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A simple theory of the interaction potential between heavy ions V, based
on the local density approach and the frozen density model, is applied to
anumber of pairs of nuclei with neutron excess. The energy density needed
for calculating V is expressed in a simple way through the equilibrium
properties of nuclear matter, a phenomenological density gradient term,
and nucleon density distributions in the two colliding nuclei. The Coulomb
barrier in the calculated potential compares favorably with other estimates.

PACS numbers: 25.70.—z

1. Introduction

The theoretical description of heavy ion collisions requires the knowledge
of the interaction potential V between the two colliding ions. A simple nu-
clear matter (NM) approach to V was presented in [1]| (hereafter referred to
as I). It was an extension of our previous work Refs [2-5] restricted to equal
number of neutrons and protons, N = Z, to the case of ions with neutron
excess, N > Z. Our approach allows to determine V directly from the known
properties of NM!. The input of our simple calculations consists of: equilib-
rium density, volume and symmetry energy of NM, nucleon effective mass
in NM, empirical densities in the colliding nuclei, and a phenomenological
density gradient correction to the energy density.

* This research was partly supported by the Polish State Committee for Scientific
Research (KBN) under grant No. 2P03B7522 and the National Science Foundation
under grant No. PHY-0070828.

! In a simplified form, the approach was applied a long time ago by Brueckner et al. [6]
(see also [7]).
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In the present paper, we apply the scheme of I to describe the scattering
of a number of heavy ions. The paper is organized as follows. In Sec. 2, the
main results of I are summarized. In Sec. 3 the results obtained for V for
anumber of heavy ions are presented and discussed.

2. The nuclear mater approach to V

We consider nuclei 1 (target) and 2 (projectile) (with masses My, Mo,
and with the reduced mass u = MMy /(M; + Ms), moving with relative
momentum Krpr, (in units of A). We denote by R the relative position
vector between the centers of mass of 1 and 2 (directed from 1 to 2). In the
CM system V is defined by the relation

h2 KI?{EL

V(E,R) = Ecm(KREr, R) — M

—&n(1) —&n(2), (1)

where &, (4) is the intrinsic nuclear energy of the isolated nucleus 7 and Eqm
is the nuclear energy of the total system in the CM frame.

The conservation of the total energy implies that the instantaneous rel-
ative momentum Kggr, = Kgrgr(R) is changing with R

h2KreL(R)?
2p

+V(E,R)+VC(R):FL2K%:®O)2:E, (2)

where V¢ (R) is the Coulomb potential between nuclei 1 and 2, and F is the
CMS kinetic energy.

The two main ingredients of the approach of I to the problem of cal-
culating Ecm(KRreL, R) are the local density approximation and the frozen
density model.

According to the local density approximation, for a given distance R the
system of the two colliding nuclei is approximated locally (at each point r)
by a piece of nuclear matter (NM) with the neutron and proton densities
pn and p,, and with the corresponding momentum distributions n,,(k,) and
ny(ky). If we denote by HM the energy density of this local NM in the CM
frame, we have

Ecm(Krer, R) = /dngl\l\//I[(KRELaRﬂ")- (3)

To determine the densities and momentum distributions, we apply the
frozen density model (the sudden approximation), in which

py(T) = p1y(r) + p2y (I — R]) , (4)
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where pj, (y = n,p; @ = 1,2) are the original neutron and proton densities
of nuclei 1 and 2. (The origin of » and R is the center of 1.) For the local
momentum distributions of neutrons (protons) in nucleus 1 and 2 at r we
have two Fermi spheres 10n(p) and 20n(p) with the respective local Fermi
momenta

1/3 1/3
kraog(r) = (37201, (0], krany(r) = [3n%00, (7 — R)]*, ()
with the center of the Fermi sphere 2 shifted from the center of the Fermi
sphere 1 by K, (twice) the average relative nucleon momenta in nucleus 2
and nucleus 1,

K, = <%) Krer , (6)

where m is the nucleon mass.

When K, < kpioy + kraoy, the two Fermi spheres 10y and 20y overlap,
and we face the problem of the double occupancy in the overlap region. We
resolve this problem by increasing kpioy — kpiy and kpaoy — kpay, and
obtain our final momentum distributions with the Fermi surfaces 1y and
2y with the increased Fermi momenta and with a single occupancy in the
overlap region. Details of this reshuffling of neutrons and protons from the
original distributions (with the double occupancy in the overlap region) to
our final distributions are presented in I. This reshuffling, i.e. determination
of kr1y and kpay, was accomplished with a numerical procedure.

