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INVERSION OF THE PHOTON NUMBER INTEGRALL. StodolskyMax-Plan
k-Institut für Physik (Werner-Heisenberg-Institut)Föhringer Ring 6, 80805 Mün
hen, Germanye-mail: les�mppmu.mpg.de(Re
eived May 29, 2003)We 
onsider the behavior of the photon number integral under inver-sion, 
on
entrating on Eu
lidean spa
e. The dis
ussion may be framedin terms of an additive di�erential I whi
h arises under inversions. Thequantity R R I is an interesting integral invariant whose value 
hara
terizesdi�erent 
on�gurations under inversion.PACS numbers: 11.15.K
, 13.40.�f1. Introdu
tionThe �photon number integral� [1℄, 
alled n, is a 
onstru
tion whereby one
an de�ne the number of photons radiated by a 
harged parti
le followinga pres
ribed traje
tory in spa
e-time (Minkowski spa
e). For n to be �nitethe traje
tory must obey two 
onditions: smoothness and equality of initialand �nal traje
tories. The integral then returns a real number for any su
h
urve. The idea 
an be extended from Minkowski to Eu
lidean spa
e whereit also be
omes possible to 
onsider 
losed 
urves. The identi�
ation ofinitial and �nal velo
ities (tangents) is then automati
.An important question left open in [1℄ 
on
erns the symmetries of n.Given n(C) for a 
urve C for what other 
urves C 0 do we have n(C) = n(C 0)?There are the evident invarian
es under rotations (Lorentz transformations),translations, and re�e
tions. Furthermore, sin
e there are no dimensionalquantities ex
ept the path itself involved in the problem, there is also anevident invarian
e under s
aling, that is res
aling of all 
oordinates simulta-neously, x� ! �x�, where � is a 
onstant.Nevertheless the question remains as to further invarian
es, in parti
ularwith respe
t to 
onformal transformations. These are 
losely related to s
aletransformations, and indeed 
onformal invarian
e originally entered physi
sas a property of ele
trodynami
s, and ought to be expe
ted to apply to(4185)



4186 L. Stodolskyphotons. Also, in somewhat di�erent 
ontexts the properties of integralexpressions like ours have been 
onsidered in 
onne
tion with inversion [2℄,or �Mobius� invarian
e [3℄, whi
h is tantamount to 
onformal invarian
e.Here we would like present a dis
ussion of inversions for n.The expression in question, in Minkowski spa
e, isn = Z Z dx� 1S2i"dx0� : (1)Sin
e our question here is essentially a mathemati
al one, we have droppedthe (dimensionless) ele
tromagneti
 
oupling 
onstant appearing in the orig-inal expression for photons.Si" is the four-distan
e between the points x; x0 in the following wayS2i" = (t� t0 + i")2 � (x� x0)2 : (2)The 
harm of the expression (1) is that despite the possible singularitiesit is a
tually �nite. The possible singularity at S2 = 0 is handled by thei" and the possible divergen
e at in�nity by the �straight line 
ondition�for the equality of initial and �nal paths, as may be veri�ed from the fa
tthat n is zero for the simple straight line [1℄. This means it is well de�nedas it stands and needs no �regularizations� or �subtra
tions�. In Ref. [2℄a regularization is introdu
ed by supersymmetry where a s
alar parti
le
an
els the singularity of a ve
tor parti
le (�gluon�) propagator. In Ref. [3℄the singularity is 
an
eled by subtra
ting a se
ond term where the straightline distan
e S between (x; x0) is repla
ed by the ar
 length along the 
urve.However as we anti
ipate from its physi
al origin, Eq. (1) is �nite as itstands. Indeed using the identity���� 0 ln(S2) = + 4S4 ���dx�d� ���� dx�d� 0 �� 2S2 dx�d� dx�d� 0 (3)we were able to rewrite the integral asZ Z dx� 1S2i"dx0� = 2Z Z dx� Æ�� � ����S2S2 dx0� : (4)Delta is the ve
torial distan
e between the two points, �� = x� � x0�. We
an rewrite this in a suggestive form if we introdu
e the �transverse ve
tor�dxT� = dx� � ��(� � dx)S2 ; (5)whi
h is dx with the �longitudinal part� removed, i.e. has the property dxT �� = 0. This is suggestive of the transversality property of physi
al photons



