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BILARGE MIXING MATRIX AND ITS INVARIANCEUNDER �HORIZONTAL CONJUGATION� � A NEWDISCRETE TRANSFORMATION FOR NEUTRINOS�Woj
ie
h KrólikowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Re
eived Mar
h 27, 2003)In the �rst part of the note, we 
onsider a neutrino texture, where theDira
 and righthanded Majorana masses are proportional. If the formerare approximately proportional also to the 
harged-lepton masses, thentaking �m232 � 3 � 10�3 eV2 we estimate approximately that �m221 �O(10�5 eV2), what is not very di�erent from the re
ent KamLAND estima-tion �m221 � 7� 10�5 eV2, 
onsistent with the LMA solar solution. In these
ond part, we show generi
ally that the invarian
e of neutrino mixing ma-trix under the simultaneous dis
rete transformations �e ! ��e, �� ! �� ,�� ! �� and �1 ! ��1, �2 ! ��2, �3 ! �3 (neutrino �horizontal 
onju-gation�) 
hara
terizes the familiar bilarge form of mixing matrix, favoredphenomenologi
ally at present. Then, in the 
ase of this form, the massneutrinos �1; �2; �3 get a new quantum number, 
ovariant in their mixings(neutrino �horizontal parity� equal to �1;�1; 1, respe
tively). Conversely,su
h a 
ovarian
e may be the origin of the bilarge mixing matrix. In Se
tion5, the �horizontal parity� is embedded in a group stru
ture.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. Introdu
tionIn a re
ent note [1℄ we 
onsidered the neutrino texture, where the Dira
and righthanded 
omponents M (D) and M (R) of the generi
 neutrino 6� 6mass matrix � 0 M (D)M (D) T M (R) � (1)
ommute and have (at least, approximately) proportional eigenvalues,�1 :�2:�3 = �1:�2:�3 : (2)� Work supported in part by the Polish State Committee for S
ienti�
 Resear
h (KBN),grant 2 P03B 129 24 (2003�2004). (4125)



4126 W. KrólikowskiIf, in addition, they are in a better or worse approximation proportionalto the 
harged-lepton masses me;m�; m� , then in the seesaw me
hanismthe neutrino masses m1;m2;m3 being equal to ��21=�1;��22=�2;��23=�3,respe
tively, are approximately proportional to me;m�; m� . In fa
t,m1:m2:m3 = �21�1 :�22�2 :�23�3 = �1:�2:�3 'me:m�:m� : (3)In this 
ase, we 
alled the attention to the approximate relation�m221�m232 ' m2� �m2em2� �m2� = 3:548 � 10�3 ; (4)predi
ting the value �m221 � 1:1� 10�5 eV2 ; (5)when the SuperKamiokande estimate �m232 � 3� 10�3 eV2 [2℄ is used (weassume that �m232 � 0). Then,m21 � 2:5� 10�10 eV2; m22 � 1:1 � 10�5 eV2; m23 � 3� 10�3 eV2 (6)and one obtains (with m1;m2;m3 > 0 and so, �1;�2;�3 < 0)j�1j � 1:7� 107 GeV ; j�2j � 3:4� 109 GeV ; j�3j � 5:8� 1010 GeV ; (7)if one normalizes �21 = m2e (i.e., j�1j = �21=m1 = m2e=m1). It is 
onvenientto put �1; �2; �3 > 0. Of 
ourse, if the SuperKamiokande estimate for �m232de
reased, the predi
tion for �m221 would also de
rease.The predi
tion (5) is not very di�erent from the Large Mixing AngleMSW value supported 
on�dently by the re
ent KamLAND experiment [3℄and estimated as �m221 � 7 � 10�5 eV2 (the lower LMA solution) [4�8℄.In order to get this value more pre
isely, one may put m2=m3 = �2=�3 �2:6m�=m� in pla
e of m2=m3 = �2=�3 ' m�=m� , where m�=m� = 16:82(here, Eq. (2) still holds).2. Dira
 and Majorana masses: the 
onje
ture of proportionalityIn the present note, we make the above 
onsiderations more operativeputting (at least, approximately) M (R) = ��M (D) i.e., �1;2;3 = ���1;2;3,where � � 1 holds in 
onsisten
y with the seesaw me
hanism. In addition tothis 
onje
ture of proportionality, we will assume the approximate propor-tionality �1:�2:�3 ' me:m�:m� , 
onsidered in Introdu
tion, as normalizedto the approximate equality �1;2;3 ' me;�;� . Of 
ourse, the 
onje
tured rela-tion M (R)�� = ��M (D)�� (�; � = e; �; �) is valid after the spontaneous breaking
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troweak symmetry SU(2)L � U(1)Y i.e., when M (D)� � = Y (D)�� h�0i.Then, alsoM (R)�� must in
lude a mass s
ale. For instan
e, in the 
ase of spon-taneously broken left-right symmetry SU(2)L � SU(2)R � U(1)B�L, whereQ = I(L)3 + Y=2 and Y=2 = I(R)3 + (B � L)=2, this mass s
ale may begiven by h�01i with ~�1 = (�++1 ; �+1 ; �01) denoting a Higgs right weak-isospintriplet (and a left weak-isospin singlet) whi
h 
arries the (non
onserved)lepton number L = �2 (and the baryon number B = 0). In this 
ase,M (R)�� = Y (R)�� h�01i = ��Y (D)�� h�0i = �M (D)�� a

