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APPLICATION OF THE NUCLEAR MATTERAPPROACH TO THE INTERACTION POTENTIALBETWEEN HEAVY IONS�J. D¡browskia, H.S. Köhlerb and J. Ro»ynekaaTheoreti
al Division, A. Soªtan Institute for Nu
lear StudiesHo»a 69, 00-681 Warsaw, PolandbUniversity of Arizona, Tu
son, AZ 85721, USA(Re
eived May 15, 2003)A simple theory of the intera
tion potential between heavy ions V , basedon the lo
al density approa
h and the frozen density model, is applied toa number of pairs of nu
lei with neutron ex
ess. The energy density neededfor 
al
ulating V is expressed in a simple way through the equilibriumproperties of nu
lear matter, a phenomenologi
al density gradient term,and nu
leon density distributions in the two 
olliding nu
lei. The Coulombbarrier in the 
al
ulated potential 
ompares favorably with other estimates.PACS numbers: 25.70.�z 1. Introdu
tionThe theoreti
al des
ription of heavy ion 
ollisions requires the knowledgeof the intera
tion potential V between the two 
olliding ions. A simple nu-
lear matter (NM) approa
h to V was presented in [1℄ (hereafter referred toas I). It was an extension of our previous work Refs [2�5℄ restri
ted to equalnumber of neutrons and protons, N = Z, to the 
ase of ions with neutronex
ess, N > Z. Our approa
h allows to determine V dire
tly from the knownproperties of NM1. The input of our simple 
al
ulations 
onsists of: equilib-rium density, volume and symmetry energy of NM, nu
leon e�e
tive massin NM, empiri
al densities in the 
olliding nu
lei, and a phenomenologi
aldensity gradient 
orre
tion to the energy density.� This resear
h was partly supported by the Polish State Committee for S
ienti�
Resear
h (KBN) under grant No. 2P03B7522 and the National S
ien
e Foundationunder grant No. PHY-0070828.1 In a simpli�ed form, the approa
h was applied a long time ago by Brue
kner et al. [6℄(see also [7℄). (4257)



4258 J. D¡browski, H.S. Köhler, J. Ro»ynekIn the present paper, we apply the s
heme of I to des
ribe the s
atteringof a number of heavy ions. The paper is organized as follows. In Se
. 2, themain results of I are summarized. In Se
. 3 the results obtained for V fora number of heavy ions are presented and dis
ussed.2. The nu
lear mater approa
h to VWe 
onsider nu
lei 1 (target) and 2 (proje
tile) (with masses M1, M2,and with the redu
ed mass � = M1M2=(M1 +M2), moving with relativemomentum KREL (in units of ~). We denote by R the relative positionve
tor between the 
enters of mass of 1 and 2 (dire
ted from 1 to 2). In theCM system V is de�ned by the relationV(E;R) = ECM(KREL; R)� ~2K2REL2� � Ein(1) � Ein(2) ; (1)where Ein(i) is the intrinsi
 nu
lear energy of the isolated nu
leus i and ECMis the nu
lear energy of the total system in the CM frame.The 
onservation of the total energy implies that the instantaneous rel-ative momentum KREL =KREL(R) is 
hanging with R~2KREL(R)22� + V(E;R) + VC(R) = ~2KREL(1)22� = E ; (2)where VC(R) is the Coulomb potential between nu
lei 1 and 2, and E is theCMS kineti
 energy.The two main ingredients of the approa
h of I to the problem of 
al-
ulating ECM(KREL; R) are the lo
al density approximation and the frozendensity model.A

