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INVERSION OF THE PHOTON NUMBER INTEGRALL. StodolskyMax-Plank-Institut für Physik (Werner-Heisenberg-Institut)Föhringer Ring 6, 80805 Münhen, Germanye-mail: les�mppmu.mpg.de(Reeived May 29, 2003)We onsider the behavior of the photon number integral under inver-sion, onentrating on Eulidean spae. The disussion may be framedin terms of an additive di�erential I whih arises under inversions. Thequantity R R I is an interesting integral invariant whose value haraterizesdi�erent on�gurations under inversion.PACS numbers: 11.15.K, 13.40.�f1. IntrodutionThe �photon number integral� [1℄, alled n, is a onstrution whereby onean de�ne the number of photons radiated by a harged partile followinga presribed trajetory in spae-time (Minkowski spae). For n to be �nitethe trajetory must obey two onditions: smoothness and equality of initialand �nal trajetories. The integral then returns a real number for any suhurve. The idea an be extended from Minkowski to Eulidean spae whereit also beomes possible to onsider losed urves. The identi�ation ofinitial and �nal veloities (tangents) is then automati.An important question left open in [1℄ onerns the symmetries of n.Given n(C) for a urve C for what other urves C 0 do we have n(C) = n(C 0)?There are the evident invarianes under rotations (Lorentz transformations),translations, and re�etions. Furthermore, sine there are no dimensionalquantities exept the path itself involved in the problem, there is also anevident invariane under saling, that is resaling of all oordinates simulta-neously, x� ! �x�, where � is a onstant.Nevertheless the question remains as to further invarianes, in partiularwith respet to onformal transformations. These are losely related to saletransformations, and indeed onformal invariane originally entered physisas a property of eletrodynamis, and ought to be expeted to apply to(4185)



4186 L. Stodolskyphotons. Also, in somewhat di�erent ontexts the properties of integralexpressions like ours have been onsidered in onnetion with inversion [2℄,or �Mobius� invariane [3℄, whih is tantamount to onformal invariane.Here we would like present a disussion of inversions for n.The expression in question, in Minkowski spae, isn = Z Z dx� 1S2i"dx0� : (1)Sine our question here is essentially a mathematial one, we have droppedthe (dimensionless) eletromagneti oupling onstant appearing in the orig-inal expression for photons.Si" is the four-distane between the points x; x0 in the following wayS2i" = (t� t0 + i")2 � (x� x0)2 : (2)The harm of the expression (1) is that despite the possible singularitiesit is atually �nite. The possible singularity at S2 = 0 is handled by thei" and the possible divergene at in�nity by the �straight line ondition�for the equality of initial and �nal paths, as may be veri�ed from the fatthat n is zero for the simple straight line [1℄. This means it is well de�nedas it stands and needs no �regularizations� or �subtrations�. In Ref. [2℄a regularization is introdued by supersymmetry where a salar partileanels the singularity of a vetor partile (�gluon�) propagator. In Ref. [3℄the singularity is aneled by subtrating a seond term where the straightline distane S between (x; x0) is replaed by the ar length along the urve.However as we antiipate from its physial origin, Eq. (1) is �nite as itstands. Indeed using the identity���� 0 ln(S2) = + 4S4 ���dx�d� ���� dx�d� 0 �� 2S2 dx�d� dx�d� 0 (3)we were able to rewrite the integral asZ Z dx� 1S2i"dx0� = 2Z Z dx� Æ�� � ����S2S2 dx0� : (4)Delta is the vetorial distane between the two points, �� = x� � x0�. Wean rewrite this in a suggestive form if we introdue the �transverse vetor�dxT� = dx� � ��(� � dx)S2 ; (5)whih is dx with the �longitudinal part� removed, i.e. has the property dxT �� = 0. This is suggestive of the transversality property of physial photons



