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ON TACHYON POTENTIAL IN BOUNDARY STRINGFIELD THEORY AND PROBLEMSWITH BOUNDARY FERMIONSPiotr SuªkowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00-681 Warsaw, Polande-mail: Piotr.Sulkowski�fuw.edu.pl(Reeived May 22, 2003)A alulation of a partition funtion Z in a system of two oinidentD1-D1 pairs of type I superstring theory is presented. Aording to thewell known onjeture, this partition funtion is identi�ed with a tahyonpotential in a ase of onstant tahyon �elds. Properties of this potential aredisussed. On the way, a peuliar features of boundary fermions emerge. Tosolve the problems ensuing, a non-standard way of operator renormalizationis required.PACS numbers: 11.25.Sq 1. IntrodutionThere was a sudden twist in a development of String Field Theory tenyears ago, as its Boundary � or Bakground Independent � version, theso alled BSFT, was disovered by Witten [5, 6℄. Sine that time quite anahievement in this �eld has been noted [11℄. In partiular, within BSFTframework it turned out possible to �nd an exat form of a tahyon po-tential, with its ertain features onjetured muh earlier by Sen [12℄. Theknowledge of this potential undoubtedly sheds muh light upon the role andnature of tahyons, whih are rather infamous reatures in string theory. Be-ause tahyons may arise as states of open strings, whih appear naturallystrethed between D-branes in omplex D-brane on�gurations, it followsthat interations of D-branes may be desribed as proesses aompanyingertain behavior of tahyons. These interations may be very dramati innature, inluding reation and annihilation of branes of various dimensions,and are assoiated with suh a non-perturbative phenomenon as rolling downtahyon potential. Among the others, this explains how a true vauum instring theory ould be found: when a perturbative vauum is unstable due(4167)



4168 P. Suªkowskito presene of tahyon states (arising from strings strethed between variousD-branes) and orresponds to a maximum of tahyon potential, these statesdisappear from the spetrum as a onsequene of a ondensation, whihleads to another vauum, assoiated with minimum of the potential (withD-branes annihilated). In this paper an exat form of a tahyon potentialin a ertain on�guration of D-branes is found, whih also admits suh aninterpretation.Tahyon potential mentioned above is supposed to be a speial ase of alow energy e�etive ation S for the lightest string exitations. A searh forsuh an ation, desribing those lightest modes in terms of spaetime �elds,is a domain of String Field Theory. In a bosoni version of BSFT, with ahelp of Batalin�Vilkovisky formalism, it was shown [5℄ that the spaetimeation is losely related to a disk partition funtion Z(u),S = ��i ��ui + 1�Z(u) ; (1)where the partition funtion is weighted by a worldsheet ation onsistingof a bulk onformal Polyakov part and not-neessarily onformal boundarypiee, parametrized by ouplings ui of open string �elds Oi,S = Sbulk + Sbnd ; Sbnd = I d'uiOi ; (2)and �i are worldsheet beta funtions governing the �ow of ouplings ui. Inpartiular, �i vanish in �xed points of boundary theory, whih orrespondto suh a value of ui for whih Sbnd is onformally invariant. In suh a asethe spaetime ation S oinides with the partition sum Z.Finding an analogous derivation for a superstring ase turned out non-trivial and by today is not known. Even though, in view of expliit results fore�etive ations obtained for gauge �elds in superstring theory [2�4℄, as wellas some speial features of supersymmetri framework, it was onjeturedin [7, 10℄ that in superstring ase a proper onnetion between spaetimeation and partition sum is even simpler than in bosoni theory, and readsS = Z(u) : (3)Moreover, the onjeture states that this relation is true even o�-shell, thatis for suh values of ui for whih Sbnd does not exhibit onformal symmetry.In general the worldsheet ation (2) may depend on spaetime oordi-nates X� (and  � in superstring ase) through the operators Oi. A tahyonpotential an be obtained by setting all ui to zero exept those orrespond-ing to onstant spaetime tahyon �elds. Thus, for tahyons in superstring



