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ON TACHYON POTENTIAL IN BOUNDARY STRINGFIELD THEORY AND PROBLEMSWITH BOUNDARY FERMIONSPiotr SuªkowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00-681 Warsaw, Polande-mail: Piotr.Sulkowski�fuw.edu.pl(Re
eived May 22, 2003)A 
al
ulation of a partition fun
tion Z in a system of two 
oin
identD1-D1 pairs of type I superstring theory is presented. A

ording to thewell known 
onje
ture, this partition fun
tion is identi�ed with a ta
hyonpotential in a 
ase of 
onstant ta
hyon �elds. Properties of this potential aredis
ussed. On the way, a pe
uliar features of boundary fermions emerge. Tosolve the problems ensuing, a non-standard way of operator renormalizationis required.PACS numbers: 11.25.Sq 1. Introdu
tionThere was a sudden twist in a development of String Field Theory tenyears ago, as its Boundary � or Ba
kground Independent � version, theso 
alled BSFT, was dis
overed by Witten [5, 6℄. Sin
e that time quite ana
hievement in this �eld has been noted [11℄. In parti
ular, within BSFTframework it turned out possible to �nd an exa
t form of a ta
hyon po-tential, with its 
ertain features 
onje
tured mu
h earlier by Sen [12℄. Theknowledge of this potential undoubtedly sheds mu
h light upon the role andnature of ta
hyons, whi
h are rather infamous 
reatures in string theory. Be-
ause ta
hyons may arise as states of open strings, whi
h appear naturallystret
hed between D-branes in 
omplex D-brane 
on�gurations, it followsthat intera
tions of D-branes may be des
ribed as pro
esses a

ompanying
ertain behavior of ta
hyons. These intera
tions may be very dramati
 innature, in
luding 
reation and annihilation of branes of various dimensions,and are asso
iated with su
h a non-perturbative phenomenon as rolling downta
hyon potential. Among the others, this explains how a true va
uum instring theory 
ould be found: when a perturbative va
uum is unstable due(4167)



