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We observe that the invariance of neutrino mixing matrix under the si-
multaneous discrete transformations vy, vs,v3s — —v1, —1s, v3 and
Ve,Vy, Vr = —Ve, V7, 1, (neutrino “horizontal conjugation”) characterizes
(as a sufficient condition for it) the familiar bilarge form of neutrino mix-
ing matrix, favored experimentally at present. Thus, the mass neutrinos
vy, V9,3 get a new quantum number, covariant with respect to their mix-
ings into the flavor neutrinos v.,v,, v, (neutrino “horizontal parity” equal
to -1, -1,1, respectively). The “horizontal parity” turns out to be embedded
in a group structure consisting of some Hermitian and real 3 x 3 matrices
1, pa, 3 and @1, @9, 3, forming pairs interconnected through neutrino
mixings. They generate some discrete transformations of mass and flavor
neutrinos, respectively, in such a way that the group relations pius = us
(cyclic) and @192 = @3 (cyclic) hold, while p, s = psite and oy = PpPa.
Then, for instance, the pz matrix may be chosen equal to the “horizontal
parity”.

PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh

As is well known, the bilarge form of neutrino mixing matrix,

€12 512 0
1 1

U=| —p5%52 #4992 5 (1)
\%512 242 %

(where cg3 = 1/v/2 = s93 and s13 = 0, while ¢;2 and s19 are estimated to
correspond to 015 ~ 33°), is globally consistent with all present neutrino-
oscillation experiments for solar v,’s and atmospheric v,’s as well as with
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the negative result of Chooz experiment (giving s?;3 < 0.03) [1] and success-
ful KamLAND experiment [2,3-7] both for reactor 7.’s. However, it cannot
explain the possible LSND effect [8] for accelerator 7,’s (and v,’s) whose
existence is expected to be clarified soon in the MiniBOONE experiment.
Its negative result would exclude mixings of active neutrinos with hypothet-
ical light sterile neutrinos [9], leaving us with the minimal mixing unitary

transformation
Vo = Z Uwi v s (2)
i

where vy = Ve, vy, V7 and v; = 11,19, 13 represent the flavor and mass active
neutrinos, respectively.

In the flavor representation, where the mass matrix for charged leptons
is diagonal, the neutrino mixing matrix U = (U,;) is at the same time the
diagonalizing matrix for neutrino effective mass matrix M = (Myg). Then,

Mag =Y Unim; Uj; . (3)
i
In the case of bilarge form (1) of U, the formula (3) gives
M, = micly+ maosiy,
My, = M. = 3(misiy + macly +ms),

Mg, = —M,, = %(—ml + ma)ciasia,
My, = %(—m13%2 — macty +ms) . (4)

Here, Mg, = Myg = M;B. Making use of Eqs. (4) we can write the neutrino
effective mass matrix in the form

oty (200 my (000
M = 0 1 -1 |+ (o0 1 1
4 0 -1 1 2 \o 1 1
o — 2 0 0 01 -1
+ 0 1 —1 |++2s 10 0 ]],6)
4 0 -1 1 10 0

where ¢ = 0%2 — 5%2 = cos 2019 and s = 2c¢198192 = sin260q5. Here, all three

terms, proportional to mj +mg, m3 and me —mq, commute (while two terms
proportional to my — mq, anticommute). Diagonalizing M given in Eq. (5),
we obtain consistently

m; 0 0 mtms (100
0me O :UTMU:% 010
0 0 ms 000



Is There a Dynamical Group Structure Behind the Bilarge Form . .. 4159

000\ . /=100
+ms| 000 +% 010 (6)
001 000

The present solar and atmospheric experimental estimates are Am3, = m2—

m? ~ 7 x 107° eV? and Am2, = m? —m3 ~ 2.5 x 1073 eV?, respectively,
when the case of normal hierarchy mi < mo < mg is considered. Note that
M gets here the form

A D -D
M=| D B C |, (7)
-D ¢ B

where A = M., B= M,, = M., C = M,; and D = M., = —M,, are
given in Egs. (4).