On Tahyon Potential in Boundary String Field Theory : : : 4169framework, a relation (3) takes the formV(Ti) = Z(Ti) ; (4)where Ti represent onstant in spaetime tahyon �elds.As mentioned above, in this paper a partition funtion for a ertainon�guration of D-branes is found. This on�guration is a oinident systemof two D1-branes and two anti-D1-branes of type I superstring theory, inwhih four di�erent tahyon �elds may arise, assoiated with all possiblebrane�antibrane pairs [13℄. In the ourse of reasoning, some peuliar featuresof the so-alled boundary fermions will emerge, whih will lead to a veryspeial presription for operator renormalization.The paper is organized as follows. A framework for alulations, basedon the work of Kraus and Larsen [8℄, is reviewed in Setion 2. In Setion 3the omputation and analysis of a partition sum in a system of two brane�antibrane pairs of type I theory is presented. Setion 4 ontains summaryand onlusions.2. Boundary String Field Theory � BSFTAs explained in the introdution, to ompute spaetime ation for tah-yon �eld BSFT formalism is used. It's based upon the assumption of equalityof the spaetime ation for bakground �elds and the partition funtionassoiated with them, S[T;A�; : : :℄ = Z[T;A�; : : :℄ : (5)Generally in open string theory, apart from tahyon �eld T (X), alsogauge �elds A�(X) and possibly some other exitations may be onsideredin the partition funtion. In this setion only T and A� are taken intoaount, but as the main purpose of this work is to �nd tahyon potential,later on onstant values of tahyon �elds and vanishing gauge �elds will beassumed.In this setion �rstly the onventions of [8℄ are reviewed. Then I explainhow to modify them in order to onsider type I strings.2.1. Bosoni string partition funtionAt �rst let's fous on a bosoni string partition funtion. The type IIsuperstring partition funtion will be given as a generalization of this ase.Bosoni string Eulidean partition funtion isZ = ZDisk DX e�Sbulk e�Sbnd : (6)



4170 P. SuªkowskiA domain of integration is a unit disk, parametrized by radial oordinates� 2 [ 0 ; 1 ℄ ; ' 2 [ 0 ; 2� ℄ ; (7)and equipped with a �at metrigab = � 1 �2 � : (8)Worldsheet ation S = Sbulk + Sbnd (9)onsists of a bulk and boundary parts. The bulk ation is onformally in-variant Polyakov ation, whih in oordinates (7) takes the formSbulk = 14��0 ZDisk � d� d'� ��X� ��X� + ��2 �'X��'X� �: (10)Arbitrary boundary onditions are set in terms of Fourier modes,X�(� = 1; ') = X�0 +r�02 1Xn=1�X�nein' +X��ne�in'�; (11)for whih reality of X� implies X�n = �X��n. In terms of these modes,Polyakov ation (10) takes the formSbulk = 12 1Xn=1nX��nX�n : (12)The seond ingredient of the worldsheet ation (9) is a boundary termSbnd, whih does not have to be onformally invariant. In ase of a tahyon�eld this is simply Sbnd = ST = 2�Z0 d'T (X); (13)whereas for gauge �eld an appropriate gauge invariant term isSbnd = SA = �i 2�Z0 d'A� _X�; (14)with a dot denoting di�erentiation with respet to '.Fixing integration measure in (6) asDX := 1Yn=1 dXndX�n4� : (15)spei�es ompletely bosoni partition funtion.



On Tahyon Potential in Boundary String Field Theory : : : 41712.2. Type II superstring partition funtionPolyakov ation for a superstring readsSP = � 14��0 Z d� d�� �aX� �aX� � i	��a�a	� �: (16)Beause we are interested in Neveu�Shwartz setor with antiperiodi bound-ary onditions for  �, in radial oordinates (7) we have (� = 1; ') = 1Xr=1=2� �r eir' +  ��r e�ir' �: (17)Boundary funtional for �elds  � has been alulated e.g. in [8, 14℄, and isequal to 	bulk = e�Sbulk; (18)where Sbulk = 12 1Xn=1nX��nX�n + i 1Xr=1=2 ��r �r : (19)Supersymmetri formalism allows to write boundary interations in su-persymmetrialy invariant way. To do this we expand a boundary of a diskto a superspae with oordinates '̂ = ('; �), � being antiommuting. Fieldson the boundary are now promoted to super�elds,X� = X� +p�0� � ; (20)and derivative along the boundary beomes super as well,D = �� + ��' : (21)Supersymmetrized tahyon and gauge �elds an be set equal toT (X) = T (X) + ��T (X) �p�0 � ; (22)A�(X) = A�(X) � �p�02 F�� � ; (23)in the seond ase F�� = ��A� � ��A� for an Abelian gauge group. Fromthese �elds invariant boundary terms Sbnd an be onstruted as integralsalong the boundary with respet to d'̂.Choosing fermioni integration measure asD := 1Yr=1=2 d rd �r ; (24)