Inversion of the Photon Number Integral 4187and it might be said that our expression is �nite be
ause it only 
ontainsthe radiated and not the �
oulomb� photons. In any event, the expression isnow manifestly non-singular, as may be seen by expanding the numerator,see Ref. [1℄.Observe that this pro
edure does not introdu
e any dimensional quanti-ties, so the expression is still s
ale invariant. Apparently the i" is harmlessin this respe
t. This manifestly non-singular expression, without the i",may be used to de�ne n in 
ase of doubt and we will use it in the following(mostly in its Eu
lidean version) taking n as:n = 2Z Z dxT� 1S2dx0T� : (6)2. InversionWe shall 
on
entrate on the inversion operationxi ! a2x2xi : (7)The full 
onformal group is generated by adding these inversions or �Mo-bius transformations� to the usual translations and rotations. To keep thephysi
al dimensions in order we have introdu
ed a length 
onstant a param-eterizing the operation. The inversion is around a point O, whi
h we takeas the origin. As we shall see below, the 
ases where the 
enter of inversionis on the 
urve C itself is of spe
ial interest. The index i means any of the
oordinates, and in Minkowski spa
e in
ludes an inversion of the time 
oor-dinate x0. We shall mainly fo
us however on the simpler 
ase of Eu
lideanspa
e. There we use boldfa
e notation for ve
tors, so inversion is x! a2x2x.We thus begin by 
onsidering the formal properties of the Eu
lideanexpression n = �Z Z dxdx0S2 = �Z Z dxdx0(x� x0)2 (8)under inversion. The (�) sign is the natural 
hoi
e that makes n positive inEu
lidean spa
e. The 
urve over whi
h the integrations are performed mayeither be a smooth 
losed 
urve, or a smooth in�nite 
urve whi
h be
omesthe same straight line at �1.3. Formal inversionIt is illuminating to start with the relation Eq. (3). We use a di�erentialnotation, where dxf(x; x0) = rxf dx, so that with S2 = (x� x0)2dx lnS2 = 2(x� x0) dxS2 ; dx0 lnS2 = �2(x� x0) dx0S2 : (9)



4188 L. StodolskyEq. (3) then takes the form of the 
urious and interesting identity�12[dxdx0 lnS2 + dx lnS2 dx0 lnS2℄ = dx dx0S2 : (10)In this way we express the integrand of Eq. (8) in terms of 
ertain di�erentialswith simple transformations under inversion. Applying the inversion to S2S2 = (x� x0)2 ! a2x2 a2x02S2 (11)and so lnS2 ! ln a2x2 + ln a2x02 + lnS2 : (12)Hen
e if we insert the substitution Eq. (7) in the lhs of Eq. (10) the �rstterm is un
hanged while for the se
ond�12 �dx lnS2 dx0 lnS2�! �12 �dx lnS2 dx0 lnS2�+12 ��dx lnx2 dx0 lnx02 + dx lnS2dx0 lnx02 + dx0 lnS2 dx lnx2� : (13)In other words our fundamental form transforms additively under inversiondx dx0S2 ! dx dx0S2 + I ; (14)where we 
all the additional quantity I. In this way we re
over the resultsof Ref. [2℄ for the gluon propagator.4. Inversion of the expli
itly �nite integrandSo far we have ignored the singularity in Eq. (8). We return to theexpli
itly �nite form Eq. (6) as the de�nition of n. Sin
e the expli
itly non-singular forms were found (see Ref. [1℄) by subtra
ting 1/2 of Eq. (3) fromEq. (1), we do the same here and Eq. (10) be
omes�dxdx0 lnS2 � 12dx lnS2 dx0 lnS2= 2 dx dx0S2 � 2 [dx(x� x0)℄ [(x� x0)dx0℄S4 = 2 dxT dx0TS2 ; (15)where the rhs is now the expli
itly non-singular integrand of Eq. (6). Thedi�eren
e between the singular and non-singular forms is simply the 
oe�-
ient of the �rst term on the left. However, sin
e this term is in any eventidenti
ally invariant under inversion, Eq. (14) still holds, that is2 dxT dx0TS2 ! 2 dxT dx0TS2 + I ; (16)with the same I as in Eq. (14).



Inversion of the Photon Number Integral 41895. Properties of II is de�ned asI = 12 [�dx lnx2 dx0 lnx02 + dx lnS2dx0 lnx02 + dx0 lnS2 dx lnx2℄ ; (17)where the origin is at the 
enter of inversion O. If the origin is pla
edelsewhere, x is the distan
e to O. Evidently I is symmetri
I(x; x0) = I(x0; x) : (18)Furthermore we note an important property arising from the fa
t that twosu

essive appli
ations of the inversion is the identity operation. Applyingan inversion to the rhs of Eq. (14) or Eq. (16) again, we should get theoriginal expression. We thus 
on
lude that under inversionI ! �I ; (19)whi
h one 
an also 
he
k by dire
tly inserting Eq. (7) into Eq. (17).I is a s
alar under rotations, but not under translations (holding O�xed) be
ause of the presen
e of x2, the distan
e from O. It is invariantunder res
alings x ! �x be
ause of the presen
e of the di�erentials. Forthe same reason it is independent of the parameter a giving the radius of thesphere of inversion. That I does not 
ontain the parameter of the inversionsuggests that it 
an only depend on some global properties of the operation.6. IntegrationTo study the behavior of n(C) under inversion we pro
eed a

ording tothe following steps. We 
arry out a 
hange of variables a

ording to Eq. (7)in the integral for n(C). This results simply in an identity with a new 
urveCinv in the new variables. The integrand re
eives an additional term, I.whi
h is also to be integrated over the new 
urve Cinv. That is, we have oneterm with an integral of the desired expression and one with I, so thatn(C) = n(Cinv) + Z ZCinv I : (20)If we 
an show that R RCinv I is zero then n(C) = n(Cinv).As another expression of the fa
t that two su

essive operations withEq. (7) are the identity we 
an invert n(Cinv) on
e more to return to theoriginal 
urve, giving the relationZ ZC I + Z ZCinv I = 0 : (21)



