
Vol. 34 (2003) ACTA PHYSICA POLONICA B No 8
COLLISIONAL EFFECTS IN ISOVECTOR RESPONSEFUNCTION OF NUCLEAR MATTERAT FINITE TEMPERATURES. AyikPhysis Department, Tennessee Tehnologial UniversityCookeville, TN 38505, USAA. Gokalp, O. Yilmaz and K. BozkurtPhysis Department, Middle East Tehnial University, 06531 Ankara, Turkey(Reeived April 7, 2003)The dipole response funtion of nulear matter at zero and �nite tem-peratures is investigated by employing the linearized version of the extendedTDHF theory with a non-Markovian binary ollision term. Calulationsare arried out for nulear dipole vibrations by employing the Steinwedel�Jensen model and ompared with experimental results for 120Sn and 208Pb.PACS numbers: 21.60.Jz, 21.65.+f, 24.30.Cz, 25.70.LmGiant resonanes, in partiular giant dipole resonanes (GDR), in medi-um-weight and heavy nulei have been the subjets of extensive experimentaland theoretial studies during the last deades [1℄. A large amount of ex-perimental information is now available onerning the properties of GDRbuilt on the ground and the exited states of the nulei revealing the prop-erties of the olletive motion of nulear many-body systems at zero and�nite temperatures. The mean resonane energy is observed not to hangemuh with the exitation energy, or the temperature, but the reent experi-mental investigations show that the width of the resonane beomes broaderas exitation energy inreases with a possible saturation at high tempera-tures. This temperature dependene of the GDR width is still one of theopen problems in the studies of nulear olletive response and its dampingmehanisms at zero and �nite temperatures [2�4℄.The theoretial investigations of the nulear olletive response employ-ing the random phase approximation (RPA) theory have been quite suess-ful in desribing the mean resonane energies [5℄. However, the RPA theory(4229)



4230 S. Ayik et al.is not suitable for desribing the damping of olletive exitations and there-fore investigations based on the RPA theory have not been able to explainthe inrease of the width of GDR with temperature [6℄.There are di�erent mehanisms involved in the damping of the nulearolletive state. A part of the damping is due to the oupling of the ol-letive mode to external degrees of freedom resulting in the ooling of thesystem by partile emission giving rise to esape width. Furthermore, theolletive mode also aquires an intrinsi width as a onsequene of its ou-pling to the internal degrees of freedom. The resulting spreading widthwhih is thus due to the mixing of the olletive mode with more ompli-ated doorway states makes essentially the large part of the ontribution todamping in medium-weight and heavy nulei. There are essentially threedi�erent theoretial approahes for the alulation of the spreading widths.In the �rst ase, the temperature dependene of the width is explained bythe oherent mehanism due to adiabati oupling of the giant resonanewith thermal surfae deformations [7, 8℄, whih is partiularly important atlow temperature. In the seond approah, the mehanism of damping isdue to the oupling with inoherent two partile�two hole (2p�2h) statesresulting from the inreasing rate of ollisions between the nuleons withtemperature whih is usually referred to as the ollisional damping [9, 10℄.The ollisional damping is relatively weak at low temperature, but its mag-nitude beomes large with inreasing temperature. The last mehanism isthe Landau damping whih is due to the spreading of the olletive modeon non-olletive partile�hole (p�h) exitations. Most investigations of nu-lear response that have been arried out so far are based on the oherentdamping or the ollisional damping mehanisms [11, 12℄.In this work, we perform a linear response treatment of the nulear ol-letive mode by inluding the ollisional damping. The small amplitude limitof the extended the time-dependent Hartree�Fok (TDHF) theory, in whihthe ollisional damping due to the inoherent 2p�2h deay is inluded in theform of a non-Markovian ollision term, provides an appropriate frameworkfor investigating the damping widths of olletive modes at zero and �nitetemperatures [10�13℄. We employ the extended TDHF theory to study theisovetor response funtion with ollisional e�ets of nulear matter at zeroand �nite temperatures in semilassial approximation using a simpli�ede�etive Skyrme fore.The equation of motion of the single partile density matrix �(t) in theextended TDHF approximation is given by a transport equation [13℄i~ ��t�� [h(�); �℄ = K(�) ; (1)where h(�) is an e�etive mean-�eld Hamiltonian and the right-hand side