Inversion of the Photon Number Integral 4187and it might be said that our expression is �nite beause it only ontainsthe radiated and not the �oulomb� photons. In any event, the expression isnow manifestly non-singular, as may be seen by expanding the numerator,see Ref. [1℄.Observe that this proedure does not introdue any dimensional quanti-ties, so the expression is still sale invariant. Apparently the i" is harmlessin this respet. This manifestly non-singular expression, without the i",may be used to de�ne n in ase of doubt and we will use it in the following(mostly in its Eulidean version) taking n as:n = 2Z Z dxT� 1S2dx0T� : (6)2. InversionWe shall onentrate on the inversion operationxi ! a2x2xi : (7)The full onformal group is generated by adding these inversions or �Mo-bius transformations� to the usual translations and rotations. To keep thephysial dimensions in order we have introdued a length onstant a param-eterizing the operation. The inversion is around a point O, whih we takeas the origin. As we shall see below, the ases where the enter of inversionis on the urve C itself is of speial interest. The index i means any of theoordinates, and in Minkowski spae inludes an inversion of the time oor-dinate x0. We shall mainly fous however on the simpler ase of Eulideanspae. There we use boldfae notation for vetors, so inversion is x! a2x2x.We thus begin by onsidering the formal properties of the Eulideanexpression n = �Z Z dxdx0S2 = �Z Z dxdx0(x� x0)2 (8)under inversion. The (�) sign is the natural hoie that makes n positive inEulidean spae. The urve over whih the integrations are performed mayeither be a smooth losed urve, or a smooth in�nite urve whih beomesthe same straight line at �1.3. Formal inversionIt is illuminating to start with the relation Eq. (3). We use a di�erentialnotation, where dxf(x; x0) = rxf dx, so that with S2 = (x� x0)2dx lnS2 = 2(x� x0) dxS2 ; dx0 lnS2 = �2(x� x0) dx0S2 : (9)



4188 L. StodolskyEq. (3) then takes the form of the urious and interesting identity�12[dxdx0 lnS2 + dx lnS2 dx0 lnS2℄ = dx dx0S2 : (10)In this way we express the integrand of Eq. (8) in terms of ertain di�erentialswith simple transformations under inversion. Applying the inversion to S2S2 = (x� x0)2 ! a2x2 a2x02S2 (11)and so lnS2 ! ln a2x2 + ln a2x02 + lnS2 : (12)Hene if we insert the substitution Eq. (7) in the lhs of Eq. (10) the �rstterm is unhanged while for the seond�12 �dx lnS2 dx0 lnS2�! �12 �dx lnS2 dx0 lnS2�+12 ��dx lnx2 dx0 lnx02 + dx lnS2dx0 lnx02 + dx0 lnS2 dx lnx2� : (13)In other words our fundamental form transforms additively under inversiondx dx0S2 ! dx dx0S2 + I ; (14)where we all the additional quantity I. In this way we reover the resultsof Ref. [2℄ for the gluon propagator.4. Inversion of the expliitly �nite integrandSo far we have ignored the singularity in Eq. (8). We return to theexpliitly �nite form Eq. (6) as the de�nition of n. Sine the expliitly non-singular forms were found (see Ref. [1℄) by subtrating 1/2 of Eq. (3) fromEq. (1), we do the same here and Eq. (10) beomes�dxdx0 lnS2 � 12dx lnS2 dx0 lnS2= 2 dx dx0S2 � 2 [dx(x� x0)℄ [(x� x0)dx0℄S4 = 2 dxT dx0TS2 ; (15)where the rhs is now the expliitly non-singular integrand of Eq. (6). Thedi�erene between the singular and non-singular forms is simply the oe�-ient of the �rst term on the left. However, sine this term is in any eventidentially invariant under inversion, Eq. (14) still holds, that is2 dxT dx0TS2 ! 2 dxT dx0TS2 + I ; (16)with the same I as in Eq. (14).



Inversion of the Photon Number Integral 41895. Properties of II is de�ned asI = 12 [�dx lnx2 dx0 lnx02 + dx lnS2dx0 lnx02 + dx0 lnS2 dx lnx2℄ ; (17)where the origin is at the enter of inversion O. If the origin is plaedelsewhere, x is the distane to O. Evidently I is symmetriI(x; x0) = I(x0; x) : (18)Furthermore we note an important property arising from the fat that twosuessive appliations of the inversion is the identity operation. Applyingan inversion to the rhs of Eq. (14) or Eq. (16) again, we should get theoriginal expression. We thus onlude that under inversionI ! �I ; (19)whih one an also hek by diretly inserting Eq. (7) into Eq. (17).I is a salar under rotations, but not under translations (holding O�xed) beause of the presene of x2, the distane from O. It is invariantunder resalings x ! �x beause of the presene of the di�erentials. Forthe same reason it is independent of the parameter a giving the radius of thesphere of inversion. That I does not ontain the parameter of the inversionsuggests that it an only depend on some global properties of the operation.6. IntegrationTo study the behavior of n(C) under inversion we proeed aording tothe following steps. We arry out a hange of variables aording to Eq. (7)in the integral for n(C). This results simply in an identity with a new urveCinv in the new variables. The integrand reeives an additional term, I.whih is also to be integrated over the new urve Cinv. That is, we have oneterm with an integral of the desired expression and one with I, so thatn(C) = n(Cinv) + Z ZCinv I : (20)If we an show that R RCinv I is zero then n(C) = n(Cinv).As another expression of the fat that two suessive operations withEq. (7) are the identity we an invert n(Cinv) one more to return to theoriginal urve, giving the relationZ ZC I + Z ZCinv I = 0 : (21)



