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The aim of this paper is twofold: to provide a rather detailed and self-
contained introduction into the physics of the Disoriented Chiral Conden-
sate (DCC) for the photon (and linear) collider community, and to indicate
that such physics can be searched and studied at photon colliders. Some
side tracks are also occasionally followed during the exposition, if they lead
to interesting vistas. For gourmets, the Baked Alaska recipe is given in the
appendix.

PACS numbers: 12.39.Fe, 12.38.Mh

1. Introduction

The twentieth century witnessed tremendous progress in our understand-
ing of the fundamental building blocks of matter and their interactions. Not
the least role in this success was played by continuous advance in accelerator
technologies. At the beginning of the new century, accelerator-based exper-
iments are expected to preserve their leading role in the field of high-energy
physics [1].

Over the seven decades since Lowrence’s first cyclotron one has observed
a nearly exponential growth in effective energies of the accelerators by the
increment factor of about 25 per decade (the Levingston law [2]. By the
effective energy one means the laboratory energy of particles colliding with
a proton at rest to reach the same center of mass energy). At that the cost
per unit effective energy has decreased by about four orders of magnitudes.
This is indeed a remarkable trend and it was fed by a succession of new ideas
and technologies [2]: the principle of phase stability, strong focusing, high
impedance microwave devices, superconducting technologies, storage rings
and beam cooling.

(4019)
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However the accelerators were becoming ever bigger and more expensive
on the whole. We have already entered “the dinosaur era” with monstrous
machines and the Levingston tendency is slowing its pace. The problem
with the circular ete™ colliders is that the synchrotron radiation severely
limits maximal attainable energy. It is believed that this technology has
reached its limits at LEP and no other bigger project of this type will be
ever realized. Instead the linear eTe™ colliders are considered as a viable
alternative. Extension of the existing linear accelerator technology towards
higher accelerating gradients and smaller emittance beams is expected to
make real a design of the TeV scale linear colliders. Further progress with
the conventional techniques is problematic unless some radically new idea
appears. In fact the high gradient efficient acceleration is a tough thing.
In a free electromagnetic wave the F field is at right angle to the particle
momentum and no efficient acceleration can be achieved. For efficient accel-
eration one has to have matter very near or within the beams. Then energy
considerations combined with the survivability of the accelerating structure
limits the attainable acceleration gradient [1,2].

The proton circular colliders still have some reserve left because, owing to
the heaviness of the proton, the synchrotron radiation constraint is expected
only at very high energies. The Large Hadron Collider (LHC) with 7 TeV
proton beams is under construction now. LHC is a very important high-
energy physics project and we believe that its results will determine the
future shape of the field. An analogous collider with the center of mass
energy about 100 TeV seems also feasible and maybe the Very Large Hadron
Collider (VLHC) will be the last monstrous dinosaur of this type.

Other possibilities include the muon colliders first suggested by Budker
many years ago [3]. Muons, being about 207 times heavier than electrons,
experience much less radiative energy losses, which are inversely proportional
to the forth power of the particle mass. It seems that the efficient multi-
TeV muon colliders can be constructed despite the fact that the muon is an
unstable particle [3].

But why all the fuss? Are these future very complex and costly ac-
celerators really necessary? The past research led to the triumph of the
Standard Model. At that the revolutionary 70’s were followed by decades
of the more or less routine verification of the Standard Model wisdom —
the situation eloquently expressed by Bjorken some time ago [1]: “a theorist
working within the Standard Model feels like an engineer, and one work-
ing beyond it feels like a crackpot”. Since then “crackpots” have developed a
string theory as the main challenge to the standard paradigm [4]. This “The-
ory of Everything” is full of deep and beautiful mathematical constructs and
is generally considered as the most promising road towards understanding
fundamental physics. The only trouble with it is that it will be extremely
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difficult to check experimentally the predictions of this theory, because the
most direct predictions refer to the nature of space—time at the Plank scale,
~ 10! GeV, and no experimental method seems to be ever able to access
such energies in a foreseeable future. So the string theorists are doomed to
face the fatal question “can there be physics without experiments?” [5] for
a long time. Therefore, on the one hand, we have a clear experimental and
theoretical success up to the electroweak scale, ~ 100 GeV, where the Stan-
dard Model reigns, and, on the other hand one has a very ambitious theory
without any clues how to check it experimentally. But what lies in between,
worth of billions of dollars to spend in future accelerators and detectors, to
investigate?

Despite its splendid success, nobody doubts that the Standard Model
will break down sooner or later. There are several reasons why the Standard
Model cannot be the final theory and why some new physics beyond the
Standard Model is expected [6]:

e SU(3) x SU(2) x U(1) symmetry group defines separate gauge theories
with three different coupling constants. The conceptual similarity of
these theories is begging for unification.

e The family problem — why are there three quark-lepton families?

e The origin of the quark and lepton masses and mixing angles, as well
as of the CP violation.

e Solid experimental evidence of the neutrino oscillations require non-
vanishing neutrino masses and therefore some extension of the Stan-
dard Model. However, very minimal extension might be sufficient to
accommodate neutrino masses.

e The strong CP problem — why is the allowed CP violating 6-term in
the QCD Lagrangian very small or absent?

e The hierarchy problem — why is the electroweak scale so different
from the Plank scale?

e The cosmological constant problem — why gravity almost does not
feel the presence of various symmetry-breaking condensates?

But how far is this expected new physics? The logical structure of the
Standard Model itself hints that quite interesting and crucial things can
happen in the realm of the next generation of the future colliders. One of
the main guiding principles of the Standard Model, which plays a key role in
the theory, is gauge symmetry. The historical roots of the gauge invariance
are reviewed by Jackson and Okun [7] and the review embraces about two
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centuries. In fact one can go even further through history, another twenty
centuries or so up to the times of the ancient Greece, and find the roots in
the most widely known theorem from Euclid’s “Elements of Geometry”: The
sum of the interior angles of a triangle equals 180 degree. Euclid deduces
this theorem from the so-called parallel axiom. All efforts to avoid this
sophisticated axiom failed and finally led to the discovery of non-Euclidean
geometry. But we do not follow this track. Instead, we start to generalize
Euclid’s 180 degree theorem step by step [8]. The first step involves the
concept of exterior angle: the interior angle « and the corresponding exterior
angle 3 are related by a4+ = . Then the theorem immediately generalizes
from triangles to arbitrary polygons: The sum of the exterior angles of a
polygon equals 27.

Let us now consider a triangle whose edges are not straight lines but
some plane smooth curves. When the unit tangent vector is transported
by a length Al along the smooth curve, it turns through an angle A¢. The
limit of the ratio A¢/Al, when Al — 0, defines the geodesic curvature of the
curve. Therefore, for such a curved triangle the 180 degree theorem takes
the form

Z ext. angles + /geod. curv. = 27,

where the integral is along the triangle edges. This follows from the fact
that any curved triangle can be approximated by a polygon and then the
total turning of the tangent along the edges (the integral geodesic curvature
of the edges) is given by the sum of the corresponding exterior angles.

One can define the geodesic curvature by using normals instead of tan-
gents, because the normal rotates exactly as the tangent does when a point
moves along the curve. The advantage of using normals is that one can gen-
eralize the concept of curvature to surfaces which have no unique tangent
direction but the direction of the normal is still well defined. The corre-
sponding generalization is called the Gaussian curvature [8] and the 180
degree theorem for a general triangle on a curved surface looks like

Z ext. angles + /geod. curv. + / Gaussian curv. = 27. (1)

Finally, let D be a domain on the surface whose boundary 9D is formed
by one or more sectionally-smooth curves. We can triangulate D with tri-
angles which have geodesic inside (not belonging to dD) edges. For each
triangle we will have (1). If we add these equations up and rearrange the
angles cleverly we get the Gauss-Bonnet formula 8]

Zext. angles + /geod. curv. + // Gaussian curv. =27 x(D), (2)
oD D
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where x(D) = v — e + f, v being the number of vertices, e — the number
of edges, and f — the number of triangles in the triangulation; x(D) is the
topological invariant of D called its Euler characteristic.

The Gauss-Bonnet formula (2) is indeed a long way from the 180 degree
theorem, but the potential for generalization is still not exhausted. The
ideas of Gauss about the curvature and the geometry on the surface was
further generalized by B. Riemann. It was soon realized that most proper-
ties of the Riemannian geometry follows from its Levi—Civita parallelism, an
infinitesimal parallel transport of the tangent vectors. The important con-
cept of the Levi—Civita connection emerged. All these is the mathematical
basis of Einstein’s general relativity. Further generalization of the concepts
of Levi—Civita connection and curvature to more general, than Riemannian,
manifolds lead to the notion of fiber bundles — the mathematical basis of
the gauge field theories [9]. Even magnetic monopoles are related to the
generalized Gauss-Bonnet theorem [10].

Therefore, both general relativity and gauge theory can be considered as
stunning generalizations of the 180 degree theorem of the Euclidean geome-
try! However, returning to the Standard Model, this is not the whole story.
Gauge symmetry is important, very important, in the Standard Model. But
the real shape of the world is determined by its spontaneous violation. Then
a big question is why and how the SU(2) x U(1) gauge symmetry of the Stan-
dard Model is broken. So far the phenomenologically adequate answer to this
question is given by the introduction of the SU(2)-doublet of scalar fields,
the Higgs doublet, whose couplings and vacuum expectation value determine
fermion masses and mixings. However there are too many free parameters,
not fixed by the theory, indicating that in fact we do not understand what
is going on. That is why the discovery of the Higgs boson and investigation
of its properties are considered as having the paramount importance.

At this point photon colliders enter the game, because in the v+ collisions
the Higgs boson will be produced as a single resonance. The idea of photon
colliders was proposed many years ago in Novosibirsk [11,12]. You have to
have a linear eTe™ collider and a powerful laser (several Joules per flash) to
realize this idea. High-energy photons are produced by Compton backscat-
tering of the laser light on the high-energy electrons near the interaction
point. After the scattering, the photons will have almost the same energy
as the initial electrons and small additional angular spread of the order of
inverse y-factor of the initial electron. This additional angular spread does
not effect much the resulting 7y (or ye) luminosity if the conversion point is
close enough to the interaction point. The 7+ luminosity can be made even
larger than the eTe™ luminosity at the same collider by using the initial
electron beams with smaller emittances than allowed in the ete™-mode by
beam collision effects.
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The detailed development of the photon collider idea [13—-15] showed that
their construction is a quite realistic task and requires a small additional
(~ 10%) investment compared to the linear collider price. The solid state
laser technologies with required pulse power and duration already exist. A
free electron laser with variable wave length is also an attractive alternative
[16].