4168 P. Suªkowskito presen
e of ta
hyon states (arising from strings stret
hed between variousD-branes) and 
orresponds to a maximum of ta
hyon potential, these statesdisappear from the spe
trum as a 
onsequen
e of a 
ondensation, whi
hleads to another va
uum, asso
iated with minimum of the potential (withD-branes annihilated). In this paper an exa
t form of a ta
hyon potentialin a 
ertain 
on�guration of D-branes is found, whi
h also admits su
h aninterpretation.Ta
hyon potential mentioned above is supposed to be a spe
ial 
ase of alow energy e�e
tive a
tion S for the lightest string ex
itations. A sear
h forsu
h an a
tion, des
ribing those lightest modes in terms of spa
etime �elds,is a domain of String Field Theory. In a bosoni
 version of BSFT, with ahelp of Batalin�Vilkovisky formalism, it was shown [5℄ that the spa
etimea
tion is 
losely related to a disk partition fun
tion Z(u),S = ��i ��ui + 1�Z(u) ; (1)where the partition fun
tion is weighted by a worldsheet a
tion 
onsistingof a bulk 
onformal Polyakov part and not-ne
essarily 
onformal boundarypie
e, parametrized by 
ouplings ui of open string �elds Oi,S = Sbulk + Sbnd ; Sbnd = I d'uiOi ; (2)and �i are worldsheet beta fun
tions governing the �ow of 
ouplings ui. Inparti
ular, �i vanish in �xed points of boundary theory, whi
h 
orrespondto su
h a value of ui for whi
h Sbnd is 
onformally invariant. In su
h a 
asethe spa
etime a
tion S 
oin
ides with the partition sum Z.Finding an analogous derivation for a superstring 
ase turned out non-trivial and by today is not known. Even though, in view of expli
it results fore�e
tive a
tions obtained for gauge �elds in superstring theory [2�4℄, as wellas some spe
ial features of supersymmetri
 framework, it was 
onje
turedin [7, 10℄ that in superstring 
ase a proper 
onne
tion between spa
etimea
tion and partition sum is even simpler than in bosoni
 theory, and readsS = Z(u) : (3)Moreover, the 
onje
ture states that this relation is true even o�-shell, thatis for su
h values of ui for whi
h Sbnd does not exhibit 
onformal symmetry.In general the worldsheet a
tion (2) may depend on spa
etime 
oordi-nates X� (and  � in superstring 
ase) through the operators Oi. A ta
hyonpotential 
an be obtained by setting all ui to zero ex
ept those 
orrespond-ing to 
onstant spa
etime ta
hyon �elds. Thus, for ta
hyons in superstring
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hyon Potential in Boundary String Field Theory : : : 4169framework, a relation (3) takes the formV(Ti) = Z(Ti) ; (4)where Ti represent 
onstant in spa
etime ta
hyon �elds.As mentioned above, in this paper a partition fun
tion for a 
ertain
on�guration of D-branes is found. This 
on�guration is a 
oin
ident systemof two D1-branes and two anti-D1-branes of type I superstring theory, inwhi
h four di�erent ta
hyon �elds may arise, asso
iated with all possiblebrane�antibrane pairs [13℄. In the 
ourse of reasoning, some pe
uliar featuresof the so-
alled boundary fermions will emerge, whi
h will lead to a veryspe
ial pres
ription for operator renormalization.The paper is organized as follows. A framework for 
al
ulations, basedon the work of Kraus and Larsen [8℄, is reviewed in Se
tion 2. In Se
tion 3the 
omputation and analysis of a partition sum in a system of two brane�antibrane pairs of type I theory is presented. Se
tion 4 
ontains summaryand 
on
lusions.2. Boundary String Field Theory � BSFTAs explained in the introdu
tion, to 
ompute spa
etime a
tion for ta
h-yon �eld BSFT formalism is used. It's based upon the assumption of equalityof the spa
etime a
tion for ba
kground �elds and the partition fun
tionasso
iated with them, S[T;A�; : : :℄ = Z[T;A�; : : :℄ : (5)Generally in open string theory, apart from ta
hyon �eld T (X), alsogauge �elds A�(X) and possibly some other ex
itations may be 
onsideredin the partition fun
tion. In this se
tion only T and A� are taken intoa

ount, but as the main purpose of this work is to �nd ta
hyon potential,later on 
onstant values of ta
hyon �elds and vanishing gauge �elds will beassumed.In this se
tion �rstly the 
onventions of [8℄ are reviewed. Then I explainhow to modify them in order to 
onsider type I strings.2.1. Bosoni
 string partition fun
tionAt �rst let's fo
us on a bosoni
 string partition fun
tion. The type IIsuperstring partition fun
tion will be given as a generalization of this 
ase.Bosoni
 string Eu
lidean partition fun
tion isZ = ZDisk DX e�Sbulk e�Sbnd : (6)