ording to the lo
al density approximation, for a given distan
e R thesystem of the two 
olliding nu
lei is approximated lo
ally (at ea
h point r)by a pie
e of nu
lear matter (NM) with the neutron and proton densities�n and �p, and with the 
orresponding momentum distributions nn(kn) andnp(kp). If we denote by HNMCM the energy density of this lo
al NM in the CMframe, we have ECM(KREL; R) = Z drHNMCM (KREL; R; r) : (3)To determine the densities and momentum distributions, we apply thefrozen density model (the sudden approximation), in whi
h�y(r) = �1y(r) + �2y(jr �Rj) ; (4)
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ation of the Nu
lear Matter Approa
h to the . . . 4259where �iy (y = n; p; i = 1; 2) are the original neutron and proton densitiesof nu
lei 1 and 2. (The origin of r and R is the 
enter of 1.) For the lo
almomentum distributions of neutrons (protons) in nu
leus 1 and 2 at r wehave two Fermi spheres 10n(p) and 20n(p) with the respe
tive lo
al FermimomentakF10y(r) = �3�2�1y(r)�1=3 ; kF20y(r) = �3�2�2y(jr �Rj)�1=3 ; (5)with the 
enter of the Fermi sphere 2 shifted from the 
enter of the Fermisphere 1 by Kr, (twi
e) the average relative nu
leon momenta in nu
leus 2and nu
leus 1, Kr = �m� �KREL ; (6)where m is the nu
leon mass.When Kr < kF10y + kF20y, the two Fermi spheres 10y and 20y overlap,and we fa
e the problem of the double o

upan
y in the overlap region. Weresolve this problem by in
reasing kF10y ! kF1y and kF20y ! kF2y, andobtain our �nal momentum distributions with the Fermi surfa
es 1y and2y with the in
reased Fermi momenta and with a single o

upan
y in theoverlap region. Details of this reshu�ing of neutrons and protons from theoriginal distributions (with the double o

upan
y in the overlap region) toour �nal distributions are presented in I. This reshu�ing, i.e. determinationof kF1y and kF2y, was a

omplished with a numeri
al pro
edure.To 
al
ulate the energy density of the lo
al NM, we go over to the restframe of the lo
al NM. Our NM energy density HNM in this frame di�ersfrom HNM0 , the energy density of normal NM (i.e., NM in its ground state)with the same neutron and proton densities by the two-sphere momentumdistributions of neutrons and protons, whi
h in normal NM are single Fermispheres. To 
hange normal NM into our lo
al NM one has to redistributeneutrons and protons from their single Fermi sphere distributions into thetwo-sphere distributions. The 
orresponding 
hange in the energy densityis determined by the single parti
le (s.p.) energies of the states involved inthe redistribution. In this way we getHNM = f(�; �)�+ 1� (�n + �p � �0n � �0p) ; (7)where � is the total lo
al density, � = (�n � �p)=� is the neutron ex
essparameter, and �y and �0y are the kineti
 energy densities (in the rest frameof NM) in our lo
al NM and in normal NM2. The se
ond part on the r.h.s.of Eq. (7) represents the 
hange in the energy density 
aused by the re-distribution of nu
leons in momentum spa
e. Here we assume for the s.p.2 Whereas for �0y we have simple expressions, �0y = 35"(kFy)�y, also for �y we have(slightly longer) analyti
al expressions.