4190 L. StodolskyThis of 
ourse just amounts to Eq. (19) if we 
hange variables again to makeCinv ! C. An evident property following from Eq. (21) is that if Cinv � C,as for a 
ir
le with the 
enter of inversion in the 
enter, or a 
losed 
urve in3-spa
e on the surfa
e of the sphere of inversion, thenZ ZC I = 0 ; C � Cinv : (22)As opposed to Eq. (19) this is not merely an algebrai
 identity but in-volves of 
ourse the nature of the 
urves. It is evidently true by Eq. (19)if C and Cinv are identi
ally the same 
urve. But it is 
learly also true insome more general sense, say if one 
urve is simply a rotation, translationor res
aling of the other. The wider meaning of ��� in C � Cinv is aninteresting question and will be further dis
ussed below (Se
tion 11.5).7. Two 
urvesAn amusing generalization of these properties of the integration suggestsitself. We mention it although it lies somewhat outside our main topi
. Thequantity R R I is a fun
tional of one 
urve C. But a
tually it 
ould beregarded as a fun
tional of two 
urves C and C 0. We might have di�erent
urves in the x and x0 spa
es. That is, we 
onsider the integral RC RC0 I.Be
ause of Eq. (18) it does not matter to whi
h variable the 
urve isassigned:RC RC0 I = RC0 RC I. Now let C 0 be the inversion of C so C 0 = Cinv.Then under inversion a

ording to Eq. (19) the integral goes to minus itself.Therefore, ZC ZC0 I = 0 ; C 0 = Cinv : (23)Eq. (22) may then be read as the spe
ial 
ase where C = Cinv.A pla
e where Eq. (23) might be useful 
on
erns the question of theadditivity of the parts of a 
urve. In general of 
ourse R R I for a single
urve 
annot broken into two parts su
h that the total integral is the sum ofthe integrals for the two parts. I is a bilo
al obje
t, and there will usuallybe 
ross terms between the two parts. However, if the two parts in questionare the inversion of ea
h other, then a

ording to Eq. (23), the 
ross termsare zero and the integrals for the two parts may be simply added.To develop this idea properly a study of the possible singularities, whi
hmay be di�erent than in the single-
urve 
ase, would be ne
essary. We stressthat our integrals are always meant over just one 
urve in the original senseunless expli
itly indi
ated as in Eq. (23).



Inversion of the Photon Number Integral 41918. Possible singularities of IThere are singularities or potential singularities of I whi
h need to beunderstood. We will 
ome to the 
on
lusion that, despite appearan
es, I isa non-singular obje
t � for a given 
urve.We would like to argue that for the investigation of possible singularitiesat a point it su�
es to 
onsider the behavior of I for a straight line throughthat point. Consider the smooth 
urve x(�) in the neighborhood of the pointx(0). It is 
onvenient to introdu
e the �natural� parameterization where �is the length along the 
urve (proper time, in Minkowski spa
e). Then x �x(0)+ _x�+�x(1=2)�2+ : : :, where _x; �x; : : : are the �rst, se
ond,. . . derivativeswith respe
t to � . Due to the 
hoi
e of � as the path length ( _x)2 = 1, _x�x = 0;and so forth. Now x(�) � x(� 0) is odd with respe
t to inter
hange of �; � 0.This leads to (x(�) � x(� 0))2 � (� � � 0)2[( _x)2 + (�x)2b(�; � 0) + : : :℄, where bis a bilinear expression in �; � 0.Sin
e, with ( _x)2 = 1ln[(��� 0)2( _x2+(�x)2b(�; � 0)+: : :)℄ = ln(��� 0)2+ln[1+(�x)2b(�; � 0)+: : :℄ (24)we see that the possibly singular behavior of the logarithm results from the�velo
ity� or tangent term _x, while the dependen
e on the �a

eleration� or
urvature is non-singular for �; � 0 ! 0. Similarly for lnx2 near x2 = 0 wehave lnx2 � ln �2 + ln(1 + (�x)2b(�) + : : :). We may thus investigate thepossible singularities by looking at the behavior of I for a straight line.We �rst 
onsider the possible singularity for S2 = 0, while assumingx2 6= 0, that the 
enter of inversion O is not on the 
urve. Choose the �1�axis su
h that it is parallel to the tangent _x at the point. Let the distan
eof the proje
ted tangent from O i.e. its �impa
t parameter�, be Æ (Fig. 1).Now, for the investigation of the possible singularity we treat the 
urve as
..
.

O

δ

x(0)

x
1Fig. 1. Constru
tion for studying the possible singularity due to S2 = 0 at a pointx(0). The dire
tion of the tangent (dotted line) is used to determine the �1� axisand has �impa
t parameter� Æ with respe
t to the 
enter of inversion.



