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GLUON SUPERPROPAGATOR AS THE ORIGIN
OF QCD POTENTIAL
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We show that the confining term in the widely used Cornell form of
QCD potential is derivable from the gluon superpropagator for an expo-
nential form of gluon self-interaction, if one assumes that the gluon—gluon
coupling constant has the character of a running coupling constant. We
also consider a rational form of self-interaction.

PACS numbers: 12.38.Mh, 12.38.Lg

The typical form of QCD potential [1-3| which has now been in use for
over two decades is:

V(r):%—)\rg—(;’, (1)

where r is the inter-quark distance, ag and A are, respectively, the coupling
constants corresponding to the ‘Coulomb’ and the confining parts of the
potential, € is a positive rational number and C' is a constant. We note
that RHS of (1) is to be multiplied by an appropriate colour factor which,
for a quark—antiquark pair, for instance, is (—4/3). While choices for ¢
have varied from 0.1 to 2.0, the most popular choices have been 1.0 and
2.0 (the linear and the harmonic oscillator potentials), and these have been
employed not only within a non-relativistic framework [1], but also within a
relativistic framework [2,4]. The performance of such models in accounting
for the experimental hadron masses to varying degrees of precision has been
impressive.
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As is well known, the form of the above potential is based on the belief in
an underlying gauge theory of hadrons, salient features of which are asymp-
totic freedom and infrared slavery. In physical terms, the latter feature
meets the phenomenological requirement that free quarks be unobservable.
Nonetheless, from the point of view of field theory, potentials of the form of
(1) have posed a puzzle all along. Unlike the Coulomb part of the potential,
which corresponds to the Feynman diagram for one gluon exchange between
the bound quarks, the field theoretic origin (if it exists) of the confining
part has remained obscure. It is the purpose of this note to deal with this
puzzle. The physical basis of our approach is the non-Abelian nature of
QCD, which gives rise to self-interactions of the gauge field. Consequently,
the gluon-exchanges between ¢ and ¢, for instance, are collimated into a
tube-like shape, unlike in (Abelian) QED where the photons do not interact
amongst themselves, and the photon-exchanges between two charges spread
out to infinity in a spherical manner. We follow old custom in referring to
such a tube of propagators of massless and coloured gluons as the gluon
superpropagator. We now proceed to investigate if such a field-theoretic
construct can yield the confining term in (1), and we choose to do so in
as simple a framework as possible. Thus, we assume the gluon field, ¢(z),
to be a scalar field interacting with itself via a non-polynomial interaction
Ul¢(x)]. From what has been said above, it follows that we need to consider
the propagator for the “field” U[¢(z)], rather than for the field ¢(z). Several
choices for U[¢(z)] may be suggested:

1 1
14+ gd(z)" 14 g2¢%(z)’

where ¢ is the so-called minor coupling constant. The first among these
choices is the simplest rational function of the gluon field; not surpris-
ingly, it is one of the most widely studied non-polynomial interactions. The
superpropagator corresponding to it has been calculated in different ways
[e.g., [5,6]], and the representations so obtained — while they differ widely
in form — have been shown to be equivalent [6]. Let us therefore deal with
this case first. If we define

explgo(z)], ete.,

o
C 1+gd(z)’

then the gluon superpropagator for the superfield U[¢(x)] is given by
F(A(z)) = (0IT[U(¢(2))U(¢(0))]|0)
= 3 gPaian(a), 3)
n=0

Ul (x)] (2)
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where A(x) is the usual one-gluon propagator.
For the sake of completeness here, we recall from [6] the main steps in the

calculation of (3). The expansion in (3) — even though formally divergent
— can be summed by using the Euler—Borel formula

0

whence

F(a) = [de ¢y (%ca)”. )
n=0

Let us denote the sum in (5) by u(z); then u(z) can be regarded as the
iterative solution of an algebraic equation which, when transformed to mo-
mentum space, yields

ig® U
ulp) = (20)'3' ()~ sy [ MO )

where u(p) is the Fourier transform of u(x).