To calculate the energy density of the local NM, we go over to the rest
frame of the local NM. Our NM energy density HNM in this frame differs
from H™, the energy density of normal NM (i.e., NM in its ground state)
with the same neutron and proton densities by the two-sphere momentum
distributions of neutrons and protons, which in normal NM are single Fermi
spheres. To change normal NM into our local NM one has to redistribute
neutrons and protons from their single Fermi sphere distributions into the
two-sphere distributions. The corresponding change in the energy density
is determined by the single particle (s.p.) energies of the states involved in
the redistribution. In this way we get

HNM = f(p7 a)p + %(Tn +Tp — Ton — 7-Op) s (7)

where p is the total local density, & = (p, — pp)/p is the neutron excess
parameter, and 7, and 7g, are the kinetic energy densities (in the rest frame
of NM) in our local NM and in normal NM?2. The second part on the r.h.s.
of Eq. (7) represents the change in the energy density caused by the re-
distribution of nucleons in momentum space. Here we assume for the s.p.

2 Whereas for 70, we have simple expressions, 7o, = %6(kFy)py, also for 7, we have
(slightly longer) analytical expressions.
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energies the effective mass approximation with the ratio of the effective to
the real nucleon mass by m*/m = v = v(p).

The first term on the r.h.s. of Eq. (7) is the energy density of normal
NM, f(p,a)p = H™ = (EfM/A)p. We expand f(p,a), the energy per
nucleon in normal nuclear matter, in powers of «

Flpre) = folp) + 30esym(p). Q

For fy, we assume the form

5 j
(o) = 3 elie) + 3y (15 )

Jj=3

where ¢ (k) = h2k?/2m, kp = (312p/2)'/3 is the Fermi momentum of normal
NM with N = Z and kpg is the value of kp at equilibrium density po.
The coefficients a; are determined by kg, by the volume energy of NM,
evol = fo(po), and by the compressibility K. = k& (d?fo/dk3)kp,-

The nuclear symmetry energy at density p, egym(p) is connected with the
Lane [8] potential V73

_ 2¢(kp)
3 v(p)

This relation allows us to write HYM in the form

e + V). (10)

1 1 51
HNM:fO(P)P+;(Tn+7p—70)+§042ZV1P, (11)
where 7o = 2¢(kp)p is the kinetic energy density in normal NM with N = Z.
We assume that the Lane potential is proportional to the density of NM

Vilp) = 2 Vilpo). (12)
Po

For the dependence of v on p, we use the relation

() =1 _ p 3

vg—1  po’

where vy = v(py).
In conclusion, the form of the energy density is specified if we fix
the values of pg (or krg), evol, K¢, €sym(p0) = €sym (or Vi(po)), and .

HNM

3 The contribution of the Lane potential to the neutron/proton s.p. potential is
(+/-) 7aVi.
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When we go back to the CM frame and apply definition (1) of V, we get

WK} p1ps
2m  p

V(E,R) = /dr {HNM + Hy — } —&n(1) —&n(2). (14

In (14) we go beyond the local density approximation and following
Brueckner et al. [9] we introduce the gradient correction term
2

nw(Vp)

Hy = Hy(p) = +nv(Vp)?, (15)

where nw = A2/72m. The first term in (15) is the Weizséicker correction to
the kinetic energy density, and the second one is the gradient correction to
the potential energy density, in which 7y is treated as a phenomenological
parameter.

In calculating the intrinsic energies £ (i) we apply the expression

Einli) = / dr{ (pis c)pi + Hy (0)} (16)

where a; = (pin — pip)/pi-

3. Results and discussion

For a given CM energy E, we know only Kgpr(c0) = (2uFE)'/? /h, whereas
expression (14) for V(E, R) depends on Kgrgr, = Kgrgr(R) connected with
Kgpgr,(00) by energy conservation Eq. (2) which in turn contains V(FE, R).
We solve this problem by iteration which we start by calculating V(%) with the

help of expression (14) with Krpr, = Krgr(oc). In the next step, we calcu-

late V(Y by applying expression (14) with Kpgy, = }({OE)L(R), obtained from

Eq. (2) with V=V After a few steps, we obtain V) =p(i=1 =y,

For the r-integration in (14) we use cylindrical coordinates with the
z-axis along R. We assume that K, is parallel to R, which reduces the
r-integration to a twofold integration, performed by means of the Gauss
formula.

