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BILARGE MIXING MATRIX AND ITS INVARIANCEUNDER �HORIZONTAL CONJUGATION� � A NEWDISCRETE TRANSFORMATION FOR NEUTRINOS�Wojieh KrólikowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Reeived Marh 27, 2003)In the �rst part of the note, we onsider a neutrino texture, where theDira and righthanded Majorana masses are proportional. If the formerare approximately proportional also to the harged-lepton masses, thentaking �m232 � 3 � 10�3 eV2 we estimate approximately that �m221 �O(10�5 eV2), what is not very di�erent from the reent KamLAND estima-tion �m221 � 7� 10�5 eV2, onsistent with the LMA solar solution. In theseond part, we show generially that the invariane of neutrino mixing ma-trix under the simultaneous disrete transformations �e ! ��e, �� ! �� ,�� ! �� and �1 ! ��1, �2 ! ��2, �3 ! �3 (neutrino �horizontal onju-gation�) haraterizes the familiar bilarge form of mixing matrix, favoredphenomenologially at present. Then, in the ase of this form, the massneutrinos �1; �2; �3 get a new quantum number, ovariant in their mixings(neutrino �horizontal parity� equal to �1;�1; 1, respetively). Conversely,suh a ovariane may be the origin of the bilarge mixing matrix. In Setion5, the �horizontal parity� is embedded in a group struture.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. IntrodutionIn a reent note [1℄ we onsidered the neutrino texture, where the Diraand righthanded omponents M (D) and M (R) of the generi neutrino 6� 6mass matrix � 0 M (D)M (D) T M (R) � (1)ommute and have (at least, approximately) proportional eigenvalues,�1 :�2:�3 = �1:�2:�3 : (2)� Work supported in part by the Polish State Committee for Sienti� Researh (KBN),grant 2 P03B 129 24 (2003�2004). (4125)



4126 W. KrólikowskiIf, in addition, they are in a better or worse approximation proportionalto the harged-lepton masses me;m�; m� , then in the seesaw mehanismthe neutrino masses m1;m2;m3 being equal to ��21=�1;��22=�2;��23=�3,respetively, are approximately proportional to me;m�; m� . In fat,m1:m2:m3 = �21�1 :�22�2 :�23�3 = �1:�2:�3 'me:m�:m� : (3)In this ase, we alled the attention to the approximate relation�m221�m232 ' m2� �m2em2� �m2� = 3:548 � 10�3 ; (4)prediting the value �m221 � 1:1� 10�5 eV2 ; (5)when the SuperKamiokande estimate �m232 � 3� 10�3 eV2 [2℄ is used (weassume that �m232 � 0). Then,m21 � 2:5� 10�10 eV2; m22 � 1:1 � 10�5 eV2; m23 � 3� 10�3 eV2 (6)and one obtains (with m1;m2;m3 > 0 and so, �1;�2;�3 < 0)j�1j � 1:7� 107 GeV ; j�2j � 3:4� 109 GeV ; j�3j � 5:8� 1010 GeV ; (7)if one normalizes �21 = m2e (i.e., j�1j = �21=m1 = m2e=m1). It is onvenientto put �1; �2; �3 > 0. Of ourse, if the SuperKamiokande estimate for �m232dereased, the predition for �m221 would also derease.The predition (5) is not very di�erent from the Large Mixing AngleMSW value supported on�dently by the reent KamLAND experiment [3℄and estimated as �m221 � 7 � 10�5 eV2 (the lower LMA solution) [4�8℄.In order to get this value more preisely, one may put m2=m3 = �2=�3 �2:6m�=m� in plae of m2=m3 = �2=�3 ' m�=m� , where m�=m� = 16:82(here, Eq. (2) still holds).2. Dira and Majorana masses: the onjeture of proportionalityIn the present note, we make the above onsiderations more operativeputting (at least, approximately) M (R) = ��M (D) i.e., �1;2;3 = ���1;2;3,where � � 1 holds in onsisteny with the seesaw mehanism. In addition tothis onjeture of proportionality, we will assume the approximate propor-tionality �1:�2:�3 ' me:m�:m� , onsidered in Introdution, as normalizedto the approximate equality �1;2;3 ' me;�;� . Of ourse, the onjetured rela-tion M (R)�� = ��M (D)�� (�; � = e; �; �) is valid after the spontaneous breaking