4170 P. SuªkowskiA domain of integration is a unit disk, parametrized by radial 
oordinates� 2 [ 0 ; 1 ℄ ; ' 2 [ 0 ; 2� ℄ ; (7)and equipped with a �at metri
gab = � 1 �2 � : (8)Worldsheet a
tion S = Sbulk + Sbnd (9)
onsists of a bulk and boundary parts. The bulk a
tion is 
onformally in-variant Polyakov a
tion, whi
h in 
oordinates (7) takes the formSbulk = 14��0 ZDisk � d� d'� ��X� ��X� + ��2 �'X��'X� �: (10)Arbitrary boundary 
onditions are set in terms of Fourier modes,X�(� = 1; ') = X�0 +r�02 1Xn=1�X�nein' +X��ne�in'�; (11)for whi
h reality of X� implies X�n = �X��n. In terms of these modes,Polyakov a
tion (10) takes the formSbulk = 12 1Xn=1nX��nX�n : (12)The se
ond ingredient of the worldsheet a
tion (9) is a boundary termSbnd, whi
h does not have to be 
onformally invariant. In 
ase of a ta
hyon�eld this is simply Sbnd = ST = 2�Z0 d'T (X); (13)whereas for gauge �eld an appropriate gauge invariant term isSbnd = SA = �i 2�Z0 d'A� _X�; (14)with a dot denoting di�erentiation with respe
t to '.Fixing integration measure in (6) asDX := 1Yn=1 dXndX�n4� : (15)spe
i�es 
ompletely bosoni
 partition fun
tion.
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hyon Potential in Boundary String Field Theory : : : 41712.2. Type II superstring partition fun
tionPolyakov a
tion for a superstring readsSP = � 14��0 Z d� d�� �aX� �aX� � i	��a�a	� �: (16)Be
ause we are interested in Neveu�S
hwartz se
tor with antiperiodi
 bound-ary 
onditions for  �, in radial 
oordinates (7) we have (� = 1; ') = 1Xr=1=2� �r eir' +  ��r e�ir' �: (17)Boundary fun
tional for �elds  � has been 
al
ulated e.g. in [8, 14℄, and isequal to 	bulk = e�Sbulk; (18)where Sbulk = 12 1Xn=1nX��nX�n + i 1Xr=1=2 ��r �r : (19)Supersymmetri
 formalism allows to write boundary intera
tions in su-persymmetri
aly invariant way. To do this we expand a boundary of a diskto a superspa
e with 
oordinates '̂ = ('; �), � being anti
ommuting. Fieldson the boundary are now promoted to super�elds,X� = X� +p�0� � ; (20)and derivative along the boundary be
omes super as well,D = �� + ��' : (21)Supersymmetrized ta
hyon and gauge �elds 
an be set equal toT (X) = T (X) + ��T (X) �p�0 � ; (22)A�(X) = A�(X) � �p�02 F�� � ; (23)in the se
ond 
ase F�� = ��A� � ��A� for an Abelian gauge group. Fromthese �elds invariant boundary terms Sbnd 
an be 
onstru
ted as integralsalong the boundary with respe
t to d'̂.Choosing fermioni
 integration measure asD := 1Yr=1=2 d rd �r ; (24)



4172 P. Suªkowskiand 
olle
ting the results (15), (19), a superstring partition fun
tion 
aneventually be written downZ = Z DXD � e�Sbulk e�Sbnd : (25)2.3. Boundary fermionsThese are non-Abelian gauge �elds whi
h appear on sta
ks of D-branesin string theory. They are states of open strings 
onne
ting those branes, andas su
h are asso
iated with boundaries of these strings' worldsheets. Cal
u-lating partition fun
tion in a superstring theory requires taking 
are of a su-persymmetri
 boundary ordering. This is not an easy task, but fortunatelythere is an equivalent method of �nding partition fun
tion without doingpath-ordered integrals � it su�
es to introdu
e boundary fermions. More-over this enables one to 
onsider simultaneously gauge �elds and ta
hyons,and even ta
hyons alone, what is of parti
ular interest for us. These fa
tssimplify 
al
ulations, but the pri
e is that it is possible to analyze only sta
ks
onsisting pre
isely of 2n branes [8℄.Let us demonstrate �rst how boundary fermions arise in the 
ase of 2nD-branes of type II theory. There are U(2n) gauge �elds A� living in su
ha 
on�guration. These �elds are Lie-algebra valued. It 
an be shown thatea
h element of u(2n) algebra is a linear 
ombination of elements of a basisof Cli�ord algebra of the group SO(2n). Cli�ord algebra in generated byDira
 matri
es 
I whi
h obeyf 
I ; 
J g = 2 Æij for I; J = 1; : : : ; 2m: (26)Cli�ord algebra 
onsists of an identity matrix, Dira
 matri
es 
I , and ele-ments of the form
I1:::Ik := 1k!X� (�1)sgn(�) 
I�(1) � � � 
I�(k): (27)Thus it follows that for an arbitrary U(2n) gauge �eld we 
an writeAab� = 2nXk=0AI1:::Ik� 
abI1:::Ik : (28)The boundary fermions are boundary degrees of freedom whi
h are intro-du
ed in (28) instead of Dira
 matri
es. In a

