperature �� isrelated to � as tanh�� = exp�2�. The equivalene between the originaland dual model holds up to �nite size e�ets [23℄. The Ising model is alsoequivalent to a model of Wilson fermions for Majorana �elds loated ontriangles: Z(K) = Xl2LN;T �Zl(K)�q; (3)where eah Zl stands for for the partition funtion for Majorana fermionson a lattie l:Zl(K) = Z Yi d �	 id	i exp � 12Xi �	i	i +KXhiji �	iHij	j!= Z Yi d �	id	i exp �Xij �	iDij	i! (4)with fermions loated at the enters of triangles i; j; : : : . The Dira�Wilsonoperator D = 1=2 +KH onsists of a mass part and a hopping term on-trolled by the hopping parameter K. The sum in the hopping term runsover all oriented pairs hiji of nearest triangles on the triangulation l. Thehopping operator Hij an be expressed in loal frames as:Hij = 12 (1 + ~nij~)Uij ; (5)where ~nij is a vetor of the loal derivative whih goes between the neigh-bours i and j and Uij is a spin onnetion in the spinorial representation. Theomponents of the spinors 	i are given in the loal frames. The spin onne-tion matries allow for parallel transport of spinors between neighbouringframes and for realulating spinor omponents. The hopping parameter Kis related to the Ising temperature as:K = e�2�p3 = tanh(��)p3 : (6)The ritial temperature of the Ising model orresponds to the ritial valueof the hopping parameter for whih fermions beome massless. The rit-ial value for the Eulidean gravity an be analytially determined �r =12 ln 13185 = 0:21627 : : : [26℄. It orresponds to the ritial value of the hoppingparameter Kr = 85p3=393 = 0:3746 : : : whih should be ompared with theritial value on the regular triangulated lattie: Kr = 1=3 = 0:3333 : : : [26℄.As one an see, the interation with a random lattie dresses the ritial value



3992 L. Bogaz, Z. Burda, J. Jurkiewizof the hopping parameter similarly as interations with gauge �elds in lattieQCD. As we shall see the dressing of the hopping parameter is di�erent forLorentzian gravity.The matrix of the Dira�Wilson operator an be easily read o� from theequation (4). The spetrum of the Dira operator is related to the propaga-tion of a fermioni partile through the lattie. The smallest eigenvalues arerelated to the e�etive mass of this partile. For an in�nite lattie and atthe ritial value of the hopping parameter the theory desribes a masslessMajorana fermion. For a �nite lattie there exists a non-vanishing mass gapwhih separates the lowest part of the spetrum from zero. This mass gap isminimal for ertain value of the hopping parameter whih we will refer to aspseudo-ritial. We will denote this value as K� and the orresponding massgap as M�. The two values hange with the lattie size N and are expetedto approah their limiting values K� ! Kr and M� ! 0 for N ! 1. Inpartiular one expets the saling:M� � N�1=dH (7)with an exponent dH whih is related to the fratal properties of the under-lying geometry. For an isotropi system, like for instane Eulidean gravityon a regular lattie, this exponent orresponds to the Hausdor� dimensionDH. Lorentzian lattie is anisotropi. Its fratal dimensions in the temporaland spatial diretions hange with the matter ontent [17, 18℄. The spatialand temporal asymmetry beomes very transparent when one rosses the = 1 barrier. In this ase the system forms a bubble whih is supplementedby a narrow long nek. Denote the temporal extension of the bubble by TBand spatial by LB. The temporal and spatial extensions of the bubble saledi�erently with the size, NB, of the bubble TB � N1=DHB and LB � N1=ÆhB .The fratal dimensions DH and Æh are not independent. Using the relationNB � TBLB one an see that 1DH + 1Æh = 1 : (8)In partiular, for  = 1=2 the two exponents are DH = 2 and Æh = 2, merelyre�eting the fat that the bubble is not developed and the temporal size ofthe bubble orresponds to the temporal extension of the system TB � T andorrespondingly LB � N=T . The situation hanges dramatially for  = 4.In this ase, DH = 3 and Æh = 3=2. In view of this asymmetry the followingquestion arises. The saling of the lowest part of the spetrum of the Diraoperator is expeted to be ontrolled by the lowest momentum and thus inthis ase one an expet the mass exponent to be dH = Æh. On the otherhand as disussed in [17,18℄ matter �elds oupled to Lorentzian gravity even