4172 P. Suªkowskiand olleting the results (15), (19), a superstring partition funtion aneventually be written downZ = Z DXD � e�Sbulk e�Sbnd : (25)2.3. Boundary fermionsThese are non-Abelian gauge �elds whih appear on staks of D-branesin string theory. They are states of open strings onneting those branes, andas suh are assoiated with boundaries of these strings' worldsheets. Calu-lating partition funtion in a superstring theory requires taking are of a su-persymmetri boundary ordering. This is not an easy task, but fortunatelythere is an equivalent method of �nding partition funtion without doingpath-ordered integrals � it su�es to introdue boundary fermions. More-over this enables one to onsider simultaneously gauge �elds and tahyons,and even tahyons alone, what is of partiular interest for us. These fatssimplify alulations, but the prie is that it is possible to analyze only staksonsisting preisely of 2n branes [8℄.Let us demonstrate �rst how boundary fermions arise in the ase of 2nD-branes of type II theory. There are U(2n) gauge �elds A� living in suha on�guration. These �elds are Lie-algebra valued. It an be shown thateah element of u(2n) algebra is a linear ombination of elements of a basisof Cli�ord algebra of the group SO(2n). Cli�ord algebra in generated byDira matries I whih obeyf I ; J g = 2 Æij for I; J = 1; : : : ; 2m: (26)Cli�ord algebra onsists of an identity matrix, Dira matries I , and ele-ments of the formI1:::Ik := 1k!X� (�1)sgn(�) I�(1) � � � I�(k): (27)Thus it follows that for an arbitrary U(2n) gauge �eld we an writeAab� = 2nXk=0AI1:::Ik� abI1:::Ik : (28)The boundary fermions are boundary degrees of freedom whih are intro-dued in (28) instead of Dira matries. In aordane with supersymmetriformalism these boundary super�elds are de�ned as� I := �I + �FI ; for I = 1; : : : ; 2m; (29)



On Tahyon Potential in Boundary String Field Theory : : : 4173with �I antiommuting and auxiliary �elds FI ommuting. Canonial quan-tization of the following ationS� = �Z d'd� 14� ID� I ; (30)leads then to the same ommutation relations for �I as for Dira matries,f �I ; �J g = 2 ÆIJ : (31)Eventually, we treat gauge �elds asA� = 2nXk=0AI1:::Ik� � I1 � � �� Ik : (32)The main onlusion one an draw from the above is that when alu-lating partition funtion for gauge �elds, supersymmetri path ordering ona boundary of a disk is equivalent to funtional integration weighted by theexponent of�SA = Z d'd�h 14� ID� I + i 2mXk=0AI1;:::;Ik� � I1 � � �� Ik i: (33)In this setup generalization to tahyon �elds is partiularly simple. Tah-yons in superstrings arise on a brane�antibrane pair. In a system of 2m�1D-branes and the same number of antibranes, one an �nd two U(2m�1)gauge �elds A+� and A�� , assoiated respetively with branes or antibranes,and a bunh of tahyon �elds oming from strings strethed between allpossible brane�antibrane pairs. Type II superstrings are oriented, so in fatthere are two degrees of freedom assoiated with eah brane�antibrane pair,and tahyons should be treated as omplex �elds. All boundary interationsof these �elds an be desribed by one 2m � 2m matrixM(X) := � iA+� (X)DX� p�0 �Tp�0T iA�� (X)DX� � : (34)First 2m�1 rows and olumns of M are assoiated with D-branes in oursystem; the other orrespond to antibranes.Just as for pure gauge �elds the following deomposition an be arriedover Mab = 2mXk=0 12k!M I1:::Ik abI1:::Ik ; (35)



