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A calculation of a partition function Z in a system of two coincident
D1-D1 pairs of type I superstring theory is presented. According to the
well known conjecture, this partition function is identified with a tachyon
potential in a case of constant tachyon fields. Properties of this potential are
discussed. On the way, a peculiar features of boundary fermions emerge. To
solve the problems ensuing, a non-standard way of operator renormalization
is required.
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1. Introduction

There was a sudden twist in a development of String Field Theory ten
years ago, as its Boundary — or Background Independent — version, the
so called BSFT, was discovered by Witten [5,6]. Since that time quite an
achievement in this field has been noted [11]. In particular, within BSFT
framework it turned out possible to find an exact form of a tachyon po-
tential, with its certain features conjectured much earlier by Sen [12]. The
knowledge of this potential undoubtedly sheds much light upon the role and
nature of tachyons, which are rather infamous creatures in string theory. Be-
cause tachyons may arise as states of open strings, which appear naturally
stretched between D-branes in complex D-brane configurations, it follows
that interactions of D-branes may be described as processes accompanying
certain behavior of tachyons. These interactions may be very dramatic in
nature, including creation and annihilation of branes of various dimensions,
and are associated with such a non-perturbative phenomenon as rolling down
tachyon potential. Among the others, this explains how a true vacuum in
string theory could be found: when a perturbative vacuum is unstable due
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to presence of tachyon states (arising from strings stretched between various
D-branes) and corresponds to a maximum of tachyon potential, these states
disappear from the spectrum as a consequence of a condensation, which
leads to another vacuum, associated with minimum of the potential (with
D-branes annihilated). In this paper an exact form of a tachyon potential
in a certain configuration of D-branes is found, which also admits such an
interpretation.

Tachyon potential mentioned above is supposed to be a special case of a
low energy effective action S for the lightest string excitations. A search for
such an action, describing those lightest modes in terms of spacetime fields,
is a domain of String Field Theory. In a bosonic version of BSFT, with a
help of Batalin—Vilkovisky formalism, it was shown [5| that the spacetime
action is closely related to a disk partition function Z(u),

S = (ﬁia(zi + 1) Z(u), (1)

where the partition function is weighted by a worldsheet action consisting
of a bulk conformal Polyakov part and not-necessarily conformal boundary
piece, parametrized by couplings u' of open string fields O;,

S = Spulk + Sbnd » Spnd = fdw u'O;, (2)

and ' are worldsheet beta functions governing the flow of couplings u’. In
particular, §° vanish in fixed points of boundary theory, which correspond
to such a value of u’ for which Spnq is conformally invariant. In such a case
the spacetime action S coincides with the partition sum Z.

Finding an analogous derivation for a superstring case turned out non-
trivial and by today is not known. Even though, in view of explicit results for
effective actions obtained for gauge fields in superstring theory [2—4], as well
as some special features of supersymmetric framework, it was conjectured
in [7,10] that in superstring case a proper connection between spacetime
action and partition sum is even simpler than in bosonic theory, and reads

S=2Zu). (3)

Moreover, the conjecture states that this relation is true even off-shell, that
is for such values of u’ for which Sppq does not exhibit conformal symmetry.

In general the worldsheet action (2) may depend on spacetime coordi-
nates X* (and ¢* in superstring case) through the operators O;. A tachyon
potential can be obtained by setting all u* to zero except those correspond-
ing to constant spacetime tachyon fields. Thus, for tachyons in superstring
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framework, a relation (3) takes the form
V() = Z(Ty), (4)

where T; represent constant in spacetime tachyon fields.

As mentioned above, in this paper a partition function for a certain
configuration of D-branes is found. This configuration is a coincident system
of two D1-branes and two anti-D1-branes of type I superstring theory, in
which four different tachyon fields may arise, associated with all possible
brane-antibrane pairs [13]. In the course of reasoning, some peculiar features
of the so-called boundary fermions will emerge, which will lead to a very
special prescription for operator renormalization.