The expected physics at high-energy photon colliders is really exciting
and very rich. It includes [15,17,18]:

e Higgs boson physics, both Standard Model and supersymmetric. Es-
pecially one should mention the unique opportunity to measure its
two photon width, as well as the possibility to explore CP proper-
ties of the neutral Higgs boson by controlling the polarizations of the
back-scattered photons.

e Search for supersymmetry. In particular, charged sfermions, charginos
and charged Higgs bosons will be produced at larger rates in v+ col-
lisions than in e*e™ collisions. The e option will enable potential
discovery of selectrons and neutralinos. The photon collider will also
be an ideal place to discover and study stoponium bound states.

e Exploration of the gauge bosons nonlinear interactions.
e Top quark physics.
e QCD-probes in a new unexplored regime.

e Investigation of the photon structure — its hadronic quantum fluc-
tuations cannot be completely determined from the first principles
because the large distance effects contribute significantly. Therefore
various phenomenological models need experimental input for refine-
ments.

e Search for the low-scale quantum gravity, space-time noncommutativ-
ity [19] and extra dimensions.

The last item is exotic enough but one should not forget that [20] “Every time
we introduce a new tool, it always leads to new and unexpected discoveries,
because Nature’s imagination is richer than ours”.

In this paper we would like to indicate that the physical program of
the photon collider can further be enriched if it is considered as a tool to
perturb the QCD vacuum. An interesting phenomenon of the Disoriented
Chiral Condensate formation was discussed earlier in the context of hadron—
hadron and heavy ion collisions. We believe that photon colliders are also
eligible devices to perform such kind of research.
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The paper is organized as follows. We begin with the discussion of the
linear sigma model, which is used as a QCD substitute in the majority of
DCC studies. The idea of the Disoriented Chiral Condensate is explained
and investigated in the third section. The fourth section considers the possi-
bility of the DCC production at photon colliders. The Baked Alaska scenario
is examined in some details. Quantum state of DCC is explored in the next
section. It is mentioned that at photon colliders a direct production of this
state might be possible. In the last section we provide some concluding re-
marks. The references on the subject are very numerous and we list only
a few of them. We hope that an interested reader can find independently
other important contributions which missed our attention.

2. Linear sigma model

The Lagrangian of quantum chromodynamics (QCD) looks “deceptively
simple” [21]. Indeed, it encodes the description of a surprisingly wide range
of natural phenomena, from nuclear physics to cosmology, and nevertheless
is given by the very compact expression

A 1 v
EQCD =q(iD —m)q — ESP GuuGu ) (3)

where

D =04igA, G =0,A, —d,A, —glA,, A), A, = Az%
and A\, a = 1,...,8 are SU(3) Gell-Mann matrices. The theory (QCD)
which is defined by this Lagrangian “embodies deep and beautiful principles”
and is one of “our most perfect physical theories” [22]. However, if you
are interested in applying this “most perfect physical theory” to understand
the low-energy experimental data, you will not be particularly happy by
discovering at least three reasons [21] for your grievance:

e The Lagrangian (3) describes quark and gluon degrees of freedom,
while “correct” degrees of freedom for low energy phenomena are their
bound states — various colorless hadrons.

e Unlike quantum electrodynamics, gluons have self-interactions which
render QCD in a nonlinear theory with the corresponding increase in
the computational complexity.

e At low energies the effective coupling constant is large and usual per-
turbative methods are not applicable.
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However, things are not so bad as they look. It turns out that many impor-
tant features of the low-energy dynamics are governed by symmetries of the
QCD Lagrangian and their breaking patterns. For light quark flavors the
QCD Lagrangian possesses (approximate) Ug(3) x Up(3) chiral symmetry.
The corresponding transformations are

i20 99 i20 90
qr — € 2 "RQRr, qL — € 2 "Lqr,

Y DN
2a ga e ga
gr — €' 2 "Rqr, q — €2 "Lqp, (4)

where \g = \/g Fates of these symmetries are different. The first line

corresponds to the Uy (1) x U4(1) transformations with Oy, 4 = £ (60 £ 6%).
The singlet vector current, generated by Uy (1) transformations, remains
conserved in the low-energy limit and the corresponding conserved charge
is identified with the baryon number. On the contrary, Uy(1) symme-
try is broken due to quantum anomaly. As a result, ’ meson becomes
much heavier compared to other pseudoscalars. Non-Abelian symmetries
SUR(3) x SUL(3), as well as Uy(1), are further broken spontaneously due
to a nonvanishing expectation value of the quark-antiquark condensate:
(grqr) # 0. Eight pseudoscalar mesons (m, K, 7) are Goldstone bosons asso-
ciated with this symmetry breaking pattern SUgR(3) x SUL(3) — SUy(3). In
fact these Goldstone bosons acquire small masses because quark mass terms
in the QCD Lagrangian break explicitly the Ug(3) x Ur,(3) chiral symmetry.

Having in mind this picture of QCD symmetries and their breaking, one
can try to model it by some effective low-energy theory for mesons, which are
excitations on the quark—antiquark condensate ground state [23,24]. One
has two kinds of excitations, scalar and pseudoscalar mesons, because

qrqr. ~ 49 + qvsq -

Therefore, for three light quark flavors, one needs a complex 3 x 3 matrix
field @4 ~ GrbgLa to parametrize the scalar (S) and pseudoscalar (P) meson
nonets:

A A
@:SH‘PE7“(0(1+m)+7°(00+m0). (5)

The imaginary unit is introduced to make the pseudoscalar matrix P Her-
mitian: ¢P corresponds to qysq, but (7vs5q)" = —qvsq-
The effective Lagrangian for the field @ should have the form [25]

L=Sp (0,8 0"®) -~V (®, &) + Lgg, (6)

where Lgp describes symmetry breaking effects and V(®, ") stands for
self-interactions of the meson field. If we want the theory to be renormaliz-
able (although for effective theories this requirement is not obvious), quartic
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couplings are at most allowed in V(&, #1). The chiral transformations (4)
read in terms of the @ field

Up(l) : & — QiR 0Y pe—iR 0y _ P,
Ua(l) : 0 e P ge T 0 =l
SUL(3) : & — i 50 gemi¥ 0%
SUA(3) : D — oI 0% pei 0% (7)

Therefore, Sp (#+ @) and Sp (#+®)? are invariant under these transforma-
tions and the most general form of V (@, 1) is

V(®, 8%) = m?Sp (61 &) + ASp (67 8)> + X [Sp (67 8)]°.  (8)
The symmetry breaking part of the effective Lagrangian has the form
Lsg =SpH(®+ &)+ ¢ [Det(®) + Det(97)] . 9)

Here the first term describes explicit symmetry breaking due to nonzero
quark masses. The matrix H represents the constant nine-component ex-
ternal field: H = )‘Q—Gha + %‘)ho. In practice isospin symmetry and PCAC
are good approximations because u and d quark masses are very small. To
preserve these symmetries, the most general possibility is to have only two
nonzero constants hg and hg [26]. hy gives a common shift to pseudoscalar
(and scalar) masses, while hg breaks the SUy (3) unitary symmetry down
to isospin SUy(2) and generates the mass differences between w, K and
7, as well as between their parity partners (the phenomenological situa-
tion in the scalar nonet is not completely clear yet [25]). The determinant
term is invariant under SUy (3) x SU 4(3) transformations from (7), because
Det(AB) = Det(A)Det(B) and Det(ei%aaa) = 1. However it violates Uy4(1)
symmetry down to Z4(3), because Det(ei)‘oeg) = 1 only then X84 = %”n, n
being an integer. This explicit breaking of U4 (1) removes the mass degener-
acy between 7' and 7 [27,28] and, therefore, is very important for describing
the pseudoscalar nonet. Another interesting property of the determinant
term is that it gives equal and opposite sign contributions to the masses
of the corresponding scalars and pseudoscalars [28]. Therefore, the large
splitting between scalars and pseudoscalars is expected solely from the fact
that ' is much heavier than 7 [28]. This is exactly the situation observed
in experiment. Physics behind the determinant term is related to the U4(1)
quantum anomaly, mentioned above, caused by nonperturbative effects in
the QCD vacuum due to instantons [29]. Note that the i [Det(®) — Det(®1)]
term is not allowed as it violates P and CP [30]. Indeed, under charge con-
jugation @ — &7 which does not change the determinant. While under
parity & — &1 and Det(®) — Det(® ™) changes the sign.
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The linear sigma model, as defined by (6), (8) and (9), has six free param-
eters to be fixed from experiment: m2, X, X, ¢, hg and hg. Five parameters
can be fixed by using experimental information from the pseudoscalar sec-
tor alone, for example [25,31], pion and kaon masses, the average squared
mass of the n and ' mesons 0.5 (m?7 + m%,), and two decay constants f
and fr. To fix the X' coupling constant, which violates the OZI rule [32],
some experimental information from the scalar sector is required, for exam-
ple [25], the sigma meson mass. The other scalar masses, the scalar and
pseudoscalar mixing angles, and the difference m??, — m% are then predicted
quite reasonably [25,31,32].

To summarize, the linear sigma model is an attractive effective theory
candidate for description of the low energy QCD dynamics. Phenomenolog-
ically, it is quite successful and explains various puzzles concerning scalar
and pseudoscalar mesons [32]:

e why the pion and kaon are light

e why the 7’ is so heavy

e why the scalar mesons are much heavier than pseudoscalars
e why the sigma meson is so light compared to other scalars

e the pseudoscalar and scalar mixing angles

e the accidental degeneracy of the ag(980) and fp(980) mesons
e the strong coupling of f5(980) to KK

e two photon widths of a((980) and f(980) mesons

In the next sections we will be interested in some qualitative features of
the dynamics described by the linear sigma model. At that we will make fur-
ther simplification by neglecting the effects of the strange quark. In the two
flavor case, one can assume that the field @ in the Lagrangian is the 2x2 com-
plex matrix. However, SU(2) has a unique property among SU(N) groups,
its fundamental representation being equivalent to its complex conjugate.
Owing to this property, two linear combinations @ + 79 ®*1 and @ — 19 ®* 1
both transform irreducibly under the SUg(2) x SUL(2) group [24]. Each
of them has only two independent complex matrix elements. Therefore, it
is possible to construct two flavor linear sigma models by using only four
lightest mass eigenstates 7%, 7° and o. Hence we take

77,
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7; being the Pauli matrices. Then

1 1 1
oto =7 (0" +7%), Sp(9F @) =2 [Sp(e79)]" = ¢ (o° +72)?
and, therefore, the Lagrangian takes the form (up to the irrelevant constant

term)

1 1 As
L=30u000+ 307 0%~ T (o +7° —v*)" + Ho,  (10)
here )
1 m
ASZAI+§>‘7 ’U2:—>\—S, H:ho

This is the classic linear sigma model of Gell-Mann and Levy [33]. Its free
parameters \g, v and H (the strength of the symmetry preserving term, the
location of its minimum and the strength of the symmetry-breaking term)
can be fixed by using pion and sigma masses and PCAC as follows [34]. In
the chiral limit (then H = 0) the linear sigma model potential
Vg = ﬁ( 2-{—7_1"2—1)2)2
4

has a famous “Mexican hat” shape. Therefore, the chiral symmetry is spon-
taneously broken because the sigma field develops a nonzero vacuum expec-
tation value (o) = v (the pion field, being pseudoscalar, cannot acquire a
nonzero vacuum expectation value without violating parity). The symmetry
breaking term Vs = —Ho tilts the Mexican hat and now (o) = ¢ # v.
Shifting the sigma field by its vacuum expectation value, o = o9 + o', and
isolating quadratic terms nga,g and mT’Z‘ 2 in the potential Vg + Vgg, we
get meson masses

m?r = )\S(Ug - 1)2), mg = )\5(303 - 1)2). (11)

The vacuum expectation value o is determined from the condition

oV (o,7)
-\ 7 =0,
do  |z=g
which gives
H = \00(02 — v?) = ogm?. (12)

Besides (11) and (12), we need one more relation to determine four quantities
As, v, H and op. This relation is given by PCAC:

sy = fam2 7. (13)
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Indeed, the axial-vector current j5u is nothing but the Noether current as-
sociated with the SU4(2) transformations

$ — o3l §oinli, (14)
In terms of the o and 7 fields, the infinitesimal form of Eq. (14) reads
00 = —m;0;, o0m; = 06;. (15)
The divergence of j:rm is given by the Gell-Mann-Levy equation [27]

a(L)

0" Tou(@) = ~5py

where 0L is the variation of the Lagrangian under (15) with space-time
dependent parameters 6;(z), which equals

0L = 00, m; 0"0; — m;0,0 0"0; — Hr;6; .