Bilarge Mixing Matrix and Its Invariane Under : : : 4127of the eletroweak symmetry SU(2)L � U(1)Y i.e., when M (D)� � = Y (D)�� h�0i.Then, alsoM (R)�� must inlude a mass sale. For instane, in the ase of spon-taneously broken left-right symmetry SU(2)L � SU(2)R � U(1)B�L, whereQ = I(L)3 + Y=2 and Y=2 = I(R)3 + (B � L)=2, this mass sale may begiven by h�01i with ~�1 = (�++1 ; �+1 ; �01) denoting a Higgs right weak-isospintriplet (and a left weak-isospin singlet) whih arries the (nononserved)lepton number L = �2 (and the baryon number B = 0). In this ase,M (R)�� = Y (R)�� h�01i = ��Y (D)�� h�0i = �M (D)�� aording to our basi onje-ture. If Y (R)�� = �Y (D)�� , then h�01i = �h�0i > 0.Under these onjetures, the 6�6 generi neutrino mass matrix (1) takesin the ase of M (D)T = M (D) = M (D)� the form� 0 M (D)M (D) ��M (D) � = � 0 1(3)1(3) ��1(3) �� M (D) 00 M (D) � ; (8)where 1(3) = diag(1; 1; 1) and both matrix fators on the rhs ommute.Using the diagonalizing matrix U for M (D) we obtain� U y 00 U y �� 0 M (D)M (D) ��M (D) �� U 00 U �= � 0 1(3)1(3) ��1(3) �� diag (�1; �2; �3) 00 diag (�1; �2; �3) � ; (9)where both matrix fators on the rhs ommute, of ourse. The diagonal formof the �rst matrix fator on the rhs of Eq. (9) turns out to be (for � > 0):0BBBB� "� �2 +r� �2�2 + 1#1(3) 00 "� �2 �r� �2�2 + 1# 1(3) 1CCCCA : (10)Thus, the diagonal form of the mass matrix (8) is (for � > 0):0BBBB�"� �2 +r� �2�2 + 1#diag(�1; �2; �3) 00 "� �2 �r� �2�2 + 1# diag(�1; �2; �3)1CCCCA= � 1�diag (�1; �2; �3) 00 ��diag (�1; �2; �3) � ; (11)



4128 W. Królikowskiwhere the rhs is valid for � � 1. Hene, for � � 1m1;2;3 = 1� �1;2;3 ' 1�me;�;� ' � 1�2m4;5;6 ;m4;5;6 = ���1;2;3 ' ��me;�;� ' ��2m1;2;3 (12)under our assumption of �1;2;3 ' me;�;� . Using m� = 1776:99+0:29�0:26 MeV andthe SuperKamiokande estimate �m232 � 3�10�3eV2 givingm3 � 5:5�10�2eV, we obtain � = �3m3 ' m�m3 � 3:2� 1010 (13)and so, with me = 0:510999 MeV and m� = 105:658 MeV we preditm1 = 1� �1 ' 1�me � 1:6� 10�5 eV ; m2 = 1� �2 ' 1�m� � 3:3� 10�3 eV :(14)Thus, m21 � 2:5� 10�10 eV2, m22 � 1:1� 10�5 eV2 and m23 � 3� 10�3 eV2.The KamLAND estimate �m221 � 7 � 10�5 eV2 gives the value m2 �8:4� 10�3 eV whih lies not so far from our parameter-free predition m2 �3:3 � 10�3 eV. Note that we may get the KamLAND value more preiselyputting m2=m3 = �2=�3 � 2:6m�=m� i.e., for instane, �m1 = �1 � me,�m2 = �2 � 0:90m� and �m3 = �3 � 0:35m� in plae of �m2 = �2 ' m�and �m3 = �3 ' m� , as 0.90/0.35 = 2.6 (here, Eq. (2) still holds, now with�1;2;3 = ���1;2;3). In this example, � = �3=m3 � 0:35m� =m3 � 1:1 � 1010.It is natural that the neutrino Dira masses �1; �2; �3 may be not equalto the harged-lepton masses me;m�;m� (in fat, somewhat smaller thanthese masses beause of eletromagneti interations of harged leptons). Ofourse, the neutrino Majorana masses m1;m2;m3 are dramatially smallerthan me;m�;m� , as m1;2;3 ' �1;2;3=� � �1;2;3 � me;�;� due to � � 1. Itseems also natural that the lepton Dira masses �1; �2; �3 and me;m�;m�are smaller than the masses of respetive up and down quarks, sine quarkspartiipate in strong interations.3. Bilarge mixing matrix: the invariane indued by�1; �2; �3 ! ��1;��2; �3In our texture, whereM e� � 24��2 +s��2�2 + 135M (D) = 1�M (D) (15)