The paper is organized as follows. A framework for calculations, based
on the work of Kraus and Larsen [8], is reviewed in Section 2. In Section 3
the computation and analysis of a partition sum in a system of two brane—
antibrane pairs of type I theory is presented. Section 4 contains summary
and conclusions.

2. Boundary String Field Theory — BSFT

As explained in the introduction, to compute spacetime action for tach-
yon field BSFT formalism is used. It’s based upon the assumption of equality
of the spacetime action for background fields and the partition function
associated with them,

ST, A,,..]=Z[T,A,,..]. (5)

Generally in open string theory, apart from tachyon field T'(X), also
gauge fields A, (X) and possibly some other excitations may be considered
in the partition function. In this section only 7" and A, are taken into
account, but as the main purpose of this work is to find tachyon potential,
later on constant values of tachyon fields and vanishing gauge fields will be
assumed.

In this section firstly the conventions of [8] are reviewed. Then I explain
how to modify them in order to consider type I strings.

2.1. Bosonic string partition function

At first let’s focus on a bosonic string partition function. The type II
superstring partition function will be given as a generalization of this case.
Bosonic string Fuclidean partition function is

7 — / DX e Sbulk o= Sbnd (6)
Disk
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A domain of integration is a unit disk, parametrized by radial coordinates
pel0,1], ¢ €[0,2r], (7)
and equipped with a flat metric

gabz[l pQ]. ®)

Worldsheet action
S = Sphuik + Sbnd 9)

consists of a bulk and boundary parts. The bulk action is conformally in-
variant Polyakov action, which in coordinates (7) takes the form

1 _
Shulk = Tnod / pdpdw(apX“ 0p Xy + p~2 0, X1 0, X,, ) (10)
Disk

Arbitrary boundary conditions are set in terms of Fourier modes,

XM(p=1,9) = X +1/ 5D (Xpe™ + X))
n=1

for which reality of X* implies X, = X* . In terms of these modes,
Polyakov action (10) takes the form

1 o
Soulk = 5 > nxt Xk (12)

n=1
The second ingredient of the worldsheet action (9) is a boundary term
Sbnd, which does not have to be conformally invariant. In case of a tachyon

field this is simply
27

Sbnd = St = /dSOT(X)a (13)
0
whereas for gauge field an appropriate gauge invariant term is
2w
Sond = Sa = —i/dcp A X, (14)
0

with a dot denoting differentiation with respect to ¢.
Fixing integration measure in (6) as

o
DX = H% (15)

T
n=1

specifies completely bosonic partition function.
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2.2. Type II superstring partition function

Polyakov action for a superstring reads

1 p—
Sp = Arnd/ /dT dU(aaXu 0o Xy — 0" p0, Wu). (16)

Because we are interested in Neveu—Schwartz sector with antiperiodic bound-
ary conditions for 1#, in radial coordinates (7) we have

blo=10)= 3 (pre+yl o). (17)
r=1/2

Boundary functional for fields 1" has been calculated e.g. in [8,14], and is
equal to

@y = e bl (18)
where -~ -~
1 .
Sbulk = 5 z:lnX“nX# +1 21;2 Pl (19)
n= r—=

Supersymmetric formalism allows to write boundary interactions in su-
persymmetricaly invariant way. To do this we expand a boundary of a disk
to a superspace with coordinates ¢ = (¢, 0), 6 being anticommuting. Fields
on the boundary are now promoted to superfields,

X" = XHF 4ol (20)
and derivative along the boundary becomes super as well,
D=0y +60,. (21)

Supersymmetrized tachyon and gauge fields can be set equal to

T(X) =T(X) + 9,T(X) 0V pH (22)
Ap(X) = Au(X) - H@Fﬂuw” : (23)

in the second case F,, = 0,4, — 0,4, for an Abelian gauge group. From
these fields invariant boundary terms Spnq can be constructed as integrals
along the boundary with respect to de.