ordan
e with supersymmetri
formalism these boundary super�elds are de�ned as� I := �I + �FI ; for I = 1; : : : ; 2m; (29)
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ommuting and auxiliary �elds FI 
ommuting. Canoni
al quan-tization of the following a
tionS� = �Z d'd� 14� ID� I ; (30)leads then to the same 
ommutation relations for �I as for Dira
 matri
es,f �I ; �J g = 2 ÆIJ : (31)Eventually, we treat gauge �elds asA� = 2nXk=0AI1:::Ik� � I1 � � �� Ik : (32)The main 
on
lusion one 
an draw from the above is that when 
al
u-lating partition fun
tion for gauge �elds, supersymmetri
 path ordering ona boundary of a disk is equivalent to fun
tional integration weighted by theexponent of�SA = Z d'd�h 14� ID� I + i 2mXk=0AI1;:::;Ik� � I1 � � �� Ik i: (33)In this setup generalization to ta
hyon �elds is parti
ularly simple. Ta
h-yons in superstrings arise on a brane�antibrane pair. In a system of 2m�1D-branes and the same number of antibranes, one 
an �nd two U(2m�1)gauge �elds A+� and A�� , asso
iated respe
tively with branes or antibranes,and a bun
h of ta
hyon �elds 
oming from strings stret
hed between allpossible brane�antibrane pairs. Type II superstrings are oriented, so in fa
tthere are two degrees of freedom asso
iated with ea
h brane�antibrane pair,and ta
hyons should be treated as 
omplex �elds. All boundary intera
tionsof these �elds 
an be des
ribed by one 2m � 2m matrixM(X) := � iA+� (X)DX� p�0 �Tp�0T iA�� (X)DX� � : (34)First 2m�1 rows and 
olumns of M are asso
iated with D-branes in oursystem; the other 
orrespond to antibranes.Just as for pure gauge �elds the following de
omposition 
an be 
arriedover Mab = 2mXk=0 12k!M I1:::Ik 
abI1:::Ik ; (35)



4174 P. Suªkowskiand 
onsequently boundary fermions � I 
an be introdu
ed. Finally thefollowing form of the boundary a
tion emergesSbnd = �Z d'd�" 14� ID� I + i 2mXk=0 12k!M I1:::Ik � I1 � � �� Ik #: (36)Our purpose in what follows will be to evaluate the partition fun
tion(25) with the above Sbnd for a parti
ular system of D-branes.2.4. BSFT for type I stringsIn the previous subse
tion the 
ase of type II superstrings has been pre-sented. There is of 
ourse a 
ru
ial di�eren
e between type I theory [1℄.Firstly, strings in type I theory are unoriented, so there is only one degreeof freedom asso
iated with ea
h ta
hyon �eld. Thus ta
hyon �elds be
omereal, and parts of M matrix (35) whi
h 
orrespond to ta
hyons should besymmetri
. Se
ondly, gauge groups asso
iated with sta
ks of D-brans aredi�erent than U(n). For a sta
k of n � 2 D1-branes � in whi
h 
ase we areinterested in � this group is SO(n). This means that in (35) those part ofM matrix whi
h 
orrespond to gauge �elds should be antisymmetri
.There is one more subtlety asso
iated with (36). Coe�
ients M I1:::Ik
orrespond to either gauge or ta
hyon �elds, and as su
h should be bosoni
.As the whole expression should be a 
-number, it implies that 
oe�
ients
orresponding to ta
hyons and gauge �elds should be those for whi
h kis respe
tively odd and even (be
ause of superderivative in a gauge �eldintera
tion). This is a nontrivial 
onstraint whi
h will have to be taken 
areof later. As we shall see, this will also lead to pe
uliar properties of boundaryfermions in a system with ta
hyon �elds.3. Two brane�antibrane pairs in type I theory3.1. PreliminariesThe analysis of the 
on�guration of D-branes mentioned in the introdu
-tion will now be presented. That is, I 
onsider a sta
k of two D1-branes andtwo anti-D1-branes of type I theory. These 
orrespond to m = 2 introdu
edat the end of Se
tion 2.3.Even though the main task in this paper is to �nd a ta
hyon potential,for whi
h it su�
es to 
onsider 
onstant ta
hyon �elds in the system, fora while I 
onsider more general 
on�guration. Generally � as mentionedin Se
tion 2.4 � there 
ould appear two SO(2) gauge �elds A+, A� inour system, asso
iated respe
tively with two branes and two antibranes.
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hyon Potential in Boundary String Field Theory : : : 4175One would also expe
t four real ta
hyon �elds asso
iated with ea
h brane�antibrane pair in the system. Denoting D-branes by numbers 1 and 2, andanti-D-branes by 3 and 4, in an obvious way ta
hyons 
an be named as T13,T14, T23, T24. These 
onventions are s
hemati
ally presented in �gure 1.
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Fig. 1. Two type I D1-D1 pairs.The partition sum (25) should now be found, whi
h a

