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COLLISIONAL EFFECTS IN ISOVECTOR RESPONSEFUNCTION OF NUCLEAR MATTERAT FINITE TEMPERATURES. AyikPhysi
s Department, Tennessee Te
hnologi
al UniversityCookeville, TN 38505, USAA. Gokalp, O. Yilmaz and K. BozkurtPhysi
s Department, Middle East Te
hni
al University, 06531 Ankara, Turkey(Re
eived April 7, 2003)The dipole response fun
tion of nu
lear matter at zero and �nite tem-peratures is investigated by employing the linearized version of the extendedTDHF theory with a non-Markovian binary 
ollision term. Cal
ulationsare 
arried out for nu
lear dipole vibrations by employing the Steinwedel�Jensen model and 
ompared with experimental results for 120Sn and 208Pb.PACS numbers: 21.60.Jz, 21.65.+f, 24.30.Cz, 25.70.LmGiant resonan
es, in parti
ular giant dipole resonan
es (GDR), in medi-um-weight and heavy nu
lei have been the subje
ts of extensive experimentaland theoreti
al studies during the last de
ades [1℄. A large amount of ex-perimental information is now available 
on
erning the properties of GDRbuilt on the ground and the ex
ited states of the nu
lei revealing the prop-erties of the 
olle
tive motion of nu
lear many-body systems at zero and�nite temperatures. The mean resonan
e energy is observed not to 
hangemu
h with the ex
itation energy, or the temperature, but the re
ent experi-mental investigations show that the width of the resonan
e be
omes broaderas ex
itation energy in
reases with a possible saturation at high tempera-tures. This temperature dependen
e of the GDR width is still one of theopen problems in the studies of nu
lear 
olle
tive response and its dampingme
hanisms at zero and �nite temperatures [2�4℄.The theoreti
al investigations of the nu
lear 
olle
tive response employ-ing the random phase approximation (RPA) theory have been quite su

ess-ful in des
ribing the mean resonan
e energies [5℄. However, the RPA theory(4229)



4230 S. Ayik et al.is not suitable for des
ribing the damping of 
olle
tive ex
itations and there-fore investigations based on the RPA theory have not been able to explainthe in
rease of the width of GDR with temperature [6℄.There are di�erent me
hanisms involved in the damping of the nu
lear
olle
tive state. A part of the damping is due to the 
oupling of the 
ol-le
tive mode to external degrees of freedom resulting in the 
ooling of thesystem by parti
le emission giving rise to es
ape width. Furthermore, the
olle
tive mode also a
quires an intrinsi
 width as a 
onsequen
e of its 
ou-pling to the internal degrees of freedom. The resulting spreading widthwhi
h is thus due to the mixing of the 
olle
tive mode with more 
ompli-
ated doorway states makes essentially the large part of the 
ontribution todamping in medium-weight and heavy nu
lei. There are essentially threedi�erent theoreti
al approa
hes for the 
al
ulation of the spreading widths.In the �rst 
ase, the temperature dependen
e of the width is explained bythe 
oherent me
hanism due to adiabati
 