Choosing fermionic integration measure as

Dy =[] dypdy_,, (24)

r=1/2
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and collecting the results (15), (19), a superstring partition function can
eventually be written down

Z = / DXDy) - e Sbulk g Sbnd, (25)

2.3. Boundary fermions

These are non-Abelian gauge fields which appear on stacks of D-branes
in string theory. They are states of open strings connecting those branes, and
as such are associated with boundaries of these strings’ worldsheets. Calcu-
lating partition function in a superstring theory requires taking care of a su-
persymmetric boundary ordering. This is not an easy task, but fortunately
there is an equivalent method of finding partition function without doing
path-ordered integrals — it suffices to introduce boundary fermions. More-
over this enables one to consider simultaneously gauge fields and tachyons,
and even tachyons alone, what is of particular interest for us. These facts
simplify calculations, but the price is that it is possible to analyze only stacks
consisting precisely of 2" branes [8§].

Let us demonstrate first how boundary fermions arise in the case of 2"
D-branes of type II theory. There are U(2") gauge fields A, living in such
a configuration. These fields are Lie-algebra valued. It can be shown that
each element of u(2™) algebra is a linear combination of elements of a basis
of Clifford algebra of the group SO(2n). Clifford algebra in generated by
Dirac matrices y; which obey

{1,771} =204 for I,J=1,...,2m. (26)

Clifford algebra consists of an identity matrix, Dirac matrices vy, and ele-
ments of the form

1 sgn(o
Thedy 2= 79 Z(_l) ol )710(1) V- (27)

Thus it follows that for an arbitrary U(2") gauge field we can write

2n
A =7 AlDgh (28)
k=0

The boundary fermions are boundary degrees of freedom which are intro-
duced in (28) instead of Dirac matrices. In accordance with supersymmetric
formalism these boundary superfields are defined as

I'y:=n;+60Fy, for I=1,...,2m, (29)
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with n; anticommuting and auxiliary fields Fr commuting. Canonical quan-
tization of the following action

S]‘ = —/d@d@iF[DI’], (30)

leads then to the same commutation relations for n; as for Dirac matrices,

{nr,nr} =261 (31)

Eventually, we treat gauge fields as

2n
Ay = Al Ty, (32)
k=0

The main conclusion one can draw from the above is that when calcu-
lating partition function for gauge fields, supersymmetric path ordering on
a boundary of a disk is equivalent to functional integration weighted by the
exponent of

2m

1
—SA:/d(de[ZI'IDI’I—HZAQ’“"I’“ ry---Iy,| (33)
k=0

In this setup generalization to tachyon fields is particularly simple. Tach-
yons in superstrings arise on a brane-antibrane pair. In a system of 2™~!
D-branes and the same number of antibranes, one can find two U(2™ 1)
gauge fields A;; and A, associated respectively with branes or antibranes,
and a bunch of tachyon fields coming from strings stretched between all
possible brane—antibrane pairs. Type II superstrings are oriented, so in fact
there are two degrees of freedom associated with each brane—antibrane pair,
and tachyons should be treated as complex fields. All boundary interactions
of these fields can be described by one 2™ x 2™ matrix

iAT(X)DXH* Vao!T
M(X) = [ MS/O%T iA, (X)DX" (34)

First 27! rows and columns of M are associated with D-branes in our
system; the other correspond to antibranes.
Just as for pure gauge fields the following decomposition can be carried

over
2m

1
M® =3 o Mi gl (35)
k=0
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and consequently boundary fermions I'; can be introduced. Finally the
following form of the boundary action emerges

I’IDF]—HZ Ly fepp ... (36)

k

Sbnd = —/d(pd@

2k!

Our purpose in what follows will be to evaluate the partition function
(25) with the above Spnq for a particular system of D-branes.

