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APPLICATION OF THE NUCLEAR MATTERAPPROACH TO THE INTERACTION POTENTIALBETWEEN HEAVY IONS�J. D¡browskia, H.S. Köhlerb and J. Ro»ynekaaTheoretial Division, A. Soªtan Institute for Nulear StudiesHo»a 69, 00-681 Warsaw, PolandbUniversity of Arizona, Tuson, AZ 85721, USA(Reeived May 15, 2003)A simple theory of the interation potential between heavy ions V , basedon the loal density approah and the frozen density model, is applied toa number of pairs of nulei with neutron exess. The energy density neededfor alulating V is expressed in a simple way through the equilibriumproperties of nulear matter, a phenomenologial density gradient term,and nuleon density distributions in the two olliding nulei. The Coulombbarrier in the alulated potential ompares favorably with other estimates.PACS numbers: 25.70.�z 1. IntrodutionThe theoretial desription of heavy ion ollisions requires the knowledgeof the interation potential V between the two olliding ions. A simple nu-lear matter (NM) approah to V was presented in [1℄ (hereafter referred toas I). It was an extension of our previous work Refs [2�5℄ restrited to equalnumber of neutrons and protons, N = Z, to the ase of ions with neutronexess, N > Z. Our approah allows to determine V diretly from the knownproperties of NM1. The input of our simple alulations onsists of: equilib-rium density, volume and symmetry energy of NM, nuleon e�etive massin NM, empirial densities in the olliding nulei, and a phenomenologialdensity gradient orretion to the energy density.� This researh was partly supported by the Polish State Committee for Sienti�Researh (KBN) under grant No. 2P03B7522 and the National Siene Foundationunder grant No. PHY-0070828.1 In a simpli�ed form, the approah was applied a long time ago by Bruekner et al. [6℄(see also [7℄). (4257)



4258 J. D¡browski, H.S. Köhler, J. Ro»ynekIn the present paper, we apply the sheme of I to desribe the satteringof a number of heavy ions. The paper is organized as follows. In Se. 2, themain results of I are summarized. In Se. 3 the results obtained for V fora number of heavy ions are presented and disussed.2. The nulear mater approah to VWe onsider nulei 1 (target) and 2 (projetile) (with masses M1, M2,and with the redued mass � = M1M2=(M1 +M2), moving with relativemomentum KREL (in units of ~). We denote by R the relative positionvetor between the enters of mass of 1 and 2 (direted from 1 to 2). In theCM system V is de�ned by the relationV(E;R) = ECM(KREL; R)� ~2K2REL2� � Ein(1) � Ein(2) ; (1)where Ein(i) is the intrinsi nulear energy of the isolated nuleus i and ECMis the nulear energy of the total system in the CM frame.The onservation of the total energy implies that the instantaneous rel-ative momentum KREL =KREL(R) is hanging with R~2KREL(R)22� + V(E;R) + VC(R) = ~2KREL(1)22� = E ; (2)where VC(R) is the Coulomb potential between nulei 1 and 2, and E is theCMS kineti energy.The two main ingredients of the approah of I to the problem of al-ulating ECM(KREL; R) are the loal density approximation and the frozendensity model.Aording to the loal density approximation, for a given distane R thesystem of the two olliding nulei is approximated loally (at eah point r)by a piee of nulear matter (NM) with the neutron and proton densities�n and �p, and with the orresponding momentum distributions nn(kn) andnp(kp). If we denote by HNMCM the energy density of this loal NM in the CMframe, we have ECM(KREL; R) = Z drHNMCM (KREL; R; r) : (3)To determine the densities and momentum distributions, we apply thefrozen density model (the sudden approximation), in whih�y(r) = �1y(r) + �2y(jr �Rj) ; (4)