4174 P. Suªkowskiand onsequently boundary fermions � I an be introdued. Finally thefollowing form of the boundary ation emergesSbnd = �Z d'd�" 14� ID� I + i 2mXk=0 12k!M I1:::Ik � I1 � � �� Ik #: (36)Our purpose in what follows will be to evaluate the partition funtion(25) with the above Sbnd for a partiular system of D-branes.2.4. BSFT for type I stringsIn the previous subsetion the ase of type II superstrings has been pre-sented. There is of ourse a ruial di�erene between type I theory [1℄.Firstly, strings in type I theory are unoriented, so there is only one degreeof freedom assoiated with eah tahyon �eld. Thus tahyon �elds beomereal, and parts of M matrix (35) whih orrespond to tahyons should besymmetri. Seondly, gauge groups assoiated with staks of D-brans aredi�erent than U(n). For a stak of n � 2 D1-branes � in whih ase we areinterested in � this group is SO(n). This means that in (35) those part ofM matrix whih orrespond to gauge �elds should be antisymmetri.There is one more subtlety assoiated with (36). Coe�ients M I1:::Ikorrespond to either gauge or tahyon �elds, and as suh should be bosoni.As the whole expression should be a -number, it implies that oe�ientsorresponding to tahyons and gauge �elds should be those for whih kis respetively odd and even (beause of superderivative in a gauge �eldinteration). This is a nontrivial onstraint whih will have to be taken areof later. As we shall see, this will also lead to peuliar properties of boundaryfermions in a system with tahyon �elds.3. Two brane�antibrane pairs in type I theory3.1. PreliminariesThe analysis of the on�guration of D-branes mentioned in the introdu-tion will now be presented. That is, I onsider a stak of two D1-branes andtwo anti-D1-branes of type I theory. These orrespond to m = 2 introduedat the end of Setion 2.3.Even though the main task in this paper is to �nd a tahyon potential,for whih it su�es to onsider onstant tahyon �elds in the system, fora while I onsider more general on�guration. Generally � as mentionedin Setion 2.4 � there ould appear two SO(2) gauge �elds A+, A� inour system, assoiated respetively with two branes and two antibranes.



On Tahyon Potential in Boundary String Field Theory : : : 4175One would also expet four real tahyon �elds assoiated with eah brane�antibrane pair in the system. Denoting D-branes by numbers 1 and 2, andanti-D-branes by 3 and 4, in an obvious way tahyons an be named as T13,T14, T23, T24. These onventions are shematially presented in �gure 1.
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Fig. 1. Two type I D1-D1 pairs.The partition sum (25) should now be found, whih aording to theonjeture (5), would then be identi�ed with an e�etive ation for spaetime�elds. Three ingredients of (25) are already given, i.e. (15), (19), (24). Thefourth one is a boundary ation (36). Its main ingredient is M matrix(35), whih should have properties desribed in Setion 2.4. In partiular,an appropriate representation of Cli�ord algebra should be found, for whihgauge and tahyon �elds would have orret statistis. Suh a representationis given expliitly in the appendix.Deomposition of gauge �elds under the partiular representation givenin the appendix is the followingA� = � A+� �2 A�� �2 � = 12A1;�13 + 12A2;�24; (37)where �2 is a Pauli matrix and the newly introdued oe�ients are� A1;� = i(A�� +A+� )A2;� = i(A�� �A+� ) (38)whih an be identi�ed with oe�ients in (35) via� M13 = iA1;�DX�M24 = iA2;�DX� (39)