4192 L. Stodolskythis straight line, as just explained. We then have S2 = (x1 � x01)2 anddx = dx1. After some algebra following the manipulations of Ref. [2℄ for thestraight line we haveIstraight line = �2 dx1dx01 Æ2(x12 + Æ2)(x012 + Æ2) ; (25)whi
h is in fa
t non-singular at x � x0. The absen
e of the singularitymay be tra
ed to the fa
t that I is symmetri
 in x; x0 and so must 
ontainonly even powers in x� x0. The potential singularity from Eq. (9), howeverwould be odd in this variable, and so is in fa
t absent.Con
erning the possible singularity at x2 = 0, as o

urs for a 
urvethrough O, �rst 
onsider I(0; x0), i.e. one variable at some ordinary pointand the other near zero. In this 
ase the �rst and third term of I, Eq. (17)
an
el sin
e dx0 lnS2 = dx0 lnx02 for x = 0. On the other hand the se
ondterm of I is non-singular, so there is no singularity.As for I(0; 0), we examine the straight line through the origin. By dire
tinspe
tion of I one �nds Istraight line through O = 0 : (26)Therefore there are no singularities 
onne
ted with x = 0.Eq. (26) may be viewed as the 
onsequen
e of a general symmetry prop-erty sin
e two points along a ray may be inter
hanged by an inversion.Therefore by Eq. (19) I(x; x0) = �I(x0; x). On the other hand, by Eq. (18)we also have I(x; x0) = +I(x0; x), so I is zero.Sin
e in Eq. (26) we have zero for the straight line through O, we lookat the simplest 
urvature or �a

eleration� 
ontribution, that of the 
ir
le.Consider a 
ir
le passing through O and use the relation for the length of a
hord l = 2R sin�, where � is the half-angle subtended at the 
enter of the
ir
le. This leads toI = 12 [�d ln sin2 � d ln sin2 �0 + d ln sin2(�� �0) d ln sin2 �0+d ln sin2(�� �0) d ln sin2 �℄ (27)that is I = 2d�d�0[�
ot� 
ot�0 + 
ot(� � �0)(
ot�0 � 
ot�)℄. Using theidentity 
ot(�� �0) = 
ot�
ot�0+1
ot�0�
ot� we have �nallyI
ir
le through O = 2d�d�0 ; (28)where 0 � � � �.If we have only a segment of a 
ir
le passing through O the integrationwill only be over the 
orresponding angle, and Eq. (28) may be said to



Inversion of the Photon Number Integral 4193approa
h Eq. (26) in the sense that as the radius of the 
ir
le R be
omesvery large this angular segment be
omes very small. The very simple formof Eq. (28) suggests that it may sometimes be preferable to use 
oordinatesnot 
entered on O but rather on the 
enter of 
urvature for the 
urve at O.9. Simplest or �referen
e� 
asesThere are four 
on�gurations to dis
uss, a

ording to whether the 
urveis 
losed or in�nite and whether O is on or o� the 
urve. For orientation wedis
uss a simplest or �referen
e� 
urve for ea
h 
ase.9.1. Cir
le, not through OThis is the simplest 
ase of the �nite 
losed 
urve where the 
enter ofinversion is not on the 
urve. Inversion of a 
ir
le produ
es another 
ir
le,and similarly inversion of a general 
losed 
urve will produ
e another 
losed
urve, as long as O is not on the 
urve.For the 
ir
le one �nds n by dire
tly integrating Eq. (6)n
ir
le = 2�2 : (29)Sin
e n is purely a property of the geometri
 �gure, this holds for any 
ir
le.We therefore 
on
lude from Eq. (20)Z Z I
ir
le not through O = 0 : (30)As on 
he
k on this argument we 
an show dire
tly that the integral of Iis zero by Eq. (22), that is by Eq. (19), for those 
ir
les going identi
ally intothemselves under inversion. This o

urs for inversion through the 
enter ofa 
ir
le for example, or when O is in the plane but outside the 
ir
le, takea2 = dD in Eq. (7) with d the 
losest point of the 
ir
le to O and D thefurthest.9.2. In�nite straight line not through O, or 
ir
le through OWe now turn to the 
onsideration of 
urves involving in�nities. Thesimplest 
ase is the in�nite straight line, not through O. Under inversionthis be
omes a 
ir
le through O. The general 
ase here refers to 
urves,whi
h although they be
ome the same straight line [4℄ at large distan
es,have some arbitrary form at �nite distan
es (Fig. 3). As with the straightline/
ir
le pair, under inversion these be
ome a 
losed 
urve passing throughO; andvi
e-versa. Sin
e they are the images of ea
h other under inversion,we 
onsider the two 
ases together.