ording to our basi
 
onje
-ture. If Y (R)�� = �Y (D)�� , then h�01i = �h�0i > 0.Under these 
onje
tures, the 6�6 generi
 neutrino mass matrix (1) takesin the 
ase of M (D)T = M (D) = M (D)� the form� 0 M (D)M (D) ��M (D) � = � 0 1(3)1(3) ��1(3) �� M (D) 00 M (D) � ; (8)where 1(3) = diag(1; 1; 1) and both matrix fa
tors on the rhs 
ommute.Using the diagonalizing matrix U for M (D) we obtain� U y 00 U y �� 0 M (D)M (D) ��M (D) �� U 00 U �= � 0 1(3)1(3) ��1(3) �� diag (�1; �2; �3) 00 diag (�1; �2; �3) � ; (9)where both matrix fa
tors on the rhs 
ommute, of 
ourse. The diagonal formof the �rst matrix fa
tor on the rhs of Eq. (9) turns out to be (for � > 0):0BBBB� "� �2 +r� �2�2 + 1#1(3) 00 "� �2 �r� �2�2 + 1# 1(3) 1CCCCA : (10)Thus, the diagonal form of the mass matrix (8) is (for � > 0):0BBBB�"� �2 +r� �2�2 + 1#diag(�1; �2; �3) 00 "� �2 �r� �2�2 + 1# diag(�1; �2; �3)1CCCCA= � 1�diag (�1; �2; �3) 00 ��diag (�1; �2; �3) � ; (11)



4128 W. Królikowskiwhere the rhs is valid for � � 1. Hen
e, for � � 1m1;2;3 = 1� �1;2;3 ' 1�me;�;� ' � 1�2m4;5;6 ;m4;5;6 = ���1;2;3 ' ��me;�;� ' ��2m1;2;3 (12)under our assumption of �1;2;3 ' me;�;� . Using m� = 1776:99+0:29�0:26 MeV andthe SuperKamiokande estimate �m232 � 3�10�3eV2 givingm3 � 5:5�10�2eV, we obtain � = �3m3 ' m�m3 � 3:2� 1010 (13)and so, with me = 0:510999 MeV and m� = 105:658 MeV we predi
tm1 = 1� �1 ' 1�me � 1:6� 10�5 eV ; m2 = 1� �2 ' 1�m� � 3:3� 10�3 eV :(14)Thus, m21 � 2:5� 10�10 eV2, m22 � 1:1� 10�5 eV2 and m23 � 3� 10�3 eV2.The KamLAND estimate �m221 � 7 � 10�5 eV2 gives the value m2 �8:4� 10�3 eV whi
h lies not so far from our parameter-free predi
tion m2 �3:3 � 10�3 eV. Note that we may get the KamLAND value more pre
iselyputting m2=m3 = �2=�3 � 2:6m�=m� i.e., for instan
e, �m1 = �1 � me,�m2 = �2 � 0:90m� and �m3 = �3 � 0:35m� in pla
e of �m2 = �2 ' m�and �m3 = �3 ' m� , as 0.90/0.35 = 2.6 (here, Eq. (2) still holds, now with�1;2;3 = ���1;2;3). In this example, � = �3=m3 � 0:35m� =m3 � 1:1 � 1010.It is natural that the neutrino Dira
 masses �1; �2; �3 may be not equalto the 
harged-lepton masses me;m�;m� (in fa
t, somewhat smaller thanthese masses be
ause of ele
tromagneti
 intera
tions of 
harged leptons). Of
ourse, the neutrino Majorana masses m1;m2;m3 are dramati
ally smallerthan me;m�;m� , as m1;2;3 ' �1;2;3=� � �1;2;3 � me;�;� due to � � 1. Itseems also natural that the lepton Dira
 masses �1; �2; �3 and me;m�;m�are smaller than the masses of respe
tive up and down quarks, sin
e quarksparti
ipate in strong intera
tions.3. Bilarge mixing matrix: the invarian
e indu
ed by�1; �2; �3 ! ��1;��2; �3In our texture, whereM e� � 24��2 +s��2�2 + 135M (D) = 1�M (D) (15)
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e Under : : : 4129(� � 1) with U yM (D)U = diag(�1; �2; �3) ; (16)and in 
onsequen
em1;2;3 = 24��2 +s��2�2 + 135�1;2;3 = 1� �1;2;3 (17)(� � 1), the form of the Dira
 mass matrix M (D) is unknown. In thesituation, when the form of e�e
tive mass matrix M e� for a
tive neutrinos�e; ��; �� is theoreti
ally not known enough, the questions of the neutrinomass spe
trum m1;m2;m3 and of the diagonalizing matrix U for M e� ,U yM e�U = diag(m1;m2;m3) ; (18)are phenomenologi
ally independent, though they lead jointly toM e� = Udiag(m1;m2;m3)U y : (19)This independen
e enables, a priori, a hierar
hi
al mass spe
trum to 
oexistwith a large mixing of neutrino states by the diagonalizing matrix.In the �avor representation, where the mass matrix for 
harged leptons isdiagonal, the neutrino diagonalizing matrix U = (U�i) (� = e; �; � and i =1; 2; 3) is at the same time the mixing matrix for a
tive neutrinos a