4176 P. SuªkowskiTahyons are deomposed asp�0 T = p�0 2664 T13 T14T23 T24T13 T23T14 T24 3775= 12M11 + 12M134134 + 12M33 + 12M123123 ; (40)what leads to 8>><>>: M1 = (T14 + T23)p�0 ;M134 = i(T23 � T14)p�0 ;M3 = (T13 � T24)p�0 ;M123 = �i(T13 + T24)p�0 : (41)Thus, in our representation the gauge and tahyon �elds indeed have theorret statistis. Above results ombine to the interation matrix (34)M(X) = iA�DX� +p�0T : (42)3.2. Calulation of the four-tahyon potentialTo �nd the tahyon potential, it su�es to onsider vanishing gauge�elds, A�� = 0, and onstant tahyon �elds. Then the only non-zero ompo-nents MI1:::Ik are those given in (41), whih are onstant. Integrating outoordinate � in (36) under these assumptions leads to the following boundaryationSbnd = �Z d' � 14 _�I�I + 14FIFI + 12MIFI + 14MIJKFI�J�K � ; (43)where auxiliary �elds FI are superpartners of �I , aording to (29). The�elds FI an be integrated out using their equations of motion, whih areFI = �MI � 12MIJK�J�K : (44)It is tempting to insert this bak into (43). However, one should now bepartiularly areful. In fat there is no obvious way how to treat produts of�I in the same point ', whih our in the boundary ation. On the lassiallevel, one would think of �elds �I as mutually ommuting. In fat this is howthey e�etively behave when onsidered in (43), beause they are ontratedwith antisymmetri objets MIJK . Nonetheless, as shown in [9℄, there may



On Tahyon Potential in Boundary String Field Theory : : : 4177appear additional ontributions from ontrations in produts of �I , afterwe insert (44) bak to (43). The most general form of suh ontrations ish�I(') �J (')i = �ÆIJ ; (45)with a onstant fator �. In [9℄ it was shown, that for a boundary ationwith gauge �elds only � what in our ase would orrespond to non-zero�elds in (39) and vanishing those in (41) � boundary fermions �I haveantiommuting properties of gamma matries, what is equivalent to � = 1.We shall see that in our ase suh a value of � would lead to an unsatisfatoryresult, and ertain symmetries require � to take another value. Thus, letus now just proeed in the most general setting. Inserting (44) into (43),both of these understood as normal ordered expressions, and performingontrations aording to (45), leads to a renormalized produt of operators: �M�N :: �J�K : = : �M�N�J�K :+�� : �N�J : ÆMK+ : �M�K : ÆNJ� : �N�K : ÆMJ� : �M�J : ÆNK�+�2�ÆNJÆMK � ÆMJÆNK�; (46)where all �'s under normal-ordering symbol :: mutually antiommute. Inonsequene, the following form of the boundary ation emergesSbnd = �14 Z d' h _�I�I�MIMI�MIMIJK�J�K+ 12�2MIJKMIJK i: (47)In our partiular situation, when the only non-zero �elds are those in (41),the omponent form of this ation isSbnd = �Z d'h 14 _�I�I � 14�M21 +M23 �+ 34�2�M2123 +M2134 ��12�M1M134�3�4 +M134M3�4�1+M1M123�2�3 +M3M123�1�2 � i: (48)The last step leading to the partition funtion (25) is to integrate out�elds �I . This an be done with a help of a quantum mehanial formulaZ D� e�S = Tr eH ; (49)with H a Hamiltonian obtained from the ation by a Legendre transforma-tion. We should note that in this expression all produts of �I are multiplied



4178 P. Suªkowskiby an antisymmetri quantity, thus one again they an be dealt with aslassial antiommuting �elds. Thus, to ompute trae, it su�es simply tohange �I to a gamma matrix I , and perform an usual trae. In order todo that, it is onvenient to write the Hamiltonian asH = h � 14�4 +H ; (50)where h = ��2 �M21 +M23 �+ 3�2 �2�M2123 +M2134 � (51)H = ���M1M13434 +M134M341 +M1M12323 +M3M12312 �:(52)Then the partition funtion takes the formZ(T ) = N eh � Tr eH ; (53)with N a normalization fator. To alulate the last trae we note thatH = �� � U W � ; (54)where U = � i(M1M134 +M3M123) i(M1M123 �M134M3)i(M1M123 �M134M3) �i(M1M134 +M3M123) � ; (55)W = � i(M3M123 �M1M134) i(M134M3 +M1M123)i(M134M3 +M1M123) i(M1M134 �M3M123) � : (56)Thus we obtain Tr eH = Tr e�� U + Tr e��W : (57)To �nd eah of these traes we take advantage of the formulaTr exp � p qq �p � = 2 oshpp2 + q2: (58)It then turns out somewhat surprisingly that both traes on the right sideof (57) are equal Tr e�� U = Tr e��W = 2 osh ���0pw �; (59)where, taking (41) into aount,w := ��M21 +M23 ��M2123 +M2134 ��02= �� T 213 � T 214 + T 223 + T 224 �2 + 4�T13T23 + T14T24 �2= �� T 213 + T 214 � T 223 + T 224 �2 + 4�T13T14 + T23T24 �2= �T 213 + T 214 + T 223 + T 224 �2 � 4�T13T24 � T14T23 �2 : (60)