Therefore,
8#J§M(x) = —géf(i)) =Hm,;
and comparing with PCAC Eq. (13) we get
H = fﬂmi. (16)
Now from (11), (12) and (16) it is easy to get
00 = fry As= mg’%%mgf v? = % 2 H=fmm?. (17)

The precise values of these parameters are largely immaterial having in mind
idealized nature of the model. In any case, they can be estimated from (17)
if needed. For example, for m, = 600 MeV one gets: As ~ 20, v ~ 90 MeV
and H ~ (120 MeV)3.

3. Disoriented chiral condensate

The linear sigma model potential in the limit H — 0 has a degener-
ate minimum at o? + 72 = v? (in this limit m; = 0 and v = f;). The
vacuum state, we believe our world is based on, points in the o-direction,
(o) = fr, () =0, and, therefore, spontaneously violates the chiral symme-
try. The natural question is whether one can change the vacuum state by
some perturbation. The following analogy is helpful here: SU(2) x SU(2) is
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locally isomorphic to O(4); therefore, the order parameter (@) of the linear
sigma model can be considered as some analog of spontaneous magnetization
of the O(4) Heisenberg ferromagnetic. Then, changing the vacuum state in
the relativistic field theory, which assumes an infinite system, is analogous
to rotating all spins in the infinite magnet simultaneously and is clearly im-
possible. Our universe, although not infinite, is quite large and hence at first
sight we have no means to alter its vacuum state: only one QCD vacuum
state is realized in our world, all other chirally equivalent vacuum states
being unreachable and thus unphysical. However experience with real mag-
nets suggests that this simple argument (as well as virtually all other no—go
theorems) may point not so much to the real impossibility but to the need
of more elaborate imagination. In the case of ferromagnet it is relatively
simple to change the magnetization in some large enough volume. All what
is needed is to apply an external magnetic field. Even such a comparatively
weak field as Earth’s magnetic field can do the job. We are tempting here to
indicate one interesting application of this effect [35]. Above the Curie tem-
perature the rotational invariance is restored in the ferromagnet and there
is no spontaneous magnetization — all record of the previous magnetiza-
tion is lost. As lava from a volcano cools below the Curie temperature the
Earth’s magnetic field aligns the magnetization of the ferromagnetic grains.
By studying such solidified lavas (basalt rocks), geophysicists have recon-
structed a history of the Earth’s magnetic field with a striking result that
the Earth’s magnetic field has flip-flopped many times, once in every half
million years, on the average. But this is not the most interesting part of the
story. Investigation of the ocean floor magnetization revealed a surprising
strip structure. Successive strips of normally and reversely magnetized rock
lied symmetrically on both sides of the volcanic mid-Atlantic ridge. The
explanation of this enigma comes from plate tectonics. On each side of the
ridge the tectonic plates are pulled away, one of it towards Europa and the
other towards America. Lava, emerges from the middle, solidifies, sticks
to the plates and is also pulled away with the magnetic field orientation
recorded in it. So the oceanic floor seems to be a gigantic tape recorder
for reversals of the Earth’s magnetic field! This discovery was crucial in
recognition of Alfred Wegener’s theory of continental drift — the idea which
initially was met with enormous resistance from geophysicists.

Long ago Lee and Wick argued [36] that an analogous domain formation
phenomenon is also possible in the case of quantum field theory with degen-
erate vacuum and in principle there should exist a possibility of flipping the
ordinary vacuum in a limited domain of space to an abnormal one. “The
experimental method to alter the properties of the vacuum may be called
vacuum engineering” [37]. It seems that a new generation of the very high
energy heavy ion and hadron colliders may provide a practical tool for such
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vacuum engineering. The scientific significance of this possibility can hardly
be overestimated, because “if indeed we are able to alter the vacuum, then
we may encounter some new phenomena, totally unexpected” [37].

Disoriented chiral condensate formation is one of the new phenomena
which may happen in very high energy collisions [38,39]. In such a collision
there is some probability that a high multiplicity final state will be pro-
duced with high entropy. Collision debris form a hot shell expanding in all
directions nearly at the velocity of light. This shell effectively shields the
inner region up to hadronization time and then it breaks up into individual
hadrons. The hadronization time can be quite large [40] and during all this
time the inner region has no idea about the chiral orientation of the normal,
outside vacuum. Therefore, if the inner vacuum is perturbed enough in first
instants of the collision to forget its orientation, then almost certainly it will
relax back in the ground state other than the o-direction. Of course, the
explicit symmetry breaking (~ H) term lifts the vacuum degeneracy. How-
ever, the corresponding tilting of the “Mexican hat” is small and will not
effect the initial stage evolution significantly [41]. Therefore, it is not un-
likely that some high energy collisions can lead to the formation of relatively
large space domains where the chiral condensate is temporarily disoriented.
At later times such Disoriented Chiral Condensate will relax back to the
normal vacuum by emitting coherent burst of pion radiation.

But how can the initial vacuum be excited? A short time after the
collision of the order of 0.3-0.8 fm/c the energy density in the interior of the
collision region drops enough to make meaningful the introduction of ¢ and
7 collective modes [42]. After this time the classical dynamics of the system
is reasonably well described by the linear sigma model. However, initially
the o and = fields are surrounded by a thermal bath. So we need the sigma
model at finite temperature. To reveal a simple physical picture behind the
phenomenon, we will use the following simplified approach [43,44]. Let us
decompose fields into the slowly varying classical part (the condensate) and
high frequency thermal fluctuations

$(z) = ¢a(x) + o(x) .

By definition the thermal average (¢)in = ¢ and (d¢p)tn, = 0. Therefore the
thermal averaged symmetric potential, which determines evolution of ¢ at
initial times, until the effects of the explicit symmetry breaking term become
significant, has the form (we have suppressed isospin indices for a moment)

As

2
b= 5 (834692 )

To calculate ((6¢)%)wn, let us decompose d¢(z) into the annihilation and
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creation operators

5(z) = / ﬁ\ﬂ;ﬁ (alRre ™ + a* (B)et+) (18)

with wy = VE2 + m? and (our normalization corresponds to (2r)~3 particles
per unit volume)

(alB),a* (K] = 6(F — k7).
At the thermal equilibrium the thermal bath is homogeneous over the (large)

spatial volume V. Therefore,the thermal fluctuations are the same at every
point inside V and {(§¢)?):n can be replaced by its spatial average

(68— 77 [ A58

Substituting here (18) we get

(092 5 [ gtaBra @ +a* @a@la. (1)

We assumed that the chemical potential of the field ¢ is small, so that the
probability of finding its two quanta simultaneously in a unit volume is
negligible, and hence

(a(k)a(=k)m ~ 0, (a*(F)a* (=k))m = 0.
However,
(aa™ +aa)m = 2(aTa) + [a,a]

and the second term gives a temperature independent constant. Actually
this contribution in (19) is infinite and should be cured by renormalization
(that is subtracted). The nontrivial finite part is

(592 = 3 / Z—i(a*(ﬁ)a(ﬁ))th.

However, a* (k)a(k) is the number density operator (in momentum space).
Hence, its thermal average is given by the Bose-FEinstein distribution

N

<a+(E)a(E))th T e /T — 17

where N = V/(2r)3 is the total number of ¢-particles in the volume V.
Finally,

dk 1
(27)3 wy(ewr/T —1)°

(06)2)en = / (20)
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In a high temperature limit 7" > m, (20) is simplified to
- o0
dk 1 T? [ zdz  T?

(27)3 || (elF/T — 1) e / e —1 12°

(66)%)en = / (21)

Let us now restore the isotopic content of our theory. Each isotopic mode
gives a contribution (20) to the effective thermal potential. However o-
meson is too heavy. Therefore, we assume wy/T > 1 for it and neglect its
contribution. There remain three pionic modes. Pions, on the contrary, are
light and we neglect their masses. Then the thermal effective potential takes
the form

A T? ?
<%m=f<ﬁ+#+7—#). (22)
The minimum energy configuration corresponds to
T2
= fv2 - 1_.
(o) =yfu -

Therefore, the o-condensate completely melts down at T, = 2v ~ 180 MeV.
Above this phase transition point the vacuum configuration corresponds
to (o) = 0. In fact, the o-condensate never melts completely down (for
temperatures for which the linear sigma model still makes sense), because
of the ~ H term. However, near the critical temperature this residual value
of the o-condensate (which minimizes V =~ 220* — Ho) is quite small

A\ /3
(a)z(}\) ~ 3 MeV < fr.

Temperatures of the order T, can be reached in very high energy col-
lisions. Then, in some small volume, chiral condensate is melted and all
information about the “correct” orientation of the chiral order parameter
is lost. What happens when this volume cools down? Again an analogy
with magnets is helpful. If a magnet is heated above the Curie temperature
and then slowly cooled, it loses its spontaneous magnetization. This hap-
pens because many small domains are formed with magnetization direction
changing at random from domain to domain, so that there is no net mag-
netization. Therefore, if we want to have a large DCC domain, slow cooling
in thermal equilibrium is not the best choice. Indeed, it was argued [45]
that in such circumstances the size of DCC domains remains small. Hope-
fully, the interior of the collision fireball is cooled very rapidly due to fireball
expansion. Rajagopal and Wilczek found [34,45] that in such an out of equi-
librium process larger DCC domains can be formed. This is analogous to the
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quenching technique in magnet production from a melted alloy. The phys-
ical mechanism which operates here is the following [41]. After a quench,
the temperature suddenly drops to zero and, therefore, the dynamics will
be governed by the zero temperature Lagrangian. If the cooling process is
very rapid, the field configuration does not have time to follow the sudden
change in the environment. Therefore, immediately after the quench fields
do not have vacuum expectation values. Hence, the system finds itself in a
strongly out of equilibrium situation, namely near the top of the “Mexican
hat”. The vacuum expectation values will begin to develop while the system
is rolling down towards the valley of the symmetric potential, but this will
take some time. Meanwhile the Goldstone modes (pions) will be tachyonic:

m2 = X ((0)? — %) <0, (23)

if () is small. Therefore, the oscillation frequencies wy, = 1/ k2 +m2 will
be imaginary for long enough wavelengths and they will grow with time
exponentially. The zero mode is the one which is amplified most effectively.
As a result, a large sized correlated region will be formed with nearly a
uniform field. When the fields approach the bottom of the potential and (o)
gets close to its zero temperature value, this mechanism ceases to operate.
Therefore, a natural question is how fast the rolling down takes place and
whether the zero mode has enough time to be significantly amplified. To
answer this question, one should consider the evolution of the o and 7 fields,
according to the linear sigma model. During this evolution we have

MJ, =0, O"Js, = HT. (24)

Derivation of the second equation (PCAC) was given earlier. At that the
axial-vector current is
a(6L)

J5y = mraas = 00, — T0u0.

