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QCD SUM RULE ANALYSIS OF THE COUPLING
CONSTANTS gppy AND guny
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The coupling constants g,,, and g.,, are calculated using QCD sum
rules method by studying the three point pny and wny correlation functions.
A comparison of the results with the values of the coupling constants that
are deduced from the experimentally measured decay widths of p — 1y and
w — 1y decays is performed.

PACS numbers: 12.38.Lg, 13.40.Hq, 14.40.Aq

The method of QCD sum rules is one of the most efficient tools for study-
ing hadron physics. This method has been successfully applied to calculate
many hadronic observables, such as decay constants and form factors [1-3].
On the other hand, radiative transitions between pseudoscalar (P) mesons
have been an important area of study in low-energy hadron physics for more
than three decades. These transitions have been analysed within the frame-
works of phenomenological quark models, potential models, bag models, and
also by employing effective Lagrangian methods [4,5]. The radiative transi-
tions V' — Pry are characterized by the coupling constants gy,. Since low
energy hadron physics is governed by nonperturbative QCD, it is very diffi-
cult to obtain the numerical values of these coupling constants from the first
principles. For this reason, some specific nonperturbative methods have to
be developed to be used as calculational tools. Among these methods QCD
sum rules have proved to be very useful to extract the coupling constants.
A recent review of QCD sum rules method is provided in [6] where more
references can also be found.

In this work, we calculate the coupling constants g,,, and g,y associated
with the radiative decays p — ny and w — 1y by employing the traditional
QCD sum rules method which provides a model independent way to cal-
culate the coupling constants. The coupling constant g,,, was previously
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calculated by Aliev et al. [7] in the framework of light cone QCD sum rules.
Our analysis, therefore, complements the results obtained in that paper.

In accordance with the general strategy of QCD sum rules method, we
begin by considering the three point correlation function

My (p.p') = / d*zd'ye® Ve~ P (OIT{5}(0)5) (x)jn(y)}0), (1)

where the interpolating currents jV for vector meson p and w are j§ =
%(U%u —dy,d), j¥ = %(U'yyu + dv,d), respectively. We take n — 7
mixing into account and use the interpolating current for 7 meson as j, =
%(m’%u + dirysd) cos @ — (3iyss) sin@ where 6 is the mixing angle in the
quark-flavour basis. The electromagnetic quark current is given as j,, =
ey Uy + eda'yud, where e, and e4 denote the quark charges.

The theoretical part of the sum rule for the coupling constant gy,
is calculated by considering the perturbative contribution and the power
corrections from operators of different dimensions to the three point cor-
relation function. In the spirit of QCD sum rules techniques, we con-
sider the three point correlation function in the Euclidian region defined
by p? = —Q? ~ —1 GeV?, p'? = —Q"? ~ —1 GeV?. In this region, the
perturbative contribution can be approximated by the lowest order quark
loop diagram shown in Fig. 1. Moreover, we consider the power correc-
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Fig. 1. Quark loop diagram for Vry vertex.

tions from operators of different dimensions, proportional to terms (gq),
(go - Gq) and ((gq)?). Since the gluon condensate contribution proportional
to (G?) is estimated to be negligible for light quark systems, it is not taken
into account. We perform the calculations of the power corrections in the
fixed point gauge [8]. Moreover, we work in the SU(2) flavour context with
my = mgq = mg and we work in the limit m, = 0. In this limit, the
perturbative quark-loop diagram does not make any contribution, and only
contributions result from the operators of dimensions d = 3 and d = 5 that
are proportional to (gq) and (Go - Gq), respectively. The relevant Feynman
diagrams for the calculation of the power corrections are shown in Fig. 2
and Fig. 3.



QCD Sum Rule Analysis of the Coupling Constants gpny and gun~y 4147

Fig. 3. Operators of dimension 5 corrections proportional to (go - Gg). The dashed
lines denote gluons.

