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In a previous paper, the convergence of the effective field theory ap-
proach of Furnstahl, Serot and Tang to the nuclear many-body problem
was studied by applying it to selected doubly-magic, and neighboring single-
particle and single-hole, nuclei far from stability. The success of that ap-
proach, interpreted through density functional theory, would imply reliable
densities. In this paper, the single-particle (Kohn—Sham) wave functions
are probed using weak transitions near the Fermi surface. The weak cur-
rents are the Noether currents derived from the effective Lagrangian. The
general single-particle transition matrix elements, from which any semi-
leptonic weak rate can be calculated, are obtained in terms of upper and
lower components of the Dirac wave functions. Here beta-decays in nuclei
neighboring '?2Sn are studied and compared with available experimental
data. Calibration of the theoretical results for such decays may also have
useful application in element formation.

PACS numbers: 23.40.-s, 23.40.Hc

1. Introduction

In a recent paper [1] the convergence of calculations to experimental re-
sults at different levels of approximation from a new approach to the nuclear
many-body problem was studied. This approach combines the principles of
Effective Field Theory (EFT) with Density Functional Theory (DFT). The
results of that work showed that the total binding energy of even—even Sn
isotope nuclei can be reproduced below the 1% level. In addition to this

agreement for the total binding energy of the doubly-magic nuclei '32Sngs,

1908n5g, 8Nisg and 38Nig, the chemical potential for neighboring nuclei,
differing by one particle or hole from the doubly-magic ones, was also well
reproduced below the 10% level. The agreement in binding energies shows
that the energy functional derived from the effective Lagrangian of Furn-

stahl, Serot and Tang [2] is indeed a good approximation and thus, accord-

(4269)
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ing to DFT, the ground-state densities obtained in each case are also a good
approximation to the true ground-state densities. Although in [1] both pro-
ton and neutron densities for 132Sn and '°°Sn were presented, there has
been no direct measurement of either of them and thus the comparison with
experiment has not yet been established directly.

In the Kohn—Sham approach, the ground-state density is constructed
from single-particle wave functions, obtained by solving the Kohn—-Sham
equations of the system. These equations are the energy eigenvalue equa-
tions for a system of non-interacting particles subject to a local external
potential. Except for the energy eigenvalue close to the Fermi surface (i.e.
the energy necessary to extract one particle from the system) all other en-
ergy eigenvalues have no direct physical meaning. If the single-particle (hole)
energy at the Fermi surface agrees with experiment, one can assume that
the wave function associated with it must also be a good approximation.
In this paper the validity of the last statement is studied, and in an indirect
way the accuracy to which the ground state density is reproduced. The wave
functions describing one particle outside a doubly-magic core or one hole in
a doubly-magic core are used to calculate various fS-transition rates. These
wave functions represent the initial or final nuclear states (in coordinate rep-
resentation) in these transitions. Here, based on the above arguments, an
accurate description of the wave function is assumed to be guaranteed by
the accuracy with which its binding energy is reproduced. Therefore, the
ideal case of study corresponds to a ground-state to ground-state transition,
since in these cases there is a closer agreement with the experimental energy
values. Wave functions of excited states will be less accurate as these states
lie farther away from the Fermi surface and thus their energy is not well
reproduced. Furthermore, it is expected that the particle—particle transi-
tion will give a cleaner result since the description of a particle outside the
doubly-magic core can be well approximated by a single-particle wave func-
tion. The description of a hole, on the other hand, is more complicated
since it represents a more complex many-body state and its description
by a single-particle wave function might be expected to be less accurate.
Using the results obtained in [1] and the available experimental data, this

paper focuses on the core nucleus 32Sngy and its single-particle and single-

hole neighbors lggSngg, 1gésn81, 1§begg and 12§In82. Using these nuclei, the
two types of transitions, particle-particle and hole-hole, can be investigated
and compared with experimental results to validate the observations made
above. The first case, i.e. the particle-particle transition, corresponds to the

B-decay process 133Sng3 — 133Shgy + e~ + U, and the second one, the hole—

hole case, to the transition 13iIngs—131Sngi +e~ + .. In both cases ground-
state to ground-state transitions, as well as transitions from and to low-lying

excited states, are considered.
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To study these processes a general expression describing semi-leptonic
transitions has been obtained that incorporates the Dirac wave functions
calculated by solving the Kohn—Sham equations derived from the effective
Lagrangian [1,2]. The upper and lower components of the Dirac spinors are
then used to calculate the matrix elements of the appropriate electroweak
currents. These currents are obtained from the same effective Lagrangian
and correspond to the leading order Noether currents [3,4]. At any level of
approximation in the effective Lagrangian, the axial-vector currents satisfy
PCAC and show a pion-pole dominance [3|. The matrix elements of the cur-
rents thus constructed are used in a general multipole expansion from which
any semi-leptonic weak interaction can be calculated [4]. The currents used
here are one-body operators and as such the matrix elements involve only
contributions from single-particle dynamics. Other effects such as couplings
to collective modes are not included!.