ordingto the unitary transformation�� =Xi U�i�i ; (20)where �� � ��L and �i � �iL denote the a
tive-neutrino �avor and mass�elds, respe
tively. As is well known, the bilarge form of the mixing matrixU = 0B� 
12 s12 0� 1p2s12 1p2
12 1p21p2s12 � 1p2
12 1p2 1CA ; (21)where 
23 = 1=p2 = s23 and s13 = 0 (and s12 < 
12 with �12 � 33Æ [4-8℄are also large), is globally 
onsistent with all present neutrino os
illationexperiments for solar �e's and atmospheri
 ��'s as well as with the negativeChooz experiment [9℄ for rea
tor ��e's (giving s213 < 0:03), but it 
annotexplain the possible LSND e�e
t [10℄ for a

elerator ���'s (and ��'s) whoseexisten
e is expe
ted to be 
lari�ed soon in the MiniBOONE experiment(in Ref. [11℄ a �last hope� for explaining the possible LSND e�e
t by ahypotheti
 sterile neutrino is 
onsidered).



4130 W. KrólikowskiIn the 
ase of the mixing matrix U as given in Eq. (21), the unitarytransformation (20) gets the form�e = 
12�1 + s12�2 ;�� = � 1p2(s12�1 � 
12�2) + 1p2�3 ;�� = 1p2(s12�1 � 
12�2) + 1p2�3 ; (22)while the inverse transformation reads�1 = 
12�e � s12 1p2(�� � �� ) ;�2 = s12�e + 
12 1p2(�� � �� ) ;�3 = 1p2(�� + �� ) : (23)It 
an be seen that due to Eq. (22) the dis
rete transformation �1 ! ��1,�2 ! ��2, �3 ! �3 of mass neutrinos indu
es for �avor neutrinos the dis
retetransformation �e ! ��e, �� ! �� , �� ! �� i.e., the 
hange of sign of �e andthe inter
hange of �� and �� [this is a 
onsequen
e of the maximal mixing of�� and �� in Eqs. (23)℄. We 
an 
on
lude that the above interplay betweenboth dis
rete transformations 
hara
terizes the form (21) of mixing matrixand so, if 
onje
tured, sele
ts su
h a form (for any 
12 and s12) from its otherpossible forms. Formally, we infer that the above interplay is realized justin the 
ase of U given in Eq. (21) be
ause of the relations0� ��1��2�3 1A = 0� �1 0 00 �1 00 0 1 1A0� �1�2�3 1A ;0� ��e���� 1A = 0� �1 0 00 0 10 1 0 1A0� �e���� 1A (24)and 0� �1 0 00 0 10 1 0 1AU 0� �1 0 00 �1 00 0 1 1A = U ; (25)where due to Eq. (20)
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e Under : : : 41310� �e���� 1A = U 0� �1�2�3 1A : (26)Here, the relation (25) is 
ru
ial, telling us that the mixing matrix U of theform (21) is invariant under the simultaneous transformations �e ! ��e,�� ! �� , �� ! �� and �1 ! ��1, �2 ! ��2, �3 ! �3. Given su
h amixing matrix U , the �rst transformation is indu
ed by the se
ond throughthe unitary transformation between their matri
es: (I) = U(II)U y. That isequivalent to (I)U(II) = U i.e., to Eq. (25).Making use of the (formal) horizontal SU(3) group generated by b�a=2 (a =1; 2; : : : ; 8) with b�a being the Gell-Mann 3 � 3 matri
es a
ting on the hori-zontal triplet (�1; �2; �3)T, we 
an realize the above dis
rete transformationsfor mass and �avor neutrinos by means of the matri
es0��1 0 00 �1 00 0 1 1A = �13b1� 2p3b�8 ;0� �1 0 00 0 10 1 0 1A = �13b1� 12 �b�3 + 1p3b�8�+ b�6 ; (27)where b1 = 0� 1 0 00 1 00 0 1 1A ; b�3 = 0� 1 0 00 �1 00 0 0 1A ;b�8 = 1p3 0� 1 0 00 1 00 0 �2 1A ; b�6 = 0� 0 0 00 0 10 1 0 1A : (28)Note that Q(H) � 12 �b�3 + 1p3b�8� = 0� 2=3 0 00 �1=3 00 0 �1=3 1A (29)plays a role of �horizontal 
harge�, while I(H)3 � b�3=2 and Y (H) � b�8=p3 arethe 3-
omponent of the �horizontal isospin� and the �horizontal hyper
harge�,respe
tively.



