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An irreducible version of free massless spin-5/2 gauge fields is analyzed
from the point of view of the Lagrangian Sp(3) BRST method. The irre-
ducible formulation is obtained by means of introducing one purely gauge
supplementary Majorana spinor. An appropriate gauge-fixing procedure is
developed, such as to benefit from a direct link with the standard antifield-
BRST method. The comparison with related results from the literature is
discussed.

PACS numbers: 11.10.Ef

1. Introduction

The key point in the development of the BRST method is represented by
the understanding of the BRST symmetry on a cohomological basis [1-7].
Although they do not play such an important role like the BRST symmetry
itself, the extended versions of this symmetry helped at explaining some less
known aspects. In this light, the Sp(2) version [8-11] is important to many
issues, like the study of renormalizability, the analysis of anomalies, and
the understanding of the structure of non-minimal sectors involved with the
standard antifield-BRST setting. The raised interest for constructing even
more extended symmetries, like the antibracket-antifield Sp(3) BRST sym-
metry [12], is due to many reasons, among which we mention: (a) the appear-
ance of a larger spectrum of ghosts/antifields, which includes that present
within the Sp(2) version, and, moreover, ensures a more flexible choice
and interpretation of non-minimal variables from the standard antibracket-
antifield method; (b) the possibility to develop a gauge-fixing procedure
based only on one fermionic functional, like in the standard method, that
leaves an acceptable freedom within the class of eligible gauge-fixing condi-
tions on the fields and ghosts, and thus a more transparent relationship with

(4105)
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the gauge-fixed actions arising from the antibracket-antifield quantization;
(c) the revealing of a beautiful and rich algebraic structure of differential
tricomplex and homological triresolution; (d) the construction of a simple
complex via a total degree, whose associated (co)homology remains isomor-
phic with those of the composing differentials.

In this paper we realize the construction of the Lagrangian Sp(3) BRST
symmetry for an irreducible formulation of free massless spin-5/2 fields. Free
massless higher spin gauge fields [13—20] are important due to their connec-
tion with string theory, and, because of their remarkable gauge symmetries,
they are promising candidates for building a unified physical theory. In
the meantime, the existence of a large class of non-trivial interacting higher
spin gauge theories [21], at least in four dimensions, reveals the necessity
of investigating this type of models. Initially, we develop an irreducible
formulation of free massless spin-5/2 fields by means of adding one purely
gauge Majorana spinor. Next, we remain within the irreducible setting,
and implement the following steps: (i) we triplicate the gauge transforma-
tions, and consequently derive the ghost and antifield spectra underlying the
antibracket-antifield Sp(3) tricomplex; (i) we solve the fundamental equa-
tion of the Lagrangian Sp(3) BRST formalism, called the extended classical
master equation; (417) we develop a gauge-fixing procedure that ensures a di-
rect link with the standard antibracket-antifield approach, and consequently
obtain the gauge-fixed action. The resulting gauge-fixed action presents all
required physical characteristics, like spacetime locality, manifest Lorentz
covariance and propagating behavior.

Our paper is structured in five sections. In Sec. 2 we derive an irre-
ducible formulation of free massless spin-5/2 fields. Section 3 deals with the
construction of the Lagrangian Sp(3) BRST symmetry for this irreducible
version. In Sec. 4 we apply a gauge-fixing procedure that enforces a direct
relationship with the standard antifield-BRST approach, and infer the form
of the gauge-fixed action. Finally, in Sec. 5 we discuss the link with other
results from the literature.