4194 L. StodolskyThat some subtlety is involved is evident from the fa
t that on the onehand we have nstraight line = 0 : (31)But for the inversion of the straight line, a 
ir
le 
rossing the origin (or forthat matter any 
ir
le), we have not zero but rathern
ir
le = 2�2 ; (32)as is found by integrating the de�nition Eq. (6).That di�erent values for n result is perhaps not entirely surprising sin
ethe inversion has produ
ed a basi
 
hange in the �gure, an in�nite 
urvebe
oming a �nite 
urve. In Ref. [2℄ this di�eren
e was asso
iated with the�anomaly�.A

ording to Eq. (20), when starting from the straight line we mustintegrate I over a 
ir
le through O. Or when beginning with a 
ir
le weintegrate I along an in�nite straight line. To be 
onsistent with Eq. (31)and Eq. (29), these integrations ought to produ
e non-zero and opposite sign
ontributions.Indeed, in Eq. (25) we already have I for the straight line. Carrying outthe integral we see that it is independent of Æ and givesZ +1Z�1 Istraight line not through O = �2�2 : (33)Similarly, we use Eq. (28) to integrate over a 
ir
le through OZ Z I
ir
le through O = 2�2 : (34)These results are in agreement with Eq. (20), Eq. (31) and Eq. (32) andof 
ourse Ref. [2℄. We note the 
ontrast of Eq. (34) with Eq. (30); or betweenEq. (33) and Eq. (35) below. Apparently while I is a non-singular obje
talong a given 
urve, an in�nitesimal 
hange in that 
urve 
an produ
e a�nite e�e
t in the integral.9.3. Straight line through OFor 
losed �nite 
urves, as typi�ed by the 
ir
le not through O, we hadneither points at in�nity nor points at zero. In the previous subse
tionwe had either one or the other, mapping into ea
h other under inversion.Finally, we 
onsider having both at the same time: 
urves whi
h are bothin�nite and pass through O. The simplest or referen
e 
ase is the straight



Inversion of the Photon Number Integral 4195line through O. An inversion returns the same straight line through the O.Observe that also for the general 
ase of this 
lass, namely an arbitrary 
urvepassing through O and be
oming the same straight line at �1, inversionprodu
es a 
urve of this same type (Fig. 2).
..

.
O

Fig. 2. Example of a general 
urve of the fourth type of 
on�guration �straightline through O�. The lines 
ontinue to �1 along a 
ommon straight line, and anarbitrary number of Eu
lidean dimensions is implied.In Eq. (26) we had Istraight line through O = 0. Evidently thenZ Z Istraight line through O = 0 : (35)This is of 
ourse in agreement with the arguments of Se
tion 6 sin
eunder inversion the straight line through O, being on a ray, goes identi
allyinto itself.This 
ase is most liable to be of interest physi
ally in Minkowski spa
ewhere it will 
orrespond to the path of a 
harge, and the inversion alsoprodu
es a possible path for a 
harge.10. On
e-integrated expressionWe now turn to the expli
it integration of I. To integrate I, note thatit 
onsists of produ
t pairs where one member of ea
h produ
t does not
ontain both variables. Hen
e one member of ea
h pair, given as a totalderivative, 
an be expli
itly integrated. The limits of integration are alsothe same in both variables. Therefore it appears useful to inter
hange thenames of x; x0 say in the last term of I, Eq. (17) to arrive at the expression



4196 L. Stodolsky(1=2) R R dx[� lnx2 + 2 ln(x� x0)2℄d lnx02, where the x integration 
an bedone immediately. However, this has the disadvantage that it is no longerexpli
itly symmetri
 in x; x0, whi
h introdu
es a singularity of the integrandfor x � x0. Although this is only apparent and integrates to zero, it isperhaps more 
omfortable to let ln[S2℄ ! ln[S2 + �2℄ so as to make theintegrand expli
itly �nite and then let � ! 0 at the end of the 
al
ulation.It may be veri�ed that I is 
ompletely regular under this pro
edure. Afterthe relabeling of variables we have an expli
itly �nite expression (for O noton the 
urve) and 
an now perform the x integration along an arbitrary
urve between limits A and B to obtainZ AZB I = AZB d lnx2��12 ln A2B2+ln (x�A)2(x�B)2� C not through O : (36)Observe that there are no singularities 
onne
ted with this expression.At an endpoint, for x! A we have RA d lnx2 ln(x�A)2 � R 1 dx (lnA2 +ln(x� 1)) whi
h is non-singular; while x! 0 is ex
luded by assumption.However, we shall also need a on
e-integrated expression when O is onthe 
urve, where x ! 0 must be 
onsidered. To see what repla
es Eq. (36)note that Eq. (28) or Eq. (26) tell us that there is in fa
t no singularityasso
iated with O. Therefore we 
an ex
ise an in�nitesimal region along the
urve around x = 0 without a�e
ting the value of the integral:Z AZB I = 0� �"ZB + AZ" 1A0� �"ZB + AZ" 1A I ; "! 0 : (37)Now again writing R R I = (1=2) R R dx[� lnx2 + 2 ln(x� x0)2℄d lnx02and 
arrying out the R dx we obtainZ AZB IC through O=0� �"ZB + AZ" 1A d lnx2��12 ln A2B2 +ln (x�A)2(x�B)2 +ln (x+")2(x�")2�:(38)We �rst 
onsider the last term, R�"B + RA" d lnx2 ln (x+ ")2(x� ")2 . As "! 0,the integrand vanishes for any non-in�nitesimal value of x. Thus it su�
esto evaluate the integral for a straight line in the vi
inity of O. Introdu
ingthe variable y = x=", this leads to the integral R �1�1+ R11 2dyy ln(y+1y�1 )2 =8 R11 dyy ln(y+1y�1 ) = 2�2 [5℄, so we may write�"ZB + AZ" d lnx2 ln (x+ ")2(x� ")2 = 2�2 "! 0 ; (39)