oupling of the giant resonan
ewith thermal surfa
e deformations [7, 8℄, whi
h is parti
ularly important atlow temperature. In the se
ond approa
h, the me
hanism of damping isdue to the 
oupling with in
oherent two parti
le�two hole (2p�2h) statesresulting from the in
reasing rate of 
ollisions between the nu
leons withtemperature whi
h is usually referred to as the 
ollisional damping [9, 10℄.The 
ollisional damping is relatively weak at low temperature, but its mag-nitude be
omes large with in
reasing temperature. The last me
hanism isthe Landau damping whi
h is due to the spreading of the 
olle
tive modeon non-
olle
tive parti
le�hole (p�h) ex
itations. Most investigations of nu-
lear response that have been 
arried out so far are based on the 
oherentdamping or the 
ollisional damping me
hanisms [11, 12℄.In this work, we perform a linear response treatment of the nu
lear 
ol-le
tive mode by in
luding the 
ollisional damping. The small amplitude limitof the extended the time-dependent Hartree�Fo
k (TDHF) theory, in whi
hthe 
ollisional damping due to the in
oherent 2p�2h de
ay is in
luded in theform of a non-Markovian 
ollision term, provides an appropriate frameworkfor investigating the damping widths of 
olle
tive modes at zero and �nitetemperatures [10�13℄. We employ the extended TDHF theory to study theisove
tor response fun
tion with 
ollisional e�e
ts of nu
lear matter at zeroand �nite temperatures in semi
lassi
al approximation using a simpli�ede�e
tive Skyrme for
e.The equation of motion of the single parti
le density matrix �(t) in theextended TDHF approximation is given by a transport equation [13℄i~ ��t�� [h(�); �℄ = K(�) ; (1)where h(�) is an e�e
tive mean-�eld Hamiltonian and the right-hand side



Collisional E�e
ts in Isove
tor Response Fun
tion of : : : 4231represents a non-Markovian 
ollision term, whi
h 
an be expressed in termsof the 
orrelated part of the two-parti
le density matrix asK(�) = Tr2[v; C12℄with the e�e
tive residual intera
tion v. The 
orrelated part of the two-parti
le density matrix C12 = �12� g�1�2 where g�1�2 represents the antisym-metrized produ
t of the single-parti
le density matri
es, is given by the se
-ond equation of the BBGKY hierar
hy. In the extended TDHF theory, thehierar
hy is trun
ated at the se
ond level by retaining only the lowest-orderterms in the residual intera
tions, thus negle
ting three-body 
orrelations.Hen
e, the 
orrelated part of the two-parti
le density matrix C12 satis�esthe equation i~ ��tC12 � [h(�); C12℄ = F12 ; (2)where the sour
e term is given byF12(�) = (1� �1)(1 � �2) v g�1�2 � g�1�2 v (1� �1)(1� �2) : (3)In order to study the isove
tor 
olle
tive response of the system, wein
lude an external perturbation F (~r; t) into the equation of motion,F (~r; t) = �3F (~r) �e�i!t + ei!t� ; (4)where �3 is the third 
omponent of the isospin operator and the frequen
yof the one-body harmoni
 perturbation operator 
ontains a small imaginarypart with the pres
ription ! ! ! + i� in a

ordan
e with the adiabati
hypothesis. We obtain a des
ription for small density �u
tuations Æ�(t) =�(t) � �0 in linear response treatment by linearizing the extended TDHFtheory around a �nite temperature equilibrium state density �0, and thisway we obtaini~ ��tÆ�� [h0; Æ�℄ � [Æh + F (~r; t); �0℄ = Tr2[v; ÆC12℄ ; (5)where Æh = (�U=��)0 Æ� represents small deviations in the e�e
tive mean-�eld potential. Moreover, the small deviation of the two-body 
orrelationsÆC12(t) satis�esi~ ��tÆC12 � [Æh+ F (~r; t); C012℄� [h0; ÆC12℄ = ÆF12 : (6)We look for a solution of Eq. (5) and Eq. (6) of the form Æ�(t) =Æ�(!)e�i!t+h:
: where now the small density �u
tuations are given in termsof the proton and neutron density matri
es as Æ�(t) = �p(t) � �n(t). Wenote that in the small amplitude limit, the 
ollision term is also harmoni
,