Appliation of the Nulear Matter Approah to the . . . 4259where �iy (y = n; p; i = 1; 2) are the original neutron and proton densitiesof nulei 1 and 2. (The origin of r and R is the enter of 1.) For the loalmomentum distributions of neutrons (protons) in nuleus 1 and 2 at r wehave two Fermi spheres 10n(p) and 20n(p) with the respetive loal FermimomentakF10y(r) = �3�2�1y(r)�1=3 ; kF20y(r) = �3�2�2y(jr �Rj)�1=3 ; (5)with the enter of the Fermi sphere 2 shifted from the enter of the Fermisphere 1 by Kr, (twie) the average relative nuleon momenta in nuleus 2and nuleus 1, Kr = �m� �KREL ; (6)where m is the nuleon mass.When Kr < kF10y + kF20y, the two Fermi spheres 10y and 20y overlap,and we fae the problem of the double oupany in the overlap region. Weresolve this problem by inreasing kF10y ! kF1y and kF20y ! kF2y, andobtain our �nal momentum distributions with the Fermi surfaes 1y and2y with the inreased Fermi momenta and with a single oupany in theoverlap region. Details of this reshu�ing of neutrons and protons from theoriginal distributions (with the double oupany in the overlap region) toour �nal distributions are presented in I. This reshu�ing, i.e. determinationof kF1y and kF2y, was aomplished with a numerial proedure.To alulate the energy density of the loal NM, we go over to the restframe of the loal NM. Our NM energy density HNM in this frame di�ersfrom HNM0 , the energy density of normal NM (i.e., NM in its ground state)with the same neutron and proton densities by the two-sphere momentumdistributions of neutrons and protons, whih in normal NM are single Fermispheres. To hange normal NM into our loal NM one has to redistributeneutrons and protons from their single Fermi sphere distributions into thetwo-sphere distributions. The orresponding hange in the energy densityis determined by the single partile (s.p.) energies of the states involved inthe redistribution. In this way we getHNM = f(�; �)�+ 1� (�n + �p � �0n � �0p) ; (7)where � is the total loal density, � = (�n � �p)=� is the neutron exessparameter, and �y and �0y are the kineti energy densities (in the rest frameof NM) in our loal NM and in normal NM2. The seond part on the r.h.s.of Eq. (7) represents the hange in the energy density aused by the re-distribution of nuleons in momentum spae. Here we assume for the s.p.2 Whereas for �0y we have simple expressions, �0y = 35"(kFy)�y, also for �y we have(slightly longer) analytial expressions.



4260 J. D¡browski, H.S. Köhler, J. Ro»ynekenergies the e�etive mass approximation with the ratio of the e�etive tothe real nuleon mass by m�=m = � = �(�).The �rst term on the r.h.s. of Eq. (7) is the energy density of normalNM, f(�; �)� = HNM0 = (ENM0 =A)�. We expand f(�; �), the energy pernuleon in normal nulear matter, in powers of �f(�; �) = f0(�) + 12�2"sym(�) : (8)For f0, we assume the formf0(�) = 35 "(kF) + 5Xj=3 aj � kFkF0�j ; (9)where "(k) = ~2k2=2m, kF = (3�2�=2)1=3 is the Fermi momentum of normalNM with N = Z and kF0 is the value of kF at equilibrium density �0.The oe�ients aj are determined by kF0, by the volume energy of NM,"vol = f0(�0), and by the ompressibility K = k2F0(d2f0=dk2F)kF0 .The nulear symmetry energy at density �, "sym(�) is onneted with theLane [8℄ potential V13 "sym(�) = 23 "(kF)�(�) + 14V1(�) : (10)This relation allows us to write HNM in the formHNM = f0(�)�+ 1� (�n + �p � �0) + 12�2 14V1� ; (11)where �0 = 35"(kF)� is the kineti energy density in normal NM with N = Z.We assume that the Lane potential is proportional to the density of NMV1(�) = ��0 V1(�0) : (12)For the dependene of � on �, we use the relation1=�(�) � 11=�0 � 1 = ��0 ; (13)where �0 = �(�0).In onlusion, the form of the energy density HNM is spei�ed if we �xthe values of �0 (or kF0), "vol, K, "sym(�0) � "sym (or V1(�0)), and �0.3 The ontribution of the Lane potential to the neutron/proton s.p. potential is(+/�) 14�V1.