On Tahyon Potential in Boundary String Field Theory : : : 4179To sum up, the partition funtion (53) for onstant tahyon �elds shouldbe interpreted as a tahyon e�etive potential aording to (5). Moreover,the normalization fator N should be suh, that for vanishing tahyon �eldsthe value of the e�etive potential is equal to the sum of tensions TD1 of fourbranes in the system. Eventually we obtain the tahyon e�etive potentialV(T13; T14; T23; T24) = 4TD1 eh osh���0pw �; (61)with w � 0, as implied by (60).The e�etive tahyoni potential (61) still depends, through h, on thefator � oming from ontrations of boundary fermions. To determine itsvalue we rewrite (51), using (41), ash = ��0�2 h �T 213+T 214+T 223+T 224 �(1+3�2)+2�T14T23�T13T24 �(1�3�2) i:(62)We should note now, that there are two pairs of separated tahyons in oursystem, T13 together with T24, and T14 with T23. There should be no dis-tintion between these two pairs; this is equivalent to the statement, thatour �nal e�etive potential should not hange its form, if we rename branesor antibranes in the system aording to 1$ 2 or 3$ 4. But the expression�T14T23�T13T24 � in (62) is not invariant under eah of these two renamings� it hanges its sign! The only way to keep the (62) invariant is thus to set�2 = 13 : (63)It should be noted that this result is non-standard, and rather di�ultto foresee on the level of (45). In fat this is a onsequene of the parti-ular struture of the boundary ation (36), that was stressed at the end ofSetion 2.4. As mentioned below (45), in [9℄ a value � = 1 was obtainedfor a system with gauge �elds only. It then led to a gauge-invariant om-mutator term after integrating fermions out. The di�erene between thepresent ase is in the statistis: gauge �elds orrespond to antiommutingomponent �elds MIi:::Ik with k even, as in (39), and these are multipliedby an even number of boundary fermions in the ation (36). On the otherhand, for tahyons these are ommuting omponents MI1:::Ik emerging withk odd (41) � and in suh a ase the analysis takes another route, leadingto (63).As the dust has settled, we an write down the �nal form of the tahyonpotential in a system of two brane�antibrane pairs in type I theory. Insertingthe result (63) into (61), we �ndV(T ) = 4TD1 e��0��T 213+T 214+T 223+T 224� osh(�0�pw); (64)