Collisional E�ets in Isovetor Response Funtion of : : : 4231represents a non-Markovian ollision term, whih an be expressed in termsof the orrelated part of the two-partile density matrix asK(�) = Tr2[v; C12℄with the e�etive residual interation v. The orrelated part of the two-partile density matrix C12 = �12� g�1�2 where g�1�2 represents the antisym-metrized produt of the single-partile density matries, is given by the se-ond equation of the BBGKY hierarhy. In the extended TDHF theory, thehierarhy is trunated at the seond level by retaining only the lowest-orderterms in the residual interations, thus negleting three-body orrelations.Hene, the orrelated part of the two-partile density matrix C12 satis�esthe equation i~ ��tC12 � [h(�); C12℄ = F12 ; (2)where the soure term is given byF12(�) = (1� �1)(1 � �2) v g�1�2 � g�1�2 v (1� �1)(1� �2) : (3)In order to study the isovetor olletive response of the system, weinlude an external perturbation F (~r; t) into the equation of motion,F (~r; t) = �3F (~r) �e�i!t + ei!t� ; (4)where �3 is the third omponent of the isospin operator and the frequenyof the one-body harmoni perturbation operator ontains a small imaginarypart with the presription ! ! ! + i� in aordane with the adiabatihypothesis. We obtain a desription for small density �utuations Æ�(t) =�(t) � �0 in linear response treatment by linearizing the extended TDHFtheory around a �nite temperature equilibrium state density �0, and thisway we obtaini~ ��tÆ�� [h0; Æ�℄ � [Æh + F (~r; t); �0℄ = Tr2[v; ÆC12℄ ; (5)where Æh = (�U=��)0 Æ� represents small deviations in the e�etive mean-�eld potential. Moreover, the small deviation of the two-body orrelationsÆC12(t) satis�esi~ ��tÆC12 � [Æh+ F (~r; t); C012℄� [h0; ÆC12℄ = ÆF12 : (6)We look for a solution of Eq. (5) and Eq. (6) of the form Æ�(t) =Æ�(!)e�i!t+h:: where now the small density �utuations are given in termsof the proton and neutron density matries as Æ�(t) = �p(t) � �n(t). Wenote that in the small amplitude limit, the ollision term is also harmoni,



4232 S. Ayik et al.ÆK = tr2[v; ÆC12℄ = ÆK(!)e�i!t+h::, and in momentum representation wethen obtain"~! + " ~p� ~k2!� " ~p+ ~k2!#*~p+ ~k2 ����� Æ�(!) �����~p� ~k2+�"f  ~p� ~k2!� f  ~p+ ~k2!#�(*~p+ ~k2 ����� Æh �����~p� ~k2++ 2*~p+ ~k2 �����F (~r) �����~p� ~k2+)= *~p+ ~k2 ����� ÆK(!) �����~p� ~k2+ ; (7)where f(~q) = 1=�1 + e�["(~q)��℄	 is the Fermi�Dira oupation fator. Forsimpli�ed Skyrme interation, the density �utuation Æn(~r; t) indues loalhanges in the mean �eld potential, therefore*~p+ ~k2 ����� Æh �����~p� ~k2+ = 2V0*~p+ ~k2 ����� Æ�(!) �����~p� ~k2+ ; (8)where in terms of loal proton and neutron mean �eld potentials Æh is ex-pressed as Æh = Up(~r; t)� Un(~r; t) = 2V0Æn(~r; t). Moreover, sineZ d3p(2�~)3 *~p+ ~k2 ����� Æ�(!) �����~p� ~k2+ = Æn(~k; !) (9)and *~p+ ~k2 �����F (~r) �����~p� ~k2+ = F (~k) (10)we �nally obtainÆn(~k; !)� hV0Æn(~k; !) + F (~k)i� 1(~k; !) = hV0Æn(~k; !) + F (~k)i�2(~k; !) :(11)The funtion �1(~k; !), whih is known as the unperturbed Lindhard fun-tion, is given by�1(~k; !) = 2(2�~)3 Z d3p f �~p� ~k2�� f �~p+ ~k2�~! � "�~p+ ~k2�+ "�~p� ~k2�+ i� (12)