Inversion of the Photon Number Integral 4197for any smooth 
urve through O, with A and B on opposite sides of O(
ompare Eq. (2.15) of Ref. [2℄).As for the remaining part of Eq. (38), we verify that it is non-singular.For the endpoints, say x ! A, it is �nite for the same reason given abovewith regard to Eq. (36). For x ! 0, we write ln (x�A)2(x�B)2 = ln A2B2 +ln(1�2AxA2 + x2A2 )�ln(1�2BxB2 + x2B2 ). The 
onstant terms R�"B +RA" (1=2) ln A2B2= (1=2) ln A2B2 (ln "2B2 + ln A2"2 ) = (1=2)(ln A2B2 )2 are nonsingular. For the x-dependent terms we 
an write ln(1 � 2AxA2 + x2A2 ) � �2AxA2 , and similarlyfor the B term, leading to an integral of the type R x d lnx whi
h is alsonon-singular at x = 0.Thus the expression is " independent and well de�ned, and we introdu
ethe symbol P for this prin
ipal value-like integral: P RAB = R�"B + RA" and
an thus �nally write for Eq. (38)Z AZB I = 2�2 + P AZB d lnx2��12 ln A2B2 + ln (x�A)2(x�B)2� C through O :(40)We wish to use Eq. (36) and Eq. (40) in the next Se
tion to extend thesimple results found for straight lines and 
ir
les to general 
urves, but �rstwe 
he
k that these formulas give the expe
ted results in these simple 
ases:1. For the 
ir
le, not through O, we expe
t zero, a

ording to Eq. (30),whi
h is indeed what results from setting A = B in Eq. (36).2. For the in�nite straight line, not through O, we expe
t �2�2 a

ordingto Eq. (33). Using Eq. (36), we 
onsider the straight line at a distan
eÆ from O, as in Eq. (25) and introdu
e the variable y = x=pAB. Inthe limit A;B !1 su
h that A=B ! 1 and Æ=pAB ! 0 one obtainsthe integral 4 R 1�1 dyy ln 1�y1+y , whi
h is indeed �2�2.3. Turning now to O on the 
urve and Eq. (40), for the 
ir
le we expe
t2�2, a

ording to Eq. (34). This is what we obtain upon settingA = Bin Eq. (40).4. For the �nal example, the straight line through O, we expe
t zero a
-
ording to Eq. (35). To evaluate the prin
ipal value integral, we repeatthe arguments just given for the in�nite straight line not through O,with the di�eren
e that in pla
e of Æ, we now have "=pAB ! 0. Thisleads to 8 R 10 dyy ln 1�y1+y = �2�2 again and Eq. (40) is zero.



4198 L. StodolskyWe emphasize that the 
ompli
ations of this Se
tion arise from our desireto bring R R I into the on
e-integrated form and the resulting asymmetri
treatment of the variables; I itself is perfe
tly well behaved for a given 
urve.Perhaps if another method 
ould be found for the problem of general 
urvesas dis
ussed in the next Se
tion these 
ompli
ations 
ould be avoided.11. Integral of I as an invariantPerhaps the most remarkable property of R R I is that it is a type ofinvariant, having the same value for all 
urves of a given 
on�guration. In ourlanguage, this was what was essentially 
on
luded in Ref. [2℄ for 
ertain �eldtheoreti
 amplitudes (for our 
ases 1�3). We shall show this using Eq. (36)and Eq. (40) of the previous Se
tion. Sin
e the quantity in parenthesis inEq. (36) and Eq. (40) does not depend on the parti
ular 
urve, the nature ofthe a
tual 
urve in question appears only in the remaining single integrationover x. This feature that makes the on
e-integrated expressions useful forthe examination of general 
urves.11.1. Closed 
urves not through OFor our �rst 
ase we take the generalization for Se
tion 9.1: inversionof a general, �nite 
losed Eu
lidean 
urve, with O not on the 
urve. Theinversion operation produ
es another �nite 
losed 
urve. Therefore we 
anset A = B and the integrand of Eq. (36) is zero.Z Z I
losed not through O = 0 : (41)This is naturally in agreement with the example of Eq. (30), and in view ofEq. (20) we 
an �nally 
on
lude that for this 
ase n is inversion invariant:n(C) = n(Cinv) ; (42)where Cinv is the inversion of any �nite 
losed Eu
lidean 
urve C, with the
enter of inversion not on the 
urve C.11.2. In�nite 
urves not through OWe now 
onsider the generalization of the in�nite straight line. By thesewe mean 
urves whi
h although they be
ome the (same) straight line atlarge distan
es, have some arbitrary form at �nite distan
es (Fig. 3).We employ the on
e-integrated Eq. (36) again, where the limits A andBlimits are to be sent to �1. The quantity in parenthesis in Eq. (36) wouldbe the same for any 
urve and in parti
ular for the straight line. Sin
e
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F