ording to the
onje
ture (5), would then be identi�ed with an e�e
tive a
tion for spa
etime�elds. Three ingredients of (25) are already given, i.e. (15), (19), (24). Thefourth one is a boundary a
tion (36). Its main ingredient is M matrix(35), whi
h should have properties des
ribed in Se
tion 2.4. In parti
ular,an appropriate representation of Cli�ord algebra should be found, for whi
hgauge and ta
hyon �elds would have 
orre
t statisti
s. Su
h a representationis given expli
itly in the appendix.De
omposition of gauge �elds under the parti
ular representation givenin the appendix is the followingA� = � A+� �2 A�� �2 � = 12A1;�
13 + 12A2;�
24; (37)where �2 is a Pauli matrix and the newly introdu
ed 
oe�
ients are� A1;� = i(A�� +A+� )A2;� = i(A�� �A+� ) (38)whi
h 
an be identi�ed with 
oe�
ients in (35) via� M13 = iA1;�DX�M24 = iA2;�DX� (39)



4176 P. SuªkowskiTa
hyons are de
omposed asp�0 T = p�0 2664 T13 T14T23 T24T13 T23T14 T24 3775= 12M1
1 + 12M134
134 + 12M3
3 + 12M123
123 ; (40)what leads to 8>><>>: M1 = (T14 + T23)p�0 ;M134 = i(T23 � T14)p�0 ;M3 = (T13 � T24)p�0 ;M123 = �i(T13 + T24)p�0 : (41)Thus, in our representation the gauge and ta
hyon �elds indeed have the
orre
t statisti
s. Above results 
ombine to the intera
tion matrix (34)M(X) = iA�DX� +p�0T : (42)3.2. Cal
ulation of the four-ta
hyon potentialTo �nd the ta
hyon potential, it su�
es to 
onsider vanishing gauge�elds, A�� = 0, and 
onstant ta
hyon �elds. Then the only non-zero 
ompo-nents MI1:::Ik are those given in (41), whi
h are 
onstant. Integrating out
oordinate � in (36) under these assumptions leads to the following boundarya
tionSbnd = �Z d' � 14 _�I�I + 14FIFI + 12MIFI + 14MIJKFI�J�K � ; (43)where auxiliary �elds FI are superpartners of �I , a

ording to (29). The�elds FI 
an be integrated out using their equations of motion, whi
h areFI = �MI � 12MIJK�J�K : (44)It is tempting to insert this ba
k into (43). However, one should now beparti
ularly 
areful. In fa
t there is no obvious way how to treat produ
ts of�I in the same point ', whi
h o

ur in the boundary a
tion. On the 
lassi
allevel, one would think of �elds �I as mutually 
ommuting. In fa
t this is howthey e�e
tively behave when 
onsidered in (43), be
ause they are 
ontra
tedwith antisymmetri
 obje
ts MIJK . Nonetheless, as shown in [9℄, there may
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ontributions from 
ontra
tions in produ
ts of �I , afterwe insert (44) ba
k to (43). The most general form of su
h 
ontra
tions ish�I(') �J (')i = �ÆIJ ; (45)with a 
onstant fa
tor �. In [9℄ it was shown, that for a boundary a
tionwith gauge �elds only � what in our 
ase would 
orrespond to non-zero�elds in (39) and vanishing those in (41) � boundary fermions �I haveanti
ommuting properties of gamma matri
es, what is equivalent to � = 1.We shall see that in our 
ase su
h a value of � would lead to an unsatisfa
toryresult, and 
ertain symmetries require � to take another value. Thus, letus now just pro
eed in the most general setting. Inserting (44) into (43),both of these understood as normal ordered expressions, and performing
ontra
tions a