Bilarge Mixing Matrix and Its Invariane Under : : : 4129(� � 1) with U yM (D)U = diag(�1; �2; �3) ; (16)and in onsequenem1;2;3 = 24��2 +s��2�2 + 135�1;2;3 = 1� �1;2;3 (17)(� � 1), the form of the Dira mass matrix M (D) is unknown. In thesituation, when the form of e�etive mass matrix M e� for ative neutrinos�e; ��; �� is theoretially not known enough, the questions of the neutrinomass spetrum m1;m2;m3 and of the diagonalizing matrix U for M e� ,U yM e�U = diag(m1;m2;m3) ; (18)are phenomenologially independent, though they lead jointly toM e� = Udiag(m1;m2;m3)U y : (19)This independene enables, a priori, a hierarhial mass spetrum to oexistwith a large mixing of neutrino states by the diagonalizing matrix.In the �avor representation, where the mass matrix for harged leptons isdiagonal, the neutrino diagonalizing matrix U = (U�i) (� = e; �; � and i =1; 2; 3) is at the same time the mixing matrix for ative neutrinos aordingto the unitary transformation�� =Xi U�i�i ; (20)where �� � ��L and �i � �iL denote the ative-neutrino �avor and mass�elds, respetively. As is well known, the bilarge form of the mixing matrixU = 0B� 12 s12 0� 1p2s12 1p212 1p21p2s12 � 1p212 1p2 1CA ; (21)where 23 = 1=p2 = s23 and s13 = 0 (and s12 < 12 with �12 � 33Æ [4-8℄are also large), is globally onsistent with all present neutrino osillationexperiments for solar �e's and atmospheri ��'s as well as with the negativeChooz experiment [9℄ for reator ��e's (giving s213 < 0:03), but it annotexplain the possible LSND e�et [10℄ for aelerator ���'s (and ��'s) whoseexistene is expeted to be lari�ed soon in the MiniBOONE experiment(in Ref. [11℄ a �last hope� for explaining the possible LSND e�et by ahypotheti sterile neutrino is onsidered).



4130 W. KrólikowskiIn the ase of the mixing matrix U as given in Eq. (21), the unitarytransformation (20) gets the form�e = 12�1 + s12�2 ;�� = � 1p2(s12�1 � 12�2) + 1p2�3 ;�� = 1p2(s12�1 � 12�2) + 1p2�3 ; (22)while the inverse transformation reads�1 = 12�e � s12 1p2(�� � �� ) ;�2 = s12�e + 12 1p2(�� � �� ) ;�3 = 1p2(�� + �� ) : (23)It an be seen that due to Eq. (22) the disrete transformation �1 ! ��1,�2 ! ��2, �3 ! �3 of mass neutrinos indues for �avor neutrinos the disretetransformation �e ! ��e, �� ! �� , �� ! �� i.e., the hange of sign of �e andthe interhange of �� and �� [this is a onsequene of the maximal mixing of�� and �� in Eqs. (23)℄. We an onlude that the above interplay betweenboth disrete transformations haraterizes the form (21) of mixing matrixand so, if onjetured, selets suh a form (for any 12 and s12) from its otherpossible forms. Formally, we infer that the above interplay is realized justin the ase of U given in Eq. (21) beause of the relations0� ��1��2�3 1A = 0� �1 0 00 �1 00 0 1 1A0� �1�2�3 1A ;0� ��e���� 1A = 0� �1 0 00 0 10 1 0 1A0� �e���� 1A (24)and 0� �1 0 00 0 10 1 0 1AU 0� �1 0 00 �1 00 0 1 1A = U ; (25)where due to Eq. (20)



Bilarge Mixing Matrix and Its Invariane Under : : : 41310� �e���� 1A = U 0� �1�2�3 1A : (26)Here, the relation (25) is ruial, telling us that the mixing matrix U of theform (21) is invariant under the simultaneous transformations �e ! ��e,�� ! �� , �� ! �� and �1 ! ��1, �2 ! ��2, �3 ! �3. Given suh amixing matrix U , the �rst transformation is indued by the seond throughthe unitary transformation between their matries: (I) = U(II)U y. That isequivalent to (I)U(II) = U i.e., to Eq. (25).Making use of the (formal) horizontal SU(3) group generated by b�a=2 (a =1; 2; : : : ; 8) with b�a being the Gell-Mann 3 � 3 matries ating on the hori-zontal triplet (�1; �2; �3)T, we an realize the above disrete transformationsfor mass and �avor neutrinos by means of the matries0��1 0 00 �1 00 0 1 1A = �13b1� 2p3b�8 ;0� �1 0 00 0 10 1 0 1A = �13b1� 12 �b�3 + 1p3b�8�+ b�6 ; (27)where b1 = 0� 1 0 00 1 00 0 1 1A ; b�3 = 0� 1 0 00 �1 00 0 0 1A ;b�8 = 1p3 0� 1 0 00 1 00 0 �2 1A ; b�6 = 0� 0 0 00 0 10 1 0 1A : (28)Note that Q(H) � 12 �b�3 + 1p3b�8� = 0� 2=3 0 00 �1=3 00 0 �1=3 1A (29)plays a role of �horizontal harge�, while I(H)3 � b�3=2 and Y (H) � b�8=p3 arethe 3-omponent of the �horizontal isospin� and the �horizontal hyperharge�,respetively.