4260 J. D¡browski, H.S. Köhler, J. Ro»ynekenergies the e�e
tive mass approximation with the ratio of the e�e
tive tothe real nu
leon mass by m�=m = � = �(�).The �rst term on the r.h.s. of Eq. (7) is the energy density of normalNM, f(�; �)� = HNM0 = (ENM0 =A)�. We expand f(�; �), the energy pernu
leon in normal nu
lear matter, in powers of �f(�; �) = f0(�) + 12�2"sym(�) : (8)For f0, we assume the formf0(�) = 35 "(kF) + 5Xj=3 aj � kFkF0�j ; (9)where "(k) = ~2k2=2m, kF = (3�2�=2)1=3 is the Fermi momentum of normalNM with N = Z and kF0 is the value of kF at equilibrium density �0.The 
oe�
ients aj are determined by kF0, by the volume energy of NM,"vol = f0(�0), and by the 
ompressibility K
 = k2F0(d2f0=dk2F)kF0 .The nu
lear symmetry energy at density �, "sym(�) is 
onne
ted with theLane [8℄ potential V13 "sym(�) = 23 "(kF)�(�) + 14V1(�) : (10)This relation allows us to write HNM in the formHNM = f0(�)�+ 1� (�n + �p � �0) + 12�2 14V1� ; (11)where �0 = 35"(kF)� is the kineti
 energy density in normal NM with N = Z.We assume that the Lane potential is proportional to the density of NMV1(�) = ��0 V1(�0) : (12)For the dependen
e of � on �, we use the relation1=�(�) � 11=�0 � 1 = ��0 ; (13)where �0 = �(�0).In 
on
lusion, the form of the energy density HNM is spe
i�ed if we �xthe values of �0 (or kF0), "vol, K
, "sym(�0) � "sym (or V1(�0)), and �0.3 The 
ontribution of the Lane potential to the neutron/proton s.p. potential is(+/�) 14�V1.
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ation of the Nu
lear Matter Approa
h to the . . . 4261When we go ba
k to the CM frame and apply de�nition (1) of V, we getV(E;R) = Z dr�HNM +Hr � ~2K2r2m �1�2� �� Ein(1) � Ein(2) : (14)In (14) we go beyond the lo
al density approximation and followingBrue
kner et al. [9℄ we introdu
e the gradient 
orre
tion termHr = Hr(�) = �W(r�)2� + �V (r�)2 ; (15)where �W = ~2=72m. The �rst term in (15) is the Weizsä
ker 
orre
tion tothe kineti
 energy density, and the se
ond one is the gradient 
orre
tion tothe potential energy density, in whi
h �V is treated as a phenomenologi
alparameter.In 
al
ulating the intrinsi
 energies Ein(i) we apply the expressionEin(i) = Z drff(�i; �i)�i +Hr(�i)g ; (16)where �i = (�in � �ip)=�i.3. Results and dis
ussionFor a givenCMenergyE, we knowonly KREL(1) = (2�E)1=2=~, whereasexpression (14) for V(E;R) depends on KREL = KREL(R) 
onne
ted withKREL(1) by energy 
onservation Eq. (2) whi
h in turn 
ontains V(E;R).We solve this problem by iteration whi
hwe start by 
al
ulatingV(0) with thehelp of expression (14) with KREL=KREL(1). In the next step, we 
al
u-late V(1) by applying expression (14) with KREL=K(0)REL(R), obtained fromEq. (2) with V=V(0). After a few steps, we obtain V(i)=V(i�1)=V.For the r-integration in (14) we use 
ylindri
al 
oordinates with thez-axis along R. We assume that Kr is parallel to R, whi
h redu
es ther-integration to a twofold integration, performed by means of the Gaussformula.To obtain the Coulomb energy EC of a nu
leus, we approximate the
harge distribution in this nu
leus by the equivalent uniform 
harge distri-bution of radius RC = [5hr2i=3℄1=2, and use the expression EC = 3Z2e2=5RC.Similarly, to obtain the Coulomb intera
tion VC(R), we approximate 
hargedistributions in nu
lei 1 and 2 by equivalent uniform 
harge distributionsand 
al
ulate VC(R) as the Coulomb intera
tion between these two uniform
harge distributions.