ording to (45), leads to a renormalized produ
t of operators: �M�N :: �J�K : = : �M�N�J�K :+�� : �N�J : ÆMK+ : �M�K : ÆNJ� : �N�K : ÆMJ� : �M�J : ÆNK�+�2�ÆNJÆMK � ÆMJÆNK�; (46)where all �'s under normal-ordering symbol :: mutually anti
ommute. In
onsequen
e, the following form of the boundary a
tion emergesSbnd = �14 Z d' h _�I�I�MIMI�MIMIJK�J�K+ 12�2MIJKMIJK i: (47)In our parti
ular situation, when the only non-zero �elds are those in (41),the 
omponent form of this a
tion isSbnd = �Z d'h 14 _�I�I � 14�M21 +M23 �+ 34�2�M2123 +M2134 ��12�M1M134�3�4 +M134M3�4�1+M1M123�2�3 +M3M123�1�2 � i: (48)The last step leading to the partition fun
tion (25) is to integrate out�elds �I . This 
an be done with a help of a quantum me
hani
al formulaZ D� e�S = Tr eH ; (49)with H a Hamiltonian obtained from the a
tion by a Legendre transforma-tion. We should note that in this expression all produ
ts of �I are multiplied



4178 P. Suªkowskiby an antisymmetri
 quantity, thus on
e again they 
an be dealt with as
lassi
al anti
ommuting �elds. Thus, to 
ompute tra
e, it su�
es simply to
hange �I to a gamma matrix 
I , and perform an usual tra
e. In order todo that, it is 
onvenient to write the Hamiltonian asH = h � 14�4 +H
 ; (50)where h = ��2 �M21 +M23 �+ 3�2 �2�M2123 +M2134 � (51)H
 = ���M1M134
3
4 +M134M3
4
1 +M1M123
2
3 +M3M123
1
2 �:(52)Then the partition fun
tion takes the formZ(T ) = N eh � Tr eH
 ; (53)with N a normalization fa
tor. To 
al
ulate the last tra
e we note thatH
 = �� � U W � ; (54)where U = � i(M1M134 +M3M123) i(M1M123 �M134M3)i(M1M123 �M134M3) �i(M1M134 +M3M123) � ; (55)W = � i(M3M123 �M1M134) i(M134M3 +M1M123)i(M134M3 +M1M123) i(M1M134 �M3M123) � : (56)Thus we obtain Tr eH
 = Tr e�� U + Tr e��W : (57)To �nd ea
h of these tra
es we take advantage of the formulaTr exp � p qq �p � = 2 
oshpp2 + q2: (58)It then turns out somewhat surprisingly that both tra
es on the right sideof (57) are equal Tr e�� U = Tr e��W = 2 
osh ���0pw �; (59)where, taking (41) into a

ount,w := ��M21 +M23 ��M2123 +M2134 ��02= �� T 213 � T 214 + T 223 + T 224 �2 + 4�T13T23 + T14T24 �2= �� T 213 + T 214 � T 223 + T 224 �2 + 4�T13T14 + T23T24 �2= �T 213 + T 214 + T 223 + T 224 �2 � 4�T13T24 � T14T23 �2 : (60)
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hyon Potential in Boundary String Field Theory : : : 4179To sum up, the partition fun
tion (53) for 
onstant ta
hyon �elds shouldbe interpreted as a ta
hyon e�e
tive potential a