4232 S. Ayik et al.ÆK = tr2[v; ÆC12℄ = ÆK(!)e�i!t+h:
:, and in momentum representation wethen obtain"~! + " ~p� ~k2!� " ~p+ ~k2!#*~p+ ~k2 ����� Æ�(!) �����~p� ~k2+�"f  ~p� ~k2!� f  ~p+ ~k2!#�(*~p+ ~k2 ����� Æh �����~p� ~k2++ 2*~p+ ~k2 �����F (~r) �����~p� ~k2+)= *~p+ ~k2 ����� ÆK(!) �����~p� ~k2+ ; (7)where f(~q) = 1=�1 + e�["(~q)��℄	 is the Fermi�Dira
 o

upation fa
tor. Forsimpli�ed Skyrme intera
tion, the density �u
tuation Æn(~r; t) indu
es lo
al
hanges in the mean �eld potential, therefore*~p+ ~k2 ����� Æh �����~p� ~k2+ = 2V0*~p+ ~k2 ����� Æ�(!) �����~p� ~k2+ ; (8)where in terms of lo
al proton and neutron mean �eld potentials Æh is ex-pressed as Æh = Up(~r; t)� Un(~r; t) = 2V0Æn(~r; t). Moreover, sin
eZ d3p(2�~)3 *~p+ ~k2 ����� Æ�(!) �����~p� ~k2+ = Æn(~k; !) (9)and *~p+ ~k2 �����F (~r) �����~p� ~k2+ = F (~k) (10)we �nally obtainÆn(~k; !)� hV0Æn(~k; !) + F (~k)i� 1(~k; !) = hV0Æn(~k; !) + F (~k)i�2(~k; !) :(11)The fun
tion �1(~k; !), whi
h is known as the unperturbed Lindhard fun
-tion, is given by�1(~k; !) = 2(2�~)3 Z d3p f �~p� ~k2�� f �~p+ ~k2�~! � "�~p+ ~k2�+ "�~p� ~k2�+ i� (12)
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ts in Isove
tor Response Fun
tion of : : : 4233and the fun
tion �2(~k; !) is obtained from[V0Æn(~k; !) + F (~k)℄�2(~k; !)= 2(2�~)3 Z d3p D~p+ ~k2 ��� ÆK(!) ���~p� ~k2E~! � "�~p+ ~k2�+ "�~p� ~k2�+ i� : (13)The retarded response fun
tion whi
h is de�ned byÆn(~k; !) = �R(~k; !)F (~k) (14)is then obtained as �R(~k; !) = �0(~k; !)1� V0�0(~k; !) (15)with �0(~k; !) = �1(~k; !) +�2(~k; !).From Eq. (6), it is possible to obtain a 
losed form expression for smalldeviation of two-body 
orrelations ÆC12, that is valid for 
olle
tive vibrations(for details please refer to [10℄),ÆC12(t) = � i~ tZ dt0�01�02e�ih0(t�t0)[Æ�(t0); v℄�eih0(t�t0)(1� �01)(1� �02) + h:
: ; (16)where Æ�(t) is the distortion fun
tion asso
iated with the single-parti
ledensity matrix, and it is related to the small vibrations in the single-parti
ledensity matrix Æ�(t) a