2.4. BSFT for type I strings

In the previous subsection the case of type II superstrings has been pre-
sented. There is of course a crucial difference between type I theory [1].
Firstly, strings in type I theory are unoriented, so there is only one degree
of freedom associated with each tachyon field. Thus tachyon fields become
real, and parts of M matrix (35) which correspond to tachyons should be
symmetric. Secondly, gauge groups associated with stacks of D-brans are
different than U(n). For a stack of n > 2 D1-branes — in which case we are
interested in — this group is SO(n). This means that in (35) those part of
M matrix which correspond to gauge fields should be antisymmetric.

There is one more subtlety associated with (36). Coefficients M7t
correspond to either gauge or tachyon fields, and as such should be bosonic.
As the whole expression should be a ¢-number, it implies that coefficients
corresponding to tachyons and gauge fields should be those for which k
is respectively odd and even (because of superderivative in a gauge field
interaction). This is a nontrivial constraint which will have to be taken care
of later. As we shall see, this will also lead to peculiar properties of boundary
fermions in a system with tachyon fields.

3. Two brane—antibrane pairs in type I theory

3.1. Preliminaries

The analysis of the configuration of D-branes mentioned in the introduc-
tion will now be presented. That is, I consider a stack of two D1-branes and
two anti-D1-branes of type I theory. These correspond to m = 2 introduced
at the end of Section 2.3.

Even though the main task in this paper is to find a tachyon potential,
for which it suffices to consider constant tachyon fields in the system, for
a while T consider more general configuration. Generally — as mentioned
in Section 2.4 — there could appear two SO(2) gauge fields AT, A~ in
our system, associated respectively with two branes and two antibranes.
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One would also expect four real tachyon fields associated with each brane—
antibrane pair in the system. Denoting D-branes by numbers 1 and 2, and
anti-D-branes by 3 and 4, in an obvious way tachyons can be named as T3,
T4, Tz, Toy. These conventions are schematically presented in figure 1.

Fig. 1. Two type I D1-D1 pairs.

The partition sum (25) should now be found, which according to the
conjecture (5), would then be identified with an effective action for spacetime
fields. Three ingredients of (25) are already given, i.e. (15), (19), (24). The
fourth one is a boundary action (36). Its main ingredient is M matrix
(35), which should have properties described in Section 2.4. In particular,
an appropriate representation of Clifford algebra should be found, for which
gauge and tachyon fields would have correct statistics. Such a representation
is given explicitly in the appendix.

Decomposition of gauge fields under the particular representation given
in the appendix is the following

- 1 1
‘AM — |: Au 092 A;O? :| = §A17u’)/13 + 51427“’}/24, (37)

where o9 is a Pauli matrix and the newly introduced coefficients are

Aoy = z(A; — AZ)

which can be identified with coefficients in (35) via
My =iA,, DX" (39)
My = iAs, DXV
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Tachyons are decomposed as

Tz T
T T
JAT = o 23 Ty
@ Y| T3 T
Ty Toy
1 1 1 1
= §M171 + §M134’7134 + §M3’Y3 + §M1237123 ; (40)

what leads to
My = (Ths + To3)V!
Mizy = i(Toz — Tia)Ve!
M; = (Ths — To) V!,
Moz = —i(Th3 + Tog) V!

Thus, in our representation the gauge and tachyon fields indeed have the
correct statistics. Above results combine to the interaction matrix (34)

(41)

M(X)=iA,DX" + Va'T. (42)

3.2. Calculation of the four-tachyon potential

To find the tachyon potential, it suffices to consider vanishing gauge
fields, Alf = 0, and constant tachyon fields. Then the only non-zero compo-
nents My, s, are those given in (41), which are constant. Integrating out
coordinate 0 in (36) under these assumptions leads to the following boundary
action

1. 1 1 1
Stnd = — /dso [me + ZFIFI + §MIFI + ZMIJKFIanK . (43)

where auxiliary fields Fj are superpartners of n, according to (29). The
fields F7 can be integrated out using their equations of motion, which are