ording to (5). Moreover,the normalization fa
tor N should be su
h, that for vanishing ta
hyon �eldsthe value of the e�e
tive potential is equal to the sum of tensions TD1 of fourbranes in the system. Eventually we obtain the ta
hyon e�e
tive potentialV(T13; T14; T23; T24) = 4TD1 eh 
osh���0pw �; (61)with w � 0, as implied by (60).The e�e
tive ta
hyoni
 potential (61) still depends, through h, on thefa
tor � 
oming from 
ontra
tions of boundary fermions. To determine itsvalue we rewrite (51), using (41), ash = ��0�2 h �T 213+T 214+T 223+T 224 �(1+3�2)+2�T14T23�T13T24 �(1�3�2) i:(62)We should note now, that there are two pairs of separated ta
hyons in oursystem, T13 together with T24, and T14 with T23. There should be no dis-tin
tion between these two pairs; this is equivalent to the statement, thatour �nal e�e
tive potential should not 
hange its form, if we rename branesor antibranes in the system a

ording to 1$ 2 or 3$ 4. But the expression�T14T23�T13T24 � in (62) is not invariant under ea
h of these two renamings� it 
hanges its sign! The only way to keep the (62) invariant is thus to set�2 = 13 : (63)It should be noted that this result is non-standard, and rather di�
ultto foresee on the level of (45). In fa
t this is a 
onsequen
e of the parti
-ular stru
ture of the boundary a
tion (36), that was stressed at the end ofSe
tion 2.4. As mentioned below (45), in [9℄ a value � = 1 was obtainedfor a system with gauge �elds only. It then led to a gauge-invariant 
om-mutator term after integrating fermions out. The di�eren
e between thepresent 
ase is in the statisti
s: gauge �elds 
orrespond to anti
ommuting
omponent �elds MIi:::Ik with k even, as in (39), and these are multipliedby an even number of boundary fermions in the a
tion (36). On the otherhand, for ta
hyons these are 
ommuting 
omponents MI1:::Ik emerging withk odd (41) � and in su
h a 
ase the analysis takes another route, leadingto (63).As the dust has settled, we 
an write down the �nal form of the ta
hyonpotential in a system of two brane�antibrane pairs in type I theory. Insertingthe result (63) into (61), we �ndV(T ) = 4TD1 e��0��T 213+T 214+T 223+T 224� 
osh(�0�pw); (64)



4180 P. Suªkowskiwhere w is given by (60),w = �T 213 + T 214 + T 223 + T 224 �2 � 4�T13T24 � T14T23 �2: (65)The method we followed, being rigorous and exa
t on one hand, on theother leads through rather lengthy 
al
ulations to the result (64) whi
h isquite involved. A 
autious look on the formula (50) reveals that this is equalto �2�0�T 2 (after de
omposition in the basis of Cli�ord algebra) plus someadditional terms, whi
h vanish pre
isely when �2 = 13 . Thus a 
on
ise formof writing (64) is just V(T ) = N Tr e�2�0�T 2 ; (66)what agrees with the formula for a ta
hyon potential with nontrivial Chan-Paton fa
tors 
onje
tured in [7℄. It is interesting to re
over that an emer-gen
e of the form (66) is 
onsistent with the 
onstraint (63).3.3. Analysis of V(T )Analysis of the result (64) reveals it has the properties one would intu-itively expe
t.First of all, as a spe
ial 
ase it may be assumed only one of the �elds� say T13 � is a varying variable, and all the others are kept �xed T14 =T23 = T24 = 0. Then (61) redu
es toV(T13) = 2TD1 + 2TD1e�2��0T 213 : (67)The tensions of branes D2 and �D4 are represented by the 
onstant 2TD1,and the se
ond term is a well known formula for a potential of a singleta
hyon [8℄. After the ta
hyon 
ondenses, T13 ! 1, branes D1 and �D3disappear from the system, so that the energy after 
ondensation is equaljust 2TD1.Another spe
ial 
ase are separated ta
hyons, whi
h we mentioned alreadybefore. First we 
onsider a 
on�guration with only one pair of separatedta
hyons present, whi
h 
orresponds to some 
onstraints setting T14 = T23 =0, as in the �gure 2. Of 
ourse, it would be exa
tly equivalent to 
onsideranother pair of separated ta
hyons, with T13 and T24 held �xed.In this situation w = (T 213 � T 224)2; (68)what yields V(T13; T24) = 2TD1 � e�2��0T 213 + e�2��0T 224 �: (69)
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Fig. 2. Separated ta
hyons.To rea
h minimum of this potential, whi
h equals to 0, two �elds must simul-taneously 
ondense and be
ome in�nite, what 
orresponds to annihilationof all four branes.Also a little more general statement is true: if two separated ta
hyons �say T13 and T24 � 
ondense, and two others (in this 
ase T14 and T23) arekept �nite, the energy of the system after 
ondensation will also be equalto 0. Thus a su�
ient 
ondition for an annihilation of all four branes is
ondensation of any two separated ta
hyons in the system.To prove this statement we 
an writeV = 2TD1e��0�(T 214+T 223) � � e��0�(T 213+T 224+pw) + e��0�(T 213+T 224�pw) �: (70)The �rst term in the bra
ket de
reases to 0 as T13; T24 ! 1. The se
ondterm would also vanish in this limit providingT 213 + T 224 �pw > 0 : (71)This is indeed true, as the above expression after is equivalent to the follow-ing one, 4 > (T 214 � T 223)2T 213T 224 + 8T14T23T13T24 + 2(T 214 + T 223)� 1T 213 + 1T 224 � ; (72)the right hand side of whi
h expli
itly vanishes in the limit T13; T24 !1.4. Con
lusionsIn this paper a partition fun
tion for 
onstant ta
hyon �elds T in asystem of two D1-D1 pairs has been found, along the lines of BoundaryString Field Theory. A