4190 L. StodolskyThis of ourse just amounts to Eq. (19) if we hange variables again to makeCinv ! C. An evident property following from Eq. (21) is that if Cinv � C,as for a irle with the enter of inversion in the enter, or a losed urve in3-spae on the surfae of the sphere of inversion, thenZ ZC I = 0 ; C � Cinv : (22)As opposed to Eq. (19) this is not merely an algebrai identity but in-volves of ourse the nature of the urves. It is evidently true by Eq. (19)if C and Cinv are identially the same urve. But it is learly also true insome more general sense, say if one urve is simply a rotation, translationor resaling of the other. The wider meaning of ��� in C � Cinv is aninteresting question and will be further disussed below (Setion 11.5).7. Two urvesAn amusing generalization of these properties of the integration suggestsitself. We mention it although it lies somewhat outside our main topi. Thequantity R R I is a funtional of one urve C. But atually it ould beregarded as a funtional of two urves C and C 0. We might have di�erenturves in the x and x0 spaes. That is, we onsider the integral RC RC0 I.Beause of Eq. (18) it does not matter to whih variable the urve isassigned:RC RC0 I = RC0 RC I. Now let C 0 be the inversion of C so C 0 = Cinv.Then under inversion aording to Eq. (19) the integral goes to minus itself.Therefore, ZC ZC0 I = 0 ; C 0 = Cinv : (23)Eq. (22) may then be read as the speial ase where C = Cinv.A plae where Eq. (23) might be useful onerns the question of theadditivity of the parts of a urve. In general of ourse R R I for a singleurve annot broken into two parts suh that the total integral is the sum ofthe integrals for the two parts. I is a biloal objet, and there will usuallybe ross terms between the two parts. However, if the two parts in questionare the inversion of eah other, then aording to Eq. (23), the ross termsare zero and the integrals for the two parts may be simply added.To develop this idea properly a study of the possible singularities, whihmay be di�erent than in the single-urve ase, would be neessary. We stressthat our integrals are always meant over just one urve in the original senseunless expliitly indiated as in Eq. (23).



Inversion of the Photon Number Integral 41918. Possible singularities of IThere are singularities or potential singularities of I whih need to beunderstood. We will ome to the onlusion that, despite appearanes, I isa non-singular objet � for a given urve.We would like to argue that for the investigation of possible singularitiesat a point it su�es to onsider the behavior of I for a straight line throughthat point. Consider the smooth urve x(�) in the neighborhood of the pointx(0). It is onvenient to introdue the �natural� parameterization where �is the length along the urve (proper time, in Minkowski spae). Then x �x(0)+ _x�+�x(1=2)�2+ : : :, where _x; �x; : : : are the �rst, seond,. . . derivativeswith respet to � . Due to the hoie of � as the path length ( _x)2 = 1, _x�x = 0;and so forth. Now x(�) � x(� 0) is odd with respet to interhange of �; � 0.This leads to (x(�) � x(� 0))2 � (� � � 0)2[( _x)2 + (�x)2b(�; � 0) + : : :℄, where bis a bilinear expression in �; � 0.Sine, with ( _x)2 = 1ln[(��� 0)2( _x2+(�x)2b(�; � 0)+: : :)℄ = ln(��� 0)2+ln[1+(�x)2b(�; � 0)+: : :℄ (24)we see that the possibly singular behavior of the logarithm results from the�veloity� or tangent term _x, while the dependene on the �aeleration� orurvature is non-singular for �; � 0 ! 0. Similarly for lnx2 near x2 = 0 wehave lnx2 � ln �2 + ln(1 + (�x)2b(�) + : : :). We may thus investigate thepossible singularities by looking at the behavior of I for a straight line.We �rst onsider the possible singularity for S2 = 0, while assumingx2 6= 0, that the enter of inversion O is not on the urve. Choose the �1�axis suh that it is parallel to the tangent _x at the point. Let the distaneof the projeted tangent from O i.e. its �impat parameter�, be Æ (Fig. 1).Now, for the investigation of the possible singularity we treat the urve as
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1Fig. 1. Constrution for studying the possible singularity due to S2 = 0 at a pointx(0). The diretion of the tangent (dotted line) is used to determine the �1� axisand has �impat parameter� Æ with respet to the enter of inversion.