Equation (6) can be easily converted into an equation for the modified
Bessel function, and hence can be solved exactly. The momentum space
superpropagator, F(p?), is then found to be given by

F(p?) = / dceu(p, ()

2\2 2.2 2.2
454 (9°) P g pPg
= (277) 0 (p) + p292 exXp <_ 327‘(’2) W—2,1/2 <_ 1671'_2) s (7)

where W), is the Whittaker function. As has been shown [6], (7) can be
rewritten as

[ee]

411672 o(t)

F(p?) =9 _ dt 8

) = 33m p%g? +/ (t — p%g?/1672) | ®)
0

where o(t) = (2 — t) exp(—t).
This form of the superpropagator resembles a weighted superposition of

propagators for the exchange of a group of gluon fields, as was intuitively
expected. The potential implied by (8) is determined essentially by replacing
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p? in it by p? (instantaneous approximation) and then Fourier transforming
to coordinate space. We thus have [7]

d3

Vo) = [P esslip-r gty =L

_% [2 _ i(—l)’“k!x%”/(% + DL F(21/2 -2 /4) [,(9)
k=0

where z = 471 /g.

The above expression already brings out the richness of structure that
a non-polynomial model of gluon self-interaction possesses. It is easy to see
that, for small z, (9) reduces to the Cornell form of confining term, while for
large z, its behaviour is ambiguous. Thus, the form of gluon self-interaction
given by (2) is unacceptable. In a way, this result is not quite surprising
because of the intrinsic Borel ambiguity that the theory suffers from (see
also remarks at the end).

We now turn to the exponential form of self-interaction, which does not
suffer from the Borel ambiguity. This model has been studied as extensively
as the rational form dealt with above. The expressions for the superpropaga-
tor of this theory have been obtained by Okubo [8], Salam et al. [5], and by
Biswas et al. [9]. Thus, following essentially the same procedure as outlined
above, the superpropagator for the “field”

Ul$(z)] = explge(z)] (10)
is given by
Pl = @m)164(0) — 2 [ a2 exp (<i-22) (1)
p? 0/ B < 47r252>
where ¢g> = —i\.

The QCD potential is now given by

Vi(r) = _i/F(P2)|exp eXp(ip'r)(er)?,

2
g 2 2.2

= ——— 1 Fy(1/2:2: 4 . 12
47TT11(/,,9/7T7“) (12)

From the behaviour of 1F(a;b;z) function in the limit of large z [10], it
follows that the potential in (12) behaves in an unacceptable manner for
r — 0. At this stage one might be tempted to abandon the exponential
model too. However, it seems legitimate to ask if, in some way, one could
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“save” the situation. Interestingly enough, if one assumes that the minor
coupling constant has the character of running coupling constant, (12) be-
comes mathematically well-defined. Specifically, if we set

g, (13)

we obtain

V(r) ==\, (14)

which again has the form of the confining term in the Cornell potential;
however, the constant A is now unambiguous, and is given by
(1/47)1 F1(1/2;2;1/47%). We conclude with the following remarks:

(1) One of the characteristic features of the rational theory was encoun-
tered above viz., Borel ambiguity; another such feature is its non-
localizability. In contrast, the exponential theory is not only free from
Borel ambiguity but is also a localizable theory. Furthermore, the the-
ory is casual, analytic, unitary and positive-definite. These and other
virtues of the theory have been discussed at length in [5]. It is in this
sense that the exponential theory is spoken of as a “good” field theory.

(2) The suggestion that the strength of gluon—gluon interaction has the
character of a running coupling constant may not be considered as far-
fetched, if one recalls that the quark—gluon coupling constant behaves
in a qualitatively similar manner. Indeed, the considerations of this
note are heuristic and, possibly, indicative of the direction along which
one might look for the origin of the QCD potential. It is clear that in
a more realistic approach one would construct the superfield U[¢(z)]
respecting the vector nature of the gluons. Even within the restricted
framework employed here, the task of unearthing the origins of several
other potentials e.g., the logarithmic and the harmonic oscillator mod-
els remains. Possibly, the considerations of the preceding paragraph
will help to rule out some of these choices.

3) Note that the full Cornell potential, i.e., the confining and the Coulomb
g
parts, may be obtained by considering the “propagator” for the super-

field {U[p(x)] — ¢(z)}.

(4) Finally, we would like to draw attention to an approach initiated
in [11], which incorporates temperature into the dynamics of the bound
state problem. For a follow up of this approach in the realm of QED,
we refer the reader to references given in [12]. This approach can be
adapted for QCD, irrespective of the origin or the form of the poten-
tial /kernel (in the instantaneous approximation), and brings out rather
directly — as has been shown in [13-15] — the role that temperature
plays in the problem.
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