4132 W. KrólikowskiNotie also that the mixing matrix (21) an be written in the formU = eib�7 �=4eib�2 �12 ; (30)sine eib�7�23 = 0� 1 0 00 23 s230 �s23 23 1A ; b�7 = 0� 0 0 00 0 �i0 i 0 1A (31)and eib�2�12 = 0� 12 s12 0�s12 12 00 0 1 1A ; b�2 = 0� 0 �i 0i 0 00 0 0 1A ; (32)where �23 = �=4.We an see from Eq. (32) thateib�2� = 0� �1 0 00 �1 00 0 1 1A = 0� �1 0 00 �1 00 0 1 1A�1 (33)and so, our disrete transformation of mass neutrinos an be realized aseib�2�0� �1�2�3 1A = 0� ��1��2�3 1A (34)i.e., as the unitary rotation around the �horizontal� 2-axis by angle 2�,generated by the 2-omponent I(H)2 � b�2=2 of the �horizontal isospin�. Thedisrete transformation �1 ! ��1, �2 ! ��2, �3 ! �3 realized in Eq. (34)may be alled the �horizontal onjugation�, while its matrixP (H) � eiI(H)2 2� = eib�2 � (35)given in Eq. (33) � the �horizontal parity�. Then, the mass neutrinos�1; �2; �3 orrespond to the eigenvalues �1;�1; 1 of this parity, respetively;also the �avor neutrino �e gets the eigenvalue �1, while �� and �� mix theeigenvalues �1 and 1 in suh a way that (�� � �� )=p2 have the eigenval-ues �1. Thus, it follows from the unitary transformation (23) that for theform (21) of mixing matrix U the �horizontal parity� (35) is an observableovariant in neutrino mixings: P (H)0 = UP (H)U y. This is equivalent toP (H)0UP (H) = U i.e., to Eq. (25).



Bilarge Mixing Matrix and Its Invariane Under : : : 4133At the same time, we an infer from the relation (25) and Eqs. (30) with(33) thateib�7�=4eib�2�e�ib�7�=4 = 0� �1 0 00 0 10 1 0 1A = 0� �1 0 00 0 10 1 0 1A�1 (36)and thus, in onsequene of the unitary rotation (34) for mass neutrinos, theomposed unitary rotationeib�7�=4eib�2�e�ib�7�=40� �e���� 1A = 0� ��e���� 1A (37)is indued for �avor neutrinos. This interplay between the disrete trans-formations (34) and (37) selets the form (21) of mixing matrix U (for any12 and s12) as satisfying the relation (25) that now is identially ful�lled,being redued trivially toeib�7�=4eib�2�12 = eib�7�=4eib�2�12 (38)due to Eqs. (30), (33) and (36).4. E�etive mass matrix: the invariane under�e; ��; �� ! ��e; �� ; ��Making use of the formulae (19) and (21), and parametrizing the neutrinomass spetrum as m1 = 0m �Æ ; m2 = 0m +Æ ; m3 = 0m +� ; (39)we an write the e�etive mass matrix for ative neutrinos �e; ��; �� in theform M e� = 0m 0� 1 0 00 1 00 0 1 1A+ 12�0� 0 0 00 1 10 1 1 1A+12Æ0� �2 p2 s �p2 sp2 s  ��p2 s �  1A ; (40)where  � os 2�12 = 212 � s212 and s � sin 2�12 = 212s12. In Eq. (40) allthree terms ommute (the produt of the seond and third term in bothorders vanishes). Thus, onsistently



4134 W. Królikowskidiag(m1;m2;m3) = U yM e�U= 0m 0� 1 0 00 1 00 0 1 1A+�0� 0 0 00 0 00 0 1 1A+ Æ0� �1 0 00 1 00 0 0 1A : (41)In Eq. (40), the third term is equal to the sum12Æ0� �2 0 00 1 �10 �1 1 1A + 1p2Æ0� 0 1 �11 0 0�1 0 0 1A s : (42)Formally, in deriving Eq. (41) from Eq. (40) the relationsU y0� 0 0 00 1 10 1 1 1AU = 20� 0 0 00 0 00 0 1 1A ;U y0� �2 0 00 1 �10 �1 1 1AU = 20� � �s 0�s  00 0 0 1A ;U y0� 0 1 �11 0 0�1 0 0 1AU =p20� �s  0 s 00 0 0 1A (43)are involved.We an easily hek that the e�etive mass matrix (40) of �avor neu-trinos �e; ��; �� is invariant under the disrete transformation �e ! ��e,�� ! �� , �� ! �� indued by �1 ! ��1, �2 ! ��2, �3 ! �3 (�horizontalonjugation�):0� �1 0 00 0 10 1 0 1AM e� 0� �1 0 00 0 10 1 0 1A = M e� : (44)In fat, all matries appearing in Eqs. (40) and (42) ommute with thetransformation matrix in Eq. (44) that squared gives the unit matrix. Theinvariane (44) follows also diretly from the formula (19) and the relation(25).