9(010;)

The conserved vector current j,; is the Noether current associated with the
SUy(2) transformations from (7) and a similar procedure will give [27]

-

Jy =T X O,7.

To make the problem analytically tractable, we idealize the initial condi-
tions and assume that the whole collision energy is initially localized in the
infinitesimally thin pancake to an infinite transverse extent [46]. Then the
fields can depend only on the longitudinal coordinate z. Besides, such initial
conditions are invariant under the longitudinal boosts. Therefore, in fact the
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fields can only depend on the proper time 7 = v¢?> — z2. Then 9, = IT“%
with the (Minkowskian) 2-vector z# = (¢, ). Therefore,

get

and
aﬂjgm = ldi [T (7?('7 — mlr')] .

T aTt

Therefore, the conservation of the vector current and PCAC (24) imply

=1l

X

=1l

I
RERST

. b oH
, WO —of = —+—/T'7?(T')d7', (25)
T T

70

with @ and b as integration constants. Initially, far from the valley of the
symmetric potential, the symmetry breaking term H7 plays an insignificant
role and can be neglected. Then (25) shows that @ - b = 0 and the triad
a, 5, &= ax b forms a convenient axis for decomposition of isovectors. The
first equation of (25) indicates that m, = 0 and, hence, (25) is equivalent to
the system

. . a . . . .
Mplle = My = —, MG — Oy = —, Ml — O = 0. (26)

Because of the last equation, the motion in the (my, 7., 0)-space is planar

Te
— = k = const.
o

Then, the first two equations give

a
kE=—.
b
To simplify the discussion, we assume b > a. Then 7w, ~ 0 and the motion
plane coincides with the (7, o) plane. Let us introduce the polar coordinates
in this plane
mp, = fsinf, o= fcosé. (27)
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Then, (26) gives
. b
f20=——. (28)
T
The equation for the radial coordinate f can be derived from the equation

of motion
O = — A (02 + 72— 1)2) T

with O = 9,,0" as the d’Alembertian. In our case, this equation is equivalent
to
1 d dmy,
R i)
T dr dr
Substituting here (27) and using (28), we get the radial equation
. f b2
Frl= a2 -7 (29)

f37.2

_>\s (f2 — 1)2) T -

At later times the difference g = (f —v) /v is expected to be small. Therefore,
(f2 — 1)2) = 21)39

and (29) reduces to

g ’ 2
jg+ == — 2 .
g + T /047_2 SU g
Introducing a new dimensionless variable s = /2\;v7 (note that in the
H = 0 limit m, = v/2Asv), we get the inhomogeneous Bessel equation
d2g  dg b2
2 2
Tas? " Tas Y v? (30)

Therefore, the solution can be expressed through the Bessel functions Jy(s)
and Yy(s). Hence, for large proper times it will exhibit a damped oscillatory
behavior. For example, for large s > 1,

Jo(s) ~ \/g cos (s - %)

Large enough compared to what number? The inhomogeneous term in (30),
which is a reminiscence of the influence of the angular motion on the radial
motion, is characterized by a dimensionless number b/v2, which we assume
to be much greater than one. Therefore, the asymptotic value of s can be
estimated to be s ~ b/v?, which translates into the proper time



4038 E.A. Kurarv, Z.K. SILAGADZE

b
R V2 03

This gives us an estimate of the rolling-down time.

Let us now consider the process of formation and growth of correlated
domains in a scalar quantum field theory after a quench from an equilibrium
disordered initial state at the temperature T; = T to a final state at T ~ 0
[47]. For unstable modes the instantaneous quench will be mimicked by a
time dependent mass

(31)

m?(t) = mi O(~t) —m} O(t),
which is tachyonic at ¢ > 0. In the decomposition

-

0@.1) = [ oo (aFu ™+ a* Fi0e ), (32

the corresponding mode functions ug(t) obey

R () ) = 0

and initially (for ¢ < 0) we have ug(t) = e i wj = /m? + k2. For t >0
the solution is

uk(t) = Akeakt + Bke_akt, (33)
with ap = ,/m?c — k2 (we will concentrate on unstable modes so that

B2 < mfc) Matching the £ > 0 and ¢ < 0 solutions and their first derivatives
at t = 0, we can determine the A; and B}, coefficients

1 WE 1 Wi
A 1—7— B, = 1 — 34
k= 2( Zak)’ k= 2<—HO&1¢> (34)

The information about the domain size is encoded in the equal time
correlation function (spatially averaged over the volume V)

1

G(@.t) = [ d7lo(@ + 7,00 (35)

Indeed, if z is not greater than the domain size Lp, then ¢(Z+ 4, 1) o (¥, t) =~
¢*(7,t) and the integral (35) should be near its maximal value G(0,¢). On
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the contrary, if z > Ly, then the integral (35) averages to zero. Substituting
(32) into (35) and remembering that for our approximations

<aa’>th ~ Oa <a’+a’+>th ~ 07

!

6(@.t) = 1 [ 5ot ®P [{a@a* (F)ne

ot
1
+
—~
IS
+
—~
Syl
~—
Q
—~
!
~
~
—+
=
@
d
E
81
| E—

- %/%wk(t)I? [(a(l_{)aﬂ]_{))th + (a(=F)at (<)) + 5(6)] E

To understand the meaning of §(0), let us return one step backward and
write

@) 5= / dE' o0 i) Yi) ()
2 5(0) = 5(k — k1) e i (k=k) _k d
QU)k (0) (27'{')3 ( )e \/2LU]€ vV 2wk, y
_ |Uk(t)|2/ dy _ |lu®)P vV

2wy, (2m)3 2w (2m)3°

Besides, as was explained above,

- N V
<a+(k)a(k)>th = m, N = PE .

Therefore, (36) takes the form

Y h( 2k ikd
G(Z,t) / Tt 2 lug ()| cot <2T> e

After the quench T' =~ 0 and hence coth (“2"—%) ~ 1. To study the growth of
domains, one should subtract the contributions that were already present
before the quench [47]

dk 1

T T [up(£)]2 = 1] *Z.

G(&,t) = G(7,t) — G(%,0) = /

But (33) and (34) imply

1 2 1 2
lug()]” = 3 <1 + w_,;) cosh (2ayt) + 5 <1 — w_g) )

Q,
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Therefore, the contribution of unstable modes in the domain growth is con-
trolled by

G(#,t) = %/(d—g ! <1+“’—§) [cosh (2a,t) — 1] ¢F ¥

2m)3 E o?
m
1 ; 1 Wi\ . oo
= 153 (kr) sin (kr)w—k 1+a_% sinh® (ayt)dk, (37)
0

where 7 = |#| and k = |k|. We are interested in the large ¢ asymptote of
this function. Then

sinh? (ayt) — et
and
2 4 2 meo (k)
~ m; sin (K7
G(Z, 1) = —. f/dk 9(k)
(7,1) 167272 wg o e
0
where

9(k) = 2apt + In (kr) .

Note that g(k) has a maximum at ko ~ 1/ 5L and

2
4t
1! k ~
g" (ko) m;
Therefore of
g(k) ~ g(ko) — — (k — ko)?
mpy

and for large ¢ the function e9) has a very sharp peak at k = ko. Near this
point (wgai) ! is a slowly varying function. Therefore

mpy
~ ko m2+m? _ 2t (kb ko)2
G@ 1) — oo — L it I:/dke my B Gin (r)
T mims
0

where we have used
1 1

2 = 2

Wgo & ko mg;m I

g(ko) = 2myt + In (kor) .

The remaining integral

o0

: _r? 2t
I / dk = (k—ko)? sin (kr) = \/ﬁ sin (kor)e 4, y=—.
Y

—00
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As we can see [47,48]

S ~ ~ sin(kor) _msr?
G(Z,t) ~ G(0,t) ¢ T -
or

Therefore, the domain size grows with time, according to the Cahn—Allen

scaling relation [48,49]
8t
Lp(t) =4/ —.
o(t) = /o (38)

Remembering our estimate (31) for the rolling-down time and taking a mean

value of (23) as an estimate for mfc: m?c = 1)\v?%, we get

1 / 8b /b
LD = ; )\S’U2 ~1.4 fm ’[)_2 . (39)

Assuming Gaussian initial fluctuations of the fields and of their derivatives,
it can be shown [46] that the probability of the initial strength b of the
axial-vector current to be large is exponentially suppressed. Therefore, our
estimate (39) shows that typically DCC domains are quite small, unless b is
large enough in some rare occasions. One concludes that “formation of an
observable DCC is likely to be a rather natural but rare phenomenon” [50].
To close this section, let us indicate some review articles about the DCC
phenomenon [40,42,50,51], where an interested reader can find further dis-
cussions and references to the original literature, which is quite numerous.

4. DCC at a photon collider

Usually DCC formation is considered in the context of heavy ion or
hadron-hadron collisions. We see no reason why gamma-gamma collisions
have to be discriminated in this respect. The basic interaction for the pho-
ton is of course an electromagnetic interaction with charged particles, and
to lowest order in « the photon appears as a point-like particle in its inter-
actions. However, according to quantum field theory, the photon may fluc-
tuate into a virtual charged fermion—antifermion pair. In this way strong
interactions come into play through quark—antiquark fluctuations. While
the high-virtuality part of such quark—antiquark fluctuations can be calcu-
lated perturbatively, the low-virtuality part cannot. The latter is usually
described phenomenologically by a sum over low-mass vector-meson states
— the Vector Meson Dominance (VMD) ansatz. Therefore, the effective
photon state vector has the form [52,53|

) =V Zsloare) + D ev V) + Y cglad) + > allti), (40)
v q P
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where [52]

dra f? f2 f3 I

2 P w ¢ /¥

=——, =22, “*+=x236, —=184, —/ =~ 11.5.
v fE 7 4w T Arw T Arw T 4w

The coefficients of the perturbative |gg) part depend on the scale p at that
the photon is probed. Namely [52]

2

2 _ @ o, M
Cq = ;eq In k_g ,
where |e,| = %,% is the quark charge and kg is an unphysical parameter

separating the low- and high-virtuality parts of the quark—antiquark fluctu-
ations.