To obtain the Coulomb energy ¢ of a nucleus, we approximate the
charge distribution in this nucleus by the equivalent uniform charge distri-
bution of radius Rc = [5(r?)/3]'/2, and use the expression £ = 3Z%¢?/5Rc.
Similarly, to obtain the Coulomb interaction V¢ (R), we approximate charge
distributions in nuclei 1 and 2 by equivalent uniform charge distributions
and calculate V¢ (R) as the Coulomb interaction between these two uniform
charge distributions.
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If we do not state otherwise, we use the following standard parameters
of normal NM: kpg = 1.35 fm~! (py = 0.166 fm3), £, = —15.8 MeV,
K. =234.9MeV [a5 = 0 in (9)], Vi(po) = 100MeV (ggym = 61.0MeV), and
vy = 0.7.

For the nucleon density distributions, we use two- and three-parameter
Fermi models (2pF and 3pF) and three-parameter Gaussian model (3pG)
with parameters taken from Refs [11,12|. In the present paper we assume
the same radial shape of the neutron and proton density distributions.

The value of the phenomenological parameter n = 22 MeV fm> was ad-
justed to the ground state energies £ = &, + ¢ |with the intrinsic nuclear
energy &, calculated according to Eq. (16)] of 1°0 and *°Ca.

Values of the parameters of the density distribution of nuclei considered
in the present paper are presented in Table T which also contains values of
the calculated root-mean square radii (r2)!/2. Furthermore, we also present
in Table I the calculated values of £ together with their experimental values
Eexp- We notice a satisfying agreement between these two values.

In our discussion we shall present our results for the nuclear potential V),
and for Vot (FE, R) = V(E, R) + Vc(R) for different values of K, = K,(00).
The connection between Fp,ap/A2 (the kinetic energy in the LAB system of
the projectile nucleus 2 per projectile nucleon) and K, (in fm~!) is

Erap  RPK? )
=—T —=920.7 K? MeV. 1
1 5 0.7 K7 MeV (17)

TABLE 1

Parameters of the density distributions and values of the ground state energies and
their experimental values. All lengths are in fm and energies in MeV.

Nucl. Model c z w (r2)1/2 Eeal Eoxp®

00, 3pFP  3.766  0.536 —0.161 3482 —3419 —342.1
8Ca  3pF® 3.7369 0.5245 —0.030  3.469 —428.3 —416.0
07r  3pGP 4434  2.528 0.350 4.274 —T7786 —783.9
208pL,  3pFC¢  6.504  0.552743  0.14 5511 —1640.4 —1636.4
238y 2pFP  6.8054 0.6054 0. 5.740 —1794.8 —1801.7

aTaken from Ref. [10].
bParameters taken from Ref. [11].
¢Parameters taken from Ref. [12].
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For the CMS kinetic energy F, we have

E:ﬁfﬂf—’?

m m

=20.7 £ K2 Mev. (18)
m

Let us consider as an example the case of the potential between 2°8Ph
(target) and *8Ca (projectile) nuclei. Results obtained in this case for V and
Viot = V + V¢ for a number of K, values between 0 and 2.5 fm~! are shown
in Fig. 1.
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Fig.1. Potentials V (broken curves) and Vo (solid curves) between 2°*Pb and
48Ca nuclei at the indicated values (in fm~!) of K.

The most striking feature of our results is the dependence of V on K, (o0),
i.e. on the energy F, and the R-dependence of V: short range repulsion* +
long range attraction. A detailed discussion of this behavior of V in case of
N = Z presented in [2] and [3]| applies also to the present case. Here, we
recall briefly the main points of our previous discussion.

The dependence of V on K, is non-monotonic. At small values of K, V
decreases (algebraically, i.e. becomes more attractive) up to K, ~ 1.5 fm™".
If we further increase K, V starts to increase and eventually becomes partly
repulsive. Let us recall that at small values of K., we increase the radii of the
two Fermi spheres in our momentum distributions to avoid double occupancy
in the overlap region, which would violate the exclusion principle. This leads
to an increase in the kinetic energy, which gives a repulsive contribution to V.

4 For lighter ions instead of the short range repulsion we may have a weakened attrac-
tion (see e.g. [3,4]).
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This Pauli blocking effect becomes less important when K. increases, which
explains the initial decrease in V. On the other hand, the potential energy
contribution to V increases (algebraically) with increasing K,, which may
be traced back to the short range NN repulsion. This explains the increase
in V at larger values of K.

To explain the dependence of V on R, let us notice that at small (large)
values of R, a substantial part of the combined system has a density p > pg
(p < po). Hence at an intermediate distance R, a substantial part of the
combined system has a density p = pg, at which the density of normal
NM attains its minimum. Consequently at an intermediate distance V in
the static limit (K, = 0) attains a minimum. For K, # 0 the repulsive
Pauli blocking effect is weakened especially at large distances R, i¢.e. small
densities, and thus the repulsion is shifted towards small distances R.