4192 L. Stodolskythis straight line, as just explained. We then have S2 = (x1 � x01)2 anddx = dx1. After some algebra following the manipulations of Ref. [2℄ for thestraight line we haveIstraight line = �2 dx1dx01 Æ2(x12 + Æ2)(x012 + Æ2) ; (25)whih is in fat non-singular at x � x0. The absene of the singularitymay be traed to the fat that I is symmetri in x; x0 and so must ontainonly even powers in x� x0. The potential singularity from Eq. (9), howeverwould be odd in this variable, and so is in fat absent.Conerning the possible singularity at x2 = 0, as ours for a urvethrough O, �rst onsider I(0; x0), i.e. one variable at some ordinary pointand the other near zero. In this ase the �rst and third term of I, Eq. (17)anel sine dx0 lnS2 = dx0 lnx02 for x = 0. On the other hand the seondterm of I is non-singular, so there is no singularity.As for I(0; 0), we examine the straight line through the origin. By diretinspetion of I one �nds Istraight line through O = 0 : (26)Therefore there are no singularities onneted with x = 0.Eq. (26) may be viewed as the onsequene of a general symmetry prop-erty sine two points along a ray may be interhanged by an inversion.Therefore by Eq. (19) I(x; x0) = �I(x0; x). On the other hand, by Eq. (18)we also have I(x; x0) = +I(x0; x), so I is zero.Sine in Eq. (26) we have zero for the straight line through O, we lookat the simplest urvature or �aeleration� ontribution, that of the irle.Consider a irle passing through O and use the relation for the length of ahord l = 2R sin�, where � is the half-angle subtended at the enter of theirle. This leads toI = 12 [�d ln sin2 � d ln sin2 �0 + d ln sin2(�� �0) d ln sin2 �0+d ln sin2(�� �0) d ln sin2 �℄ (27)that is I = 2d�d�0[�ot� ot�0 + ot(� � �0)(ot�0 � ot�)℄. Using theidentity ot(�� �0) = ot�ot�0+1ot�0�ot� we have �nallyIirle through O = 2d�d�0 ; (28)where 0 � � � �.If we have only a segment of a irle passing through O the integrationwill only be over the orresponding angle, and Eq. (28) may be said to



Inversion of the Photon Number Integral 4193approah Eq. (26) in the sense that as the radius of the irle R beomesvery large this angular segment beomes very small. The very simple formof Eq. (28) suggests that it may sometimes be preferable to use oordinatesnot entered on O but rather on the enter of urvature for the urve at O.9. Simplest or �referene� asesThere are four on�gurations to disuss, aording to whether the urveis losed or in�nite and whether O is on or o� the urve. For orientation wedisuss a simplest or �referene� urve for eah ase.9.1. Cirle, not through OThis is the simplest ase of the �nite losed urve where the enter ofinversion is not on the urve. Inversion of a irle produes another irle,and similarly inversion of a general losed urve will produe another losedurve, as long as O is not on the urve.For the irle one �nds n by diretly integrating Eq. (6)nirle = 2�2 : (29)Sine n is purely a property of the geometri �gure, this holds for any irle.We therefore onlude from Eq. (20)Z Z Iirle not through O = 0 : (30)As on hek on this argument we an show diretly that the integral of Iis zero by Eq. (22), that is by Eq. (19), for those irles going identially intothemselves under inversion. This ours for inversion through the enter ofa irle for example, or when O is in the plane but outside the irle, takea2 = dD in Eq. (7) with d the losest point of the irle to O and D thefurthest.9.2. In�nite straight line not through O, or irle through OWe now turn to the onsideration of urves involving in�nities. Thesimplest ase is the in�nite straight line, not through O. Under inversionthis beomes a irle through O. The general ase here refers to urves,whih although they beome the same straight line [4℄ at large distanes,have some arbitrary form at �nite distanes (Fig. 3). As with the straightline/irle pair, under inversion these beome a losed urve passing throughO; andvie-versa. Sine they are the images of eah other under inversion,we onsider the two ases together.