4132 W. KrólikowskiNoti
e also that the mixing matrix (21) 
an be written in the formU = eib�7 �=4eib�2 �12 ; (30)sin
e eib�7�23 = 0� 1 0 00 
23 s230 �s23 
23 1A ; b�7 = 0� 0 0 00 0 �i0 i 0 1A (31)and eib�2�12 = 0� 
12 s12 0�s12 
12 00 0 1 1A ; b�2 = 0� 0 �i 0i 0 00 0 0 1A ; (32)where �23 = �=4.We 
an see from Eq. (32) thateib�2� = 0� �1 0 00 �1 00 0 1 1A = 0� �1 0 00 �1 00 0 1 1A�1 (33)and so, our dis
rete transformation of mass neutrinos 
an be realized aseib�2�0� �1�2�3 1A = 0� ��1��2�3 1A (34)i.e., as the unitary rotation around the �horizontal� 2-axis by angle 2�,generated by the 2-
omponent I(H)2 � b�2=2 of the �horizontal isospin�. Thedis
rete transformation �1 ! ��1, �2 ! ��2, �3 ! �3 realized in Eq. (34)may be 
alled the �horizontal 
onjugation�, while its matrixP (H) � eiI(H)2 2� = eib�2 � (35)given in Eq. (33) � the �horizontal parity�. Then, the mass neutrinos�1; �2; �3 
orrespond to the eigenvalues �1;�1; 1 of this parity, respe
tively;also the �avor neutrino �e gets the eigenvalue �1, while �� and �� mix theeigenvalues �1 and 1 in su
h a way that (�� � �� )=p2 have the eigenval-ues �1. Thus, it follows from the unitary transformation (23) that for theform (21) of mixing matrix U the �horizontal parity� (35) is an observable
ovariant in neutrino mixings: P (H)0 = UP (H)U y. This is equivalent toP (H)0UP (H) = U i.e., to Eq. (25).



Bilarge Mixing Matrix and Its Invarian
e Under : : : 4133At the same time, we 
an infer from the relation (25) and Eqs. (30) with(33) thateib�7�=4eib�2�e�ib�7�=4 = 0� �1 0 00 0 10 1 0 1A = 0� �1 0 00 0 10 1 0 1A�1 (36)and thus, in 
onsequen
e of the unitary rotation (34) for mass neutrinos, the
omposed unitary rotationeib�7�=4eib�2�e�ib�7�=40� �e���� 1A = 0� ��e���� 1A (37)is indu
ed for �avor neutrinos. This interplay between the dis
rete trans-formations (34) and (37) sele
ts the form (21) of mixing matrix U (for any
12 and s12) as satisfying the relation (25) that now is identi
ally ful�lled,being redu
ed trivially toeib�7�=4eib�2�12 = eib�7�=4eib�2�12 (38)due to Eqs. (30), (33) and (36).4. E�e
tive mass matrix: the invarian
e under�e; ��; �� ! ��e; �� ; ��Making use of the formulae (19) and (21), and parametrizing the neutrinomass spe
trum as m1 = 0m �Æ ; m2 = 0m +Æ ; m3 = 0m +� ; (39)we 
an write the e�e
tive mass matrix for a
tive neutrinos �e; ��; �� in theform M e� = 0m 0� 1 0 00 1 00 0 1 1A+ 12�0� 0 0 00 1 10 1 1 1A+12Æ0� �2
 p2 s �p2 sp2 s 
 �
�p2 s �
 
 1A ; (40)where 
 � 
os 2�12 = 
212 � s212 and s � sin 2�12 = 2
12s12. In Eq. (40) allthree terms 
ommute (the produ
t of the se
ond and third term in bothorders vanishes). Thus, 
onsistently



4134 W. Królikowskidiag(m1;m2;m3) = U yM e�U= 0m 0� 1 0 00 1 00 0 1 1A+�0� 0 0 00 0 00 0 1 1A+ Æ0� �1 0 00 1 00 0 0 1A : (41)In Eq. (40), the third term is equal to the sum12Æ0� �2 0 00 1 �10 �1 1 1A 
+ 1p2Æ0� 0 1 �11 0 0�1 0 0 1A s : (42)Formally, in deriving Eq. (41) from Eq. (40) the relationsU y0� 0 0 00 1 10 1 1 1AU = 20� 0 0 00 0 00 0 1 1A ;U y0� �2 0 00 1 �10 �1 1 1AU = 20� �
 �s 0�s 
 00 0 0 1A ;U y0� 0 1 �11 0 0�1 0 0 1AU =p20� �s 
 0
 s 00 0 0 1A (43)are involved.We 
an easily 
he
k that the e�e
tive mass matrix (40) of �avor neu-trinos �e; ��; �� is invariant under the dis
rete transformation �e ! ��e,�� ! �� , �� ! �� indu
ed by �1 ! ��1, �2 ! ��2, �3 ! �3 (�horizontal
onjugation�):0� �1 0 00 0 10 1 0 1AM e� 0� �1 0 00 0 10 1 0 1A = M e� : (44)In fa
t, all matri
es appearing in Eqs. (40) and (42) 
ommute with thetransformation matrix in Eq. (44) that squared gives the unit matrix. Theinvarian
e (44) follows also dire
tly from the formula (19) and the relation(25).