2. Irreducible approach to free massless spin-5/2 gauge fields

We begin with the Lagrangian action for free massless spin-5/2 gauge
fields [14,19]

S(If [Q/};w] = /d4$ (_%Qzﬁwﬁdﬁw - QZ;LV’YV@’YM[’A;L + QQZ;LI/’YVa)\q;b)\M
+%QZ})\)\$¢ML - Q/;)\)\a,u’)’ﬂﬁuu) ) (2.1)
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where ,,, is a symmetric tensorial Majorana spinor, the bar operation sig-
nifies spinor conjugation, and

D= 7.0, - (2.2)

In the sequel, we work with the Pauli metric (@ = 1,2,3,4) and Hermitian
~-matrices satisfying

VYo + VWYV = 25;w . (2.3)
Action (2.1) is invariant under the Abelian gauge transformations
5e¢uu = (6V58M + 5u[3<9y) ((5[3(11 — %’7/3’704) €q = ZMVQEQ (2.4)

with the gauge parameter €, a fermionic Majorana vector spinor. Here and
in the sequel the notation 1 signifies the unit matrix in the space of spinors.
The transformations (2.4) are off-shell first-stage reducible

ZuuaZa =0 (25)
with the reducibility functions
Zo = Ya (2.6)

since if we perform the transformation €, = 7,€, with € an arbitrary Ma-
jorana spinor, then we have that the gauge variation of the spin-5/2 fields
identically vanishes, d¢1p,,, = 0.

At this point we infer an irreducible formulation of the model under
study, following the general line from Ref. [22]. Consider an arbitrary gauge
theory, described by the Lagrangian action S [#%°], and invariant under the
gauge transformations

0P = Z% €™, ag = 1,---, M (2.7)
that are assumed to be first-stage reducible
Zaaolzaolu %0, agzl,---,Mg, (28)

where the weak equality leaves the possibility to deal with the general case
where the reducibility holds on-shell. Acting like in Ref. [22], we pass to a
new gauge theory, based on the irreducible gauge transformations (2.7) and

0P = A, e, (2.9)

(€5}

where @*2 are some purely gauge fields (that do not enter the Lagrangian
action S§ [#2°]), and 4,2 are some functions that may involve at most the
original fields @*°, taken to satisfy the condition

rank (2%, A, = My (2.10)
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Under these circumstances, it has been shown in Ref. [22] that the standard
antifield-BRST symmetry for the irreducible theory, based on the gauge
transformations (2.7) and (2.9), truly exists. Moreover, the BRST symme-
tries s and sg associated with the irreducible, respectively, reducible gauge
theories are essentially related through s> = 0 = s} and H° (s) ~ H° (sg).
The last formulas indicate that the BRST symmetries s and sy are equiv-
alent from the point of view of the fundamental equations of the antifield-
BRST formalism, namely, the nilpotency of the BRST operator and the
isomorphism between the zeroth-order cohomological space of the BRST
differential and the algebra of physical observables. In view of this equiva-
lence (since the physical content of the theory is not changed), one is allowed
to replace the standard reducible antifield-BRST symmetry with the irre-
ducible one. Then, according to the main observation from Ref. [12], that
the antibracket-antifield Sp(3) symmetry for a given gauge theories exists
as long as the standard antifield-BRST symmetry can consistently be pro-
vided, we conclude that it is indeed legitimate to develop the Lagrangian
Sp(3) BRST method for the irreducible version instead of that for the initial
reducible gauge theory.

In the case of free massless spin-5/2 gauge fields, we have that
P = Yy, Z°8, = Zyvas Z%, = Ya - (2.11)

If we take
Aa‘l12 — Ay = 0,1, (2.12)

the condition (2.10) is indeed fulfilled, since Z%, AL @, which is clearly
invertible (its inverse is @/0). In consequence, the gauge transformations
(2.9) take the concrete form

0P = An€n = On€a , (2.13)

where the role of the purely gauge fields ¢*? is played here by one fermionic
Majorana spinor @. It is easy to see that the new gauge transformations,
(2.4) and (2.13), form a complete set of gauge transformations (generating
set) for the action (2.1), that is irreducible and determines an Abelian gauge
algebra, just like the original first-stage reducible generating set (2.4).