Bilarge Mixing Matrix and Its Invariane Under : : : 4135In terms of the Gell-Mann 3� 3 matries b�a (a = 1; 2; : : : ; 8) we an putin Eqs. (40) and (42)0� 0 0 00 1 10 1 1 1A = 23b1� 12(b�3 + 1p3b�8) + b�6 ;0��2 0 00 1 �10 �1 1 1A = �32(b�3 + 1p3b�8)� b�6 ;0� 0 1 �11 0 0�1 0 0 1A = b�1 � b�4 ; (45)where in addition to Eqs. (28) we useb�1 = 0� 0 1 01 0 00 0 0 1A ; b�4 = 0� 0 0 10 0 01 0 0 1A : (46)Then, from Eqs. (40) and (42) we obtain the formulaM e� = � 0m +13��b1� 12 (�+ 3Æ) 12 �b�3 + 1p3b�8�+12 (�� Æ) b�6 + 1p2Æs�b�1 � b�4� : (47)The e�etive mass matrix M e� = (M��) (�; � = e; �; �) may be alsopresented as M e� =X�� M�� be�� (48)in terms of the basi matries be�� � (Æ�  Æ� Æ), wherebeee = 13b1 + 12 � b�3 + 1p3b�8� ; bee� = 12 �b�1 + ib�2� = bey�e ;be�� = 13b1 + 12��b�3 + 1p3b�8� ; bee� = 12 �b�4 + ib�5� = bey�e ;be�� = 13b1� 1p3b�8 ; be�� = 12 �b�6 + ib�7� = bey�� (49)with b1 = (Æ Æ) and b�a = (�a Æ) (a = 1; 2; : : : ; 8). The matrix elements M��of M e� are determined by the formula (19), M�� =Pi U�imiU��i, that due



4136 W. Królikowskito Eqs. (21) and(39) givesMee = 0m �Æ ;M�� = M�� = 0m +12�+ 12Æ ;Me� = �Me� = 1p2Æs =M�e = �M�e ;M�� = 12�� 12Æ = �M�� : (50)It may be worthwhile to note that the imaginary matries b�2; b�7 andb�5 = 0� 0 0 �i0 0 0i 0 0 1A ; (51)although they appear within the basi matries be�� , are aneled out inM e�due to the relations M�� = M�� and be�� = bey�� applied to Eq. (48).Finally, it is tempting to speulate that the invariane under the simulta-neous disrete transformations �e ! ��e, �� ! �� , �� ! �� and �1 ! ��1,�2 ! ��2, �3 ! �3 (neutrino �horizontal onjugation�) � that, as shownin this note, haraterizes the phenomenologially favored form (21) of neu-trino mixing matrix � may play an important role in Nature beause of theabsene for neutrinos of eletromagneti and strong interations. Otherwise,these interations ould largely suppress suh a fragile, disrete horizontalsymmetry that, in ontrast to the Standard Model gauge interations, doesnot treat equally three fermion generations. This may be also the reason,why the quark mixing matrix does not involve large mixings, in ontrast tothe lepton mixing matrix (i.e., neutrino mixing matrix in the �avor repre-sentation) observed by means of neutrino osillations.5. Bimaximal mixing matrix as an approximationWe know from experiments for solar �e's that the bilarge mixing matrixU given in Eq. (21) is not bimaximal, as �12 � 33Æ < 45Æ, and so12 � 0:84 > 1p2 > s12 � 0:54 : (52)But, sine both values 12 and s12 are still large and not very distant from1=p2 ' 0:71, one may ask the question, if and to what extent the ap-proximation 12 ' 1=p2 ' s12 may work, leading through Eq. (21) to the



Bilarge Mixing Matrix and Its Invariane Under : : : 4137approximate bimaximal form for the mixing matrix:U ' 0� 1=p2 1=p2 0�1=2 1=2 1=p21=2 �1=2 1=p2 1A : (53)For suh an approximate form of U , the unitary transformation (20)implies �e ' 1p2(�1 + �2) ;�� '� 1p2 1p2(�1 � �2) + 1p2�3 ;�� ' 1p2 1p2(�1 � �2) + 1p2�3 (54)and �1 ' 1p2�e � 1p2 1p2(�� � �� ) ;�2 ' 1p2�e + 1p2 1p2(�� � �� ) ;�3 ' 1p2(�� + �� ) : (55)It is easy to see from Eqs. (54) and (55) that now, beside the previous (strit)symmetry (25), where�1; �2; �3 ! ��1;��2; �3 indues �e; ��; �� ! ��e; �� ; �� ;there exist also two (approximate) symmetries, where�1; �2; �3 ! ��2;��1;��3 indues �e; ��; �� ! ��e;��� ;���and �1; �2; �3 ! �2; �1;��3 indues �e; ��; �� ! �e;���;��� :Both are exluded if it is onsidered that 12 6= s12 distintly. If it is aeptedthat 12 ' s12, then � in addition to the relation (25) � two new relations0� �1 0 00 0 �10 �1 0 1AU 0� 0 �1 0�1 0 00 0 �1 1A ' U (56)