4194 L. StodolskyThat some subtlety is involved is evident from the fat that on the onehand we have nstraight line = 0 : (31)But for the inversion of the straight line, a irle rossing the origin (or forthat matter any irle), we have not zero but rathernirle = 2�2 ; (32)as is found by integrating the de�nition Eq. (6).That di�erent values for n result is perhaps not entirely surprising sinethe inversion has produed a basi hange in the �gure, an in�nite urvebeoming a �nite urve. In Ref. [2℄ this di�erene was assoiated with the�anomaly�.Aording to Eq. (20), when starting from the straight line we mustintegrate I over a irle through O. Or when beginning with a irle weintegrate I along an in�nite straight line. To be onsistent with Eq. (31)and Eq. (29), these integrations ought to produe non-zero and opposite signontributions.Indeed, in Eq. (25) we already have I for the straight line. Carrying outthe integral we see that it is independent of Æ and givesZ +1Z�1 Istraight line not through O = �2�2 : (33)Similarly, we use Eq. (28) to integrate over a irle through OZ Z Iirle through O = 2�2 : (34)These results are in agreement with Eq. (20), Eq. (31) and Eq. (32) andof ourse Ref. [2℄. We note the ontrast of Eq. (34) with Eq. (30); or betweenEq. (33) and Eq. (35) below. Apparently while I is a non-singular objetalong a given urve, an in�nitesimal hange in that urve an produe a�nite e�et in the integral.9.3. Straight line through OFor losed �nite urves, as typi�ed by the irle not through O, we hadneither points at in�nity nor points at zero. In the previous subsetionwe had either one or the other, mapping into eah other under inversion.Finally, we onsider having both at the same time: urves whih are bothin�nite and pass through O. The simplest or referene ase is the straight



Inversion of the Photon Number Integral 4195line through O. An inversion returns the same straight line through the O.Observe that also for the general ase of this lass, namely an arbitrary urvepassing through O and beoming the same straight line at �1, inversionprodues a urve of this same type (Fig. 2).
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.
O

Fig. 2. Example of a general urve of the fourth type of on�guration �straightline through O�. The lines ontinue to �1 along a ommon straight line, and anarbitrary number of Eulidean dimensions is implied.In Eq. (26) we had Istraight line through O = 0. Evidently thenZ Z Istraight line through O = 0 : (35)This is of ourse in agreement with the arguments of Setion 6 sineunder inversion the straight line through O, being on a ray, goes identiallyinto itself.This ase is most liable to be of interest physially in Minkowski spaewhere it will orrespond to the path of a harge, and the inversion alsoprodues a possible path for a harge.10. One-integrated expressionWe now turn to the expliit integration of I. To integrate I, note thatit onsists of produt pairs where one member of eah produt does notontain both variables. Hene one member of eah pair, given as a totalderivative, an be expliitly integrated. The limits of integration are alsothe same in both variables. Therefore it appears useful to interhange thenames of x; x0 say in the last term of I, Eq. (17) to arrive at the expression



4196 L. Stodolsky(1=2) R R dx[� lnx2 + 2 ln(x� x0)2℄d lnx02, where the x integration an bedone immediately. However, this has the disadvantage that it is no longerexpliitly symmetri in x; x0, whih introdues a singularity of the integrandfor x � x0. Although this is only apparent and integrates to zero, it isperhaps more omfortable to let ln[S2℄ ! ln[S2 + �2℄ so as to make theintegrand expliitly �nite and then let � ! 0 at the end of the alulation.It may be veri�ed that I is ompletely regular under this proedure. Afterthe relabeling of variables we have an expliitly �nite expression (for O noton the urve) and an now perform the x integration along an arbitraryurve between limits A and B to obtainZ AZB I = AZB d lnx2��12 ln A2B2+ln (x�A)2(x�B)2� C not through O : (36)Observe that there are no singularities onneted with this expression.At an endpoint, for x! A we have RA d lnx2 ln(x�A)2 � R 1 dx (lnA2 +ln(x� 1)) whih is non-singular; while x! 0 is exluded by assumption.However, we shall also need a one-integrated expression when O is onthe urve, where x ! 0 must be onsidered. To see what replaes Eq. (36)note that Eq. (28) or Eq. (26) tell us that there is in fat no singularityassoiated with O. Therefore we an exise an in�nitesimal region along theurve around x = 0 without a�eting the value of the integral:Z AZB I = 0� �"ZB + AZ" 1A0� �"ZB + AZ" 1A I ; "! 0 : (37)Now again writing R R I = (1=2) R R dx[� lnx2 + 2 ln(x� x0)2℄d lnx02and arrying out the R dx we obtainZ AZB IC through O=0� �"ZB + AZ" 1A d lnx2��12 ln A2B2 +ln (x�A)2(x�B)2 +ln (x+")2(x�")2�:(38)We �rst onsider the last term, R�"B + RA" d lnx2 ln (x+ ")2(x� ")2 . As "! 0,the integrand vanishes for any non-in�nitesimal value of x. Thus it su�esto evaluate the integral for a straight line in the viinity of O. Introduingthe variable y = x=", this leads to the integral R �1�1+ R11 2dyy ln(y+1y�1 )2 =8 R11 dyy ln(y+1y�1 ) = 2�2 [5℄, so we may write�"ZB + AZ" d lnx2 ln (x+ ")2(x� ")2 = 2�2 "! 0 ; (39)