Based on the above discussion, in the sequel we work with the irreducible
formulation of free massless spin-5/2 gauge fields, characterized by the action
(2.1) and the gauge symmetries (2.4) and (2.13), to whom we apply the
antibracket-antifield Sp(3) BRST method [12].
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3. “Irreducible” Lagrangian Sp(3) symmetry
3.1. Sp(3) BRST tricomplex
The main idea underlying the development of the Lagrangian Sp(3)
BRST symmetry related to the irreducible model constructed in the previ-

ous section is to triplicate both the gauge generators and gauge parameters,
and thus to replace (2.4) and (2.13) with the modified transformations

59" = RLe%, (3.1)
where

) _ €la
o = < Y ) = en | (32)

€3a

, 7 7 7

R = puro Hro Hro , 3.3
; ( o Py L ) (33)

where Z,,, and A, are given in (2.4) and (2.12). Accordingly, the relations
(3.1) take the concrete form

66¢MV = (51/,68u + 5“5811) (5[3041 - i'Yﬁ'Ya) (ela + €2 + 6304) > (3'4)
5e¢ = aa (6104 + €94 + 63&) ; (35)

and they are off-shell second-stage reducible, with the first-, respectively,
second-stage reducibility functions

0 dapl  —0apl

Zg = | —dapl 0 bapl |, (3.6)
bapl  —dapl 0
- —(5571
Z8 = | =01 |, (3.7)
—0py1

where the first- and second-stage reducibility relations are
RyZ§ =0, 2§75 =0, (3.8)

We cannot stress enough that the reducibility relations (3.8) are completely
due to the triplication of the gauge transformations in the Sp(3) setting, and
are not related in any point to the reducible formulation of free massless spin
5/2-fields.
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As the main result from Ref. [12] states, it is then possible to consis-
tently construct the Lagrangian Sp(3) BRST symmetry for the irreducible
model under study. This reduces to the construction of a BRST tricomplex,
generated by three anticommuting differentials (Sm)m:1,2,3

SmSn + Spsm =0, m,n=1,2,3, (3.9)
each of them decomposing like
Sm = 0m + Dy +---. (3.10)

The operators (dp),,—1 2,3 are the three differentials from the Koszul-Tate
tricomplex, which is required to furnish a triresolution of smooth functions
defined on the stationary surface of field equations, while (Dy;,),,_; 5 5 Tep-
resent the exterior longitudinal derivatives associated with the new second-
stage redundant description of the gauge orbits due to the triplication of
the gauge transformations like in (3.4),(3.5). The graduation of the Sp(3)
BRST algebra is expressed in terms of the ghost tridegree

trigh = (ghy, ghy, ghy) , (3.11)
where we set
trigh (s1) = (1,0,0), trigh(s2) = (0,1,0), trigh (s3) = (0,0,1) . (3.12)

On account of the triplication of the gauge transformations and of the in-
duced redundancy structure, we find that the ghost spectrum from the ex-
terior longitudinal tricomplex is organized like

(1,000  (0,1,0)  (0,0,1) (0,,,1)  (1,0,1) (1,1,0)  (L,1,1)
n lasy n 2c 9 n 3a; T 1ay T 205 T 3a; A > (3]‘3)

(i,5,k)
where [ denotes an element with the ghost tridegree equal to (7, j, k). It
is understood that

trigh (¢,,) = trigh () = (0,0,0) . (3.14)
All ghosts are Majorana vector spinors, with the Grassmann parities
E(Mma) =€(Aa) =0, € (Tma) =1, m=1,2,3. (3.15)

An essential feature of the Lagrangian Sp(3) formalism is represented
by the presence of three antibrackets [12|, denoted by (,),,, m = 1,2,3,
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which yields that we need three antifields (star variables) conjugated to
each field/ghost, one for each antibracket, like below

a)*(l) (05_150)*(2) (0705__1)*(3) (717070)*(1) (077170)*(2) (0707771)*(3)

(=1,0,0
Y o Y s Yo @ , P . P ., (3.16)

(-2,0,0*1) (21,210 @) (—1,0,-1)* @) (—1,21,0* (D) (0,-2,0)*?)

n la > n la > n la » n 2a0 n 20 ) (317)

n  2a > N 3a > N 3¢5 1 3a: T la (3'18)
1

’ Q0 la > T 2a0 T 2a0 ™ 2a0 (319)

Q 3a Q 3a Q 3a (3-20)