4138 W. Królikowskiand 0� 1 0 00 �1 00 0 �1 1AU 0� 0 1 01 0 00 0 �1 1A ' U (57)follow, respetively, expressing two new (approximate) invarianes of the(approximate) form (53) of U . These two (approximate) symmetries intro-due the di�erene between the (approximate) bimaximal form (53) of Uand its (strit) monomaximal form (21) where 12 6= s12 distintly, beausethey work only for the former.Let us denote our Hermitian and real 3 � 3 matries transforming themixing matrix U in the relations (56), (57) and (25) asb'1 � 0��1 0 00 0�10�1 01A ; b'2 � 0�1 0 00�1 00 0�11A ; b'3 � 0��1 0 00 0 10 1 01A (58)and b�1 � 0� 0�1 0�1 0 00 0�11A ; b�2 � 0�0 1 01 0 00 0�11A ; b�3 � 0��1 0 00�1 00 0 11A : (59)Then, with i = 1; 2; 3 the symmetries (56), (57) and (25) of the (approxi-mate) bimaximal mixing matrix U given in Eq. (53) may be expressed inthree ways: b'iUb�i = U or Ub�i = b'iU or b'i = Ub�iU y ; (60)where for i = 1; 2 the equality is (only) approximate [while for i = 3 it isexat with U as given in Eq. (21)℄. Note that Tr b'i = �1 and Tr b�i = �1.From the de�nitions (58) and (59) we an readily show that with i; j =1; 2; 3b'2i = b1 ; b'1 b'2 = b'3 (yli) ; b'i b'j = b'j b'i ; b'1 + b'2 + b'3 = �b1 (61)andb�2i = b1 ; b�1b�2 = b�3 (yli) ; b�ib�j = b�jb�i ; b�1 + b�2 + b�3 = �b1 (62)(but in general b'ib�j 6= b�j b'i). Hene, we get in a more ompat notationfb'i ; b'jg = 2Æijb1 + 2Xk j"ijkj b'k ; [b'i ; b'j ℄ = 0 (63)and fb�i ; b�jg = 2Æijb1 + 2Xk j"ijkj b�k ; [b�i ; b�j℄ = 0 (64)



Bilarge Mixing Matrix and Its Invariane Under : : : 4139[but fb'i ; b�jg 6= 0 and in general [b'i ; b�j℄ 6= 0, f. Eq. (72)℄. We an alsowrite for U given in Eq. (53) Æijb1 +Xk j"ijkjb'k!U = b'iUb�j = U  Æijb1 +Xk j"ijkj b�k! ; (65)where for j = 1; 2 and i = 1; 2, respetively, the �rst and seond equality isonly approximate [while for j = 3 and i = 3 it is exat with U as given inEq. (21)℄. Note that here (j"ij1j) = b�6, (j"ij2j) = b�4 and (j"ij3j) = b�1.It is easy to see that the e�etive mass matrixM e�=Udiag(m1;m2;m3)U ywith U in the form (53) reveals for i = 1; 2; 3 the symmetriesb'iM e� b'i = M e� or M e� b'i = b'iM e� ; (66)where for i = 1; 2 the equality is (only) approximately valid, provided wean aept beside the approximation 12 ' s12 also m1 ' m2 i.e., Æ ' 0[while for i = 3 it is exat with U as given in Eq. (21)℄. In the ase of Æ ' 0,the values of 12 and s12 beome irrelevant in M e� [f. Eqs. (50)℄.The matries b'i and b�i (i = 1; 2; 3) as de�ned in Eqs. (58) and (59) maybe used as bases for 3� 3 symmetri blok matries of the types0� A 0 00 B C0 C B 1A and 0� D E 0E D 00 0 F 1A ;respetively (b1 is not needed in these bases beause of the form of onstraintsb'1 + b'2+ b'3 = �b1 and b�1+ b�2+ b�3 = �b1). The sets of suh matries formtwo Abelian groups with respet to matrix multipliation, if the inverse oftheir four bloks exists. They are isomorphi, as they are related through theunitary transformation generated by the bimaximal mixing matrix U givenby the rhs of Eq. (53), (I) = U(II)U y, where (I) and (II) symbolize the setsof matries of the �rst and seond type. The group harater of these setsis re�eted in the group relations b'1 b'2 = b'3 (yli) and b�1b�2 = b�3 (yli)for their bases [f. Eqs. (61) and (62)℄, while their isomorphism orrespondsto the unitary transformation b'i = Ub�iU y (i = 1; 2; 3) between both bases[f. Eqs. (60)℄. These two groups are, of ourse, subgroups of the group ofall 3� 3 nonsingular matries that an be spun by the basis onsisting of b1and the Gell-Mann matries b�a (a = 1; 2; : : : ; 8).It is interesting to note that the neutrino e�etive mass matrix M e� isof the form [f. Eqs. (50)℄ belonging to the set (I) for d = 0:0� a d �dd b �d  b 1A :