BFig. 3. Arrangement used for the in�nite 
urve, O o� the 
urve. The sket
h isto be understood in an arbitrary number of Eu
lidean dimensions. The solid linerepresents the 
urve under 
onsideration. The 
ontribution from the dashed line isto be added and subtra
ted so as to produ
e the integral for the in�nite straightline as A;B !1 plus a 
ontribution between F and G whi
h 
ontains only �nitevalues of x.the 
urve under 
onsideration only di�ers from the straight line in a �niteregion, say between points F and G, let us add and subtra
t a straight line
ontribution from F to G in Eq. (36). This leads toAZB d lnx2(: : :) = Zstraight line d lnx2(: : :) + Z�nite d lnx2(: : :) : (43)The (: : :) stands for the parenthesis in Eq. (36). Rstraight line is from B to A,and as A;B are sent to �1 it be
omes the integral for the in�nite straightline, �2�2. The se
ond term, R�nite, stands for the integral from F to Galong the a
tual 
urve in question minus the integral F toG along a straightline.We now argue that R�nite goes to zero as A;B ! �1. This is be
ausex in R�nite is 
on�ned to �nite values as say A ! 1. Thus we 
an writeln[(x�A)2℄ = lnA2 + ln h1� 2AxA2 + x2A2 i � lnA2 � 2AxA2 to leading orderin 1=A. The 2AxA2 will lead to a 
ontribution to the integral vanishing as1=A. Then R�nite be
omes the di�eren
e of the integral of a total derivativeover two paths between the same endpoints and so is zero.(There might appear to be some di�
ulty with the argument when Ois lo
ated su
h that the straight line from F to G passes through it, i.e.



4200 L. Stodolskywhen the straight lines at in�nity lie along a ray from O. We 
an deal withthis by repla
ing the straight line as the referen
e 
urve by a 
urve where asemi-
ir
le avoids O. In this 
ase the semi- 
ir
le 
ontribution goes to zeroas A!1, while the straight line integrals 
an be evaluated in this limit toagain give �2�2.)We thus 
on
lude that the integral R R I over any 
urve, not passingthrough O, di�ering from the straight line in a �nite region is the same asthat for the simple straight line, not passing through O:Z Z Iin�nite not through O = �2�2 : (44)11.3. Closed 
urves through OInversion now leads to the generalization of the 
ir
le through O, thearbitrary 
losed 
urve through O. We use Eq. (40), and setting A = B,R R I is the same as for the 
ir
le:Z Z I
losed throughO = 2�2 : (45)And for n we 
an say n(C) = n(Cinv) + 2�2 : (46)Where C is a generalized 
ir
le and Cinv is its inversion, a generalized in�nitestraight line. 11.4. In�nite 
urve through OWe 
ome to our last 
ase, the generalization of the straight line throughO. By this we mean an in�nite 
urve with our usual 
ondition that itbe
omes the same straight line at in�nity, but now also passing through Oat some �nite point (Fig. 2). This 
lass inverts into itself.We now use Eq. (40) where we must evaluate P RAB d lnx2(: : :). In thisintegral, adding and subtra
ting a straight line pie
e between the �nitepoints F and G (as in Fig. 3 but with O on the solid 
urve), we haveagainP AZB d lnx2(: : :) = Zstraight line d lnx2(: : :) + P Z�nite d lnx2(: : :) ; (47)where we have dropped the P in Rstraight line sin
e it does not pass through O.Sin
e Rstraight line = �2�2 as A;B ! 1, the 2�2 from Eq. (40) is 
an
eled