Fermions in 2D Lorentzian Quantum Gravity 3993above  = 1 barrier have �at spae exponents whih means that the �eldsbehave e�etively as in a �at 2d bakground. Aording to this hypothesisone should observe the value dH = 2 of the mass exponent. Whih of thesenarios is realized in the system, is one of the questions addressed here.3. Numerial set-upLet us shortly desribe our `experimental' set-up. We use a MC generatorto simulate a system of a given size N and a given temporal extent T . Theaverage number of verties per slie is L = N=2T and hene the lattieasymmetry is � = T=L = 2T 2=N . The bulk thermodynami properties ofthe system are expeted to be independent of � . This parameter an be thusused to minimize �nite size e�ets.Geometry of the lattie is updated by the standard loal algorithm basedon a pair of mutually reiproal moves: split and join operations [17℄. Thetransformations preserve the temporal length of the system T but hangethe lattie size N $ N + 2. In order to ensure ergodiity of this algorithmone allows the system size to �utuate. In pratie one does it by simulatinga system with a partition funtionz(�) = Xl2LT exp���n� 12�2 (n�N)2��Zl(�)�q (9)with a volume n whih may �utuate. In order to avoid too large �utuationsan external potential U(n) = �n+ (n�N)2=(2�2) is added to the ation in(9). This potential onstrains the volume �utuations to a neighbourhoodof N . The width of the distribution of n is of order �. If the parameter � isoptimally tuned, the maximum of the distribution lies exatly at N .The algorithm generates a smeared distribution of volumes n but mea-surements are performed only at n = N . The ondition n = N uts outfrom the ensemble (9) a sub-ensemble with the partition funtion whih isequal to (1) up to a onstant fator irrelevant for statistial averages at N .We onentrate the MC measurements on the spetrum of the Dira�Wilson operator Dij (4). Eah triangle on the lattie is dressed with atwo-omponent spinor, and hene for a lattie with N triangles the operatoris represented by a 2N�2N matrix. The evaluation of the spetrum requiresa time proportional to N3. This is a very time onsuming operation. Weuse the redution to the Hessenberg form and then QR deomposition pro-edure [27℄. Many problems of interest are related to the behaviour of thelowest part of the spetrum. We use the Lanzos algorithm to determine theposition of the lowest eigenvalues. The Lanzos algorithm is most e�ientfor this purpose [27℄.



3994 L. Bogaz, Z. Burda, J. Jurkiewiz4. ResultsThe spetrum of the Dira�Wilson operator is omplex. As far as thelowest part of the spetrum is onerned it is more onvenient to study theMajorana�Wilson operator instead of the Dira�Wilson oneD = CD (10)beause it has a purely imaginary spetrum. C is the harge onjugationmatrix. Indeed, if one hooses a representation in whih the two-dimensional matries are real: 1 = �3, 2 = �1, so is the harge onjugation matrix,C = i�2 = � and the whole matrix of the Majorana�Wilson operator D.Sine the matrix D is also antisymmetri, it is anti-Hermitian.From here on, when we refer to the lowest eigenvalues, we mean thelosest to zero eigenvalues of the Majorana�Wilson operator. In fat, asmentioned already, it is rather this operator than the Dira�Wilson one,whih is related to the Ising spins and the onformal �eld with  = 1=2.The onstrution of the Dira�Wilson operator requires an introdutionof a �eld of loal frames on a simpliial manifold whih loally de�nes gammamatries and a spin onnetion U . An expliit onstrution of the operatoris given in [22, 23℄.A snapshot of the spetrum of the Dira�Wilson operator generated ina MC simulation of Lorentzian gravity is shown in Fig. 2. It should beompared with the spetrum on Eulidean lattie. As one an see thereare some visual di�erenes for eigenvalues with large absolute values. Thedi�erenes obviously have the origin in the di�erent properties of Lorentzianand Eulidean latties on small distanes. What is of physial interest is thesmall eigenvalue behaviour of the spetrum