4140 W. KrólikowskiThis form ommutes exatly with b'3, while with b'1 and b'2 (only) approx-imately, provided d � Æs=p2 ' 0 and so Æ ' 0 i.e., m1 ' m2. Here, b'3 =Ub�3U y � UP (H)U y is the unitary transform of �horizontal parity� with U asgiven in Eq. (21). In this way, b'3M e� b'3 = UP (H)diag(m1;m2;m3)P (H)U y =M e� . In terms of b'1; b'2; b'3 and b�1; b�4 with (b'1 + b'2)(b'1 � b'2) = 0 and(b'1 + b'2)(b�1 � b�4) = 0 we an writeM e� = �� 0m +12�� (b'1 + b'2)� 0m b'3+12Æ  (b'1 � b'2)+ 1p2Æs�b�1 � b�4� ;(67)where b'3b�1;4 = �b�4;1 b'3 makes b'3 ommute with b�1 � b�4, while b'1b�1;4 =b�4;1 b'1 and b'2b�1;4 = �b�1;4 b'2 imply that b'1 and b'2 antiommute with b�1 �b�4. Also note that U y h12 (b'1 � b'2) + 1p2s�b�1 � b�4�iU = �b�3 for any � 212�s212 and s � 212s12 [f. Eqs. (43)℄, where U is given as in Eq. (21).If 12 = 1=p2 = s12, then  = 0 and s = 1.In onnetion with the formula (67) we wonder, if the 3 � 3 matriesb'i and b�i (i = 1; 2; 3) may help us to �nd the desired dynamial variablessolving hopefully the basi problem of fermion masses (notie that b�1�b�4 =12 fb'3; b�1 � b�2g). In suh a ase there may appear a more or less instrutiveanalogy with Pauli matries that have led to Dira matries solving theproblem of fermion spins.In terms of the Gell-Mann 3 � 3 matries b�a (a = 1; 2; : : : ; 8) and theirbasi ombinations be�� (�; � = e; �; �) presented in Eqs. (49) we obtainb'1 = �b�6 � beee ; b'2 = �b1 + 2beee ; b'3 = b�6 � beee (68)and b�1 = �b�1 � be�� ; b�2 = b�1 � be�� ; b�3 = �b1 + 2be�� ; (69)where beee = 0� 1 0 00 0 00 0 0 1A = 13b1 + 12 �b�3 + 1p3b�8� ;be�� = 0� 0 0 00 0 00 0 1 1A = 13b1� 1p3b�8 : (70)Due to Eqs. (33) and (36) we an write for i = 3b�3 = eib�2� ; b'3 = eib�7�=4eib�2�e�ib�7�=4 = Ueib�2�U y (71)



Bilarge Mixing Matrix and Its Invariane Under : : : 4141with the mixing matrix U as presented in Eq. (30). For i = 3 it is notneessary to make in U the approximation �12 ' 45Æ (here, this mixingangle has its atual value �12 � 33Æ).Sine the matries b'i and b�i (i = 1; 2; 3) are Hermitian and real, theirommutators are antiHermitian and real, and thus, an be expressed asombinations of three imaginary matries b�2 ; b�5 and b�7 of eight Gell-Mann3� 3 matries b�a (a = 1; 2; : : : ; 8) whih all are Hermitian. In fat, we �nd([b'i; b�j ℄) = i0B� b�2 � b�5 + b�7 �b�2 + b�5 + b�7 �2b�7�2b�2 2b�2 0b�2 + b�5 � b�7 �b�2 � b�5 � b�7 2b�7 1CA : (72)Hene, Pi [b'i; b�j℄ = 0 and Pj [b'i; b�j ℄ = 0, what is onsistent with twoonstraints Pi b'i = �b1 and Pj b�j = �b1. The imaginary matries b�2; b�5and b�7 are absent from b'i and b�i that are ombinations of b1; b�1; b�3; b�8 andb�6 [f. Eqs. (68)�(70)℄.Analogially, it is easy to evaluate the antiommutators fb'i; b�jg thatan be expressed as ombinations of b1 and �ve real matries b�1; b�3; b�4; b�6and b�8 of eight b�a (a = 1; 2; : : : ; 8). None of these antiommutators is zero.Note that the matries b'i and b�i de�ned in Eqs. (58) and (59) have thefollowing blok strutureb'1 = 0BB��1 0 00 �b�P10 1CCA ; b'2 = 0BB�1 0 00 �b1P0 1CCA ; b'3 = 0BB��1 0 00 b�P10 1CCA (73)and b�1 = 0BB� 0�b�P1 00 0 �11CCA ; b�2 = 0BB� 0b�P1 00 0 �11CCA ; b�3 = 0BB� 0�b1P 00 0 11CCA ; (74)where b1P = � 1 00 1 � ; b�P1 = � 0 11 0 � : (75)