The last term in (40) describes fluctuations into lepton pairs and is unin-
teresting inasmuch as the hadronic final state is concerned. The coefficient
of the first bare-photon term is given by

Zgzl—Zc%/—ch—Zc?
Vv q l

and is close to unity.

Therefore, for some fraction of time the photon behaves like a hadron.
This fraction is quite small, about 1/400 [54], but for hadronic final states
this smallness is overcompensated by the fact that in its hadron facet the
photon experiences strong interactions.

According to (40), one has six different types of possible interactions in
the high-energy photon—photon collisions [52]:

e Both photons turn into hadrons (vector mesons) and the partons of
these hadrons interact with each other.

e One photon turns into a hadron and its partons interact with the
quark—antiquark fluctuation of another photon.

e Both photons fluctuate perturbatively into quark—antiquark pairs and
subsequently these fluctuations interact with each other.

e A bare photon interacts with the partons of the hadron which another
photon was turned into.

e A bare photon interacts with the quark—antiquark fluctuation of an-
other photon.

e Bare photons interact directly in a hard process.
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In fact, in the total hadronic cross sections, the first two event classes dom-
inate, the bulk of the contribution coming from the p°p" component of the
first class [52]. Therefore, high-energy photon—photon collisions are very
much similar to the hadron—hadron collisions, and if DCC can be formed
in the latter case, it will be formed also in the former case. Of course, the
photon—photon cross section is strongly reduced compared to the hadron-
hadron cross sections (about 10° times). However, it is not improbable
that a great deal of this smallness is overcome by somewhat more favorable
conditions for the DCC formation in the gamma-gamma collisions than in
the proton—(anti)proton collisions. The argument goes as follows. As has
been mentioned above, for boost-invariant initial conditions, when the field
depends only on the proper time 7 = v/#2 — 2, the d’Alembertian equals

1d<d> 2 1 d
D: :__lr_

e T =R

The second term describes the decrease of energy in a covolume due to
longitudinal expansion and brings an effective “friction”, which is necessary
for quenching, into the equation of motion [46,55]. The transverse (D = 2)
and spherical (D = 3) expansions can be modeled analogously if one assumes

/ D
that the field depends only on 7 = 4/#2 — Y 2. Then
i=1

& D d
dr? 1 dr’

Therefore, the larger is D the more efficient is the quenching and the spher-
ical expansion seems to be the most favorable for pion zero mode ampli-
fication [55,56]. This simple observation is confirmed by a more detailed
study [56]. However, to organize an isotropically expanding fireball is not a
trivial task even in head-on hadron—hadron collisions. Constituent quarks
inside hadrons become “black” at high energies, and for the projectile rem-
nants not to spoil the isotropic expansion, one may wait for a rare event
when these black disks inside the projectiles are aligned [57]. The probabil-
ity that all six constituents are aligned in colliding protons during a head-on

2\ 5
collision is p; ~ (%) , while the analogous probability for the four con-
2\ 3

stituents of p°p® collisions is py ~ (:—%) . Taking rq = %rp & %rp, we get
pa/p1 =~ 103. Therefore, photon—photon collisions seem to be more favorable
in this respect.

Even if the “right” fireball is prepared, the odds of the large DCC do-
main formation are usually small. In [55] this probability was found to be
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about 1073. Remember that our preceding considerations indicate that one
needs large initial strength of the axial-vector SU(2)-current. In gamma-—
gamma collisions this initial strength is expected to be enhanced due to
chiral anomaly effects, analogous to what was considered in [58] for heavy-
ion collisions. The effects of chiral anomaly can be incorporated in the linear
sigma model by adding the following interaction Lagrangian

«

0 vV ot
Lanom. = W ™ G[LVUTFM FoT =
T

Under SU4(2) transformations (15), we have

a 0= o
—a ' F-H.
7 fr

§Lonom. = —F-Hobs.
T fr

Therefore, according to the Gell-Mann—Levi equation (we neglect explicit
symmetry breaking):
P Lo
_00L) e m s
803($) 7Tf 7T

8“J§’M(x) =

and the axial-vector current is no longer conserved even in the limit of zero
quark masses. As a result, electromagnetic fields can lead to the enhance-
ment of the axial-vector current strength in the w%-direction. The corre-
sponding induced strength equals

by = < /E(T) . H(T) o(r)rdr. (41)

fr

As was shown in [58], the expected effects are small in relativistic heavy-ion
collisions, but nevertheless this initial small “kick” can have substantial effect
on the DCC formation. Unfortunately we can not use (41) to estimate how
big is the kick in gamma-gamma collisions — the application of the sigma
model makes sense only after some time after the collision, while the effects
of the chiral anomaly on the b3 magnitude are confined to the first instants
of the collision.

It was suggested [59,60] that in hadron-hadron collisions DCC could be
formed through the “Baked Alaska” scenario. However, as we have men-
tioned above, the considerable part of the vy — hadrons cross section is due
to the p°p® mechanism. Therefore, the Baked Alaska model should work for
gamma-gamma collisions too. So let us take a closer look at it.

Normally Baked Alaska is a delightful dessert where ice cream is covered
by meringue and then baked very quickly in a hot oven without melting
the ice cream (you can find the recipe in the appendix. Try it and enjoy).
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In physics context, however, this term firstly appeared as denoting a model
for nucleation of the B phase of superfluid 3He inside the supercooled A
phase [61-63]. The surface tension at the boundary between the A and B
phases is anomalously large. Therefore usual small bubbles of the B phase,
created inside the A phase by thermal fluctuations, are energetically not
profitable. Hence, they shrink and vanish. Only for a very large bubble the
volume energy gain overcomes the surface energy and the bubble begins to
grow. However, it is virtually impossible to create such a gigantic critical
bubble by thermal fluctuations. The experiment, nevertheless, discovered a
high enough nucleation rate. To explain the puzzle, Leggett suggested that
the nucleation was assisted by cosmic rays [61]. Secondary electrons from
the passage of a cosmic-ray muon through the liquid create hot spots in 3He
by depositing several hundred eV energy in small volumes. Inside such a
“fireball” the Cooper pairs of the *He atoms are broken and, therefore, the
normal, Fermi-liquid phase of the 3He is restored. Yet, the fireball expands
quickly and becomes a “Baked Alaska™ a cold core surrounded by a hot,
thin shell of normal fluid. There is some probability that after the core is
cooled below the superfluidity phase transition temperature, it finds itself
in the B phase. This B phase core can expand to larger than the critical
radius because for some time it is shielded from the A phase bulk by the
expanding hot shell, thereby eliminating surface energy price of the A-B
boundary layer. When the shielding shell finally disappears, the B phase
bubble is larger than the critical one and, therefore, expands further until it
fills the whole vessel.

Let us return to Baked Alaskas produced by high-energy gamma-gamma
collisions. Suppose DCC is formed inside the Baked Alaska core with the
misalignment angle §. That is inside the DCC region one has

(0)pcc = frcos, (R)pcc = frsind i,

77 being a unit vector in isospin space. Outside the fireball one has the
normal vacuum:

(o) = fr, (@) =0.

Finally, when the shielding shell of hot hadronic matter disappears, the
DCC relaxes to this outside normal vacuum by emitting coherent low energy
pions. Hadronization of the shell also produces mainly pions and, therefore,
generates a background to the DCC signal. Simple considerations allow one
to estimate the numbers of the DCC and background pions [60]. Energy
density in the DCC region is higher than in the normal vacuum because of
the symmetry breaking term Vsg = —Ho. The difference is

0
Aey = —H(o)pcc + H(o) = H fr(1 — cos0) = 2f2m? sin® 3
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Therefore, the total volume energy available for pion radiation from the
DCC decay is

0
By = 8; R? f2m?2 sin? 3

where R is the fireball radius at the moment of hadronization. However,

pions radiated from the DCC are nonrelativistic (in the DCC rest frame).

Therefore, the expected average number of such pions is (we have assumed

that (sm2 ‘9) =1
E 4

Ny~ 2V — %R?*fg M . (42)

Mr

One can assume [60] that at the moment of hadronization the shell consists
of one densely packed layer of pions, each having the radius r, = %m I~

0.7 fm. Therefore, the number of background pions from the fireball shell is

4AR?
—.
Vs

sz

- (43)

For a large DCC bubble of the radius R = 10r; =~ 7 fm, the above given
estimates imply

fx

Ny =~ —125( ) ~ 250, N, =~400.
3 My

There will also be coherent pions associated with the surface energy of the
interface between the DCC and outside vacuum. The energy density in the
interface is dominated by the contribution due to gradients of the fields. If

one assumes that the interface thickness is the same as for the hadronized
shell, that is d = 2r; =~ m —1 then

2
[(AR)? + (Ao)?] ~ f“ [sin® 6 + (1 — cos 6)?] = 2f7r sinQQ.

€s = 22 2 MMy

l\.’)l»—\

The corresponding total average energy is thus
Eg ~4n R*d (es) ~ 4w R? f2 m..
Pions originated from the surface layer of thickness d will have characteristic

momenta p,; ~ 1/d ~ m, and energy E, = \/p2 +m2 ~ v/2m,. Therefore
the expected average number of surface pions is

E 2
Ng ~ E_S ~ 2v2wR? 2 ~ 50v/2n <f—”> ~ 105.
™ mﬂ'
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As we can see, the DCC signal from such a large single domain is quite
prominent. This becomes especially evident if one realizes that there is a
large probability, ~ 10%, that almost all of these 250 nonrelativistic signal
pions are charged ones, with only a few neutral pion admixture. The prob-
ability that such a huge isospin-violating fluctuation happens in the back-
ground pions is, of course, completely negligible. This striking feature of the
DCC signal follows from the following simple geometrical argument [64] (the
inverse-square-root distribution, discussed below, was independently redis-
covered many times by different authors. See [40] for relevant references).
Let the pion field in a single DCC domain be aligned along a fixed isospin
direction 7 = (sin 6 cos ¢, sinfsin ¢, cos #). Classically the radiation is pro-
portional to the square of the field strength. Therefore the fraction of neutral
pions f, emitted during relaxation of such a DCC domain, equals

| 3]
3
> |mal?
a=1
The probability for f to be in the interval (f, f + df) is given by
P(f)df = [P(cos®)+ P(—cosf)] dcosb. (45)

f= = cos? 6. (44)

Any orientation of the unit vector 7 is equally valid. Therefore the proba-
bility P(cos #)d cos for finding cos in the interval (cos, cosf + dcos )
equals

] cos 0+d cos 0 27 .
i / dcos@/d¢:§dc039.
cos 0 0

This implies P(cosf) = % Therefore, from (45) the probability density for
the neutral fraction f is

dcosf
P(f) =
while from (44) df = 2cosf@dcosf = 2,/f dcos 6, and we finally obtain
1
P(f) = (46)

This inverse-square-root distribution is drastically different from what is
expected for noncoherent pion production: the binomial-distribution which
for large pion multiplicities N turns into a narrow Gaussian centered at

=4
Nf N(1—-f) _1)?
Pt =it (1) (2) o B

ne No\3 3 2,/
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For example, the probability that f does not exceeds 0.01 according to (46)

equals
0.01

P(f <0.01) = / G _ oot =10% 11,

a\

while the binomial-distribution predicts
0.01

P(f <0.01) = /Pnc(f)dfzo.m SNV -
0

ﬁe* <1, forN>1.