Bilarge Mixing Matrix and Its Invarian
e Under : : : 4135In terms of the Gell-Mann 3� 3 matri
es b�a (a = 1; 2; : : : ; 8) we 
an putin Eqs. (40) and (42)0� 0 0 00 1 10 1 1 1A = 23b1� 12(b�3 + 1p3b�8) + b�6 ;0��2 0 00 1 �10 �1 1 1A = �32(b�3 + 1p3b�8)� b�6 ;0� 0 1 �11 0 0�1 0 0 1A = b�1 � b�4 ; (45)where in addition to Eqs. (28) we useb�1 = 0� 0 1 01 0 00 0 0 1A ; b�4 = 0� 0 0 10 0 01 0 0 1A : (46)Then, from Eqs. (40) and (42) we obtain the formulaM e� = � 0m +13��b1� 12 (�+ 3Æ
) 12 �b�3 + 1p3b�8�+12 (�� Æ
) b�6 + 1p2Æs�b�1 � b�4� : (47)The e�e
tive mass matrix M e� = (M��) (�; � = e; �; �) may be alsopresented as M e� =X�� M�� be�� (48)in terms of the basi
 matri
es be�� � (Æ� 
 Æ� Æ), wherebeee = 13b1 + 12 � b�3 + 1p3b�8� ; bee� = 12 �b�1 + ib�2� = bey�e ;be�� = 13b1 + 12��b�3 + 1p3b�8� ; bee� = 12 �b�4 + ib�5� = bey�e ;be�� = 13b1� 1p3b�8 ; be�� = 12 �b�6 + ib�7� = bey�� (49)with b1 = (Æ
 Æ) and b�a = (�a 
Æ) (a = 1; 2; : : : ; 8). The matrix elements M��of M e� are determined by the formula (19), M�� =Pi U�imiU��i, that due



4136 W. Królikowskito Eqs. (21) and(39) givesMee = 0m �Æ
 ;M�� = M�� = 0m +12�+ 12Æ
 ;Me� = �Me� = 1p2Æs =M�e = �M�e ;M�� = 12�� 12Æ
 = �M�� : (50)It may be worthwhile to note that the imaginary matri
es b�2; b�7 andb�5 = 0� 0 0 �i0 0 0i 0 0 1A ; (51)although they appear within the basi
 matri
es be�� , are 
an
eled out inM e�due to the relations M�� = M�� and be�� = bey�� applied to Eq. (48).Finally, it is tempting to spe
ulate that the invarian
e under the simulta-neous dis
rete transformations �e ! ��e, �� ! �� , �� ! �� and �1 ! ��1,�2 ! ��2, �3 ! �3 (neutrino �horizontal 
onjugation�) � that, as shownin this note, 
hara
terizes the phenomenologi
ally favored form (21) of neu-trino mixing matrix � may play an important role in Nature be
ause of theabsen
e for neutrinos of ele
tromagneti
 and strong intera
tions. Otherwise,these intera
tions 
ould largely suppress su
h a fragile, dis
rete horizontalsymmetry that, in 
ontrast to the Standard Model gauge intera
tions, doesnot treat equally three fermion generations. This may be also the reason,why the quark mixing matrix does not involve large mixings, in 
ontrast tothe lepton mixing matrix (i.e., neutrino mixing matrix in the �avor repre-sentation) observed by means of neutrino os
illations.5. Bimaximal mixing matrix as an approximationWe know from experiments for solar �e's that the bilarge mixing matrixU given in Eq. (21) is not bimaximal, as �12 � 33Æ < 45Æ, and so
12 � 0:84 > 1p2 > s12 � 0:54 : (52)But, sin
e both values 
12 and s12 are still large and not very distant from1=p2 ' 0:71, one may ask the question, if and to what extent the ap-proximation 
12 ' 1=p2 ' s12 may work, leading through Eq. (21) to the