Collisional E�ets in Isovetor Response Funtion of : : : 4233and the funtion �2(~k; !) is obtained from[V0Æn(~k; !) + F (~k)℄�2(~k; !)= 2(2�~)3 Z d3p D~p+ ~k2 ��� ÆK(!) ���~p� ~k2E~! � "�~p+ ~k2�+ "�~p� ~k2�+ i� : (13)The retarded response funtion whih is de�ned byÆn(~k; !) = �R(~k; !)F (~k) (14)is then obtained as �R(~k; !) = �0(~k; !)1� V0�0(~k; !) (15)with �0(~k; !) = �1(~k; !) +�2(~k; !).From Eq. (6), it is possible to obtain a losed form expression for smalldeviation of two-body orrelations ÆC12, that is valid for olletive vibrations(for details please refer to [10℄),ÆC12(t) = � i~ tZ dt0�01�02e�ih0(t�t0)[Æ�(t0); v℄�eih0(t�t0)(1� �01)(1� �02) + h:: ; (16)where Æ�(t) is the distortion funtion assoiated with the single-partiledensity matrix, and it is related to the small vibrations in the single-partiledensity matrix Æ�(t) aording to Æ�(t) = [Æ�(t); �0℄. We then obtain theexpression for the linearized ollision term by evaluating the matrix elementh~p + ~k2 j ÆK(!) j ~p � ~k2 i in whih we retain ~k-dependene only in distor-tion funtion [10℄. Then, the ollisional response funtion �2(~k; !) an beexpressed as�2(~k; !) = 1(2�~)3 Z d3p1d3p2d3p3d3p4���Q2 �2 W (12; 34)� f1f2f3f4 � f1f2f3f4~! � "3 � "4 + "1 + "2 + i� ; (17)where �Q = Q1+Q2�Q3�Q4 with Qi = 1=h~! � "�~pi + ~k2�+"�~pi � ~k2�i,f i = 1� fi and W(12;34) denotes the basi two-body transition rate, whih



4234 S. Ayik et al.an be expressed in terms of the spin averaged proton�neutron satteringross setion asW (12; 34) = 1(2�~)3 4~m2 � d�d
�pn Æ3(~p1 + ~p2 � ~p3 � ~p4) : (18)The strength distribution funtion is obtained from the imaginary part ofthe retarded response funtion [14℄S(~k; !) = � 1� Im�R(~k; !) : (19)In our alulations, we employ a simpli�ed Skyrme interationv = t0(1 + x0P�)Æ(~r) + 16 t3(1 + x3P�)��(~R)Æ(~r) (20)with ~r = ~r1� ~r2 and ~R = (~r1+ ~r2)=2. The loal potential for protons is thengiven byUp(~r; t) = t0�1 + 12x0� �(~r; t)� t0�12 + x0� �p(~r; t)+ 112 t3��(~r; t) �(2 + �)�1 + 12x3� �p(~r; t)�2�12 + x3� �(~r; t)� ��12 + x3� �2p(~r; t) + �2n(~r; t)�(~r; t) # (21)with a similar expression for neutrons. In linear response approximation,the oupling onstant V0 for dipole vibrations beomesV0 = �12 t0�12 + x0�� 112 t3��0 �12 + x3� ; (22)where �0 is the saturation density of nulear matter. In our analysis weonsider in partiular the Skyrme SLy4 fore with the parameters [15℄ t0 =�2488:91 MeV fm3, t3 = 13777 MeV fm7=2, x0 = 0:834, x3 = 1:354 and� = 1=6, whih results for V0 in the value V0 = 85 MeV fm3.In order to apply our results to �nite nulei, we work within the frame-work of Steinwedel and Jensen model for nulear dipole osillations [6℄. Inthis model neutrons and protons osillate inside a sphere of radius R givenby the expression �p(~r; t)� �n(~r; t) = F sin(~k � ~r)ei!t ; (23)



Collisional E�ets in Isovetor Response Funtion of : : : 4235the total density remaining equal to the saturation density �0 of nulearmatter and the wavenumber k is given by k = �=2R. We apply Steinwedeland Jensen model to GDR in 120Sn and 208Pb, and we take R = 5:6 fmk = 0:28 fm�1 for 120Sn and R = 6:7 fm k = 0:23 fm�1 for 208Pb aordingto R = 1:13A1=3.As a result of the approximate treatment, the ollisional response fun-tion �2(~k; !) has a singular behavior arising from the pole of the distortionfuntions, Qi = 1.h~! � "�~pi + ~k2�+ "�~pi � ~k2�i . We avoid this singularbehavior by inorporating a pole approximation. In the distortion funtions,we make the replaement ! ! !D � i�=2 where !D and � are determinedfrom 1 � V0�1(~k; !) = 0 at eah temperature that is onsidered. Further-more, we neglet the real part Re�2 of the funtion �2 in our alulations.In the alulations of the ollisional response funtion, using onservationlaws and symmetry properties, it is possible to redue the twelve dimen-sional integrals to �ve fold integrals by inorporating the transformationsinto the total momenta ~P = ~p1 + ~p2, ~P 0 = ~p3 + ~p4, and relative momenta~q = (~p1�~p2)=2, ~q 0 = (~p3�~p4)=2 before and after the ollisions. The integralover ~P 0 an be performed immediately. The delta funtion Æ(~!� "0 + ") inIm�2(~k; !) where " = ~q 2=m and "0 = ~q 0 2=m are the energies of two parti-le system in the enter of mass frame before and after the ollision makesit possible the redue the integrals further using familiar methods from theFermi liquid theory [17℄. Then, we evaluate the remaining �ve dimensionalintegrals numerially by employing a fast algorithm. In the evaluation ofmomentum integrals, we neglet the angular anisotropy of the ross setionsand make the replaement (d�=d