Appliation of the Nulear Matter Approah to the . . . 4261When we go bak to the CM frame and apply de�nition (1) of V, we getV(E;R) = Z dr�HNM +Hr � ~2K2r2m �1�2� �� Ein(1) � Ein(2) : (14)In (14) we go beyond the loal density approximation and followingBruekner et al. [9℄ we introdue the gradient orretion termHr = Hr(�) = �W(r�)2� + �V (r�)2 ; (15)where �W = ~2=72m. The �rst term in (15) is the Weizsäker orretion tothe kineti energy density, and the seond one is the gradient orretion tothe potential energy density, in whih �V is treated as a phenomenologialparameter.In alulating the intrinsi energies Ein(i) we apply the expressionEin(i) = Z drff(�i; �i)�i +Hr(�i)g ; (16)where �i = (�in � �ip)=�i.3. Results and disussionFor a givenCMenergyE, we knowonly KREL(1) = (2�E)1=2=~, whereasexpression (14) for V(E;R) depends on KREL = KREL(R) onneted withKREL(1) by energy onservation Eq. (2) whih in turn ontains V(E;R).We solve this problem by iteration whihwe start by alulatingV(0) with thehelp of expression (14) with KREL=KREL(1). In the next step, we alu-late V(1) by applying expression (14) with KREL=K(0)REL(R), obtained fromEq. (2) with V=V(0). After a few steps, we obtain V(i)=V(i�1)=V.For the r-integration in (14) we use ylindrial oordinates with thez-axis along R. We assume that Kr is parallel to R, whih redues ther-integration to a twofold integration, performed by means of the Gaussformula.To obtain the Coulomb energy EC of a nuleus, we approximate theharge distribution in this nuleus by the equivalent uniform harge distri-bution of radius RC = [5hr2i=3℄1=2, and use the expression EC = 3Z2e2=5RC.Similarly, to obtain the Coulomb interation VC(R), we approximate hargedistributions in nulei 1 and 2 by equivalent uniform harge distributionsand alulate VC(R) as the Coulomb interation between these two uniformharge distributions.



4262 J. D¡browski, H.S. Köhler, J. Ro»ynekIf we do not state otherwise, we use the following standard parametersof normal NM: kF0 = 1:35 fm�1 (�0 = 0:166 fm�3), "vol = �15:8MeV,K = 234:9MeV [a5 = 0 in (9)℄, V1(�0) = 100MeV ("sym = 61:0MeV), and�0 = 0:7.For the nuleon density distributions, we use two- and three-parameterFermi models (2pF and 3pF) and three-parameter Gaussian model (3pG)with parameters taken from Refs [11, 12℄. In the present paper we assumethe same radial shape of the neutron and proton density distributions.The value of the phenomenologial parameter � = 22MeV fm5 was ad-justed to the ground state energies E = Ein + EC [with the intrinsi nulearenergy Ein alulated aording to Eq. (16)℄ of 16O and 40Ca.Values of the parameters of the density distribution of nulei onsideredin the present paper are presented in Table I whih also ontains values ofthe alulated root-mean square radii hr2i1=2. Furthermore, we also presentin Table I the alulated values of E together with their experimental valuesEexp: We notie a satisfying agreement between these two values.In our disussion we shall present our results for the nulear potential V,and for Vtot(E;R) = V(E;R) + VC(R) for di�erent values of Kr = Kr(1).The onnetion between ELAB=A2 (the kineti energy in the LAB system ofthe projetile nuleus 2 per projetile nuleon) and Kr (in fm�1) isELABA2 = ~2K2r2m = 20:7K2r MeV: (17)TABLE IParameters of the density distributions and values of the ground state energies andtheir experimental values. All lengths are in fm and energies inMeV.Nul. Model  z w hr2i1=2 Eal Eexp a40Ca 3pF b 3.766 0.586 �0:161 3.482 �341:9 �342:148Ca 3pF b 3.7369 0.5245 �0:030 3.469 �428:3 �416:090Zr 3pG b 4.434 2.528 0.350 4.274 �778:6 �783:9208Pb 3pF  6.504 0.552743 0.14 5.511 �1640:4 �1636:4238U 2pF b 6.8054 0.6054 0. 5.740 �1794:8 �1801:7aTaken from Ref. [10℄.bParameters taken from Ref. [11℄.Parameters taken from Ref. [12℄.