The bilarge mixing matrix U presented in Eq. (1) is not bimaximal as
0 ~ 33° and so,

1
c1g ~ 0.84 > E > 8519 ~ 0.54. (8)

But, since both values c19 and s1o are still large and not very distant from
1/\/5 ~ (.71, one may ask the question, if and to what extent the rough
approximation cja ~ 1/4/2 ~ 515 may work, leading through Eq. (1) to the
approximate bimaximal form of the neutrino mixing matrix

(9)

| S|,_.
N[ —= D[ =D
—
l\'}l»—‘l\)l»—\§|
— —
SIS o

It can be easily seen that in the approzimation (9) for U three discrete
transformations of mass neutrinos

Vi,V9,V3 — —V9,—U1,—l3,
n,ve,v3 — Vo, V1,3,

Vi,V V3 — —Ui,—Va, U3 (10)

induce through the mixing unitary transformation (2) three following dis-
crete transformations of flavor neutrinos:

l/eaylul/’r — Ve, _l/’ra_yﬂa
VeaVuaVT — Vea_Vua_VTa

Veayluy’r — —Ve, Vr, Vﬂa (11)
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respectively [10]. Moreover, the third Eq. (10) induces the third Eq. (11)
strictly, if the exact form of U defined in Eq. (1) is applied in Eq. (2) [10].

Let us denote the Hermitian and real 3 x 3 matrices realizing the discrete
transformations (10) as

0-1 0 01 0 -1 00
m=|-1 0 0], w=[10 0], wm=[ 0-10] (12
0 0 -1 00 -1 0 01
and those realizing the discrete transformations (11) as
-1 0 O 1 0 0 -100
1 = 0 0—-11], w=|0-1 0], ¢3= 001
0-1 0 0 0 -1 010

Then, we can readily show that in the approzimation (9) for U the three
equivalent relations [10]

0aUpa =U or Upg = poU or 9 = UMaUT (14)

hold for any a = 1,2,3. Moreover, for a = 3 these three relations are valid
strictly, when the exact form of U given in Eq. (1) is used, since then the
third Eq. (10) induces strictly the third Eq. (11). The first relation (14) tells
us that the mixing matrix U is inwvariant under the simultaneous discrete
transformations (10) and (11) (approzimately for a = 1,2 and strictly for
a = 3), while the third relation (14) shows that p, matrices are covariant
under the mixing unitary transformation (2), leading to ¢, matrices (again
approzimately for a = 1,2 and strictly for a = 3). In particular, the matrix

—1 0 0 B _
P = g = 0 —1 0 | =22’ =¢im™h (15)
0 0 1
with
0 —2 O
1 1
I§H)z§,\2:§ i 0 0 (16)
0 0 0

may be called the “horizontal parity”, getting the eigenvalues —1, —1, 1 for
the mass neutrinos vy, 19, v3, respectively, when the discrete transformation

141 141 —1
vy | =P vy | = - (17)
Vg V3 23
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— the “horizontal conjugation” — is performed [10]. According to Eq. (15)
this conjugation is equivalent to a rotation by the angle 27 around 2-axis in

the formal 8-dimensional “horizontal space”, where Ay, ..., Ag are Gell-Mann
matrices acting on the triplet (vq,v9,v3)T (then IéH) is the 2-component
of the “horizontal isospin” I = LX with X = (A1, Az, A3), while YD) =
(1/4/3)\g is the “horizontal hypercharge”). In consequence,

vl Ve —Ve
v, | =uP®ut| v, | = vr |, (18)
174 v, vy

where P = ppMyt = 3 and so, the “horizontal parity” is covariant
with respect to neutrino mixings.
From Egs. (3) and (14) we infer for any a = 1,2, 3 that

VaMp, =M or Mp, = p,M (19)

1.e., the effective mass matrix M is invariant under the discrete transforma-
tions (11) (approzimately for a = 1,2 if in addition m; ~ mg, and strictly
for a = 3). In fact,

oM, = U diag (mq, ma, m3) U‘kgoa = U pg diag (m1,ma, m3) jig Ut ,
where

diag (me,m1,mgz) for a=1,2

ta diag (m1, ma, m3)pe = { diag (mq,me,m3) for a=3

Thus, poMp, ~ M for a = 1,2 if in addition my ~ ms, and p, My, = M
for a = 3).

It is worthwhile to point out that the rough approximation mi; ~ meo
goes in the direction shown by the experimental situation, where Am2; ~
7 x 1075 eV? is considerably smaller than Am3, ~ 2.5 x 1073 eVZ.