NN WD (3.21)

Still, this antifield spectrum cannot guarantee the basic properties of nilpo-
tency and acyclicity of the Koszul-Tate differentials. In order to surpass
this inconvenience, we need to enlarge it with the bar (B) and tilde (T)
variables [12]

0-1,—1)D 1,0-1)@ 1,-1,0®) ©,-1,-n (“1,0-D@ (121,003

PP P, 9P, @8 e e (322)
(—1,-1,-)D (—20-1)3@ (—2-1,0®) (0,—2,—n)D (1,1,
T e T tar T dar T 9as T g (3.23)
(=1,-2,03) (0,-1,—2)) (—1,0-2)@ (—1,-1,-1)3) (0,—2,—2)(})
77 e 0 e M 3ar M0 3as g (3.24)
(—1,-1,-2)@ (21,—2,-1)3) (21,2129 (L2,0,-2)@) (2, 1,-1)(3)
7 e A e BT gy T g ED ge,  (3.25)
(1,2, ) (21, 1)@ (2,20
P L S (3.26)
(—1,—2,—2)(1) (Lo,—1,-2)@) (L9 o 13
AL N X (3.27)

¢T % ¢T (e 3] n las 77T 2000 ﬁT 3a (328)

0 ey T 2as TN 3an AT 4 (3.29)
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All antifields (star, bar and tilde) must be viewed like conjugated Majorana
spinors, with the Grassmann parities of the star and tilde ones (generically
denoted by @Z(m) and qﬁf‘) opposite to those of the corresponding fields
or ghosts, while the Grassmann parities of the bar variables (collectively

denoted by 53(7”)) coincide with those of the associated fields/ghosts. The
main characteristics of the antifields are appropriately synthesized with the
help of the formulas

€ (@z(m)) = (ea+1)mod2=¢(®}), ¢ (53(m)) =€4, (3.30)
trigh (#1") = (~ghy (1) — 1, —ghy (1), —ghs (@), (3.31)
trigh (67) = 4),—ghy (04) = 1,—ghy (P4)) ,  (3:32)
trigh (01%) = (~ghy (1), —ghy (@), —ghs (@) = 1), (3.33)
trigh ( 3(1 ) ghl ¢A) _ghQ (@A) -1, _gh3 (¢A) - 1) ) (334)
trigh (857) = (~ghy (84) — 1,~ghy (@), ~ghs (Ba) = 1), (3.35)
trigh (837) = (~ghy (1) — 1,—ghy (1) — 1,—ghy (P4)) . (3.36)

trigh (8}) = (—ghy (@4) — 1, —ghy (P4) — 1, —ghs (P4) — 1) .(3.37)
where @ 4 stands for all fields and ghosts
@A = ("ﬁ,u,ua ¢7 TNImas Tmas Aa) ’ (338)

and €4 signifies the Grassmann parity of a given @ 4. The supplementary
superscript between parentheses carried by the antifields (3.16)—(3.21) em-
phasizes in which antibracket are they (anti)canonically conjugated to the
corresponding field /ghost

(@A,@’gm))n — SyndaB- (3.39)

The antifield sector is also graded by the resolution tridegree, defined as
trires = (resy, resg, resg) = —trigh, while the induced simple grading, named
total resolution degree, is res = res; +resg +ress, and is found useful at solv-
ing the fundamental equation of the Sp(3) formalism, namely, the extended
classical master equation.

3.2. Extended classical master equation

Instead of constructing the Sp(3) algebra (3.9), and hence three differen-
tials, it is easier to determine one functional only, namely, the anticanonical
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generator S of this symmetry
sF=(F,S)+VF & s, F =(F,S),, + ViF, m=1,2,3, (3.40)

which is bosonic and constrained to satisfy the extended classical master
equation

1
%(S,S)—i—VS:O(:)§(S,S)m+VmS=O,m=1,2,3 (3.41)

as well as the property trigh (S) = (0,0,0). The symbol (,) denotes the
total antibracket