ording to Æ�(t) = [Æ�(t); �0℄. We then obtain theexpression for the linearized 
ollision term by evaluating the matrix elementh~p + ~k2 j ÆK(!) j ~p � ~k2 i in whi
h we retain ~k-dependen
e only in distor-tion fun
tion [10℄. Then, the 
ollisional response fun
tion �2(~k; !) 
an beexpressed as�2(~k; !) = 1(2�~)3 Z d3p1d3p2d3p3d3p4���Q2 �2 W (12; 34)� f1f2f3f4 � f1f2f3f4~! � "3 � "4 + "1 + "2 + i� ; (17)where �Q = Q1+Q2�Q3�Q4 with Qi = 1=h~! � "�~pi + ~k2�+"�~pi � ~k2�i,f i = 1� fi and W(12;34) denotes the basi
 two-body transition rate, whi
h
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an be expressed in terms of the spin averaged proton�neutron s
attering
ross se
tion asW (12; 34) = 1(2�~)3 4~m2 � d�d
�pn Æ3(~p1 + ~p2 � ~p3 � ~p4) : (18)The strength distribution fun
tion is obtained from the imaginary part ofthe retarded response fun
tion [14℄S(~k; !) = � 1� Im�R(~k; !) : (19)In our 
al
ulations, we employ a simpli�ed Skyrme intera
tionv = t0(1 + x0P�)Æ(~r) + 16 t3(1 + x3P�)��(~R)Æ(~r) (20)with ~r = ~r1� ~r2 and ~R = (~r1+ ~r2)=2. The lo
al potential for protons is thengiven byUp(~r; t) = t0�1 + 12x0� �(~r; t)� t0�12 + x0� �p(~r; t)+ 112 t3��(~r; t) �(2 + �)�1 + 12x3� �p(~r; t)�2�12 + x3� �(~r; t)� ��12 + x3� �2p(~r; t) + �2n(~r; t)�(~r; t) # (21)with a similar expression for neutrons. In linear response approximation,the 
oupling 
onstant V0 for dipole vibrations be
omesV0 = �12 t0�12 + x0�� 112 t3��0 �12 + x3� ; (22)where �0 is the saturation density of nu
lear matter. In our analysis we
onsider in parti
ular the Skyrme SLy4 for
e with the parameters [15℄ t0 =�2488:91 MeV fm3, t3 = 13777 MeV fm7=2, x0 = 0:834, x3 = 1:354 and� = 1=6, whi
h results for V0 in the value V0 = 85 MeV fm3.In order to apply our results to �nite nu
lei, we work within the frame-work of Steinwedel and Jensen model for nu
lear dipole os
illations [6℄. Inthis model neutrons and protons os
illate inside a sphere of radius R givenby the expression �p(~r; t)� �n(~r; t) = F sin(~k � ~r)ei!t ; (23)



Collisional E�e
ts in Isove
tor Response Fun
tion of : : : 4235the total density remaining equal to the saturation density �0 of nu
learmatter and the wavenumber k is given by k = �=2R. We apply Steinwedeland Jensen model to GDR in 120Sn and 208Pb, and we take R = 5:6 fmk = 0:28 fm�1 for 120Sn and R = 6:7 fm k = 0:23 fm�1 for 208Pb a

ordingto R = 1:13A1=3.As a result of the approximate treatment, the 
ollisional response fun
-tion �2(~k; !) has a singular behavior arising from the pole of the distortionfun
tions, Qi = 1.h~! � "�~pi + ~k2�+ "�~pi � ~k2�i . We avoid this singularbehavior by in
orporating a pole approximation. In the distortion fun
tions,we make the repla
ement ! ! !D � i�=2 where !D and � are determinedfrom 1 � V0�1(~k; !) = 0 at ea
h temperature that is 
onsidered. Further-more, we negle
t the real part Re�2 of the fun
tion �2 in our 
al
ulations.In the 
al
ulations of the 
ollisional response fun
tion, using 
onservationlaws and symmetry properties, it is possible to redu
e the twelve dimen-sional integrals to �ve fold integrals by in
orporating the transformationsinto the total momenta ~P = ~p1 + ~p2, ~P 0 = ~p3 + ~p4, and relative momenta~q = (~p1�~p2)=2, ~q 0 = (~p3�~p4)=2 before and after the 
ollisions. The integralover ~P 0 
an be performed immediately. The delta fun
tion Æ(~!� "0 + ") inIm�2(~k; !) where " = ~q 2=m and "0 = ~q 0 2=m are the energies of two parti-
le system in the 
enter of mass frame before and after the 
ollision makesit possible the redu
e the integrals further using familiar methods from theFermi liquid theory [17℄. Then, we evaluate the remaining �ve dimensionalintegrals numeri
ally by employing a fast algorithm. In the evaluation ofmomentum integrals, we negle
t the angular anisotropy of the 
ross se
tionsand make the repla
ement (d�=d
)pn ! �pn=4� with �pn = 40 mb.We show our results for the response fun
tion with and without the
ollision term in Fig. 1 for 120Sn and in Fig. 2 for 208Pb as a fun
tion ofexperimental temperature T � where we also present the 
omparison withthe normalized experimental data [4℄. The experimental temperature T � isrelated to the temperature parameter in the Fermi�Dira
 fun
tion f("; T )as T = T �paE=aF, where aE denotes the energy dependent empiri
al leveldensity parameter and aF = A�2=4"F denotes Fermi gas level density pa-rameter [4, 16℄. In our 
al
ulations, we use the temperature values T in theFermi�Dira
 fun
tion that are related to the experimental temperatures inthis manner.We �rst note that, at the RPA level that is without the 
ontributionof the 
ollision term in 
al
ulation of the nu
lear response, the positionof the peak of the response fun
tions do not 
hange with temperature.As a matter of fa
t, for 208Pb the peak is at ! = 12:3 MeV for T � =1:34; 1:62; 1:85; 2:05 MeV while for 120Sn it o