When we add to V the Coulomb potential V¢, we obtain the total po-
tential Viot which also is nonmonotonic. It contains a Coulomb barrier and
a dip inside of the barrier. Whereas the height (~ 180MeV) and position
(R ~ 12fm) of the barrier depends only weakly on K, the depth of the dip
(~ 59 MeV at K, = 1.5 MeV, and ~ 2MeV at K, = 2.5 MeV) and its location
are quite sensitive to the magnitude of K.

All the curves in Fig. 1 (as well as in all remaining figures) were obtained
with the R dependent K, (R) except for the case K, = 0 in which we used
K,(R) = K,(00) = 0. This case of the static limit corresponds exactly to
the model applied in the pioneering paper of Brueckner et al. [6].

The sensitivity of our results for V to the magnitude of the Lane potential
Vi (or equivalently to the symmetry energy egym) is visualized in Fig. 2,
where we show results for the 28Pb—*8Ca potential at K, = 1.5 fm™!
obtained with V4 = 100 MeV (¢%™ = 61.0 Mev) and with V3 = 0 (%™ =
36.0 Mev), with all the remaining parameters unchanged. We also consider
the case in which we artificially assume that there is no neutron excess
in both nuclei 2%8Pb and “®Ca, i.e. we replace Z; and N; (i = 1,2) by
A;/2 (but use the real Z; values in calculating Coulomb energies) and use
the same 3pF density distributions. The corresponding curves in Fig. 1
are marked as “a = 0”. We notice that taking into account the neutron
excess, and increasing the Lane potential (or equivalently the symmetry
energy) increases both V and Viu, although the height of the Coulomb
barrier remains practically unchanged.

The behavior of V and Vi at K, = 1.5 fm~! for a selection of pairs of
nuclei is shown in Fig. 3. The height B of the Coulomb barrier for these
pairs of nuclei are presented in TableII together with other estimates of B:
results of the Hartree-Fock calculations of Skalski [13], the estimates of the
fusion threshold barriers Bine by Siwek-Wilczyriska and Wilczynski [15],
and Bass [14] interaction barriers Bip. We see that our results agree very
nicely with the other results.
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Fig. 2. Potentials V (broken curves) and Vi (solid curves) between 2°*Pb and *8Ca
at K, = 1.5 fm™! for V; = 100MeV, and V; = 0. The a=0 curves were obtained

by disregarding the neutron exces.
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Fig. 3. Potentials V (broken curves) and Vios (solid curves) between the indicated

pairs of nuclei at K, = 1.5 fm™?!.
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TABLE 11

Results of the present work for the Coulomb barrier B in MeV at K, = 1.5fm™!
compared with other estimates.

Nuclei Bopres.work B2 Bihre Bint °
10Ca-10Ca 52.7 53 50.24+0.2¢  52.54
907y 40Ca 97.8 95 92.740.6¢  97.7

208ph-18Ca 177.3 173.5 169+2°¢ 176.1
07y 907y 183.4 180 ~175.854  181.0
BU-18Ca 194.8 174.5(191)  182+2¢  193.8

2Calculated in Ref. [13].

PInteraction barriers of Ref. [14].
¢Threshold barrier estimated in Ref. [15].
dThreshold barrier estimated in Ref. [13].

We use the frozen density model, and a rough criterion for its applica-
bility is that Er,ap/A2 should be larger than the intrinsic kinetic energy per
nucleon in the colliding nuclei, 4.e., about 30 MeV. This implies the condi-
tion K, = K,(00) 2 1.2 fm ! [see Eq. (17)]°. Thus in principle, we should
not apply our approach to the very small values of K, which correspond
to E ~ B, i.e. to threshold energies determined in [15] and to the energies
applied in [14] in determining Bing, or to the static limit £ — 0 applied
in [13]. Nevertheless the favorable comparison of our results for B with the
theoretical results of [13] and the estimates of the threshold barriers of [15],
and with Bj,; [14] appears meaningful because of the weak dependence on
K, of our results for B. Notice that the Coulomb barrier attains its maxi-
mum at distances R at which only the tails of the densities of the colliding
nuclei overlap.

The interesting behavior of V at smaller distances R shown in Fig. 3 is
hard to test experimentally, because strong absorption® and also Coulomb
repulsion make the region of small distances practically inaccessible in the
elastic channel. (For this reason the range of smallest distances R is not
shown in Figs. 1 and 2.)

5 On the other hand, an upper limit on K, is imposed by our use of nonrelativistic
theory: for K, =3.4 fm! we already have Epas/As 22 %mc2. Also approximation (7)
puts an upper limit on K,.

6 See e.g. Refs [3,4].
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