(7):(7)1+(7)2+(7)3 ) (3'42)

and V represents the non-canonical part of the total Koszul-Tate differential

3
§=0can+V =" Om, Om = Scanm + Vin (3.43)

m=1

Their features are
e((1)p) =e(Vim) =1, (3.44)

trigh ((,),,,) = trigh (sp,), trigh (V) = trigh (s,,) = —trires (V,,) . (3.45)

It is understood that the individual antibrackets, as well as the total one,
satisfy the usual properties of the antibracket from the antifield-BRST for-
malism, while the operators V,,, and V behave like derivations with respect to
the antibrackets. The operators V,, act only on the (B) and (T) conjugated
spinors through

VB = () @7, Vi = (-)74 1 S5, (3.46)

where €,,,p is completely antisymmetric, with €j23 = +1. Based on the
concrete realizations of both the exterior and Koszul-Tate tricomplexes, we
deduce the following boundary conditions on the solution to the extended
classical master equation

=

/ d (F 0+ 1) (3,50 + b50,)

x (5/304 - %’7/3’704)) hma 5 (348)

N
I

n=
I
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S

§ = [ s (e + 392,

+1/_}5V(p) (5V58M + 6#581’) (5506 - %7,3’7&)) Tpa 5 (3-49)
3] _
s = / d'a (~mp) — i + 8" 0,

+1/_JEV (5V58M + 5#5(9”) (55a — %’y,g’)’a)) Ao s (3.50)

0] [t
where the supplementary superscript between brackets in S} , [S], etc., refers
to a decomposition of the solution to the extended master equation via the
total resolution degree.
The equation (3.41), subject to the boundary conditions (3.47)-(3.50),
is solved by means of expanding S in terms of the total resolution degree,

(k] (k] (k]
S = Z S, res <S) = k, trigh <S) = (0,0,0). (3.51)

In the case of the irreducible version of free massless spin-5/2 fields, since the
generating set is Abelian and irreducible, we find that the solution to (3.41)
simply reduces to the sum of the boundary terms (3.47)-(3.50)

S = / d'z (qi*“") Oalimea + BB o tma + BT O Aa

+ ™ (8050 + 64800) (9pa — §78Ya) Thma

+J’E£m) (0089 + 889y) (g0 — 1767Ya) Tma

4 (850 + 0,50,) (30 — §7870) Aa

+5mnpﬁ;$1m)7rpa - (ﬁfn(g%) + fif’z(én)) Aa) + S(]f [Yuv] - (3.52)

The main inconvenience presented by the above solution is that it is not
yet invariant under any of the differentials from the Sp(3) BRST tricomplex,
while still preserves the original gauge symmetries of the fields. To surpass
these difficulties, we need such a gauge-fixing procedure that on the one
hand “kills” the gauge symmetries of (3.52), and, on the other hand, outputs
a gauge-fixed action that is simultaneously invariant under the differentials
that stay at the core of the Sp(3) BRST tricomplex.

4. Gauge-fixing process

It is useful [12] to add further variables in order to realize a proper
connection with the gauge-fixing procedure from the standard antibracket-
antifield formalism. The main role of these supplementary fields is to impose
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some irreducible gauge-fixing conditions. For a proper relation with the
results from the literature, we choose to implement some irreducible gauge-
fixing conditions, based on the Majorana spinors

Ga = Ywtav — %'Yoﬂ/}w + Ya? (4.1)

that we want to induce a Gaussian term in the gauge-fixed path integral, of
the type

/...Dza exp <—i/d4x Lo (VWav = TVatow +Va® — %za)) . (42

In view of the above gauge-fixing conditions, we introduce a supplemen-
tary bosonic (already conjugated) Majorana vector spinor

(0,0,0)
? a (4.3)

that is regarded as a purely gauge field (does not enter the original action),
endowed with the gauge invariance

5¢Pa = &q s (4.4)

where obviously the gauge parameters £, are independent of €, (they have
opposite statistics, anyway). This means that we remain with the La-
grangian action (2.1), but regarded as being subject to the irreducible and
Abelian gauge transformations (2.4), (2.13) and (4.4). Then, according to
the discussion from the previous section, by triplicating all the above men-
tioned gauge transformations, we find that the ghost spectrum from the
Sp(3) BRST tricomplex for the overall gauge theory includes the ghosts
(3.13), as well as