4262 J. D¡browski, H.S. Köhler, J. Ro»ynekIf we do not state otherwise, we use the following standard parametersof normal NM: kF0 = 1:35 fm�1 (�0 = 0:166 fm�3), "vol = �15:8MeV,K
 = 234:9MeV [a5 = 0 in (9)℄, V1(�0) = 100MeV ("sym = 61:0MeV), and�0 = 0:7.For the nu
leon density distributions, we use two- and three-parameterFermi models (2pF and 3pF) and three-parameter Gaussian model (3pG)with parameters taken from Refs [11, 12℄. In the present paper we assumethe same radial shape of the neutron and proton density distributions.The value of the phenomenologi
al parameter � = 22MeV fm5 was ad-justed to the ground state energies E = Ein + EC [with the intrinsi
 nu
learenergy Ein 
al
ulated a

ording to Eq. (16)℄ of 16O and 40Ca.Values of the parameters of the density distribution of nu
lei 
onsideredin the present paper are presented in Table I whi
h also 
ontains values ofthe 
al
ulated root-mean square radii hr2i1=2. Furthermore, we also presentin Table I the 
al
ulated values of E together with their experimental valuesEexp: We noti
e a satisfying agreement between these two values.In our dis
ussion we shall present our results for the nu
lear potential V,and for Vtot(E;R) = V(E;R) + VC(R) for di�erent values of Kr = Kr(1).The 
onne
tion between ELAB=A2 (the kineti
 energy in the LAB system ofthe proje
tile nu
leus 2 per proje
tile nu
leon) and Kr (in fm�1) isELABA2 = ~2K2r2m = 20:7K2r MeV: (17)TABLE IParameters of the density distributions and values of the ground state energies andtheir experimental values. All lengths are in fm and energies inMeV.Nu
l. Model 
 z w hr2i1=2 E
al Eexp a40Ca 3pF b 3.766 0.586 �0:161 3.482 �341:9 �342:148Ca 3pF b 3.7369 0.5245 �0:030 3.469 �428:3 �416:090Zr 3pG b 4.434 2.528 0.350 4.274 �778:6 �783:9208Pb 3pF 
 6.504 0.552743 0.14 5.511 �1640:4 �1636:4238U 2pF b 6.8054 0.6054 0. 5.740 �1794:8 �1801:7aTaken from Ref. [10℄.bParameters taken from Ref. [11℄.
Parameters taken from Ref. [12℄.



Appli
ation of the Nu
lear Matter Approa
h to the . . . 4263For the CMS kineti
 energy E, we haveE = �m ~2K2r2m = 20:7 �m K2r MeV: (18)Let us 
onsider as an example the 
ase of the potential between 208Pb(target) and 48Ca (proje
tile) nu
lei. Results obtained in this 
ase for V andVtot = V +VC for a number of Kr values between 0 and 2.5 fm�1 are shownin Fig. 1.

Fig. 1. Potentials V (broken 
urves) and Vtot (solid 
urves) between 208Pb and48Ca nu
lei at the indi
ated values (in fm�1) of Kr.The most striking feature of our results is the dependen
e of V onKr(1),i.e. on the energy E, and the R-dependen
e of V: short range repulsion4 +long range attra
tion. A detailed dis
ussion of this behavior of V in 
ase ofN = Z presented in [2℄ and [3℄ applies also to the present 
ase. Here, were
all brie�y the main points of our previous dis
ussion.The dependen
e of V on Kr is non-monotoni
. At small values of Kr, Vde
reases (algebrai
ally, i.e. be
omes more attra
tive) up to Kr � 1:5 fm�1.If we further in
rease Kr, V starts to in
rease and eventually be
omes partlyrepulsive. Let us re
all that at small values ofKr, we in
rease the radii of thetwo Fermi spheres in our momentum distributions to avoid double o

upan
yin the overlap region, whi
h would violate the ex
lusion prin
iple. This leadsto an in
rease in the kineti
 energy, whi
h gives a repulsive 
ontribution toV.4 For lighter ions instead of the short range repulsion we may have a weakened attra
-tion (see e.g. [3, 4℄).