Bilarge Mixing Matrix and Its Invarian
e Under : : : 4137approximate bimaximal form for the mixing matrix:U ' 0� 1=p2 1=p2 0�1=2 1=2 1=p21=2 �1=2 1=p2 1A : (53)For su
h an approximate form of U , the unitary transformation (20)implies �e ' 1p2(�1 + �2) ;�� '� 1p2 1p2(�1 � �2) + 1p2�3 ;�� ' 1p2 1p2(�1 � �2) + 1p2�3 (54)and �1 ' 1p2�e � 1p2 1p2(�� � �� ) ;�2 ' 1p2�e + 1p2 1p2(�� � �� ) ;�3 ' 1p2(�� + �� ) : (55)It is easy to see from Eqs. (54) and (55) that now, beside the previous (stri
t)symmetry (25), where�1; �2; �3 ! ��1;��2; �3 indu
es �e; ��; �� ! ��e; �� ; �� ;there exist also two (approximate) symmetries, where�1; �2; �3 ! ��2;��1;��3 indu
es �e; ��; �� ! ��e;��� ;���and �1; �2; �3 ! �2; �1;��3 indu
es �e; ��; �� ! �e;���;��� :Both are ex
luded if it is 
onsidered that 
12 6= s12 distin
tly. If it is a

eptedthat 
12 ' s12, then � in addition to the relation (25) � two new relations0� �1 0 00 0 �10 �1 0 1AU 0� 0 �1 0�1 0 00 0 �1 1A ' U (56)



4138 W. Królikowskiand 0� 1 0 00 �1 00 0 �1 1AU 0� 0 1 01 0 00 0 �1 1A ' U (57)follow, respe
tively, expressing two new (approximate) invarian
es of the(approximate) form (53) of U . These two (approximate) symmetries intro-du
e the di�eren
e between the (approximate) bimaximal form (53) of Uand its (stri
t) monomaximal form (21) where 
12 6= s12 distin
tly, be
ausethey work only for the former.Let us denote our Hermitian and real 3 � 3 matri
es transforming themixing matrix U in the relations (56), (57) and (25) asb'1 � 0��1 0 00 0�10�1 01A ; b'2 � 0�1 0 00�1 00 0�11A ; b'3 � 0��1 0 00 0 10 1 01A (58)and b�1 � 0� 0�1 0�1 0 00 0�11A ; b�2 � 0�0 1 01 0 00 0�11A ; b�3 � 0��1 0 00�1 00 0 11A : (59)Then, with i = 1; 2; 3 the symmetries (56), (57) and (25) of the (approxi-mate) bimaximal mixing matrix U given in Eq. (53) may be expressed inthree ways: b'iUb�i = U or Ub�i = b'iU or b'i = Ub�iU y ; (60)where for i = 1; 2 the equality is (only) approximate [while for i = 3 it isexa
t with U as given in Eq. (21)℄. Note that Tr b'i = �1 and Tr b�i = �1.From the de�nitions (58) and (59) we 
an readily show that with i; j =1; 2; 3b'2i = b1 ; b'1 b'2 = b'3 (
y
li
) ; b'i b'j = b'j b'i ; b'1 + b'2 + b'3 = �b1 (61)andb�2i = b1 ; b�1b�2 = b�3 (
y
li
) ; b�ib�j = b�jb�i ; b�1 + b�2 + b�3 = �b1 (62)(but in general b'ib�j 6= b�j b'i). Hen
e, we get in a more 
ompa
t notationfb'i ; b'jg = 2Æijb1 + 2Xk j"ijkj b'k ; [b'i ; b'j ℄ = 0 (63)and fb�i ; b�jg = 2Æijb1 + 2Xk j"ijkj b�k ; [b�i ; b�j℄ = 0 (64)
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f. Eq. (72)℄. We 
an alsowrite for U given in Eq. (53) Æijb1 +Xk j"ijkjb'k!U = b'iUb�j = U  Æijb1 +Xk j"ijkj b�k! ; (65)where for j = 1; 2 and i = 1; 2, respe
tively, the �rst and se
ond equality isonly approximate [while for j = 3 and i = 3 it is exa
t with U as given inEq. (21)℄. Note that here (j"ij1j) = b�6, (j"ij2j) = b�4 and (j"ij3j) = b�1.It is easy to see that the e�e
tive mass matrixM e�=Udiag(m1;m2;m3)U ywith U in the form (53) reveals for i = 1; 2; 3 the symmetriesb'iM e� b'i = M e� or M e� b'i = b'iM e� ; (66)where for i = 1; 2 the equality is (only) approximately valid, provided we
an a