Appliation of the Nulear Matter Approah to the . . . 4263For the CMS kineti energy E, we haveE = �m ~2K2r2m = 20:7 �m K2r MeV: (18)Let us onsider as an example the ase of the potential between 208Pb(target) and 48Ca (projetile) nulei. Results obtained in this ase for V andVtot = V +VC for a number of Kr values between 0 and 2.5 fm�1 are shownin Fig. 1.

Fig. 1. Potentials V (broken urves) and Vtot (solid urves) between 208Pb and48Ca nulei at the indiated values (in fm�1) of Kr.The most striking feature of our results is the dependene of V onKr(1),i.e. on the energy E, and the R-dependene of V: short range repulsion4 +long range attration. A detailed disussion of this behavior of V in ase ofN = Z presented in [2℄ and [3℄ applies also to the present ase. Here, wereall brie�y the main points of our previous disussion.The dependene of V on Kr is non-monotoni. At small values of Kr, Vdereases (algebraially, i.e. beomes more attrative) up to Kr � 1:5 fm�1.If we further inrease Kr, V starts to inrease and eventually beomes partlyrepulsive. Let us reall that at small values ofKr, we inrease the radii of thetwo Fermi spheres in our momentum distributions to avoid double oupanyin the overlap region, whih would violate the exlusion priniple. This leadsto an inrease in the kineti energy, whih gives a repulsive ontribution toV.4 For lighter ions instead of the short range repulsion we may have a weakened attra-tion (see e.g. [3, 4℄).



4264 J. D¡browski, H.S. Köhler, J. Ro»ynekThis Pauli bloking e�et beomes less important when Kr inreases, whihexplains the initial derease in V. On the other hand, the potential energyontribution to V inreases (algebraially) with inreasing Kr, whih maybe traed bak to the short range NN repulsion. This explains the inreasein V at larger values of Kr.To explain the dependene of V on R, let us notie that at small (large)values of R, a substantial part of the ombined system has a density � > �0(� < �0). Hene at an intermediate distane R, a substantial part of theombined system has a density � � �0, at whih the density of normalNM attains its minimum. Consequently at an intermediate distane V inthe stati limit (Kr = 0) attains a minimum. For Kr 6= 0 the repulsivePauli bloking e�et is weakened espeially at large distanes R, i.e. smalldensities, and thus the repulsion is shifted towards small distanes R.When we add to V the Coulomb potential VC, we obtain the total po-tential Vtot whih also is nonmonotoni. It ontains a Coulomb barrier anda dip inside of the barrier. Whereas the height (� 180MeV) and position(R � 12 fm) of the barrier depends only weakly on Kr the depth of the dip(� 59MeV atKr = 1:5MeV, and � 2MeV atKr = 2:5MeV) and its loationare quite sensitive to the magnitude of Kr.All the urves in Fig. 1 (as well as in all remaining �gures) were obtainedwith the R dependent Kr(R) exept for the ase Kr = 0 in whih we usedKr(R) = Kr(1) = 0. This ase of the stati limit orresponds exatly tothe model applied in the pioneering paper of Bruekner et al. [6℄.The sensitivity of our results for V to the magnitude of the Lane potentialV1 (or equivalently to the symmetry energy "sym) is visualized in Fig. 2,where we show results for the 208Pb�48Ca potential at Kr = 1:5 fm�1obtained with V1 = 100MeV ("sym = 61:0 Mev) and with V1 = 0 ("sym =36:0 Mev), with all the remaining parameters unhanged. We also onsiderthe ase in whih we arti�ially assume that there is no neutron exessin both nulei 208Pb and 48Ca, i.e. we replae Zi and Ni (i = 1; 2) byAi=2 (but use the real Zi values in alulating Coulomb energies) and usethe same 3pF density distributions. The orresponding urves in Fig. 1are marked as �� = 0�. We notie that taking into aount the neutronexess, and inreasing the Lane potential (or equivalently the symmetryenergy) inreases both V and Vtot, although the height of the Coulombbarrier remains pratially unhanged.The behavior of V and Vtot at Kr = 1:5 fm�1 for a seletion of pairs ofnulei is shown in Fig. 3. The height B of the Coulomb barrier for thesepairs of nulei are presented in Table II together with other estimates ofB:results of the Hartree-Fok alulations of Skalski [13℄, the estimates of thefusion threshold barriers Bthre by Siwek-Wilzy«ska and Wilzy«ski [15℄,and Bass [14℄ interation barriers Bint. We see that our results agree veryniely with the other results.