We then calculate the three point correlation function I7,,(p,p’) using
phenomenological considerations. This function satisfies a double dispersion
relation. We choose the vector and pseudoscalar channels and by saturating
this dispersion relation by the lowest lying meson states in these channels
the physical part of the sum rule is obtained as

(017 V)V (p) |2 In(®)){n]5,]0)
(p? —m})(p* —m3)

I, (p,p') = +o (2)

where the contributions from the higher states and the continuum are shown
by dots. The overlap amplitudes for vector and pseudoscalar mesons are
(0]7Y|V) = Ayuy where uy is the polarisation vector of the vector meson
V = p, wand (n]jy|0) = A,. The matrix element of the electromagnetic
current is given by

. . € ro
V)lilln®)) = —Zm—vgx/mK(qQ)e“ P pytiags (3)

where ¢ = p — p' and K(g?) is a form factor with K(0) = 1. This matrix
element defines the coupling constant gy, through the effective Lagrangian

L= gy, e"B8,V,00 A (4)
my

describing the Vny-vertex [9].
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After performing the double Borel transform with respect to the variables
Q? and Q'Q, we obtain the sum rule for the coupling constant gy, in the
form

2 2
m my _
vy = )\V‘;ne e (eu (uu) £ ed<dd>)

3 5 ,1 3 ,1
X <—§ —+ Emom — Emow) COSG, (5)

where the relation (go-Gq) = m(qq) is used. In this expression the plus sign
is for p meson and the minus sign is for w meson. In the numerical evaluation
of the sum rule the values m3 = (0.84+0.02) GeV?, (wu) = (dd) = (—0.014+
0.002) GeV? [6], and m, = 0.77 GeV, m,, = 0.781 GeV, m, = 0.547 GeV
are used [10]. The overlap amplitudes for vector meson states are calculated
using the experimental leptonic decay widths of V — ete™ decays [10] and
the values A, = (0.17£0.03) GeV? and A, = (0.15£0.02) GeV? are obtained.
The overlap amplitude for n meson state was determined earlier by QCD
sum rules analysis as A, = (0.23 £0.03) GeV? [11]. We use the value of the
mixing angle as § = —19° £+ 2° [11].

The dependence of the coupling constants gy, on the Borel parameters
M? and M'? are analysed by studying the independent variations of M?
and M'? in the interval 0.6 GeV2 < M2, M'? < 1.4 GeV? since these limits
determine the allowed interval for the vector channel [12]. We show the
variation of the coupling constant g,,, and g.,, as a function of the Borel
parameters M2 for different values of M'? in Fig. 4 and Fig. 5, respectively.
These figures indicate that the sum rule is quite stable with these reasonable
variations of M2 and M'?. We choose the middle value M2 = 1 GeV? for the
Borel parameter in its interval of variation and obtain the coupling constants
gVny as opy = 1.2+£0.3 and gz, = 0.440.06 where the uncertainties result
from the variations of M2 and M'? and from the estimated values of the
vacuum condensates.

If we use the effective Lagrangian given in Eq. (4), then the decay width
for V. — ny is obtained as

a (mi, —my)®
rV—ny) = ﬂTng%/m - (6)
We then utilise the measured decay widths I'(p — ny) = (57 £ 10) keV and
I'(w — ny) = (5.5 +£0.9) keV [9] and obtain the coupling constants gy, as
9oy = 1.42 £0.12 and gury = 0.42 £ 0.03. Our results are, therefore, in
good agreement with the coupling constants deduced from the experimental
values of the respective decay widths. Moreover, our result for g,,, is also
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Fig.4. The coupling constant g,,, as a function of the Borel parameter M? for

different values of M'>.
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Fig.5. The coupling constant g,,, as a function of the Borel parameter M? for

different values of M'>.

consistent with the value g,,, = 1.42 & 0.2 calculated by Aliev et al. [7] in
the framework of light cone sum rules, thus our study employing traditional
QCD sum rule method supplements the previous light cone QCD sum rules

calculation.
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