)pn ! �pn=4� with �pn = 40 mb.We show our results for the response funtion with and without theollision term in Fig. 1 for 120Sn and in Fig. 2 for 208Pb as a funtion ofexperimental temperature T � where we also present the omparison withthe normalized experimental data [4℄. The experimental temperature T � isrelated to the temperature parameter in the Fermi�Dira funtion f("; T )as T = T �paE=aF, where aE denotes the energy dependent empirial leveldensity parameter and aF = A�2=4"F denotes Fermi gas level density pa-rameter [4, 16℄. In our alulations, we use the temperature values T in theFermi�Dira funtion that are related to the experimental temperatures inthis manner.We �rst note that, at the RPA level that is without the ontributionof the ollision term in alulation of the nulear response, the positionof the peak of the response funtions do not hange with temperature.As a matter of fat, for 208Pb the peak is at ! = 12:3 MeV for T � =1:34; 1:62; 1:85; 2:05 MeV while for 120Sn it ours at ! = 14:3 MeV forT � = 1:24; 2:02 MeV and at ! = 14:2 MeV for T � = 2:61; 3:12 MeV.
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Fig. 1. The GDR strength funtion of 120Sn. Solid and dashed lines show theresponse funtion without and with the ollision term, respetively. The normalizeddata is taken from [4℄.This behavior of the peak energy with temperature is in aordane withthe experimental results where it is observed that the mean-energy of thedipole response is almost onstant for 208Pb when T � hanges between 1.3 to2.0 MeV while a derease of 1.5 MeV is observed in 120Sn when T � hangesfrom 1.2 to 3.1 MeV [4℄. However, the average positions of the peak valuesof the strength funtions are slightly below the experimental values, whihare ! = 15:4 MeV for 120Sn and ! = 13:4 MeV for 208Pb. This disrepanymay be due to the nature of the e�etive Skyrme fore that we employ.Moreover, the value for k = �=2R that is used in Steinwedel and Jensenmodel depends on the value of R0 used in R = R0A1=3, and hanging ksomewhat also produes a hange in the position of the peak but in generalthe above onlusions are not a�eted. Furthermore, these results for thepeak position of the strength funtions are in aordane with the earlierRPA alulations.
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Fig. 2. The GDR strength funtion of 208Pb. Solid and dashed lines show theresponse funtion without and with the ollision term, respetively. The normalizeddata is taken from [4℄.Dotted lines in �gures 1, 2 show the strength funtions inluding olli-sional damping mehanism. Sine, we neglet the real part of the ollisionalresponse the peak values of the strength do not hange, but the ollisionalmehanism introdues a spread, in partiular at the high frequeny side ofthe strength funtions and this spread beomes more pronouned with in-reasing temperature. In order to illustrate the e�et of the ollision termmore drastially, in �gure 3, we show the response funtion with and withoutthe ollision term for 120Sn and for 208Pb at temperatures T = 2; 4 MeV.Rather simple desription presented in this paper is able to explain er-tain aspets of giant dipole exitations in 120Sn and 208Pb, but do not pro-due a good desription of the experimental strength funtions as a funtionof temperature. One important element missing in the alulations is theoherent damping mehanism due to oupling dipole vibrations with lowfrequeny olletive surfae modes [18�20℄. This mehanism is espeially
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Fig. 3. The GDR strength funtion of 120Sn and 208Pb at T � = 2; 4 MeV. Solidand dashed lines show the response funtion without and with the ollision term,respetively.important for desribing the details of the strength distributions at low tem-perature. In the ontinuation of this work, we plan to improve this simpledesription by inorporating the oherent damping mehanism in Thomas�Fermi approximation. REFERENCES[1℄ Eletri and Magneti Giant Resonanes in Nulei, ed. J. Speth, World Si-enti�, Singapore 1991.[2℄ E. Ramakrishan et al., Phys. Rev. Lett. 76, 2025 (1996).[3℄ E. Ramakrishan et al., Phys. Lett. B383, 252 (1996).[4℄ T. Baumann et al., Nul. Phys. A635, 428 (1998).[5℄ F.L. Braghin, D. Vautherin, Phys. Rev. C52, 2504 (1995).
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