4264 J. D¡browski, H.S. Köhler, J. Ro»ynekThis Pauli blo
king e�e
t be
omes less important when Kr in
reases, whi
hexplains the initial de
rease in V. On the other hand, the potential energy
ontribution to V in
reases (algebrai
ally) with in
reasing Kr, whi
h maybe tra
ed ba
k to the short range NN repulsion. This explains the in
reasein V at larger values of Kr.To explain the dependen
e of V on R, let us noti
e that at small (large)values of R, a substantial part of the 
ombined system has a density � > �0(� < �0). Hen
e at an intermediate distan
e R, a substantial part of the
ombined system has a density � � �0, at whi
h the density of normalNM attains its minimum. Consequently at an intermediate distan
e V inthe stati
 limit (Kr = 0) attains a minimum. For Kr 6= 0 the repulsivePauli blo
king e�e
t is weakened espe
ially at large distan
es R, i.e. smalldensities, and thus the repulsion is shifted towards small distan
es R.When we add to V the Coulomb potential VC, we obtain the total po-tential Vtot whi
h also is nonmonotoni
. It 
ontains a Coulomb barrier anda dip inside of the barrier. Whereas the height (� 180MeV) and position(R � 12 fm) of the barrier depends only weakly on Kr the depth of the dip(� 59MeV atKr = 1:5MeV, and � 2MeV atKr = 2:5MeV) and its lo
ationare quite sensitive to the magnitude of Kr.All the 
urves in Fig. 1 (as well as in all remaining �gures) were obtainedwith the R dependent Kr(R) ex
ept for the 
ase Kr = 0 in whi
h we usedKr(R) = Kr(1) = 0. This 
ase of the stati
 limit 
orresponds exa
tly tothe model applied in the pioneering paper of Brue
kner et al. [6℄.The sensitivity of our results for V to the magnitude of the Lane potentialV1 (or equivalently to the symmetry energy "sym) is visualized in Fig. 2,where we show results for the 208Pb�48Ca potential at Kr = 1:5 fm�1obtained with V1 = 100MeV ("sym = 61:0 Mev) and with V1 = 0 ("sym =36:0 Mev), with all the remaining parameters un
hanged. We also 
onsiderthe 
ase in whi
h we arti�
ially assume that there is no neutron ex
essin both nu
lei 208Pb and 48Ca, i.e. we repla
e Zi and Ni (i = 1; 2) byAi=2 (but use the real Zi values in 
al
ulating Coulomb energies) and usethe same 3pF density distributions. The 
orresponding 
urves in Fig. 1are marked as �� = 0�. We noti
e that taking into a

ount the neutronex
ess, and in
reasing the Lane potential (or equivalently the symmetryenergy) in
reases both V and Vtot, although the height of the Coulombbarrier remains pra
ti
ally un
hanged.The behavior of V and Vtot at Kr = 1:5 fm�1 for a sele
tion of pairs ofnu
lei is shown in Fig. 3. The height B of the Coulomb barrier for thesepairs of nu
lei are presented in Table II together with other estimates ofB:results of the Hartree-Fo
k 
al
ulations of Skalski [13℄, the estimates of thefusion threshold barriers Bthre by Siwek-Wil
zy«ska and Wil
zy«ski [15℄,and Bass [14℄ intera
tion barriers Bint. We see that our results agree veryni
ely with the other results.
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Fig. 2. Potentials V (broken 
urves) and Vtot (solid 
urves) between 208Pb and 48Caat Kr = 1:5 fm�1 for V1 = 100MeV, and V1 = 0. The �=0 
urves were obtainedby disregarding the neutron ex
es.

Fig. 3. Potentials V (broken 
urves) and Vtot (solid 
urves) between the indi
atedpairs of nu
lei at Kr = 1:5 fm�1.