4142 W. Królikowski6. ConlusionsWe have introdued in Setion 5 two algebras of ommuting Hermi-tian 3 � 3 matries b'1; b'2; b'3 and b�1; b�2; b�3, satisfying the group relationsb'1 b'2 = b'3 (yli) and b�1b�2 = b�3 (yli) as well as the onstraintsb'1+ b'2+b'3 = �b1 and b�1+b�2+b�3 = �b1. These two algebras are isomorphi,as being related by the unitary transformation b'i = U b�i U y (i = 1; 2; 3),where U is the neutrino mixing matrix of the bilarge form (21), phenomeno-logially favored at present, whih for i = 1; 2 is approximated to the nearlybimaximal form (53) with 12 ' 1=p2 ' s12 (i.e., with �12 ' 45Æ, whilethe atual experimental estimate is �12 � 33Æ). For i = 3 the unitary trans-formation is exat, thus the resulting invariane b'3Ub�3 = U is also exat.It haraterizes the monomaximal form (21) of neutrino mixing matrix Ufor any 12 and s12. The resulting approximate invarianes b'iUb�i = U fori = 1; 2, if aepted as working, suggest that this monomaximal form of Uis, in fat, nearly bimaximal. Of ourse, the loser the experimetal estimateof �12 is to 45Æ, the better is this onlusion.We have alled the transformation U 0 = b'3Ub�3 providing the exatinvariane U 0 = U the neutrino �horizontal onjugation�, while its matrixP (H) � b�3 = exp(ib�2�) � the neutrino �horizontal parity�. The latter isa unitary rotation by the angle 2� around the �horizontal� 2-axis. Suh aonjugation implies the transformation0� � 01� 02� 03 1A = P (H)0� �1�2�3 1A = 0� ��1��2�3 1A (76)for mass neutrinos, induing simultaneously the transformation0� � 0e� 0�� 0� 1A = UP (H)U y0� �e���� 1A = 0� ��e���� 1A (77)for �avor neutrinos, sine � 0� = Pi U�i� 0i and �i = P� U��i��. Thus, the�horizontal parity� displays the ovariane P (H)0 = UP (H)U y with P (H)0 �b'3. Here, the mass neutrinos �1 ; �2 ; �3 get the �horizontal parity� equal to�1;�1; 1, respetively, while the �avor neutrinos �e ; �� ; �� , exept for �e,mix the �horizontal parity�.The orresponding transformation for the neutrino e�etive mass ma-trix M e� = U diag(m1;m2;m3)U y reads M e� 0 = b'3M e� b'3, implying theexat invariane M e� 0 = M e� beause of the relations b'3U = Ub�3 andb�3 diag(m1;m2;m3) b�3 = diag(m1;m2;m3). The invarianes b'iM e� b'i =



Bilarge Mixing Matrix and Its Invariane Under : : : 4143M e� for i = 1; 2 are (only) approximately valid, provided we an aeptbeside the approximation 12 ' s12 also m1 ' m2.Thus, �nally, we an onlude that � as a result of there being the�horizontal parity� ovariant in neutrino mixings � three ative neutrinosmay develop in a natural way the familiar bilarge form of mixing matrix,favored at present phenomenologially. The suggestion that the resultingmonomaximal form is, in fat, bilarge (approximately bimaximal) omesfrom the group harater of relations b�1b�2 = b�3 (yli), where the �hor-izontal parity� P (H) � b�3 (generating the symmetry under the �horizontalonjugation�, b'3Ub�3 = U) is embedded. Then, the symmetries b'iUb�i = Uor b'i = Ub�iU y with b'1 b'2 = b'3 (yli) hold also for i = 1; 2, if U � mono-maximal with some 12 and s12 � is approximated to bimaximal form with12 ! 1=p2  s12, in order to inlude also b'1; b'2 and b�1; b�2 in desribingpotential symmetries of U . Obviously, the smaller are the experimentallyestimated di�erenes 12� 1=p2 and s12� 1=p2, the better are the approx-imated symmetries for i = 1; 2.REFERENCES[1℄ W. Królikowski, hep�ph/0301161.[2℄ S. Fukuda et al. (SuperKamiokande Collaboration), Phys. Rev. Lett. 85, 3999(2000).[3℄ K. Eguhi et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802(2003).[4℄ V. Barger, D. Marfatia, hep�ph/0212126.[5℄ G.L. Fogli et al., hep�ph/0212127.[6℄ M. Maltoni, T. Shwetz, J.W.F. Valle, hep�ph/0212129.[7℄ A. Bandyopadhyay et al., hep�ph/0212146v2.[8℄ J.N. Bahall, M.C. Gonzalez-Garia, C. Peña-Garay, hep�ph/0212147v2.[9℄ M. Appolonio et al. (Chooz Collaboration), hep�ex/0301017.[10℄ G. Mills, Nul. Phys. Pro. Suppl. 91, 198 (2001).[11℄ C. Giunti, hep�ph/0302173.