(17970) (0,17,0) (07971) (0,171) (1,0,1) (1,170) (17151)
C lay C 205 C 3a; P lay D 2003 P 3o l o (45)

displaying the Grassmann parities
£ (Cma) =€ (la) =1, €(Pma) =0, m =1,2,3. (4.6)

We will see that [, from (4.5) is precisely the vector spinor that yields
the Gaussian term (4.2) in the gauge-fixed path integral. For notational
simplicity, we make the collective notation

©r = (@aaémaapmaaza)a m=1,2,3. (4.7)
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The antifield spectrum for the larger irreducible gauge theory will contain
the variables (3.16)-(3.29), together with the additional ones

(1™, e7 ™ 6F), m=1.2,3 (4.8)

whose properties are correctly described by the formulas (3.30)—(3.37), where
we replace @4 by @7, and also remove the spinor conjugation. Along the
line exposed in the above section, we find that the solution to the classical
master equation of the Sp(3) BRST formalism associated with the richer
gauge theory, (1/2) (5", S") +V.S' =0, will be

S =S+ / A" (~Cmai™ + By (Emm O30 + o2

Lo~ - OB 67 )) (4.9)

where S is given by (3.52), the non-vanishing fundamental antibrackets are
defined by (3.39), together with

(@I, wz(m))n = OmnOrLT (4.10)

and the components of the operator V' act only on the bar and tilde spinors
via (3.46) and

Vm‘P]B(n) — (_)61 5mnpS0;(p), Vm@? — (_)51+1 (pIB(m) ‘ (4‘11)

We are now prepared to develop a consistent gauge-fixing procedure at
the level of the antibracket-antifield Sp(3) formalism. Initially, we begin by
restoring an anticanonical structure for all the variables (including the bar
and tilde ones) in order to bring the classical master equation of the Sp(3)
BRST formalism to a more familiar form. We pick up, for instance, the first
antibracket, and forget about the other two. As only (94, @) (field/ghost

spectra (3.38) and (4.7)) and (@jl),go;(l)) form (anti)canonical pairs in

the first antibracket, we need to extend the algebra of the Sp(3) BRST
tricomplex [12] by adding the variables

P25 P3AS K1A; 1245 W3A, V1A, Tar, 731, Kip, Mar, M3, g (4.12)
respectively (anti)canonically conjugated in the first antibracket to
=x(3) zx(2) zB(1) zB(3) 7B(2) =
(@":4( )7¢T4( )’QSA( )’¢A( )’¢A( )’45:5’

o1, 1 P BE) B w?) : (4.13)
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The Grassmann parity and ghost tridegree of the new variables follow from
those of the first antibracket

6((7)1) = 1a t'righ((a)l) = (170a0) . (414)
We make the convention that the variables

= =B
(‘PA, or, 9752(3), wﬁ(g) s P3A, T3, ‘15A(1)a

)

o7 mar, 830, of® v, ) (4.15)

are regarded as ‘fields’, while

(52(1), @;(1) s P2A, T2, 52(2), 90;(2), K1A,

El[aéﬁa)a QDIB(Q)’NQAam?Ia@Ea @?) (416)

are viewed like their respectively (anti)canonically conjugated ‘antifields’.
Accordingly, we obtain that the functional

1=8+ /d4x (52(2)M2A + 52(3)M3A + 433(1)7/1/1
(=) (2o} 4 imargf ) + (<) gy ™) (417)

satisfies the equation
(81,51), =0, (4.18)

which is precisely the familiar form of the classical master equation from the
standard BRST method in the first antibracket.