4180 P. Suªkowskiwhere w is given by (60),w = �T 213 + T 214 + T 223 + T 224 �2 � 4�T13T24 � T14T23 �2: (65)The method we followed, being rigorous and exat on one hand, on theother leads through rather lengthy alulations to the result (64) whih isquite involved. A autious look on the formula (50) reveals that this is equalto �2�0�T 2 (after deomposition in the basis of Cli�ord algebra) plus someadditional terms, whih vanish preisely when �2 = 13 . Thus a onise formof writing (64) is just V(T ) = N Tr e�2�0�T 2 ; (66)what agrees with the formula for a tahyon potential with nontrivial Chan-Paton fators onjetured in [7℄. It is interesting to reover that an emer-gene of the form (66) is onsistent with the onstraint (63).3.3. Analysis of V(T )Analysis of the result (64) reveals it has the properties one would intu-itively expet.First of all, as a speial ase it may be assumed only one of the �elds� say T13 � is a varying variable, and all the others are kept �xed T14 =T23 = T24 = 0. Then (61) redues toV(T13) = 2TD1 + 2TD1e�2��0T 213 : (67)The tensions of branes D2 and �D4 are represented by the onstant 2TD1,and the seond term is a well known formula for a potential of a singletahyon [8℄. After the tahyon ondenses, T13 ! 1, branes D1 and �D3disappear from the system, so that the energy after ondensation is equaljust 2TD1.Another speial ase are separated tahyons, whih we mentioned alreadybefore. First we onsider a on�guration with only one pair of separatedtahyons present, whih orresponds to some onstraints setting T14 = T23 =0, as in the �gure 2. Of ourse, it would be exatly equivalent to onsideranother pair of separated tahyons, with T13 and T24 held �xed.In this situation w = (T 213 � T 224)2; (68)what yields V(T13; T24) = 2TD1 � e�2��0T 213 + e�2��0T 224 �: (69)
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Fig. 2. Separated tahyons.To reah minimum of this potential, whih equals to 0, two �elds must simul-taneously ondense and beome in�nite, what orresponds to annihilationof all four branes.Also a little more general statement is true: if two separated tahyons �say T13 and T24 � ondense, and two others (in this ase T14 and T23) arekept �nite, the energy of the system after ondensation will also be equalto 0. Thus a su�ient ondition for an annihilation of all four branes isondensation of any two separated tahyons in the system.To prove this statement we an writeV = 2TD1e��0�(T 214+T 223) � � e��0�(T 213+T 224+pw) + e��0�(T 213+T 224�pw) �: (70)The �rst term in the braket dereases to 0 as T13; T24 ! 1. The seondterm would also vanish in this limit providingT 213 + T 224 �pw > 0 : (71)This is indeed true, as the above expression after is equivalent to the follow-ing one, 4 > (T 214 � T 223)2T 213T 224 + 8T14T23T13T24 + 2(T 214 + T 223)� 1T 213 + 1T 224 � ; (72)the right hand side of whih expliitly vanishes in the limit T13; T24 !1.4. ConlusionsIn this paper a partition funtion for onstant tahyon �elds T in asystem of two D1-D1 pairs has been found, along the lines of BoundaryString Field Theory. Aording to the onjeture (4), it is identi�ed withan e�etive potential for tahyon �elds, as stated in (61). Even though itsform is quite involved (64), it turns out it is just equal to exp(�2�0�T 2),



4182 P. Suªkowskiup to a normalization fator. This form is onsistent with other onjeturesin literature, thus on�rming both validity of those onjetures, as well aspartiular sheme of BSFT we have followed.Meanwhile, an interesting problem onerning boundary fermions emer-ged. It turns out, that to obtain a tahyon potential with a ertain symmetryonerning separated tahyons, a partiular presription for operator renor-malization of the form h�I(') �J (')i = 13ÆIJ (73)should be applied. This is a non-standard presription, and in the ase beingonsidered results from a bosoni statistis of tahyons �elds appearing inthe boundary ation (43). It should be ontrasted with an analogous formuladerived in literature for gauge �elds, in whih ase the proportionality fatorin the above formula would be just 1.Basi features of the potential found has also been presented. It hasbeen shown that ahieving its minima in a proess of tahyon ondensationorresponds to annihilation of all the branes in the system. Moreover, it hasbeen on�rmed that ondensation of only one pair of separated tahyonsalso leads to annihilation of all the branes.I would like to thank Jaek Paweªzyk for many disussions.AppendixSO(4) Cli�ord algebraIn this appendix a ertain representation of SO(4) Cli�ord algebra ispresented, whih is a basis of the alulations presented in Setion 3.SO(4) Dira matries are of the size 4 � 4, and antiommute aordingto f I ; J g = 2 ÆIJ for I; J = 1; : : : ; 4 :Denoting ordinary Pauli matries by �1;2;3 , and two-dimensional identitymatrix by I2�2, our hoie of Dira matries is1 = �1 
 �1 2 = �1 
 �23 = �1 
 �3 4 = �2 
 I2�2 :It follows that the seond rank elements ij = [ij℄ = 12� ij�ji � = ijare 12 = i I2�2
 �3 13 = �i I2�2
 �214 = i �3 
 �1 23 = i I2�2
 �1
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 �2 34 = i �3 
 �3 :The third rank elements ijk = ijk:123 = i �1 
 I2�2 124 = i �2 
 �3134 = �i �2 
 �2 234 = i �2 
 �1 :The last two elements of Cli�ord algebra are 1234 = 1234 = ��3
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