However, as we have seen above, it is not easy to produce large DCC do-
main. For many small DCC domains, with random vacuum orientations, the
effect of the inverse-square-root distribution will be washed out by averaging
over the orientations (it was, however, argued in [65] that the later case of
small DCC domains may lead to enhanced baryon—antibaryon production
within the framework of the Skyrmion picture of the nucleon). The intuitive
reason why it is difficult to grow up a large DCC bubble is the following.
Up to now the only mechanism discussed by us for the DCC formation, was
the spinodal instability which operates when the fields are rolling-down from
the top of the Mexican hat potential towards the valley. But this rolling-
down time is small unless the initial strength of the axial-vector current is
large (see Eq. (31)). Fortunately, there exists a parametric resonance mech-
anism [66] which can further assist the DCC formation, after the spinodal
instability is over. To illustrate the physical idea, let us again return to the
Blaizot—Krzywicki model [46] with boost-invariant initial conditions. The
equation of motion for the pion field is

Or = — g (02 + 72— ’U2) T (47)
with
ANy
dr2 T dr’

At later times the fields are near the true vacuum. So we assume
o= fr, T=7(T)00.

The above pionic field describes a (small) disoriented chiral condensate
aligned along a fixed unit vector 7 in isospace — the result of preceding
spinodal instability. If we neglect nonlinear terms, we get in the zeroth

approximation (note that Ay (f2 — v?) = m2 )

+(0)
7O+ T e 0y 2. (48)
T
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This equation is equivalent to the Bessel equation and its general solution is a
linear combination of the Bessel functions Jy(m,7) and Yy(m,7). Therefore
in the large 7 limit one expects damped oscillations

70 (1) = i cos (mx7 + ¢),

\/;

with A and ¢ as some constants. Now consider a fluctuation (in the 7i-
direction) 7(!)(7) around the zero-mode n(¥(7): 7(7) = 7O (7) + 7N (7).
Keeping only the terms linear in 7 (7) we get from (47) and (48)

~(1)
T () +m2 a0 (r) = 32702 () 7D (1),

7 (1) +
-

or (we have neglected unimportant 3)‘257’42 7D (1) term)

+(1)
#W(r) + () + wp [1 + L cos (wr +2¢) | 71 (7) = 0,
T T
where wg = m,, w = 2m,; and ¢ = 32)‘;1—'32. Therefore, one expects a para-

metric resonance because w = 2wyg.

For more general initial conditions, parametric instabilities are expected
for the low momentum pion modes [67]. The energy of the o-field oscillations
around o = f can also be pumped into pionic modes through the parametric

resonance [66,68|. In this case, naively only modes with &k ~ 4/ ng —m2 =
270 MeV can be amplified, because oscillation frequency in the o-direction
is my = 600 MeV. However, the energy can be redistributed in the long
wavelength modes due to nonlinearity.

An interesting example of the parametric instability is Faraday waves [69]
— surface waves parametrically excited in a vertically vibrating container
of fluid when the vibration amplitude exceeds a certain threshold. The
resulting standing waves on the fluid surface can form funny intricate pat-
terns [70]. Even a more closer analog is given by the induction phenomenon
in quartic Fermi-Pasta—Ulam (FPU) chains [71] : the energy, initially sup-
plied to a single harmonic mode, remains in this mode over a certain period,
called the induction time, when it is abruptly transferred to other harmonic
modes. The original explanation [71] involves nonlinear parametric instabil-
ities similar to the one described above. It should be mentioned, however,
that our above arguments, in favor of the exponential growth of fluctuations
due to the parametric resonance, are heuristic. A naive perturbation theory,
implicit in these arguments, is not adequate for such nonlinear problems. In
the case of the FPU chains, it was argued that a more correct treatment
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was provided by shifted-frequency perturbation theory [72] or by Krylov—
Bogoliubov—Mitropolsky averaging technique [73]. We are not aware of sim-
ilar studies in the context of DCC dynamics, but the reality of parametric
instabilities is indirectly confirmed by numerical studies [34,74]: the ob-
served amplification of long-wavelength pionic modes last much longer than
expected solely from the spinodal instabilities. Besides, the amplification of
pionic modes with k = 270 MeV was clearly demonstrated.

5. Quantum state of the disoriented chiral condensate

The eventual decay of the DCC is a quantum process, because one regis-
ters pions and not the classical field. Therefore, the natural question about
the DCC quantum state |n)pcc arises. The usual way of quantizing some
classical field configuration is to use coherent states which are eigenstates of
the annihilation operator [75]

alay = ala). (49)

Decomposing
(a)"

Vn!

and using a|n) = v/n|n—1), we get from (49) the recurrent relation v/n ¢, =
ac¢y,_1. Therefore

@) =Y caln), |n) = 10)
n=0

n

_ "¢
RV
and
|a) = co exp (aa™) |0) .
However,

(ala) =Y (aln)(nla) = |eal* = |eo]” exp (a*a) ,

n n

and, therefore, the normalization condition (a|a) = 1 determines ¢y up to a
phase. Finally

|a) = exp <—O‘2—0‘ + aa*) |0). (50)

The generalization of this construction to the DCC classical field configura-
tion f(Z) is [76] (the isospin indices are suppressed)
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vce =exp (=5 [ @i @i+ [ar@a®) o, 6y

where f(k) is the Fourier transform of the DCC classical field.

However, it was argued [77,78| that the quantum state of the disoriented
chiral condensate is expected to be a squeezed state [79], if the parametric
amplification mechanism, discussed above, indeed plays a crucial role in the
DCC formation. To explain why, let us consider a one-dimensional, unit
mass, quantum parametric oscillator with the Hamiltonian

A1) = 5 [+ (1)

where the p and Z operators are time-independent in the Schrédinger picture
and obey the canonical commutation relation (A = 1):

Quantum state vector |¢) of this oscillator is determined by the Schrédinger
equation

.0 A
iy [¥) = H@) [9). (52)

Lewis and Riesenfeld gave [80] a general method of solving the Schrodinger
equation by using explicitly time-dependent invariants which are solutions
of the quantum Lieuville-Neumann equation

— +i[H,I]=0. (53)

It turns out that the eigenstates of such a Hermitian invariant I(£) are just
the desired solutions of the Schrédinger equation up to some time-dependent
phase factor. Let us demonstrate this remarkable fact [80] . The eigenvalues

of the Hermitian operator I(t) are real. Therefore, from (53) one easily gets
. ! ai ! 1 13
WX 5 10 = (A= X)NH@)A) (54)

where |) is an eigenvector of the operator I(¢) with the eigenvalue A:
I(t) [A) = A|A).- (55)
In particular

O % I\) = 0. (56)
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By differentiating (55) with respect to time and taking the scalar product
with |N'), we get

oA

ol 9
N 1A =AM =X)YNT 1A+ o =, (57)
ot ot ot

For A = ), we get from (57) and (56)

O
E_O'

That is the eigenvalues of the operator I(t) are time-independent (as it
should be for the invariant operator). From (57) and (54) one gets

(A= X)(N] i% A) = (A= NN H(#)N)

and, therefore
(VL 13 = YL@, 3N (58)

If (58) is also satisfied for the diagonal matrix elements (A = X'), then we
can immediately deduce that |A) is a solution of the Schrédinger equation.
But this may not be the case for our particular choice of eigenvectors. Nev-
ertheless, in this case we can still adjust the phases of the eigenvectors in
such a way that the new eigenstates

A = e |\), 0,(0) =0,

insure the validity of (58) for all A, \’. All what is needed is to choose the
time-dependent phases 0 (t) in such a way that one has

(e ™ (57 1) = I O1).

or
oy . .0 .

Therefore

t
/m——H 7 IA) dr
0

To summarize, we can take any set |A) of the eigenstates of the invariant
operator I(t) and express the general solution of the Schrodinger equation
(52) as a linear combination
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t

0= Crexp Qi [Wigh —H@Wdr b, (59)
A 0

with some time-independent coefficients C.

To find the invariant I(t), let us firstly construct its classical counterpart
I(t) by the simple and transparent method of Eliezer and Gray [81]. The
equation of motion

i+ wi(t)z=0

can be viewed as the z-projection of a two-dimensional auxiliary motion
governed by the equation

F4w?(t)7=0, (60)
where 7 = z7 + y;. In the polar coordinates
T =pcosp, y=psing,

and 3
T = (ﬁ_P‘pg) 5p+(ﬂ¢+2p¢)€wa

where the unit basic vectors are
€p =COSY1+8InYy), €, =—SNY1L+Ccosyj.

Therefore, (60) in the polar coordinates takes the form

p—p@*+w(t)p=0, pG+2p¢p=
The second equation implies
p*¢ = L = const.

This is nothing but the conservation of the angular momentum for the aux-
iliary planar motion, when the first equation can be rewritten as

. L?
p+w(t)p = rh

Let us now remark that (for unit mass)

px — Lsinp
; .

P=1I=pCcosp — ppsinp =
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Therefore,

L
Lsinp =pxr—pp, Lcosp=—zx,
P

and
L2

?ac? + (pp — pz)* = L? = const.

The Ermakov-Lewis invariant [82, 83] corresponds to the particular case
when the angular momentum L has a unit value

I(t) = <

5 [i—z + (pp — p'x)2] :

It is straightforward to check that its quantum counterpart

i? NN
10 =5 | 5+ o - 7] (61)
p
obeys the quantum Lieuville-Neumann equation (53) if the auxiliary func-
tion p(t) satisfies the Ermakov-Milne-Pinney equation [84]

p il = = (62)

To find eigenvectors of the operator I (t), let us note that

I(t) = b (¢)b(t) + L

(63)
where we have introduced time-dependent “creation” and “annihilation” op-
erators

b(t) = % [% +i(pp— p@)] L b = % [% —i(pp - p:fc)] (o)

It can be immediately checked that one indeed has the canonical commuta-
tion relation

[b(t), " ()] =1. (65)
Equations (63) and (65) indicate that the eigenvectors of I(¢) are b-number
states
(" ()"

Vn!

where the b-vacuum state is defined by the condition

[n; b) = 0;6) (66)

b(t) [0:b) = 0. (67)
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Using these eigenvectors, one can construct the solution of the Schrédinger
equation, as described above. In the DCC case, however, it is preferable to
express the quantum state vector in terms of the pion creation and annihila-
tion operators a™, a. So we need a relation between two sets of the creation—
annihilation operators a*, a and b, b (the Bogoliubov transformation). The
pionic modes correspond to the late time asymptotes w(t) — w(o0) = wy.
The solution of the Ermakov—Milne-Pinney equation for w(t) = wy = const
is

pP=—F".
VwWo
Therefore, the “pionic” creation—annihilation operators have the standard

form 1 1
2Wo [(’JO T+ Zﬁ] ) at = \/270 [(’JO - Zﬁ] . (68)

a =

The comparison of (68) and (64) gives the desired Bogoliubov transformation

68)
)

bt) = alt)a+ (D at, bYW =B ata*(at,  (69)
where
alt) = 5= |7 +nnlt) =i
B0) = 57 |7 —enplt) +i000)] . (70)

It can be checked that
la(t)]> = |B(t)]* =1

Therefore, up to an irrelevant common phase, we can take
a(t) = coshr(t), B(t) =D sinhr(t). (71)

The Bogoliubov transformation (69) can be viewed as an unitary transfor-
mation

b=2S8(2)aS"(z), bT=5(z)at ST(2), (72)
where S(z) is the so-called squeezing operator [79)

S(z) = exp % (zatat —2*aa)|, z= el 0™ (73)

Indeed, using the Campbell-Hausdorf formula



4056 E.A. Kurarv, Z.K. SILAGADZE

and summing up the resulting infinite series, one can check that (72) and
(69) are equivalent, if o and 8 are given by (71).
Therefore, the DCC quantum state is expected to have the form

InYpec = S(2)| ¥o),

where | %) is the DCC initial state before the onset of the parametric am-
plification. If | %) is a coherent state, then the resulting |n)pcc state will be
the one called the squeezed state [79]. The actual parameters of this state
(for example z) are determined by the initial conditions and are hard (if not
impossible) to estimate from the theory alone.