This suggests that we can employ the gauge-fixing procedure from the
standard BRST formalism, which requires the choice of a fermionic func-
tional 11, with the help of which we eliminate half of the variables in favor
of the other half. For definiteness, we eliminate the variables

(@j{(l)a P2A5 P3A> K1A, ‘1_5/]31(2), @3(3) DX,
@ﬁ(l)ig[,f's[, /;711, <P1B(2), <P1B(3)a @?) ) (4.19)
and, in the meantime, enforce the gauge-fixing conditions
P24 = psa = k14 =0, Foy = T3 = ki; =0, (4.20)
which can be realized by taking

7;01 = Qljl [¢A7 W24 434, V1A, PI, Mo, M3J, ﬁ’l[] . (421)
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A variable is eliminated by one of the formulas

0 a0 (4.22)

tifield =
AREE = § ey’ ¢ 3 (antifield)’

depending if it is a ‘field’ or an ‘antifield’ (see (4.15),(4.16)). The gauge-fixing
fermion that implements the irreducible gauge conditions inferred from (4.1)
and (4.20) reads as

1 1
P = a/d4x <'ﬁgﬁ)$ <’7V1/}au - Z'Yoﬂ/’w + Ya® — §la)

_ 1 3 1 q
i (8 S+ 2t® - 122)

_ 1 1
#7120 (i, ~ ) + 20 ~ Jm2)

1 1
i) <%u§fﬁ)y - Zvaugﬁ)u + Yol — imgf;)) . (4.23)

where we put an extra superscript between parentheses (($4) or (¢r)) where
necessary, in order to distinguish the variables that carry the same indices,
and a is a non-vanishing constant. Eliminating the variables (4.19) with
the help of (4.23) from (4.17), and also some auxiliary variables from the
resulting functional, after some computation we infer the gauge-fixed action

éf = S(%‘ [w,uu] + a/d4$ (_ﬁmAﬁMAanma + émAﬁMAana
- 1 1
‘Hﬁ)\aMAa)\a - laﬁ <’Yu'l/1au - Z'Yoﬂ/}m/ + ’Yads - 5104)) ) (4'24)

where we used the notation

1 1
Myo = 0o + 5 <5)\;L'YV + 5)\V'Yu - §5uu7)\)

1
X (01,80, + 6,80, <5Ba1 - vaa) : (4.25)

Eliminating the auxiliary variables [, from (4.24), we infer the gauge-fixed
action

R T a/d4x (= 1GaPGa — P (53D + Bads) thns

+%ﬁmmﬁm - %ﬁmaaaﬁﬁm + %ﬁmﬁaanma
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+Cma (6aﬂD + aaaﬁ) Tmp — %@mmﬁm
+%C_(maaa67%m - %émﬁaoﬂrma + 3504 (6115':] + 8048/5) AB

~RHON+ kpa0adh ~ 35000, ) (4.26)

with G, given in (4.1). In the above we used the generic notations ¢ = y49a
and § = gaYa-

We can equally infer the expression (4.26) in the context of the other
two antibrackets. Indeed, if we focus on the second antibracket, then only

@4 and @; admit the antifields @2(2) and <p;(2) (anti)canonically conjugated
to them, such that we need the supplementary variables
P35 PLA, K2As 4345 1A, VoA, TSI, 71T, Kor, Mar, mar, nar, (4.27)
respectively (anti)canonically conjugated in the second antibracket to
(552(1)’ 52(3) ’ 4—53(2)’ 43131(1) : 43131(3) BT,
o1V 01,01, of M, 7P T ). (4.28)

Consequently, we find that the functional
Sy = 8+ / a' (B + B4 s + 85w
7 (e marer ™) + (2) mare]®) (4.2
fulfills the standard master equation in this antibracket
(85,85), = 0. (4.30)
In this case, we have to choose a fermionic functional 19, with the help of

which we eliminate half of the variables in favor of the other half. If we
eliminate the variables

(541(4(2)7 P1A, P3A, K24, 53(1)7 53(3) ) éga
@j@) 3 fl[a 7:317 EQD (P]B(l)a (p]B(S)a (pIT) 3 (431)

and implement the gauge-fixing conditions

PLA = p3a = ko =0, Ty =731 = kor =0, (4.32)
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then we have to set