urs at ! = 14:3 MeV forT � = 1:24; 2:02 MeV and at ! = 14:2 MeV for T � = 2:61; 3:12 MeV.
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Fig. 1. The GDR strength fun
tion of 120Sn. Solid and dashed lines show theresponse fun
tion without and with the 
ollision term, respe
tively. The normalizeddata is taken from [4℄.This behavior of the peak energy with temperature is in a

ordan
e withthe experimental results where it is observed that the mean-energy of thedipole response is almost 
onstant for 208Pb when T � 
hanges between 1.3 to2.0 MeV while a de
rease of 1.5 MeV is observed in 120Sn when T � 
hangesfrom 1.2 to 3.1 MeV [4℄. However, the average positions of the peak valuesof the strength fun
tions are slightly below the experimental values, whi
hare ! = 15:4 MeV for 120Sn and ! = 13:4 MeV for 208Pb. This dis
repan
ymay be due to the nature of the e�e
tive Skyrme for
e that we employ.Moreover, the value for k = �=2R that is used in Steinwedel and Jensenmodel depends on the value of R0 used in R = R0A1=3, and 
hanging ksomewhat also produ
es a 
hange in the position of the peak but in generalthe above 
on
lusions are not a�e
ted. Furthermore, these results for thepeak position of the strength fun
tions are in a

ordan
e with the earlierRPA 
al
ulations.
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Fig. 2. The GDR strength fun
tion of 208Pb. Solid and dashed lines show theresponse fun
tion without and with the 
ollision term, respe
tively. The normalizeddata is taken from [4℄.Dotted lines in �gures 1, 2 show the strength fun
tions in
luding 
olli-sional damping me
hanism. Sin
e, we negle
t the real part of the 
ollisionalresponse the peak values of the strength do not 
hange, but the 
ollisionalme
hanism introdu
es a spread, in parti
ular at the high frequen
y side ofthe strength fun
tions and this spread be
omes more pronoun
ed with in-
reasing temperature. In order to illustrate the e�e
t of the 
ollision termmore drasti
ally, in �gure 3, we show the response fun
tion with and withoutthe 
ollision term for 120Sn and for 208Pb at temperatures T = 2; 4 MeV.Rather simple des
ription presented in this paper is able to explain 
er-tain aspe
ts of giant dipole ex
itations in 120Sn and 208Pb, but do not pro-du
e a good des
ription of the experimental strength fun
tions as a fun
tionof temperature. One important element missing in the 
al
ulations is the
oherent damping me
hanism due to 
oupling dipole vibrations with lowfrequen
y 
olle
tive surfa
e modes [18�20℄. This me
hanism is espe
ially
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Fig. 3. The GDR strength fun
tion of 120Sn and 208Pb at T � = 2; 4 MeV. Solidand dashed lines show the response fun
tion without and with the 
ollision term,respe
tively.important for des
ribing the details of the strength distributions at low tem-perature. In the 
ontinuation of this work, we plan to improve this simpledes
ription by in
orporating the 
oherent damping me
hanism in Thomas�Fermi approximation. REFERENCES[1℄ Ele
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