ept beside the approximation 
12 ' s12 also m1 ' m2 i.e., Æ ' 0[while for i = 3 it is exa
t with U as given in Eq. (21)℄. In the 
ase of Æ ' 0,the values of 
12 and s12 be
ome irrelevant in M e� [
f. Eqs. (50)℄.The matri
es b'i and b�i (i = 1; 2; 3) as de�ned in Eqs. (58) and (59) maybe used as bases for 3� 3 symmetri
 blo
k matri
es of the types0� A 0 00 B C0 C B 1A and 0� D E 0E D 00 0 F 1A ;respe
tively (b1 is not needed in these bases be
ause of the form of 
onstraintsb'1 + b'2+ b'3 = �b1 and b�1+ b�2+ b�3 = �b1). The sets of su
h matri
es formtwo Abelian groups with respe
t to matrix multipli
ation, if the inverse oftheir four blo
ks exists. They are isomorphi
, as they are related through theunitary transformation generated by the bimaximal mixing matrix U givenby the rhs of Eq. (53), (I) = U(II)U y, where (I) and (II) symbolize the setsof matri
es of the �rst and se
ond type. The group 
hara
ter of these setsis re�e
ted in the group relations b'1 b'2 = b'3 (
y
li
) and b�1b�2 = b�3 (
y
li
)for their bases [
f. Eqs. (61) and (62)℄, while their isomorphism 
orrespondsto the unitary transformation b'i = Ub�iU y (i = 1; 2; 3) between both bases[
f. Eqs. (60)℄. These two groups are, of 
ourse, subgroups of the group ofall 3� 3 nonsingular matri
es that 
an be spun by the basis 
onsisting of b1and the Gell-Mann matri
es b�a (a = 1; 2; : : : ; 8).It is interesting to note that the neutrino e�e
tive mass matrix M e� isof the form [
f. Eqs. (50)℄ belonging to the set (I) for d = 0:0� a d �dd b 
�d 
 b 1A :
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ommutes exa
tly with b'3, while with b'1 and b'2 (only) approx-imately, provided d � Æs=p2 ' 0 and so Æ ' 0 i.e., m1 ' m2. Here, b'3 =Ub�3U y � UP (H)U y is the unitary transform of �horizontal parity� with U asgiven in Eq. (21). In this way, b'3M e� b'3 = UP (H)diag(m1;m2;m3)P (H)U y =M e� . In terms of b'1; b'2; b'3 and b�1; b�4 with (b'1 + b'2)(b'1 � b'2) = 0 and(b'1 + b'2)(b�1 � b�4) = 0 we 
an writeM e� = �� 0m +12�� (b'1 + b'2)� 0m b'3+12Æ 
 (b'1 � b'2)+ 1p2Æs�b�1 � b�4� ;(67)where b'3b�1;4 = �b�4;1 b'3 makes b'3 
ommute with b�1 � b�4, while b'1b�1;4 =b�4;1 b'1 and b'2b�1;4 = �b�1;4 b'2 imply that b'1 and b'2 anti
ommute with b�1 �b�4. Also note that U y h12
 (b'1 � b'2) + 1p2s�b�1 � b�4�iU = �b�3 for any
 � 
212�s212 and s � 2
12s12 [
f. Eqs. (43)℄, where U is given as in Eq. (21).If 
12 = 1=p2 = s12, then 
 = 0 and s = 1.In 
onne
tion with the formula (67) we wonder, if the 3 � 3 matri
esb'i and b�i (i = 1; 2; 3) may help us to �nd the desired dynami
al variablessolving hopefully the basi
 problem of fermion masses (noti
e that b�1�b�4 =12 fb'3; b�1 � b�2g). In su
h a 
ase there may appear a more or less instru
tiveanalogy with Pauli matri
es that have led to Dira
 matri
es solving theproblem of fermion spins.In terms of the Gell-Mann 3 � 3 matri
es b�a (a = 1; 2; : : : ; 8) and theirbasi
 