This paper focuses on S-decay rates. Applications to other semi-leptonic
processes are being considered for future work. The calculated decay rates
have been corrected for the screening effect from the valence electrons in the
daughter nucleus [6] and for the slowing down of the emitted electrons due
to the attractive Coulomb core (Fermi function). This last correction uses
arelativistic description of the electron and takes into account the effects of
the size of the nucleus [6]?.

Calculations of -decay properties, like the half-live (7;/,) and S-delayed
neutron emission (P,), have been done extensively using mainly the fol-
lowing models: gross theory, quasi-particle random phase approximation
(pn-QRPA) and shell model calculations. Gross theory has been used in
large-scale calculations where the discreetness of the final energy levels of
the daughter nucleus are smoothed out and different single-particle strength
functions (Gaussian, modified Lorentz) are used to calculate the S-decay
strength [7]. This approach has been used to calculate both allowed and
first-forbidden transitions using the Q-values from mass formulas as input.
Improvements to this model have been made in which pairing and other
shell effects are taken into account [8]. Shell model calculations are one of
the most elaborate methods used. In this type of calculation it is possible
to incorporate multi-particle transition amplitudes, which are uniquely de-
termined by the specification of the model Hamiltonian. Such an approach
has the advantage of predicting the state and mass dependence of observed
decay strengths making the results independent of any mass formulas input.
The disadvantage of this method lies in the large matrices that have to be
computed when the number of nucleons increases, therefore, its applications

I These effects can be as large as 50% as discussed in [5] for the case of X9Pbiar.
2 Electron radial wave functions, as well as relativistic corrections to the nuclear current
operator in 3-decay, are further discussed in [30].
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has been limited to small nuclei. A calculation for proton-rich nuclei has
been attempted for the cases of sd-shell nuclei and can be found in [9]. The
third approach, pn-QRPA, has also been used in extensive calculations of
[-decay observables. This approach can be considered to be between the
shell model and gross theory. A description of the formalism for even—even
mother nuclei, as well as references, can be found in [10]. The extensions to
odd systems and odd nuclei can be found in [11] and [12].

From the above models used to calculate S-decay half-lives, QRPA has
shown to give good agreement with experimental results. Some extensive
calculations have been performed [13-15| showing an agreement with ex-
periment within a factor of two. The calculations included in [13] describe
the B-strength function by applying the pn-QRPA method with a Gamow—
Teller residual interaction, the strength of which is fitted to experimentally
known half-lives of known isotopes for a fixed mass number A. Pairing cor-
relations are treated in the BCS model using a constant pairing force and
without taking into account the Pauli blocking. The proton and neutron
gaps are equal and are taken from the values of global systematics. In ad-
dition to this, spin—isospin ground-state correlations are included. For very
neutron-rich nuclei only allowed Gamow—Teller transitions are considered
and the influence of first-forbidden transitions on the half-lives of nuclei far
from stability is neglected. Nuclear deformations also are taken into account
using the Nilsson model from which the wave functions of the parent and
daughter nuclei are calculated assuming the same ground-state deformation
for both. The main uncertainties in these calculations come from the mass
formulas used as input, which in general become less accurate for nuclei far
from stability. The results obtained show an agreement with experimental
data for nuclei with short half-lives (< 1s) with an average deviation of 1.4.