1
Fr=-M;— §MIJK77J7]K- (44)

It is tempting to insert this back into (43). However, one should now be
particularly careful. In fact there is no obvious way how to treat products of
71 in the same point ¢, which occur in the boundary action. On the classical
level, one would think of fields n; as mutually commuting. In fact this is how
they effectively behave when considered in (43), because they are contracted
with antisymmetric objects M. Nonetheless, as shown in [9], there may
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appear additional contributions from contractions in products of 77, after
we insert (44) back to (43). The most general form of such contractions is

(n1(0) () = Adr., (45)

with a constant factor A. In [9] it was shown, that for a boundary action
with gauge fields only — what in our case would correspond to non-zero
fields in (39) and vanishing those in (41) — boundary fermions 7; have
anticommuting properties of gamma matrices, what is equivalent to A = 1.
We shall see that in our case such a value of A would lead to an unsatisfactory
result, and certain symmetries require A to take another value. Thus, let
us now just proceed in the most general setting. Inserting (44) into (43),
both of these understood as normal ordered expressions, and performing
contractions according to (45), leads to a renormalized product of operators

SNMIN S NJNK 2 = S NMTNTITK -

+>\( sNNT OMK+ MK 0N
— INNNK P OMI— I NMNT 6NK)
+X7 <5NJ5MK - 5MJ5NK), (46)

where all n’s under normal-ordering symbol :: mutually anticommute. In
consequence, the following form of the boundary action emerges

1 . 1
Spnd = —Z/dw [77]771_MIMI_MIMIJK"]J"]K‘FE)\QMIJKMIJK}- (47)

In our particular situation, when the only non-zero fields are those in (41),
the component form of this action is

1. 1 3
Sbnd = —/dw[zmm - Z(Mf + M3 )+ ZAQ(M1223 + M)
1
—3 ( My My3am3na + Misa Msnam
+M; Mya3nons + MsMiozmins ) ] : (48)

The last step leading to the partition function (25) is to integrate out
fields n7. This can be done with a help of a quantum mechanical formula

/Dne_s =TreH, (49)

with H a Hamiltonian obtained from the action by a Legendre transforma-
tion. We should note that in this expression all products of n; are multiplied



4178 P. SULKOWSKI

by an antisymmetric quantity, thus once again they can be dealt with as
classical anticommuting fields. Thus, to compute trace, it suffices simply to
change 77 to a gamma matrix vy, and perform an usual trace. In order to
do that, it is convenient to write the Hamiltonian as

H=~h- 14><4+H7, (50)
where
T 2 2 37T 9 2 2
h:_E(Ml +M3)+7>‘ (Mips + MP3y) (51)
H., = —( My Migaysys + Misa Msyayr + My Migzyays + Mz Miszyiy2 ).
(52)
Then the partition function takes the form
Z(T)=Ne" - Tref, (53)
with A a normalization factor. To calculate the last trace we note that
U
o= U] (54)
where
U~ | {MiMigq + M3Mioz)  i(Mi Mgz — Miz4M3) (55)
i(MyMigg — Mi3aMs)  —i(MyMizs + M3Mia3) |’
W= i(M3Mgs — My Misg) i(Miza Mz + My Mia3) (56)
i(MygaMs + My Myoz)  i(MyMizg — M3Mia3) |-
Thus we obtain
Trefr =Tre ™V 4+ Tre ™W. (57)
To find each of these traces we take advantage of the formula
Tr exp [ Z _qp ] = 2coshy/p? + ¢2. (58)

It then turns out somewhat surprisingly that both traces on the right side
of (57) are equal

Tre "V =Tre ™" = 2cosh (7o’ Vv ), (59)
where, taking (41) into account,
( My + Misy)
a/Q
= (—TH-TH+Ts+Ts, )2 + 4( T13To3 + T1aTos )2
= (—TH+TH -Ts+Ts, )2 + 4( T13T1a + To3Tos )2
= (TH+TH + T +T5, )2 — 4(T13Tos — T14To3 )2 . (60)

w o= —(Mlg—i-Mg)
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To sum up, the partition function (53) for constant tachyon fields should
be interpreted as a tachyon effective potential according to (5). Moreover,
the normalization factor N should be such, that for vanishing tachyon fields
the value of the effective potential is equal to the sum of tensions Ty of four
branes in the system. Eventually we obtain the tachyon effective potential

V(T13, T14, Tog, Tos) = 4Tp1 " cosh (o' v ), (61)
with w > 0, as implied by (60).