ombinations be�� (�; � = e; �; �) presented in Eqs. (49) we obtainb'1 = �b�6 � beee ; b'2 = �b1 + 2beee ; b'3 = b�6 � beee (68)and b�1 = �b�1 � be�� ; b�2 = b�1 � be�� ; b�3 = �b1 + 2be�� ; (69)where beee = 0� 1 0 00 0 00 0 0 1A = 13b1 + 12 �b�3 + 1p3b�8� ;be�� = 0� 0 0 00 0 00 0 1 1A = 13b1� 1p3b�8 : (70)Due to Eqs. (33) and (36) we 
an write for i = 3b�3 = eib�2� ; b'3 = eib�7�=4eib�2�e�ib�7�=4 = Ueib�2�U y (71)
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essary to make in U the approximation �12 ' 45Æ (here, this mixingangle has its a
tual value �12 � 33Æ).Sin
e the matri
es b'i and b�i (i = 1; 2; 3) are Hermitian and real, their
ommutators are antiHermitian and real, and thus, 
an be expressed as
ombinations of three imaginary matri
es b�2 ; b�5 and b�7 of eight Gell-Mann3� 3 matri
es b�a (a = 1; 2; : : : ; 8) whi
h all are Hermitian. In fa
t, we �nd([b'i; b�j ℄) = i0B� b�2 � b�5 + b�7 �b�2 + b�5 + b�7 �2b�7�2b�2 2b�2 0b�2 + b�5 � b�7 �b�2 � b�5 � b�7 2b�7 1CA : (72)Hen
e, Pi [b'i; b�j℄ = 0 and Pj [b'i; b�j ℄ = 0, what is 
onsistent with two
onstraints Pi b'i = �b1 and Pj b�j = �b1. The imaginary matri
es b�2; b�5and b�7 are absent from b'i and b�i that are 
ombinations of b1; b�1; b�3; b�8 andb�6 [
f. Eqs. (68)�(70)℄.Analogi
ally, it is easy to evaluate the anti
ommutators fb'i; b�jg that
an be expressed as 
ombinations of b1 and �ve real matri
es b�1; b�3; b�4; b�6and b�8 of eight b�a (a = 1; 2; : : : ; 8). None of these anti
ommutators is zero.Note that the matri
es b'i and b�i de�ned in Eqs. (58) and (59) have thefollowing blo
k stru
tureb'1 = 0BB��1 0 00 �b�P10 1CCA ; b'2 = 0BB�1 0 00 �b1P0 1CCA ; b'3 = 0BB��1 0 00 b�P10 1CCA (73)and b�1 = 0BB� 0�b�P1 00 0 �11CCA ; b�2 = 0BB� 0b�P1 00 0 �11CCA ; b�3 = 0BB� 0�b1P 00 0 11CCA ; (74)where b1P = � 1 00 1 � ; b�P1 = � 0 11 0 � : (75)
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lusionsWe have introdu
ed in Se
tion 5 two algebras of 
ommuting Hermi-tian 3 � 3 matri
es b'1; b'2; b'3 and b�1; b�2; b�3, satisfying the group relationsb'1 b'2 = b'3 (
y
li
) and b�1b�2 = b�3 (
y
li
) as well as the 
onstraintsb'1+ b'2+b'3 = �b1 and b�1+b�2+b�3 = �b1. These two algebras are isomorphi
,as being related by the unitary transformation b'i = U b�i U y (i = 1; 2; 3),where U is the neutrino mixing matrix of the bilarge form (21), phenomeno-logi
ally favored at present, whi
h for i = 1; 2 is approximated to the nearlybimaximal form (53) with 
12 ' 1=p2 ' s12 (i.e., with �12 ' 45Æ, whilethe a
tual experimental estimate is �12 � 33Æ). For i = 3 the unitary trans-formation is exa
t, thus the resulting invarian
e b'3Ub�3 = U is also exa
t.It 
hara
terizes the monomaximal form (21) of neutrino mixing matrix Ufor any 
12 and s12. The resulting approximate invarian
es b'iUb�i = U fori = 1; 2, if a

epted as working, suggest that this monomaximal form of Uis, in fa
t, nearly bimaximal. Of 
ourse, the 
loser the experimetal estimateof �12 is to 45Æ, the better is this 
on
lusion.We have 
alled the transformation U 0 = b'3Ub�3 providing the exa
tinvarian
e U 0 = U the neutrino �horizontal 
onjugation�, while its matrixP (H) � b�3 = exp(ib�2�) � the neutrino �horizontal parity�. The latter isa unitary rotation by the angle 2� around the �horizontal� 2-axis. Su
h a
onjugation implies the transformation0� � 01� 02� 03 1A = P (H)0� �1�2�3 1A = 0� ��1��2�3 1A (76)for mass neutrinos, indu
ing simultaneously the transformation0� � 0e� 0�� 0� 1A = UP (H)U y0� �e���� 1A = 0� ��e���� 1A (77)for �avor neutrinos, sin
e � 0� = Pi U�i� 0i and �i = P� U��i��. Thus, the�horizontal parity� displays the 
ovarian
e P (H)0 = UP (H)U y with P (H)0 �b'3. Here, the mass neutrinos �1 ; �2 ; �3 get the �horizontal parity� equal to�1;�1; 1, respe
tively, while the �avor neutrinos �e ; �� ; �� , ex
ept for �e,mix the �horizontal parity�.The 
orresponding transformation for the neutrino e�e
tive mass ma-trix M e� = U diag(m1;m2;m3)U y reads M e� 0 = b'3M e� b'3, implying theexa
t invarian
e M e� 0 = M e� be
ause of the relations b'3U = Ub�3 andb�3 diag(m1;m2;m3) b�3 = diag(m1;m2;m3). The invarian
es b'iM e� b'i =
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an a

eptbeside the approximation 
12 ' s12 also m1 ' m2.Thus, �nally, we 
an 
on
lude that � as a result of there being the�horizontal parity� 
ovariant in neutrino mixings � three a
tive neutrinosmay develop in a natural way the familiar bilarge form of mixing matrix,favored at present phenomenologi
ally. The suggestion that the resultingmonomaximal form is, in fa
t, bilarge (approximately bimaximal) 
omesfrom the group 
hara
ter of relations b�1b�2 = b�3 (
y
li
), where the �hor-izontal parity� P (H) � b�3 (generating the symmetry under the �horizontal
onjugation�, b'3Ub�3 = U) is embedded. Then, the symmetries b'iUb�i = Uor b'i = Ub�iU y with b'1 b'2 = b'3 (
y
li
) hold also for i = 1; 2, if U � mono-maximal with some 
12 and s12 � is approximated to bimaximal form with
12 ! 1=p2  s12, in order to in
lude also b'1; b'2 and b�1; b�2 in des
ribingpotential symmetries of U . Obviously, the smaller are the experimentallyestimated di�eren
es 
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