Let us now recall the isospin, for a moment. The isospin generators are

1_/ #(z) x #(z) di

The classical pion field 7 of the DCC points in some fixed direction, 7 in the
isospace. If its time derivative 7 also points in the same direction then I=0
and we will have an isosinglet state. One can expect such a situation in p—p
collisions (which dominates in the vy — hadrons cross section), because the
“yacuum cleaning” effect, which precedes the DCC formation, in this case is
mainly due to two colliding isospin blind gluon walls. It is easy to construct
an isosinglet squeezed state by just exponentiating the apparently isoscalar

operator
3

++ ottt
—Zai a; =2aya” —azag ,

where al = %(ai" + iaj) are the charged-pion creation operators. The
resulting squeezed state is [78]

o
|7) = N exp {5 (QOLTFOLJ_r - a{fa;')} |0) -

Well, this expression does not seem, at first glance, to correspond to the
canonical form (73) of the squeezing operator. In fact, it indeed gives a
squeezed state. This is clear from the following normal-ordered form of the
squeezing operator [79]

[ee]
) hr —1)7
S(re'®) = N exp (gaw) 3 (sechr —1)"
n=0

(@*)"(@)" exp (=5 aa).
(74)

n!

where a = ¢ tanh 7 and

1 1/4
N=— " =(1-la? .
vcoshr ( o] )
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What is the probability P(m;n) that |¥) decays by producing in total
2n pions and among them 2m neutral pions and equal numbers of positively
and negatively charged pions? According to the standard rules of quantum

mechanics
P(m;n) = |[(m;n| @),

where the normalized state |m;n) is defined through

1 1 —-m m
)= G 0T 0
However,
= (a/2)k k
9y = NS atat - afad)* o
k=0 )
00 01/2 k
=N ch k=L /2D (1 — B)V |1 K) .
k=0 :
Therefore,
2 !
Pmin) = |V 2" cmgnem /Gl (0 — ) :N2|a|2"(2Ln)z'2
n! (m!2m)

One can prove by induction in n that

N (2m)!  (2n+1)!
Z (m12m)2 — (nl2n)2 "

This enables one to express P(m;n) as a product of two probabilities:
P(m;n) = P(n)Py(m;n),

where Pj(n) is the probability that one will find the total number of 2n
pions after the state | ¥) decays

Pi(n) = N*|qf OEDE
Note that
(2n +1)! 3 5 3.5-7 B
ZW| | 1+ | |2 | |4 2.4.6|a|6+...:(1_|a|2) 3/2

n=0
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Therefore, the normalization coefficient N should be N = (1 —|a|?)%/4, and
this is exactly what is expected from (74) for the product of three properly
normalized single-mode squeezed states of Cartesian pions.

More interesting for us is the second factor, P»(m;mn), the probability
that one finds 2m neutral pions in such a 2n-pion final state [60,85]:

(n12")2  (2m)!
(2n + 1! (m!2m)2”

Py(m;n) =

In fact, P»(m;n) is a particular case of the Poly4 distribution [86]. If m and
n are both large, one can use the Stirling formula

n! (ﬁ>n 21N,
e

to get
1 1

o T

2n /&

Therefore the same inverse-square-root distribution (46) is recovered in the
continuum limit.

A few more words about coherent and squeezed states, in order to make
them more familiar. If [A, B] is a c-number, then [87]

P(m;n) =

M=

oA+B _ oA B —3[AB]
Using this theorem, we get

1
expaa® — o a] = exp [—504* a] exp (aa™) exp (—a*a).
But exp (—a* a) |0) = |0). Therefore, the coherent state |«) can be generated

by the unitary displacement operator: |o) = D(«) |0), where

D(a) = explaa™

—a*al. (75)
Now let us consider the ground state for a harmonic oscillator (we have
abandoned the unit mass restriction but will still keep A = 1):

2
Yo(z) = (z]0) = [271'08]71/4 exp [— <i> ] , o= b

200 2mw’

and calculate the effect of the displacement operator on it. For the harmonic
oscillator

W s + 1 W
[mwz+ip], a = [mwz —ip].
2mw 2mw
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Hence,
aat —afa=ipyd— iz P,
where
[ 2
zog =1/ —Rea, py=VvV2Z2nwlmea.
mw
In the coordinate representation p = —i%; therefore ,

ox

2
[27702]_1/4 exp [— <I xo) +ipox — 4 IOQPOI )

Boo(z) = (ala) = exp [ipoiﬁ - xoi] 7o )

20’0

As we see, for harmonic oscillator, the coherent state is a Gaussian which
is displaced from the origin by zg. It has the ground state width oy and
a phase linearly dependent on the position z. Schrodinger discovered [88]
such a state as early as 1926 while seeking “unspreading wave packets”.

What about the squeezed vacuum state Wy = S(z) ¥y? Note that (for
simplicity we will take z = r to be real)

atat —aa = —i(zp+pi)
Then ] ]
—ir o—=ar )
T[ﬂcp+pw,w]=—m, T[Iprpw,p]:?"p,

and the Campbell-Hausdorf formula will give

S(ryzSt(r)=eT"2, S(r)pSt(r)=cp.

Therefore
2r 52 2027 52 2 2
SN A e'p*  mwe 'L 1 0 mw® . 9
S(ryH S (r) = =—— r
(r) (r) 2m + 2 2m O(e "x)2 + 2 (7 )%,

and comparing the equations which ¥yy and ¥ are satisfying
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In a more general case, the squeezed state ¥y, = D(a)S(r) ¥y is a Gaussian

2
Tys(w) = [2n0f] " exp [— <x xo) +ipoz —imozp()],

20

where
oc=c¢og.

Therefore, the squeezed state differs from the coherent state only by squeez-
ing in (if €" < 1), or squeezing out (if " > 1) the width of the ground state
Gaussian. The momentum-space wave function is squeezed oppositely.

For further discussion see [79,89]. Let us note that squeezed states were
also discovered long ago (in 1927) by Kennard [87]. Both the Schrédinger
and Kennard works had little impact, and both coherent and squeezed
states, which are now cornerstones of quantum optics, were rediscovered
after decades. As Nieto remarks, “To be popular in physics you have to
either be good or lucky. Sometimes it is better to be lucky. But if you are
going to be good, perhaps you should not be too good”.

As the last, but not the least, question of this section, let us ask whether
a quantum state of the disordered chiral condensate |n)pcc may be pro-
duced without any intermediate phase transitions altogether, through the
quantum reaction vy — |n)pcc. The functional integral methods and sta-
tionary phase approximation (semiclassical approximation) are natural tools
to study the scattering amplitudes between initial wave packet states and
certain final coherent states [90,91]. In this article we are not really inter-
ested in actual calculations of this type. Our aim at the beginning is more
humble — to provide some arguments that such a quantum transition is
indeed possible and interesting. So we will consider an oversimplified toy
model with the (second quantized) Hamiltonian

H=wata+2wb b+ g (baTa™ + btaa),

with 2w = m . Here the b-mode mimics neutral pions, a-mode — photons,

07;7}15 imitates the 7%y interaction due to
axial anomaly. Such Hamiltonians are used in quantum optics to study the
second-harmonic generation [92,93]. We further assume that all available
initial energy, /s, is accumulated in the a-mode. That is, the assumed

initial a-mode occupancy is

and the interaction term with g =

RN

a = = .
w My

It can be easily checked that [Hp, Hin] = 0, where
Hy=wata+2w b b, Hipy = g(bata™ +bTaa).
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This means that both I:IO and I:Iint are constants of motion. We can simply
forget about Hy, because it just gives an irrelevant common phase factor
exp (iN,wt) in the evolution operator. Hence the nontrivial part of the
initial-state evolution is given by the relation

— Z.}AIintt .
- as .
|W(t)) = e [Ng; 0)

However, N, > 1; therefore, as far as the b-mode initial development is
concerned, we can replace the @ and a™ operators in Hjy; by the e-numbers
a and o*, at that |a|?> = N,. In this approximation

|0(t)) =" F b0y, B=iga’t. (76)

As we see, a coherent state of b-quanta is being formed. The mean number
of quanta in this state grows with time (until the approximation considered
breaks down) as follows:

Ny = |BI* = (9Nat)?. (77)

To estimate the terminal time, let us note that the variance of the number
of quanta in the coherent state (76) also equals |3|? (see, for example, [89]).
Therefore, the development time for the coherent state (76) can be estimated
from the energy—time uncertainty relation

vV Npmgt ~1.

Using this estimation, we finally get from (77) the relation

7w N
\/522—bf7r-
o

Therefore, for example, Nj, ~ 100 implies /s ~ 2 TeV.

Having in mind a very crude and heuristic nature of our arguments, we
admit that we may easily be wrong by an order of magnitude. Nevertheless,
the main indications of the above exercise that the axial anomaly can lead to
the generation of a pionic coherent state in gamma—gamma collisions, and
that the efficient generation requires not fantastically high center-of-mass
energies certainly seems interesting and deserves further study.

6. Concluding remarks

“Have no fear of perfection — you’ll never reach it” — Salvador Dali once
remarked. At the end of our enterprise we reluctantly realized how true the
second half of this quotation is. Therefore, we abandon an unrealistic dream
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to produce the perfect review of the disoriented chiral condensate and try to
finish here. It is important to finish at right time, is not it? One American
general began his talk with the following sentence: “My duty is to speak,
and your duty is to listen. And I hope to end my duty before you end yours”.
We hope that the reader has not yet end his duty, because there is one topic
which should be touched a little before we finish.