ording to the 
onje
ture (4), it is identi�ed withan e�e
tive potential for ta
hyon �elds, as stated in (61). Even though itsform is quite involved (64), it turns out it is just equal to exp(�2�0�T 2),
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tor. This form is 
onsistent with other 
onje
turesin literature, thus 
on�rming both validity of those 
onje
tures, as well asparti
ular s
heme of BSFT we have followed.Meanwhile, an interesting problem 
on
erning boundary fermions emer-ged. It turns out, that to obtain a ta
hyon potential with a 
ertain symmetry
on
erning separated ta
hyons, a parti
ular pres
ription for operator renor-malization of the form h�I(') �J (')i = 13ÆIJ (73)should be applied. This is a non-standard pres
ription, and in the 
ase being
onsidered results from a bosoni
 statisti
s of ta
hyons �elds appearing inthe boundary a
tion (43). It should be 
ontrasted with an analogous formuladerived in literature for gauge �elds, in whi
h 
ase the proportionality fa
torin the above formula would be just 1.Basi
 features of the potential found has also been presented. It hasbeen shown that a
hieving its minima in a pro
ess of ta
hyon 
ondensation
orresponds to annihilation of all the branes in the system. Moreover, it hasbeen 
on�rmed that 
ondensation of only one pair of separated ta
hyonsalso leads to annihilation of all the branes.I would like to thank Ja
ek Paweª
zyk for many dis
ussions.AppendixSO(4) Cli�ord algebraIn this appendix a 
ertain representation of SO(4) Cli�ord algebra ispresented, whi
h is a basis of the 
al
ulations presented in Se
tion 3.SO(4) Dira
 matri
es are of the size 4 � 4, and anti
ommute a

ordingto f 
I ; 
J g = 2 ÆIJ for I; J = 1; : : : ; 4 :Denoting ordinary Pauli matri
es by �1;2;3 , and two-dimensional identitymatrix by I2�2, our 
hoi
e of Dira
 matri
es is
1 = �1 
 �1 
2 = �1 
 �2
3 = �1 
 �3 
4 = �2 
 I2�2 :It follows that the se
ond rank elements 
ij = 
[i
j℄ = 12� 
i
j�
j
i � = 
i
jare 
12 = i I2�2
 �3 
13 = �i I2�2
 �2
14 = i �3 
 �1 
23 = i I2�2
 �1
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24 = i �3 
 �2 
34 = i �3 
 �3 :The third rank elements 
ijk = 
i
j
k:
123 = i �1 
 I2�2 
124 = i �2 
 �3
134 = �i �2 
 �2 
234 = i �2 
 �1 :The last two elements of Cli�ord algebra are 
1234 = 
1
2
3
4 = ��3
I2�2and identity matrix I4�4. REFERENCES[1℄ J. Pol
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