7;02 = ¢2 [¢A7 H1A, U3A, V24, (pla mir, M3r, ﬁ’?[] . (433)

Now, the ‘fields’ are precisely

<¢A, @1, 52(1), <P;(1) L P1A, LT, 53(2), (4.34)

<P1B(2)aM1A,m117433(1), <P1B(1), VoA, Nar , (4.35)
and, naturally,

(52(2)5 (P;(Q) s P3A, T3, 52(3)7 ()041‘(3)’ K2A, (436)

E?Ia 53(3)7 QDIIS(?’) , 434,M3T, @Ea @r}‘) (437)

are interpreted like their ‘antifields’. The fermionic functional that takes
into account the irreducible gauge conditions furnished by (4.1), as well as
by (4.32), is simply given by

1 1
d}? = a/d4I <'ngﬁ)$ <7V¢0¢I/ - Z’Yoﬂﬁw/ + ’Ya@ - §la>

_ 1 s 1 @
it ()~ ) s~ 1)

1 1
+mgﬁ)@ <'YUM£(;Q/ - Z'Yal‘:(;ﬁz)/ =+ 'Ya/‘:(;p) - §mi(32)

1 1
20 (it = prantt) ol = 3l ) o 439)

and, after some computation, we get that it also leads to the gauge-fixed ac-
tion (4.26). A similar reasoning is valid with respect to the third antibracket,
in which case (4.26) is again recovered.

5. Comments and conclusions

We observe that the resulting gauge-fixed action has all the desired fea-
tures, namely, it is local, manifestly covariant, and exhibits no residual gauge
symmetries. Meanwhile, it has the same form, no matter what antibracket
we start with. We are now able to make the comparison with the standard
results from the literature [4,19]. In both previously mentioned Refs. the
authors work in the framework of the reducible formulation of free mass-
less spin-5/2 fields, and propose some gauge-fixing conditions expressed via
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the vector Majorana spinor Fy, = v,%a, — iyaz/JW, that are reducible since
YoFo = 0. Our approach has, among others, the advantage that allows the
gauge-fixing conditions to rely on the vector Majorana spinor (4.1), such
that they are irreducible. Let us consider the terms of total resolution de-
gree equal to one from the gauge-fixed action (4.24), namely,

—a/d4m ﬁmA@M)\anma = _a/d4$ (ﬁm)\ﬁ’)/)\ao/’lma
+%ﬁm)\$ (5)\u71/ + 5}\”7# - %@uu’)ﬂ) (a(u NMmv) — %’Y(u al/)?’/’m)) ; (51)

and the similar pieces (of antighost number one) in Sgnest from [4]. The
notation (pv) signifies symmetrization (without the factor 1/2) with respect
to the indices between parentheses. The latter terms from the right hand-
side of (5.1) are invariant under the residual gauge transformations

Nma = Mma + Yalim (5.2)

with 7, three arbitrary bosonic Majorana spinors, just like the similar com-
ponent in Sgpost from [4] (up to the difference that in [4] there appears a
single ghost). In our setting, this residual gauge symmetry is frozen by
the former pieces in the right hand-side of (5.1) (proportional with 9ynma),
while in the reducible version there is necessary to introduce a convenient
non-minimal sector in order to fix it. We remark that the “Nielsen—Kallosh
ghost” for spin-5/2 gauge fields from [4] is absent in our procedure, while
the role of the extraghost C] is played here by the purely gauge Majorana
spinor @, involved with the irreducible formulation of spin-5/2 gauge fields
(see Sec. 2).

The reducible approach is thus deeply focused on finding an appropri-
ate non-minimal sector to compensate for the redundancy of both gauge
transformations and gauge-fixing conditions. In turn, our Sp(3) treatment
applied to the irreducible formulation of spin 5/2-gauge fields exhibits the
advantage of avoiding these issues. It equally offers some correct irreducible
gauge-fixing conditions, and the opportunity to enforce them within the
gauge-fixed action without the fear that some undetected residual gauge
symmetries might occur.

This work has been supported by a research contract with the Romanian
Ministry of Education and Scientific Research (M.E.C.).
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