Other calculations have concentrated on some specific range of nuclei
important for the r-process such as those close to ¥2Sn, as in our case.
In [16] an analysis of the ground-state properties and 7y, of nuclei close to
1328 is performed using the Hartree-Fock-Bogoliubov plus BCS pairing ap-
proach (HFB+BCS). Although some studies indicate that the nuclei in this
region are spherical, the calculations included both spherical and deformed
nuclei. Contributions from pairing using a constant strength, zero-range
force were also included. Again here, only allowed GT transitions were
calculated and the GT strength function was obtained using the method
of aself-consistent treatment of the ground and excited states of even—even
and odd-A superfluid nuclei solving QRPA-like equations in the Finite Fermi
System (FFS) theory. Using this method, the Q3 were also determined and
no additional mass formulas were used. A density functional describing the
nuclear system was used with parameters fitted to stable nuclear properties
obtaining three different sets. One of them was specialized to reproduce
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not only known ground-state properties of magic nuclei but also single par-
ticle energies of 32Sn. Details and additional references are given in [16].
A similar study [17], focused on nuclei in the r-process path, used a general
method that combines the microscopic QRPA model for allowed GT S-decay
with statistic gross theory of first-forbidden decays. In general, the results
show that there is a much better agreement with experiment when the first-
forbidden transitions are included, especially for large values of 71/5. When
the calculated half-lives for a large range of nuclei were compared with ex-
perimental results it was found that the quantity In(7calc/7exp) lies in the
range 10-0.1.

Because of new data and improved methods to calculate S-decay proper-
ties, there have been efforts to compile the existing experimental, as well as
calculated data. In [18] such a compilation can be found which includes the
most recent experimental data for half-lives as well as the results from two
different models: 1. Kratz—Herrmann formula (KHF) and 2. Macroscopic—
microscopic QRPA.

Table T summarizes the results obtained from the methods discussed
above in the particular cases of the nuclei '33Sn and '3'In. Here one can
appreciate the level of agreement with experiment. The best agreement for
the decay of '33Sn is given by R3, with a ratio of calculated to experimental
half-lives, 7| /5, equal to 0.87 or a deviation of 13%. In the case of 1311, the
best agreements are obtained by KHF and R3 with a deviation of 22% and
18%, respectively.

All these models aim to reproduce the known experimental §-decay half-
lives as well as predict its value for other nuclei, especially those far from
stability. As pointed out in [18], most of the models can be grouped in two
categories: those which give a mathematical expression (e.g. a polynomial)
for the quantity of interest and those based on an effective interaction. Mod-
els of the first type have no direct link to the underlying nucleon—-nucleon
interaction and do not give additional information regarding the nuclear
single-particle wave functions. For models of the second type, these ap-
proaches use different effective interactions fitted to better reproduce the
experimental S-decay data. In other cases, because there is an overparam-
etization of the effective interaction, its relation with the nucleon—nucleon
interaction is also lost. Most of these models combine different approaches
and approximations to better reproduce the experimental data.

In general, it can be said that there is no consistent theory that by fiz-
ing its parameters once, reproduces not only the masses but also the single-
particle levels and B-decay properties of nucles.

In this paper such a consistent approach is explored and compared with
experimental data for S-transition rates of neighboring nuclei ¥?Sn. This
approach corresponds to a new theory that combines Density Functional
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TABLE 1

Calculated -decay half-lives (in ms) of nuclei close to 132Sn.

Nuclei

Reference 133Sng; 134 Tngs
KHF @ 362 216
QRPA-12 9479 146
QRPA-22 9479 146
DF2P 9320 390
DF3®b 8200 350
R1P 823 394
R2P 10290 1470
R3®P 1260 332
GT¢ — 147.1
GTHfe — 139.2
expd 1450 + 30 280 + 30

2See [18].

bSee [16].

“See [17].

dSee [19,20].

Theory and Effective Field theory, where an energy functional is constructed
which is consistent with the symmetries of QCD and whose parameters are
fitted to properties of stable nuclei [2]. The single-particle wave functions
are obtained by solving the self-consistent Kohn—Sham equations. In order
to maintain a consistent approach, the correct electroweak currents, needed
to calculate the S-transition rates, are derived from the same effective la-
grangian. These currents are the leading order Noether currents. The axial-
vector current satisfies PCAC at any order in the effective lagrangian [3].
A comparison with experimental data will give this approach its validation
and limitations as a calculational tool and will also test implications of DFT
regarding the single-particle wave functions used to construct the ground
state density in the Kohn—Sham approach.

The result for the ground-state to ground-state -transition rate between
133Sng; to 133Sbgy gives a ratio of calculated to experimental value of 1.47,
or a deviation of 47% (21% in the amplitude), a better result than for tran-
sitions to excited-states. This is in agreement with the expectation that
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since the binding energy of the nuclei and the single-particle energy close to
the Fermi surface of the particle outside the core are well reproduced, then
the single-particle wave-function are also well reproduced. Transitions to
excited states show a systematic deviation from experimental data, again in
agreement with the expectation about the wave functions of those excited
states. In the case of hole-hole transitions, studied here, the results are less
reliable.