4266 J. D¡browski, H.S. Köhler, J. Ro»ynek TABLE IIResults of the present work for the Coulomb barrier B inMeV at Kr = 1:5 fm�1
ompared with other estimates.Nu
lei Bpres:work B a Bthre Bint b40Ca�40Ca 52:7 53 50.2�0.2 
 52:5490Zr�40Ca 97:8 95 92.7�0.6 
 97:7208Pb�48Ca 177.3 173.5 169�2 
 176.190Zr�90Zr 183.4 180 � 175:85 d 181.0238U�48Ca 194.8 174.5(191) 182�2 
 193.8aCal
ulated in Ref. [13℄.bIntera
tion barriers of Ref. [14℄.
Threshold barrier estimated in Ref. [15℄.dThreshold barrier estimated in Ref. [13℄.We use the frozen density model, and a rough 
riterion for its appli
a-bility is that ELAB=A2 should be larger than the intrinsi
 kineti
 energy pernu
leon in the 
olliding nu
lei, i.e., about 30MeV. This implies the 
ondi-tion Kr = Kr(1) & 1:2 fm�1 [see Eq. (17)℄5. Thus in prin
iple, we shouldnot apply our approa
h to the very small values of Kr whi
h 
orrespondto E � B, i.e. to threshold energies determined in [15℄ and to the energiesapplied in [14℄ in determining Bint, or to the stati
 limit E ! 0 appliedin [13℄. Nevertheless the favorable 
omparison of our results for B with thetheoreti
al results of [13℄ and the estimates of the threshold barriers of [15℄,and with Bint [14℄ appears meaningful be
ause of the weak dependen
e onKr of our results for B. Noti
e that the Coulomb barrier attains its maxi-mum at distan
es R at whi
h only the tails of the densities of the 
ollidingnu
lei overlap.The interesting behavior of V at smaller distan
es R shown in Fig. 3 ishard to test experimentally, be
ause strong absorption6 and also Coulombrepulsion make the region of small distan
es pra
ti
ally ina

essible in theelasti
 
hannel. (For this reason the range of smallest distan
es R is notshown in Figs. 1 and 2.)5 On the other hand, an upper limit on Kr is imposed by our use of nonrelativisti
theory: for Kr=3:4 fm�1, we already have ELAB=A2 �= 14m
2. Also approximation (7)puts an upper limit on Kr.6 See e.g. Refs [3, 4℄.



Appli
ation of the Nu
lear Matter Approa
h to the . . . 4267The authors are obliged to Janusz Skalski for his illuminating 
omments
on
erning the fusion barrier, and for letting us know his results prior topubli
ation. REFERENCES[1℄ J. D¡browski, H.S. Köhler, A
ta Phys. Pol. B 34, 1987 (2003).[2℄ J. D¡browski, H.S. Köhler, Nu
l. Phys. A489, 303 (1988).[3℄ J. D¡browski, H.S. Köhler, Nu
l. Phys. A499, 413 (1989).[4℄ J. D¡browski, A
ta Phys. Pol. B 20, 61 (1989).[5℄ J. D¡browski, A
ta Phys. Pol. B 21, 223 (1990); Phys. Lett. B240, 33 (1990).[6℄ K.A. Brue
kner, J.R. Bu
hler, M.M. Kelly, Phys. Rev. 173, 944 (1968).[7℄ F. Be
k, K.-H. Mueller, H.S. Köhler, Phys. Rev. Lett. 40, 837 (1978).[8℄ A.M. Lane, Nu
l. Phys. A128, 256 (1969).[9℄ K.A. Brue
kner, J.R. Bu
hler, S. Jorna, R.J. Lombard, Phys. Rev. 171, 1188(1968).[10℄ G. Audi, A.H. Wapstra, Nu
l. Phys. A595, 409 (1995).[11℄ H. de Vries et al., At. Data Nu
l. Data Tables 36, 495 (1987).[12℄ R. Engfer et al., At. Data Nu
l. Data Tables 14, 509 (1974).[13℄ J. Skalski, A
ta Phys. Pol. B 34, 1977 (2003).[14℄ R. Bass, Nu
l. Phys. A231, 45 (1974).[15℄ K. Siwek-Wil
zy«ska, J. Wil
zy«ski, Phys. Rev. C64, 024611 (2001).