Inversion of the Photon Number Integral 4197for any smooth urve through O, with A and B on opposite sides of O(ompare Eq. (2.15) of Ref. [2℄).As for the remaining part of Eq. (38), we verify that it is non-singular.For the endpoints, say x ! A, it is �nite for the same reason given abovewith regard to Eq. (36). For x ! 0, we write ln (x�A)2(x�B)2 = ln A2B2 +ln(1�2AxA2 + x2A2 )�ln(1�2BxB2 + x2B2 ). The onstant terms R�"B +RA" (1=2) ln A2B2= (1=2) ln A2B2 (ln "2B2 + ln A2"2 ) = (1=2)(ln A2B2 )2 are nonsingular. For the x-dependent terms we an write ln(1 � 2AxA2 + x2A2 ) � �2AxA2 , and similarlyfor the B term, leading to an integral of the type R x d lnx whih is alsonon-singular at x = 0.Thus the expression is " independent and well de�ned, and we introduethe symbol P for this prinipal value-like integral: P RAB = R�"B + RA" andan thus �nally write for Eq. (38)Z AZB I = 2�2 + P AZB d lnx2��12 ln A2B2 + ln (x�A)2(x�B)2� C through O :(40)We wish to use Eq. (36) and Eq. (40) in the next Setion to extend thesimple results found for straight lines and irles to general urves, but �rstwe hek that these formulas give the expeted results in these simple ases:1. For the irle, not through O, we expet zero, aording to Eq. (30),whih is indeed what results from setting A = B in Eq. (36).2. For the in�nite straight line, not through O, we expet �2�2 aordingto Eq. (33). Using Eq. (36), we onsider the straight line at a distaneÆ from O, as in Eq. (25) and introdue the variable y = x=pAB. Inthe limit A;B !1 suh that A=B ! 1 and Æ=pAB ! 0 one obtainsthe integral 4 R 1�1 dyy ln 1�y1+y , whih is indeed �2�2.3. Turning now to O on the urve and Eq. (40), for the irle we expet2�2, aording to Eq. (34). This is what we obtain upon settingA = Bin Eq. (40).4. For the �nal example, the straight line through O, we expet zero a-ording to Eq. (35). To evaluate the prinipal value integral, we repeatthe arguments just given for the in�nite straight line not through O,with the di�erene that in plae of Æ, we now have "=pAB ! 0. Thisleads to 8 R 10 dyy ln 1�y1+y = �2�2 again and Eq. (40) is zero.



4198 L. StodolskyWe emphasize that the ompliations of this Setion arise from our desireto bring R R I into the one-integrated form and the resulting asymmetritreatment of the variables; I itself is perfetly well behaved for a given urve.Perhaps if another method ould be found for the problem of general urvesas disussed in the next Setion these ompliations ould be avoided.11. Integral of I as an invariantPerhaps the most remarkable property of R R I is that it is a type ofinvariant, having the same value for all urves of a given on�guration. In ourlanguage, this was what was essentially onluded in Ref. [2℄ for ertain �eldtheoreti amplitudes (for our ases 1�3). We shall show this using Eq. (36)and Eq. (40) of the previous Setion. Sine the quantity in parenthesis inEq. (36) and Eq. (40) does not depend on the partiular urve, the nature ofthe atual urve in question appears only in the remaining single integrationover x. This feature that makes the one-integrated expressions useful forthe examination of general urves.11.1. Closed urves not through OFor our �rst ase we take the generalization for Setion 9.1: inversionof a general, �nite losed Eulidean urve, with O not on the urve. Theinversion operation produes another �nite losed urve. Therefore we anset A = B and the integrand of Eq. (36) is zero.Z Z Ilosed not through O = 0 : (41)This is naturally in agreement with the example of Eq. (30), and in view ofEq. (20) we an �nally onlude that for this ase n is inversion invariant:n(C) = n(Cinv) ; (42)where Cinv is the inversion of any �nite losed Eulidean urve C, with theenter of inversion not on the urve C.11.2. In�nite urves not through OWe now onsider the generalization of the in�nite straight line. By thesewe mean urves whih although they beome the (same) straight line atlarge distanes, have some arbitrary form at �nite distanes (Fig. 3).We employ the one-integrated Eq. (36) again, where the limits A andBlimits are to be sent to �1. The quantity in parenthesis in Eq. (36) wouldbe the same for any urve and in partiular for the straight line. Sine
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BFig. 3. Arrangement used for the in�nite urve, O o� the urve. The sketh isto be understood in an arbitrary number of Eulidean dimensions. The solid linerepresents the urve under onsideration. The ontribution from the dashed line isto be added and subtrated so as to produe the integral for the in�nite straightline as A;B !1 plus a ontribution between F and G whih ontains only �nitevalues of x.the urve under onsideration only di�ers from the straight line in a �niteregion, say between points F and G, let us add and subtrat a straight lineontribution from F to G in Eq. (36). This leads toAZB d lnx2(: : :) = Zstraight line d lnx2(: : :) + Z�nite d lnx2(: : :) : (43)The (: : :) stands for the parenthesis in Eq. (36). Rstraight line is from B to A,and as A;B are sent to �1 it beomes the integral for the in�nite straightline, �2�2. The seond term, R�nite, stands for the integral from F to Galong the atual urve in question minus the integral F toG along a straightline.We now argue that R�nite goes to zero as A;B ! �1. This is beausex in R�nite is on�ned to �nite values as say A ! 1. Thus we an writeln[(x�A)2℄ = lnA2 + ln h1� 2AxA2 + x2A2 i � lnA2 � 2AxA2 to leading orderin 1=A. The 2AxA2 will lead to a ontribution to the integral vanishing as1=A. Then R�nite beomes the di�erene of the integral of a total derivativeover two paths between the same endpoints and so is zero.(There might appear to be some di�ulty with the argument when Ois loated suh that the straight line from F to G passes through it, i.e.