Now, it is important to observe that the matrices (12) and (13) satisfy
for a,b = 1,2, 3 the following algebraic relations:

pipe = pg (cyclic),  paftp = fippa, pz =1, p1+ps+pz=-1 (20)
and
P12 = @3 (cyclic), @apb = Gopas @2 =1, @1+ ps+p3=—1 (21)

(but paop # Potia, except for pzps = apz).
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It is easy to see that the matrices ui,p2, s and @1, @9, s given in
Egs. (12) and (13) can be used as bases for 3 x 3 symmetric block matrices
of the types

Ay By 0 A, 0 0
Bl A1 0 and 0 B2 02 s (22)
0 0 Cl 0 CQ B2

respectively. The sets of such matrices form two Abelian groups with respect
to matrix multiplication, if the inverse of their four blocks exists. They are
isomorphic, being related through the unitary transformation generated by
the bimaximal mixing matrix U given on the rhs of Eq. (9): U {1} Ut = {2},
where {1} and {2} symbolize the sets of matrices of the first and second type
(22). The group character of these sets is reflected in the group relations
uipe = p3 (cyclic) and @199 = @3 (cyclic) for their bases, while their iso-
morphism corresponds to the unitary transformation ¢, = Up,UT between
both bases. Of course, these two groups are Abelian subgroups of the group
of all 3 x 3 nonsingular matrices that can be spun by the basis consisting of
1 and Gell-Mann matrices Aq, ..., Ag.

In terms of the matrices (12) and (13) the effective mass matrix presented
in Eq. (5) can be rewritten as

mi1+m m
M = %(1—%)—%73(14'%03)
mo —m
+% 0(301—302)4—\/55()\1—)\4) , (23)
where
0O 1 -1
A — M\ = 10 0 | =3{ps,u1—p2}. (24)
-1 0 0

When cjp ~ 1/v/2 ~ s19, then ¢ ~ 0 and s ~ 1. If m; ~ mq, Eq. (23) gives

M:M(l—%)

ms3
1 +

2 (1+0a) (2)

In this case, D ~ 0 in Eq. (7). Then, approximately, M is a matrix of the
second type (22).

One may speculate in connection with the formula (23) that the 3 x 3
matrices ¢, and p, (a = 1,2,3), where o109 = @3 (cyclic) and pips = ps
(cyclic), can help us to find the desired dynamical variables solving hopefully
the basic problem of fermion masses. In such a case there may appear a more
or less instructive analogy with Pauli matrices, where o109 = io3 (cyclic),
which have led to Dirac matrices solving the problem of fermion spins.
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The discrete transformations generated by ¢, and p, matrices and the
related discrete symmetries may play an important role in Nature because of
the absence for neutrinos of electromagnetic and strong interactions. Other-
wise, these interactions could largely suppress such fragile, discrete horizon-
tal symmetries that, in contrast to the Standard Model gauge interactions,
do not treat equally three fermion generations.

Finally, we should like to point out that both sets of algebraic relations
(20) and (21) would still hold, if ¢1, @2, 3 matrices were defined not by
Egs. (13), but through the relations

—s . e
1 1 V2 1 V2 s—1 Lo
1 EUMlUT = —EC —5(1—8) —5(1‘{—8) 0 0 —1 ,
\%c —2(1+s) —1(1-s) 0-1 0
1 1
1 ) 1 N 1 REN s—1 L 00
09 EUMQUT — 75¢ —5(1+s) —5(1—3s) 0-1 0],
—%c —2(1—s) —1(1+5) 0 0 -1
-100
@03 =UpsUT = 001 |, (26)
010

where U was of its exact form (1) and pq,p9, u3 matrices were given as
before in Egs. (12). In this case, our relations (14) would be valid strictly
also for a = 1,2, not only for a = 3 as before in the case of Egs. (13). Of
course, in the limit of ¢j9 — 1/v/2 ¢ 813 i.e., ¢ — 0 and s — 1, Eqs. (26)
would tend to Eqgs. (13). Note that, generically, the relations (20) and (21)
as well as (14) would hold, if ¢, = Up,U' with U being any 3 x 3 unitary
matrix and p, were given in Eqgs. (12) (e = 1,2, 3). However, in such a case,
one would get Eqgs. (26) only for the unitary matrices U equal to VUV,
where U would have the form (1), while V,, and V,, would be any unitary
matrix commuting with ¢, and p,, respectively [say, V, = f,(¢1,92.¢3)
and V;L = fﬂ(“la“?aui’))]' Thena

VopaV) =00 = VUV, 1o ViUV,
0o = UVupaViU" = Up,UT, (27)
where

[Vtﬂ’ (Pa] =0, [Vuv Ma] =0. (28)
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Thus, in the class of V,,UV), matrices, one might restrict oneself to the U
matrix of the form (1), putting V,, = 1 and V), = 1. The form (1) of U is
a sufficient condition for the invariances ¢,Up, = U with pu, and ¢, given
as in Egs. (12) and (26), while the form U — V,,UV), is also their necessary
condition.