The disoriented chiral condensate is a very attractive idea, and it has
some solid theoretical support behind it, as we tried to demonstrate above.
But are there any experimental indications in favor of its real existence?
In fact there are some exotic cosmic ray events, called Centauros, where
one may suspect the DCC formation. Centauros were discovered in high-
mountain emulsion chamber cosmic ray experiments [94]. Typically, the
detectors used in such experiments consist of the upper and lower chambers
separated by the carbon target. Each chamber is a sandwich of the lead
absorber and the sensitive layers. The normal cosmic ray event is usually
generated by the primary interaction at about 500-1000 m altitude above
the detector apparatus. About one third of the products of the primary
interaction are neutral pions. Each neutral pion decays into two vy quanta.
Therefore, roughly one v quantum is expected per a charged particle in the
primary interaction. When the interaction products reach the upper cham-
ber the numbers of electronic and photonic secondaries are much increased
through the electromagnetic shower formation. Therefore, the upper cham-
ber usually detects several times more particles than the lower chamber,
because the electromagnetic component is strongly suppressed by the car-
bon layer, leaving mainly the hadronic component to be detected by the
lower chamber. A big surprise was the discovery of events with the contrary
situation. Such events were named “Centauros” because it was not possible
to guess their lower parts from the upper ones.

The first Centauro was observed in 1972 at the Chacaltaya high mountain
laboratory [94]. It was initiated by the primary interaction at a relatively
low altitude, at only (50415) m above the detector. Therefore, the event was
very clean, that is was almost not distorted by electromagnetic and nuclear
cascades in the atmospheric layer above the chambers. After correcting
for the hadron detection efficiency and for the influence of the secondary
atmospheric interactions, the event can be interpreted as the production
of only one electromagnetic (e/y) particle and 74 hadrons with the total
interaction energy = 330 TeV.

Afterwards some more Centauros were found. Namely [94], the Chacal-
taya experiment observed 8 unequivocal Centauros, and two experiments at
Pamir found 3 and 2 more Centauros. But no clean Centauros were found
in Kanbala and Fuji experiments — the puzzle which still remains a mys-
tery [94]. However, if the definition of Centauro is somewhat relaxed and
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all hadron-rich species are considered, then such Centauro-like anomalies
constitute about 20% of events with the total visible energy > 100 TeV [94],
hence they are by no means rare phenomena at such high energies.

Of course the DCC formation is a candidate explanation of Centauro
events. However such explanation is not without difficulties [94]. For ex-
ample, the large transverse momenta observed in the Centauro events is
difficult to explain in the DCC scenario. It is not also evident that the
Centauro hadrons are pions. If they are mostly baryons instead, then an
alternative explanation may be provided by strangelets [95].

Let us note, however, that if one takes the DCC explanation of Cen-
tauros seriously, some predictions immediately follow. First of all, it may
happen that the DCC domain is produced in the cosmic-ray interactions
with significant transverse velocity. In this case the coherent pions from
the DCC decay will constitute “coreless jet” in the laboratory frame, with
pions in the jet having small (< 100 MeV) relative transverse momenta [40].
Interestingly, such hadron-rich events, called Chirons, were really observed
in both Chacaltaya and Pamir experiments [94].

If the DCC is aligned along the w%-direction in isospace, then a particular
anti-Centauro event is expected with neutral pion fraction f close to unity.
For example, one has not very small probability that the neutral pion fraction
is in the interval 0.99 < f < 1:

1.0
df
PO9I<f<)= [ —— ~05%.
Lo

No such anti-Centauro events were observed in the Chacaltaya and Pamir
experiments. However, some anti-Centauros were reported in the Japanese—
American JACEE experiment, in which the emulsion chambers were flown
near the top of the atmosphere by balloons [94]. By the way, this experiment
has not seen any Centauro events — another mystery puzzle of this cosmic
ray Centauro business.

Of course Centauro-like events were searched in accelerator experiments
[94]. The first searches have been performed by UA1 and UA5 experiments
at CERN even before the DCC idea was suggested. Both experiments found
no Centauro candidates in the central rapidity region.

The estimated average energy of Cosmic-ray Centauro events is about
1740 TeV [94]. If Centauros are formed in nucleon—nucleon collisions, this
energy threshold translates into /s ~ 1.8 TeV in the c.m. frame — roughly
the Tevatron energy. This observation maybe explains the failure of UA1 and
UAS5 experiments, where the maximal available energy was /s &~ 0.9 TeV,
and makes Fermilab experiments more attractive in this respect. However,
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one has to bear in mind that there is a crucial kinematic difference be-
tween cosmic-ray and collider experiments [94]: the cosmic-ray experiments
generally detect particles from the fragmentation rapidity region whereas
the collider experiments are mainly focused on the central rapidity region.
Therefore, the fact of observation of cosmic-ray Centauros does not auto-
matically guarantee that these beasts can be found in Tevatron experiments.

A small test experiment Mini-Max (T-864) [96] at Tevatron was specially
designed for a search of DCC in the forward region. The results of this exper-
iment [97] are consistent with the generic production mechanism and show
no evidence of the presence of DCC. Despite this failure to find DCC, the
Mini-Max experiment was an important benchmark. It was demonstrated
for the first time that it is possible to work in the very forward region with
severe background conditions. Much was learned in both detector operation
and data analysis which should prove useful in future more elaborate efforts
of this kind.

Central rapidity region Centauros were searched in the CDF experiment
at Tevatron with negative result [94]. Another major Tevatron detector DO
is also suitable for such searches, as the Monte Carlo study shows [94].

A serious effort to study possible DCC formation in heavy ion collisions
was undertaken in the CERN SPS fixed target experiment WA98 [98]. Again
no DCC signal was found in the central 158 A GeV Pb + Pb collisions.

A majority of future heavy ion experiments at RHIC and LHC have plans
to look for the Centauro phenomena [94]. The kinematic conditions at which
cosmic ray Centauros are produced will be accessible at RHIC. Therefore
the corresponding experiments (PHOBOS, STAR, PHENIX and BRAHMS)
are very interesting in light of Centauro investigation. At LHC the energy
accessible in Pb+Pb central collisions will be much higher than the expected
threshold energy for the Centauro production. Besides, Pb+Pb collisions at
LHC will produce a very high baryon number density in the forward rapidity
region. To study the novel phenomena expected in such high baryochemical
potential environment, the CASTOR detector, as the part of the ALICE
experiment, was designed [99]. Its main goal is the Centauro and strangelet
search in the very forward rapidity region in nucleus—nucleus collisions.

We believe that future photon—photon colliders are also good places to
look for the DCC production. Some hints were given above that the DCC
formation conditions might be even more favorable at photon—photon collid-
ers rather than at proton—proton (or proton—antiproton) colliders. Here we
present one more argument of this kind which deals with the very different
roles played by gluons in mesons and baryons. Mesons can be considered as
a quark-antiquark pair connected by a gluon string (flux tube). Therefore,
the gluon field configuration in mesons is, in some sense, topologically triv-
ial. In baryons one has a quite different picture [100-102]. According to the
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common wisdom, baryons are three-quark bound states. In high energy pp
or heavy ion collisions the valence quark distributions in the projectiles will
be significantly Lorentz-contracted because a typical fraction of the proton’s
momentum carried by a valence quark is ~ 1/3. Therefore, one expects that
the constituent quarks of the colliding protons will not have enough time to
interact significantly during the high-energy collisions and hence it is diffi-
cult to stop them. If the baryon number of the projectile is associated with
their valence quarks, which is the naive expectation, then the ready predic-
tion from the above given collision picture will be that the baryon number
flow should be concentrated at large positive and negative rapidities, with a
nearly zero net baryon number at central rapidities. Surprisingly, this is not
the case supported by experiments. On the contrary, experiments suggest
that the valence quarks do not carry the proton’s baryon number and the
flow of the baryon number can be separated from the flow of the valence
quarks [101,102]! But then what is the mysterious fourth constituent of the
proton which traces its baryon number? In QCD the baryon is represented
by a gauge invariant, non-local, color singlet operator. In fact, the gauge
invariance constraint severely restricts the possible forms of such composite
operator, leaving only one possibility (a, 3, are the color indices, the flavor
indices are suppressed for simplicity) :

B = oy [Tlar.2)a(e)]” [Plez)a(e2)]” [Flas,a)g(an)]’

Here T'(z;, x) is the open string operator (the Wilson line), or parallel trans-
porter of the quark field g(x;) from the point z; to the point x, where
the three strings join. This string operator is an analog of the well known
Aharonov—Bohm phase in QED and is given by the path-ordered exponent

Z

T(zi,x) = P exp ig/Audac“ , A=AV

T

Therefore, the gluon strings (flux tubes) inside a baryon have nontrivial
Y-shaped topology and one finds a novel object there — the string junction.
This string junction is just the fourth constituent of the baryon which traces
its baryon number [101]. The string junction can be more easily stopped in
the high-energy collisions, because, being formed from the soft gluons, it is
not Lorentz-contracted and always has enough time to interact.

Now we have the following picture of the high-energy pp collisions [101]:
the valence quarks are stripped-off and produce jets in the fragmentation
regions. In some events, one or both of the string junctions are stopped
in the central rapidity region producing a violent gluon sea containing one
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or two twists. On the contrary, no twists are expected in the gluon sea
produced by high-energy photon-photon (pp) collisions. We believe that
the latter situation is more favorable for the Baked Alaska scenario and,
therefore, for the DCC production through this mechanism.

As a final remark, let us note that the DCC formation is just one inter-
esting collective effect expected in high-energy collisions. Other exotic phe-
nomena are also worth to be searched. Let us mention a few: the possible
formation of the pion and eta strings during the chiral phase transition [103],
creation of the parity and CP violating metastable vacuum bubbles [104],
production of QCD Buckyballs — femtometer scale gluon junction networks
(QCD analog of the nanoscale carbonic Fullerenes) [102]. Vacuum engineer-
ing at photon colliders promises to be an exciting adventure and we suspect
that one may encounter “totally unexpected” new phenomena during such
exploration: “There are more things in Heaven and Earth, Horatio, than are
dreamt of in your philosophy” [105].

We are grateful to Valery Telnov for discussions. Support from INTAS
grants 00-00679 and 00-00366 is acknowledged. We are grateful to G.G. San-
dukovskaja for help.

Appendix: the Baked Alaska recipe

Here we reproduce the recipe from [106].

Ingredients:

3 egg whites

1/2 cup of sugar

1 cup of really hard, frozen ice cream

1 big, thick, hard cookie

Baking sheet

Aluminum foil

e Hand mixer

A grown up!!
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Directions:

Have your grown up heat your oven to 500 degrees Fahrenheit.
Cover the baking sheet with aluminum foil.

Put the egg whites into a bowl and use the mixer to beat them for
about five minutes until they’re stiff.

Keep beating the egg whites while adding the sugar a little at a time
until they’re fluffy and shiny. (“The name for this stuff is meringue!”)

Put your cookie on the baking sheet.

Put your scoop of ice cream on top of the cookie. Make sure it doesn’t
hang over the edge of the cookie.

Completely cover the cookie and the ice cream with the meringue.

Put it in the oven for three to five minutes until the meringue is a
delicate, light brown.

Take it out of the oven, put it on a plate, and eat up!
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