4200 L. Stodolskywhen the straight lines at in�nity lie along a ray from O. We an deal withthis by replaing the straight line as the referene urve by a urve where asemi-irle avoids O. In this ase the semi- irle ontribution goes to zeroas A!1, while the straight line integrals an be evaluated in this limit toagain give �2�2.)We thus onlude that the integral R R I over any urve, not passingthrough O, di�ering from the straight line in a �nite region is the same asthat for the simple straight line, not passing through O:Z Z Iin�nite not through O = �2�2 : (44)11.3. Closed urves through OInversion now leads to the generalization of the irle through O, thearbitrary losed urve through O. We use Eq. (40), and setting A = B,R R I is the same as for the irle:Z Z Ilosed throughO = 2�2 : (45)And for n we an say n(C) = n(Cinv) + 2�2 : (46)Where C is a generalized irle and Cinv is its inversion, a generalized in�nitestraight line. 11.4. In�nite urve through OWe ome to our last ase, the generalization of the straight line throughO. By this we mean an in�nite urve with our usual ondition that itbeomes the same straight line at in�nity, but now also passing through Oat some �nite point (Fig. 2). This lass inverts into itself.We now use Eq. (40) where we must evaluate P RAB d lnx2(: : :). In thisintegral, adding and subtrating a straight line piee between the �nitepoints F and G (as in Fig. 3 but with O on the solid urve), we haveagainP AZB d lnx2(: : :) = Zstraight line d lnx2(: : :) + P Z�nite d lnx2(: : :) ; (47)where we have dropped the P in Rstraight line sine it does not pass through O.Sine Rstraight line = �2�2 as A;B ! 1, the 2�2 from Eq. (40) is aneled



Inversion of the Photon Number Integral 4201and we are left withP Z�nite d lnx2(: : :) = 0�� GZF +P GZF 1Ad lnx2��12 ln A2B2 + ln (x� A)2(x�B)2� ;(48)where the �rst integral is along the straight line piee and the seond integralis along the urve in question.As before, for large A;B the (: : :) goes to an x independent piee andterms vanishing as A;B !1. Sine RGF d lnx2 = P RGF d lnx2 for the twodi�erent paths, Eq. (48) goes to zero and we an onludeZ Z Iin�nite through O = 0 (49)for arbitrary urves. This implies �nally for nn(C) = n(Cinv) ; (50)where Cinv is the inversion of an in�nite Eulidean urve C, with the enterof inversion on the urve. 11.5. SummaryWe an summarize the results of this Setion as follows. We have twotypes of urves: ��nite� urves and �in�nite� urves. The �rst are losedurves, the seond open urves beoming the same straight line at largedistanes. There are also two possibilities for the plaement of the origin ofinversion O: �on� and �o�� the urve. Labeling the on�gurations from 1 to4 we an exhibit their properties in a table:Con�guration Curve O Result R R I1 �nite o� 1 02 �nite on 3 2�23 in�nite o� 2 �2�24 in�nite on 4 0The olumn �Result� refers to the on�guration resulting from the in-version. Thus: on�guration 2 is a losed �nite urve with O on the urve.The integral of I over this urve has the value 2�2. The inversion produeson�guration 3, whih is an in�nite urve with O o� the urve.A notable feature of the table is that those on�gurations, namely 1and 4, whih invert into themselves have R R I = 0. This is a type ofgeneralization of Eq. (22), and appears to answer the question raised in