The effective tachyonic potential (61) still depends, through h, on the
factor A coming from contractions of boundary fermions. To determine its
value we rewrite (51), using (41), as

/!

h = —g [ (Th +T124+T223+T224)(1+3>\2)+2(T14T23—T13T24)(1—3>\2)}-

(62)
We should note now, that there are two pairs of separated tachyons in our
system, T3 together with T54, and 174 with T53. There should be no dis-
tinction between these two pairs; this is equivalent to the statement, that
our final effective potential should not change its form, if we rename branes
or antibranes in the system according to 1 <+ 2 or 3 <> 4. But the expression
(T14T23 —T13T24) in (62) is not invariant under each of these two renamings
— it changes its sign! The only way to keep the (62) invariant is thus to set

2
A= 3 (63)
It should be noted that this result is non-standard, and rather difficult
to foresee on the level of (45). In fact this is a consequence of the partic-
ular structure of the boundary action (36), that was stressed at the end of
Section 2.4. As mentioned below (45), in [9] a value A = 1 was obtained
for a system with gauge fields only. It then led to a gauge-invariant com-
mutator term after integrating fermions out. The difference between the
present case is in the statistics: gauge fields correspond to anticommuting
component fields My, ;, with £ even, as in (39), and these are multiplied
by an even number of boundary fermions in the action (36). On the other
hand, for tachyons these are commuting components M7, .7, emerging with
k odd (41) — and in such a case the analysis takes another route, leading
to (63).
As the dust has settled, we can write down the final form of the tachyon
potential in a system of two brane—antibrane pairs in type I theory. Inserting
the result (63) into (61), we find

V(T) = 4Tpy e (TA+THATEATE) ook (ol /). (64)



4180 P. SULKOWSKI
where w is given by (60),
2 2
w= (TH+ T +Toy + T3 ) —4(T13Tos — T1aTos )" (65)

The method we followed, being rigorous and exact on one hand, on the
other leads through rather lengthy calculations to the result (64) which is
quite involved. A cautious look on the formula (50) reveals that this is equal
to —2a/7T? (after decomposition in the basis of Clifford algebra) plus some
additional terms, which vanish precisely when \? = % Thus a concise form
of writing (64) is just

V(T) = N Tre 2077, (66)

what agrees with the formula for a tachyon potential with nontrivial Chan-
Paton factors conjectured in |7|. It is interesting to recover that an emer-
gence of the form (66) is consistent with the constraint (63).

3.3. Analysis of V(T)

Analysis of the result (64) reveals it has the properties one would intu-
itively expect.

First of all, as a special case it may be assumed only one of the fields
— say 113 — is a varying variable, and all the others are kept fixed T14 =
Ty3 = Toy = 0. Then (61) reduces to

V(Tlg) =2Tp1 + 2TD16_2FQIT123. (67)

The tensions of branes Dy and D, are represented by the constant 27,
and the second term is a well known formula for a potential of a single
tachyon [8]. After the tachyon condenses, Ti3 — oo, branes D; and Ds
disappear from the system, so that the energy after condensation is equal
just 2Tp1.

Another special case are separated tachyons, which we mentioned already
before. First we consider a configuration with only one pair of separated
tachyons present, which corresponds to some constraints setting 114 = Th3 =
0, as in the figure 2. Of course, it would be exactly equivalent to consider
another pair of separated tachyons, with Ty3 and T54 held fixed.