Appliation of the Nulear Matter Approah to the . . . 4265

Fig. 2. Potentials V (broken urves) and Vtot (solid urves) between 208Pb and 48Caat Kr = 1:5 fm�1 for V1 = 100MeV, and V1 = 0. The �=0 urves were obtainedby disregarding the neutron exes.

Fig. 3. Potentials V (broken urves) and Vtot (solid urves) between the indiatedpairs of nulei at Kr = 1:5 fm�1.



4266 J. D¡browski, H.S. Köhler, J. Ro»ynek TABLE IIResults of the present work for the Coulomb barrier B inMeV at Kr = 1:5 fm�1ompared with other estimates.Nulei Bpres:work B a Bthre Bint b40Ca�40Ca 52:7 53 50.2�0.2  52:5490Zr�40Ca 97:8 95 92.7�0.6  97:7208Pb�48Ca 177.3 173.5 169�2  176.190Zr�90Zr 183.4 180 � 175:85 d 181.0238U�48Ca 194.8 174.5(191) 182�2  193.8aCalulated in Ref. [13℄.bInteration barriers of Ref. [14℄.Threshold barrier estimated in Ref. [15℄.dThreshold barrier estimated in Ref. [13℄.We use the frozen density model, and a rough riterion for its applia-bility is that ELAB=A2 should be larger than the intrinsi kineti energy pernuleon in the olliding nulei, i.e., about 30MeV. This implies the ondi-tion Kr = Kr(1) & 1:2 fm�1 [see Eq. (17)℄5. Thus in priniple, we shouldnot apply our approah to the very small values of Kr whih orrespondto E � B, i.e. to threshold energies determined in [15℄ and to the energiesapplied in [14℄ in determining Bint, or to the stati limit E ! 0 appliedin [13℄. Nevertheless the favorable omparison of our results for B with thetheoretial results of [13℄ and the estimates of the threshold barriers of [15℄,and with Bint [14℄ appears meaningful beause of the weak dependene onKr of our results for B. Notie that the Coulomb barrier attains its maxi-mum at distanes R at whih only the tails of the densities of the ollidingnulei overlap.The interesting behavior of V at smaller distanes R shown in Fig. 3 ishard to test experimentally, beause strong absorption6 and also Coulombrepulsion make the region of small distanes pratially inaessible in theelasti hannel. (For this reason the range of smallest distanes R is notshown in Figs. 1 and 2.)5 On the other hand, an upper limit on Kr is imposed by our use of nonrelativistitheory: for Kr=3:4 fm�1, we already have ELAB=A2 �= 14m2. Also approximation (7)puts an upper limit on Kr.6 See e.g. Refs [3, 4℄.
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