4202 L. StodolskySetion 6 as to the wider meaning of ���. Apparently two urves should beonsidered �equivalent� when they belong to the same on�guration in thesense of the table. Depending on the position of O, a urve may map intoits own on�guration or not. When it does, the �self onjugate� propertyR R I = 0 obtains. 12. Infrared/ultraviolet dualityWe remarked in [1℄ that it appeared as if the �niteness of n both at shortdistanes (ultraviolet) and at long distanes (infrared) ould in a sense beattributed to the same thing, namely that the average veloity U(x; x0) andthe instantaneous veloity u beome equal. In Eulidean spae U and urefer to the hord and tangent of the urve respetively. At short distanesas x ! x0we have U ! u beause the urve is taken to be smooth, so forsmall enough intervals the hord and the tangent beome the same. At largedistanes the urve has by assumption a onstant and equal slope at �1,so that U � u again.It is interesting to note how the on�gurations of the table where O is�on�, that is where �Result� is an in�nite urve, represents just this situa-tion. In inversion a point on the urve is projeted along the (direted) rayonneting it to the origin. The point goes to large distanes if it was loseto the origin and goes to small distanes if it was far from the origin. If Ois diretly on the urve, the points approahing the origin along the urvefrom one side will be sent to a straight line at +1, while points approahingO from the other side will be sent to a straight line at �1 in the oppositediretion. That the same, straight line at �1 results is a onsequene ofthe presumed smoothness of the urve at O.Similarly, a urve oming from large distanes and �nally going to largedistanes as the same straight line will be mapped into a urve smooth atthe origin. If the in�nite slopes had been di�erent there would be a kink atthe origin.Inversion thus makes it lear how our two assumptions needed to make n�nite both in the infrared and the ultraviolet are related: under an inversionwhose origin is on the urve, urves whih are loally smooth beome straightand parallel at 1 and vie-versa.13. Minkowski spaeIn Minkowski spae a new aspet enters in that Eq. (7) an make pointsthat are time-like separated into points that are spae-like separated. Thatis, in Minkowski spae, where S2 = (x0 � x00)2 � (x� x0)2 the purely alge-brai relation Eq. (11) is still true



Inversion of the Photon Number Integral 4203S2 ! a2x2 a2x02S2 ; (51)but for an initially physial time-like urve, with O �o�� there will be pointson it spae-like to O. This gives x2 negative in Eq. (51) and a time-likeseparation S2 > 0 may be mapped into a spae-like separation S2 < 0 [6℄.On the other hand for a time-like path with O on the urve anotherpossible physial path results. For O on the path, x2 is always positive andS2 in Eq. (51) annot hange sign and all relatively time-like pairs of pointsremain time-like. This operation is like on�guration 4 of the Eulideanproblem where, aording to the table, n is inversion invariant. It mightbe interesting to investigate if the inversion method ould be helpful inanalyzing ertain pratial radiation problems.I am grateful to David Gross for stressing the interest of studying theinversion, for several disussions, and for bringing the referenes [2℄ and [3℄to my attention. I would also like to thank E. De Rafael for onversationsonerning dilogarithms and related problems, as well as E. Seiler for dis-ussions and a reading of the manusript.REFERENCES[1℄ L. Stodolsky, Ata Phys. Pol. B 33, 2659, (2002).[2℄ N. Drukker, D.J. Gross, J. Math. Phys. 42, 2896 (2001).[3℄ M.H. Freedman, Zheng-Xu He, Zhenghan Wang, Ann. Math. 139, 1 (1994).[4℄ We assume in our treatment that C beomes identially the straight line be-yond some point. Presumably in a more sophistiated analysis this ould bereplaed by a su�iently rapid approah to a straight line, to de�ne morepreisely the lass of urves inluded in the argument.[5℄ Written out expliitly, the integral is a type of Spene funtion or diloga-rithm, as omes up in the study of radiative orretions. See for example theappendix of B.E. Lautrup, E. De Rafael, Phys. Rev. D174, 1835 (1968), orthe book Dilogarithms by L. Lewin, Madonald, London 1958. The integralin question here is no. 371 of the Handbook of Chemistry and Physis, 34thEdition. It is intriguing that the onstrution for the straight line Eq. (25)gives an immediate evaluation of suh an integral.[6℄ An examination of the resulting paths with the assoiated rossings of thelight one might suggest an interpretation in terms of pairs of partiles.