In conclusion, we have introduced two Abelian algebras of Hermitian and
real 3 x 3 matrices i, p2, 3 and @1, Y2, p3 satisfying the group relations
pipe = pg (cyclic) and @199 = @3 (cyclic) as well as the constraints 1 +puo+
13 = —land p1+@po+9s = —1. These two algebras are isomorphic, as being
related through the unitary transformation ¢, = Up,UT (@ = 1,2, 3), where
U is the neutrino mixing matrix. Thus, u, are covariant with respect to
neutrino mixings, leading to ¢,. Such a unitary transformation implies the
mvariances poMp, = M of the neutrino effective mass matrix M: strictly
for a = 3 and, if my ~ ms, approximately for a = 1, 2.

The unitary transformation ¢, = U p, Ut (@ = 1,2,3) is equivalent
to the invariances oo U g = U of the neutrino mixing matrix U. With
given p, and ¢, matrices as in Eqs. (12) and (26), respectively, these in-
variances characterize (as a sufficient condition for them) the monomaximal
form (023 = 45°) of the bilarge mixing matrix U that for 619 ~ 45° should be
approximately bimaximal (619 ~ 33° is the actual experimental estimate).
On the other hand, the charged-current weak interactions may violate max-
imally the “horizontal parity” P = p3. This is the case, if v — @3 and,
as the mass neutrinos, e — uze (not e — pze) with v = (ve,v,,v-)" and
e = (e,pt,7)T. Then, the neutrino effective and charged-lepton mass terms
conserve this parity.

Summarizing, the algebraic properties of u, matrices can be expressed
by the relations

{1, 2} = 2u3 (cyclic),  [wa, ] =0, p2 =1, pi+ps+tpus=—1 (29)

(a,b = 1,2,3). The identical relations hold also for ¢, matrices equal to
UpUt. We suggest that ¢, and p, matrices (¢ = 1,2,3) play the role of
dynamical variables in the problem of neutrino masses (and, hopefully, of
other fermion masses). In fact, according to Egs. (23) and (24) the neutrino
effective mass matrix M can be expressed by means of the matrices 1, 3
and p1,pe (1 = —p1 — @2 — @3 = —pup — po — pug) and the parameters
mi, Mo, m3 and s, the number of the latter should be certainly reduced,
say, by the conjecture that mi:moims ~ meimy:m, [10]. Here, we have
©1 — P2 = 1-— Y3 — 2{(,03,#3} =1+ 3303 + 2{@3,[1«1 + ,LLQ}, beside )\1 — )\4 =
%{(pg,ul — po}, expressing @1 — o and Ay — Ay through ¢3 and p1, po.
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From the mathematical viewpoint, four 3 x 3 matrices 1, j1, po, 3 sat-
isfying Eqgs. (29) form a matrix representation of the Zy x Zy group of four
elements (1,1), (1,—1), (=1,1), (—=1,—1), where Z5 is the group of two
square roots 1,-1 of 1. The same is true for four 3 x 3 matrices 1, 1, @2, ¥3.

On the other hand, for the 3 x 3 matrices u, and ¢, (¢ = 1,2,3) given
in Egs. (12) and (13) the formulae

exp (—i > uaﬁa)

= exp ( ZO ) exp [lﬁ)\g ( 0, — 05 + 203):| X exp [’L)\l (91 — 02)](30)

and
€xXp <_i Z (Pa9a>
= '129 L (g + 2a (01 — 205 + 65)
= exp %3aanP12 3 \/58 1 2 3

X exp [7)\6 (01 — 03)] s (31)

hold, where [A1,Ag] = 0 and [Ag, A3 + %As] = 0. Thus, p, and ¢, (a =
1,2,3) generate two subgroups (30) and (31) [having the forms
exp (i3 >, 0a) SU1(1) x SUy(1)| of the horizontal unitary group U(3) =
exp (i3 >,0a)SU(3), where SU(3) is generated by Ai,...,As. Here,
det U(3) =exp(i Y, 0a).

The author is indebted to Andrzej Trautman for the suggestion that the
Z9 x Z4 group is behind the algebraic relations (29).
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