In this situation

w = (T123 - T224)2, (68)

what yields

V(Tlg, T24) =2Tp (6_27TO/T123 + 6_27T0/T224 ) (69)
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Dl DZ
Tis To
D, D,

Fig. 2. Separated tachyons.

To reach minimum of this potential, which equals to 0, two fields must simul-
taneously condense and become infinite, what corresponds to annihilation
of all four branes.

Also a little more general statement is true: if two separated tachyons —
say T13 and Tyy — condense, and two others (in this case T14 and Th3) are
kept finite, the energy of the system after condensation will also be equal
to 0. Thus a sufficient condition for an annihilation of all four branes is
condensation of any two separated tachyons in the system.

To prove this statement we can write

V= 2TDlefo/7r(T124+T223) . (efa’ﬂ(T123+T224+\/17) + efo/ﬂ(T123+T2247\/E) ) (70)

The first term in the bracket decreases to 0 as Ti3, T4 — oo. The second
term would also vanish in this limit providing

TE 4+ T — Vw > 0. (71)

This is indeed true, as the above expression after is equivalent to the follow-
ing one,

(T — Ty)?  8TiaThs

4 >
TETZ, T13T54

1 1
24+ T3 (7 + 7 ), (72)
T T3

the right hand side of which explicitly vanishes in the limit Ty3,T54 — oco.

4. Conclusions

In this paper a partition function for constant tachyon fields 7 in a
system of two D1-D1 pairs has been found, along the lines of Boundary
String Field Theory. According to the conjecture (4), it is identified with
an effective potential for tachyon fields, as stated in (61). Even though its
form is quite involved (64), it turns out it is just equal to exp(—2a/wT?2),
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up to a normalization factor. This form is consistent with other conjectures
in literature, thus confirming both validity of those conjectures, as well as
particular scheme of BSFT we have followed.

Meanwhile, an interesting problem concerning boundary fermions emer-
ged. It turns out, that to obtain a tachyon potential with a certain symmetry
concerning separated tachyons, a particular prescription for operator renor-
malization of the form

(nr(e) () = %51J (73)

should be applied. This is a non-standard prescription, and in the case being
considered results from a bosonic statistics of tachyons fields appearing in
the boundary action (43). It should be contrasted with an analogous formula
derived in literature for gauge fields, in which case the proportionality factor
in the above formula would be just 1.

Basic features of the potential found has also been presented. It has
been shown that achieving its minima in a process of tachyon condensation
corresponds to annihilation of all the branes in the system. Moreover, it has
been confirmed that condensation of only one pair of separated tachyons
also leads to annihilation of all the branes.

I would like to thank Jacek Pawelczyk for many discussions.

Appendix
SO(4) Clifford algebra

In this appendix a certain representation of SO(4) Clifford algebra is
presented, which is a basis of the calculations presented in Section 3.
SO(4) Dirac matrices are of the size 4 x 4, and anticommute according
to
{’)/[, ’YJ}:25]J for I,J:L...,4.

Denoting ordinary Pauli matrices by o123, and two-dimensional identity
matrix by Ioy9, our choice of Dirac matrices is

Y1 =01 ® 0 Yo =01 ® 02

v3 =01 ® 03 Ya = 02 @ loxo.

It follows that the second rank elements v;; = ;7)) = %('yﬂj —Y§% ) = Y5
are

Yi2 = 1oy ® 03 Y13 = —illaxo @ 09

Yia =103 ® 071 Y23 = 1 lox2 ® 01
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Yoa4 = 103 ® 03 V34 =103 ® 03.

The third rank elements v, = ¥;7y;Vk:
Y23 =101 ®laxs  mu=i02®03

Vi34 = —1 09 ® 02 Vo34 =102 ® 07 .

The last two elements of Clifford algebra are yi234 = v1727374 = —03 ® laxo
and identity matrix I4yx4.
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