beause it is responsible for thelarge distane behaviour and the universal ritial properties of the system.This behaviour is governed by the saling of the part of the spetrum losestto the origin of the omplex plane. As will be shown, it is given by themass exponent whih has a di�erent value for the Lorentzian than for theEulidean ase. The spetrum hanges with the hopping parameter K. Themain e�et of this hange on the shape of the spetrum is that it gets resaledin the omplex plane around the point (1=2; 0) as follows diretly from theform of the operator 1=2 +KH whih is a sum of a onstant operator 1=2and a random operator H multiplied by the fator K. In addition to thise�et, the matter setor in�uenes geometry of the lattie and hene alsothe randomness enoded in the operator H.When the hopping parameter hanges from K = 0 (whih orrespondsto � = 1) to K = 1=p3 (� = 0) the spetrum broadens from a spetrumloalized at the point (1=2; 0) to an extended shape. In the ourse of thebroadening the laws-shaped part of the spetrum passes lose to the origin
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Fig. 2. Spetra of the Dira�Wilson operator measured in MC simulations forLorentzian lattie with N = 64 triangles, � = 2 and K = 0:3486 (top), and forEulidean lattie with N = 64 triangles, K = 0:364 (bottom).of the omplex plane. The value ofK, at whih the distane of eigenvalues tothe origin is smallest, orresponds to a pseudo-ritial value K�. A similare�et is seen in the movement of the lowest end of the spetrum of theMajorana�Wilson operator whih �rst moves towards zero when K growsfrom zero to K� and then moves away from zero when K� further inreases.We use this observation to determine the mass gap M� for the system witha given volume in the following way. We determine the mean-value M ofthe distribution of the lowest eigenvalue of the Majorana�Wilson operatorfor the system with a size N and a hopping parameter K. Then we plot thedependene M = M(N;K) as a funtion of K (see Fig. 3). Combining thequadrati interpolation with the jak-knife method we �nd the minimumM�(N) of the plotted funtion We repeat the same proedure for di�erentvolumes N to obtain the dependene of the pseudo-mass on the volume ofthe system M�(N). Eventually we �t the experimentally determined pointsM�(N) to the saling formula (7) to determine the optimal value of the
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NFig. 4. Mas gap M� of fermioni partile as a funtion of lattie volume N , forlatties with deformation parameter � = 4 and onformal harge  = 1=2 (upperline) and  = 4 (lower line). The �t M�(N) = aN�1=dH gives a = 1:02(2) anddH = 2:11(5) for  = 1=2 and a = 1:44(2) and dH = 1:77(3).saling exponent dH. As an example, in Fig. 4 we show the experimentaldata points and the best �ts to (7) for  = 1=2 and  = 4. The system sizevaries in the range from N = 128 to N = 512 and the asymmetry parameteris � = 4 for the presented data. A value of the pseudo-ritial hoppingparameter depends on the matter ontent. For example for the lattie sizeN = 128 it is K = 0:3482(2) and K = 0:3536(8) for  = 1=2 and  = 4,respetively. The orresponding value for Eulidean lattie of the same sizeis K = 0:370(1).



Fermions in 2D Lorentzian Quantum Gravity 3997The shape of the spetrum of the Dira�Wilson operator for the pseudo-ritial value of the hopping parameter K does not hange visually whenthe system size N grows, exept for the two law ends whih approah theorigin of the omplex plane as N�1=dH . The two ends eventually lose at theorigin when N beomes in�nite. This e�et orresponds to the appearaneof a massless partile on an in�nite lattie. The shape of the bulk part ofthe spetrum does not hange but merely beomes denser for larger latties,whih means that the typial distane between eigenvalues beomes smallerfor larger system volumes.The best �t to the saling formula (7) gives a value dH = 2:11(5) for = 1=2. This value should be ompared with dH = 2:87(3) measured forEulidean gravity interating with the  = 1=2 matter [24℄. Fermioni par-tile in the Lorentzian bakground, in ontrast to Euildean gravity, detetsthus a �at spae exponent.For the ase  = 4 for whih geometry of the lattie hanges dramati-ally, the value of the mass exponent is dH = 1:77(3). Its value learly movestowards the spatial saling dimension Æh = 3=2 whih is ditated by asymme-try of fratal properties of the lattie (8). As mentioned before, Lorentzianlattie oupled with matter �eld for  = 4 onsists of two distint parts: ofthe bubble whose extensions sale as TB � N1=DHB and LB � N1=ÆhB and of anarrow nek whose spatial width does not sale. The presene of the narrownek introdues a �nite size e�et to the measurements of the spetrum ofthe Dira operator. This e�et is probably the soure of the deviation ofthe measured value dH = 1:77(3) from Æh = 3=2. One should try to reduethe �nite size e�et by going to larger lattie for whih the ontribution ofthe nek to the spetrum should gradually derease beause the number oftriangles on the bubble grows with lattie size muh faster than the numberof triangles in the nek. This is however very time onsuming beause thetime for olleting the spetrum grows typially as the third power of thesystem size. 5. SummaryWe implemented fermions to Lorentzian gravity and determined thespetrum of Dira�Wilson operator. We alulated the mass gap expo-nent dH = 2:11(5) for a single massless fermioni partile propagating inthe Lorentzian bakground and interating with it. The omputations weredone for latties of size up to N = 512 triangles. The measured value of themass exponent seems to be onsistent with the anonial dimension d = 2,if one takes into aount a possibility of �nite size e�ets. For  = 4, abovethe  = 1 barrier, we measured dH = 1:77(3). The value of the exponentmoved towards the index Æh = 3=2 whih ontrols the saling of the lowestspatial momentum. In fat, if we expliitly introdue a �nite size orre-



3998 L. Bogaz, Z. Burda, J. Jurkiewiztion to the formula (7) of the form M� � N�1=dH(1 + =N) the value ofthe exponent gets shifted to dH = 1:7(1) indiating indeed the presene ofa deviation from the straight line in the measured volume range. It wouldbe very helpful to extend the simulations to larger systems to see whetherthe observed tendeny will indeed bring the exponent to the expeted value3=2. As we mentioned, the measurements of the spetrum for larger volumeare very time onsuming due to the strong dependene of the required CPUtime on the volume. We plan to perform these omputation in the future.The measurements of the spetrum of the Dira operator enable oneto diretly detet in the matter setor hanges of the fratal struture oftwo-dimensional Lorentzian gravity. In other measurements of the ritialindies of the matter setor one namely sees the �at spae ritial exponentseven above the  = 1 barrier, for example, the Onsager exponents [17, 18℄for the Ising model. The spetrum of the Dira�Wilson operator is sensitiveto hanges of fratal struture and therefore it provides a pratial tool fora detetion of fratal properties of the geometrial bakground.This work was partially supported by the Polish State Committee forSienti� Researh (KBN) grants: 2P03B 09622 (2002-2004), 2P03B 00624(2003) and by EU Network HPRN-CT-1999-00161.REFERENCES[1℄ J. Ambjørn, J. Jurkiewiz, Phys. Lett. B278, 50 (1992).[2℄ M. Agishtein, A.A. Migdal, Nul. Phys. B385, 395 (1992).[3℄ Z. Burda, Ata Phys. Pol. B 29, 573 (1998).[4℄ E. Brézin, C. Itzykson, G. Parisi, J.B. Zuber, Comm. Math. Phys. 59, 35(1978).[5℄ F. David, Pro. Les Houhes Summer Shool, Session LVII (1992).[6℄ D.V. Boulatov, V.A. Kazakov, Phys. Lett. B186, 379 (1987).[7℄ A.M. Polyakov, Phys. Lett. B103, 207 (1981).[8℄ V. Knizhnik, A. Polyakov, A. Zamolodhikov, Mod. Phys. Lett. A3, 819(1988).[9℄ J. Ambjørn, R. Loll, Nul. Phys. B536, 407 (1999).[10℄ J. Ambjørn, J. Jurkiewiz, R. Loll, Phys. Rev. Lett. 85, 924 (2000).[11℄ B. Durhuus, C.W.H. Lee, Nul. Phys. B623, 201 (2002).[12℄ P. Di Franeso, E. Guitter, C. Kristjansen, Nul. Phys. B567, 515 (2000).[13℄ J. Ambjørn, J. Correia, C. Kristjansen, R. Loll, Phys. Lett. B475, 24 (2000).[14℄ J. Ambjørn, J. Jurkiewiz, R. Loll, Phys. Rev. D64, 044011 (2001).[15℄ J. Ambjørn, J. Jurkiewiz, R. Loll, Nul. Phys. B610, 357 (2001).
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