Inversion of the Photon Number Integral 4201and we are left withP Z�nite d lnx2(: : :) = 0�� GZF +P GZF 1Ad lnx2��12 ln A2B2 + ln (x� A)2(x�B)2� ;(48)where the �rst integral is along the straight line pie
e and the se
ond integralis along the 
urve in question.As before, for large A;B the (: : :) goes to an x independent pie
e andterms vanishing as A;B !1. Sin
e RGF d lnx2 = P RGF d lnx2 for the twodi�erent paths, Eq. (48) goes to zero and we 
an 
on
ludeZ Z Iin�nite through O = 0 (49)for arbitrary 
urves. This implies �nally for nn(C) = n(Cinv) ; (50)where Cinv is the inversion of an in�nite Eu
lidean 
urve C, with the 
enterof inversion on the 
urve. 11.5. SummaryWe 
an summarize the results of this Se
tion as follows. We have twotypes of 
urves: ��nite� 
urves and �in�nite� 
urves. The �rst are 
losed
urves, the se
ond open 
urves be
oming the same straight line at largedistan
es. There are also two possibilities for the pla
ement of the origin ofinversion O: �on� and �o�� the 
urve. Labeling the 
on�gurations from 1 to4 we 
an exhibit their properties in a table:Con�guration Curve O Result R R I1 �nite o� 1 02 �nite on 3 2�23 in�nite o� 2 �2�24 in�nite on 4 0The 
olumn �Result� refers to the 
on�guration resulting from the in-version. Thus: 
on�guration 2 is a 
losed �nite 
urve with O on the 
urve.The integral of I over this 
urve has the value 2�2. The inversion produ
es
on�guration 3, whi
h is an in�nite 
urve with O o� the 
urve.A notable feature of the table is that those 
on�gurations, namely 1and 4, whi
h invert into themselves have R R I = 0. This is a type ofgeneralization of Eq. (22), and appears to answer the question raised in
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tion 6 as to the wider meaning of ���. Apparently two 
urves should be
onsidered �equivalent� when they belong to the same 
on�guration in thesense of the table. Depending on the position of O, a 
urve may map intoits own 
on�guration or not. When it does, the �self 
onjugate� propertyR R I = 0 obtains. 12. Infrared/ultraviolet dualityWe remarked in [1℄ that it appeared as if the �niteness of n both at shortdistan
es (ultraviolet) and at long distan
es (infrared) 
ould in a sense beattributed to the same thing, namely that the average velo
ity U(x; x0) andthe instantaneous velo
ity u be
ome equal. In Eu
lidean spa
e U and urefer to the 
hord and tangent of the 
urve respe
tively. At short distan
esas x ! x0we have U ! u be
ause the 
urve is taken to be smooth, so forsmall enough intervals the 
hord and the tangent be
ome the same. At largedistan
es the 
urve has by assumption a 
onstant and equal slope at �1,so that U � u again.It is interesting to note how the 
on�gurations of the table where O is�on�, that is where �Result� is an in�nite 
urve, represents just this situa-tion. In inversion a point on the 
urve is proje
ted along the (dire
ted) ray
onne
ting it to the origin. The point goes to large distan
es if it was 
loseto the origin and goes to small distan
es if it was far from the origin. If Ois dire
tly on the 
urve, the points approa
hing the origin along the 
urvefrom one side will be sent to a straight line at +1, while points approa
hingO from the other side will be sent to a straight line at �1 in the oppositedire
tion. That the same, straight line at �1 results is a 
onsequen
e ofthe presumed smoothness of the 
urve at O.Similarly, a 
urve 
oming from large distan
es and �nally going to largedistan
es as the same straight line will be mapped into a 
urve smooth atthe origin. If the in�nite slopes had been di�erent there would be a kink atthe origin.Inversion thus makes it 
lear how our two assumptions needed to make n�nite both in the infrared and the ultraviolet are related: under an inversionwhose origin is on the 
urve, 
urves whi
h are lo
ally smooth be
ome straightand parallel at 1 and vi
e-versa.13. Minkowski spa
eIn Minkowski spa
e a new aspe
t enters in that Eq. (7) 
an make pointsthat are time-like separated into points that are spa
e-like separated. Thatis, in Minkowski spa
e, where S2 = (x0 � x00)2 � (x� x0)2 the purely alge-brai
 relation Eq. (11) is still true



Inversion of the Photon Number Integral 4203S2 ! a2x2 a2x02S2 ; (51)but for an initially physi
al time-like 
urve, with O �o�� there will be pointson it spa
e-like to O. This gives x2 negative in Eq. (51) and a time-likeseparation S2 > 0 may be mapped into a spa
e-like separation S2 < 0 [6℄.On the other hand for a time-like path with O on the 
urve anotherpossible physi
al path results. For O on the path, x2 is always positive andS2 in Eq. (51) 
annot 
hange sign and all relatively time-like pairs of pointsremain time-like. This operation is like 
on�guration 4 of the Eu
lideanproblem where, a

ording to the table, n is inversion invariant. It mightbe interesting to investigate if the inversion method 
ould be helpful inanalyzing 
ertain pra
ti
al radiation problems.I am grateful to David Gross for stressing the interest of studying theinversion, for several dis
ussions, and for bringing the referen
es [2℄ and [3℄to my attention. I would also like to thank E. De Rafael for 
onversations
on
erning dilogarithms and related problems, as well as E. Seiler for dis-
ussions and a reading of the manus
ript.REFERENCES[1℄ L. Stodolsky, A
ta Phys. Pol. B 33, 2659, (2002).[2℄ N. Drukker, D.J. Gross, J. Math. Phys. 42, 2896 (2001).[3℄ M.H. Freedman, Zheng-Xu He, Zhenghan Wang, Ann. Math. 139, 1 (1994).[4℄ We assume in our treatment that C be
omes identi
ally the straight line be-yond some point. Presumably in a more sophisti
ated analysis this 
ould berepla
ed by a su�
iently rapid approa
h to a straight line, to de�ne morepre
isely the 
lass of 
urves in
luded in the argument.[5℄ Written out expli
itly, the integral is a type of Spen
e fun
tion or diloga-rithm, as 
omes up in the study of radiative 
orre
tions. See for example theappendix of B.E. Lautrup, E. De Rafael, Phys. Rev. D174, 1835 (1968), orthe book Dilogarithms by L. Lewin, Ma
donald, London 1958. The integralin question here is no. 371 of the Handbook of Chemistry and Physi
s, 34thEdition. It is intriguing that the 
onstru
tion for the straight line Eq. (25)gives an immediate evaluation of su
h an integral.[6℄ An examination of the resulting paths with the asso
iated 
rossings of thelight 
one might suggest an interpretation in terms of pairs of parti
les.