The paper is organized as follows: in Sec. 2 a general expression for semi-
leptonic transition rates in terms of a multipole expansion and using Dirac
wave functions is presented; in Sec. 3 this formulation is used to calculate 8-
transition rates for selected nuclei and results are compared with the existing
experimental data; and finally, Sec. 4 contains the conclusions drawn from
this study.

2. General semi-leptonic processes

The calculation of f-decay rates in this paper is based on a general
expression that can be applied to any semi-leptonic process. In this section
the derivation of that expression is discussed. Much of the material presented
here follows [4].

The starting point is the interaction Hamiltonian Hy, which for low en-
ergy processes, like B-decay, is described by the semi-leptonic weak Hamil-
tonian of the standard model. This interaction Hamiltonian is written down
to first order in the weak constant, G. This implies that leptons are treated
to this order but the strong interaction part of the Hamiltonian is treated
to all orders. The interaction Hamiltonian is described by a current—current
form3

G
2

-1 i i

Hy, = _7 d3$.7;¢ept($)u7u($)a (1)
where j,lfpt (Z) is the lepton current and J,(Z) the hadronic current. By
taking matrix elements of this Hamiltonian between the initial and final
states (lepton and hadron) the leptonic and hadronic parts factorize and the
matrix elements of the leptonic currents can be expressed by

(FIlJIPH() i) = le 77 (2)

where ¢ = Ee + Ey is the momentum transferred in the process and Ee, E,,
are the corresponding electron and neutrino momenta. f; and 7; represent
initial and final lepton states. In addition, I, = (l_; ilg) and I3 = [’ G, where
¢ is a unit vector in the direction of ¢, i.e. §/|q].

3 For charge-changing semileptonic processes G* = Gcosfc where G = 1.0267 x
10°/m; and cos fc = 0.974. See [4].
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Using the expression in Eq. (1) and making a multipole expansion of
the hadronic current to project irreducible tensor operators, one arrives at
the following expression for the matrix elements*. In this and the following
equations the magnitude of ¢ is defined by k = |q].

it = (1~ VAT i) 3 0 T+ 75 0)
+Z\/m—z 15 Lo )—zoMJo(k)]}\z'>, 3)
J>0

The four multipole operators occurring in the previous expression are defined
in the following way [4,22]:

Mo (h) = [ s ka)¥onr(22)) 9@, (@
Lonl®) = ¢ [ (T aoYor( @)} - T3, )
i) = 3 [ @@= [ Th@])-7@.  ©
ThEw) = [ & [ F2)] - 7@, ©

The multipole operators have the vector-axial-vector (V—A) structure.
The general form of the hadronic current is given by

j“:J;L+J;L5 (8)

and the different parts of the total current 7, (vector and axial) used in this
paper are given by

. Ay —Ap) O
Ju = “ﬁT’M’Y;ﬂ/J + %8:{: (T/JT’MUW?/J) ; 9)
1 0 0
= Wil
Jus <5uu T T = 000, 05, 8%) Faip"yays (10)

where )\, and ), are the anomalous magnetic moments of the nucleon and
0n 0, stands for the d’Alambertian operator. F4 is taken as a constant,
1.e. we consider here small momentum transfers, and its numerical value
is —1.257. These currents are the leading currents as described in [2, 3].

* Single nucleon matrix elements of the currents also contain multiplicative form fac-
tors [2,4] which are unimportant for the low momentum transfer processes considered
here.
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There are no additional contributions to the one-body current coming from
higher order terms in the effective Lagrangian [3]. The next contribution
to the current comes from two-body effects which are estimated to be of
the order of O(q/m), with ¢ the momentum transfer. Since the maximum
value of ¢ is of the order of a few MeV, this contribution corresponds to a few
percent correction. Additional contributions, from still higher order terms,
are reduced by a factor of /M, with M the nucleon mass. These estimates
do not take into account the spin structure of these two-body currents, and
the actual correction will depend on a detailed calculation, which lies beyond
the scope of the present work®.

In order to evaluate the nuclear matrix elements of the four multipole
operators it is necessary to define the basis wave functions that are going
to be used. For this we employ the wave functions obtained by solving
the Kohn—Sham equations corresponding to the effective Lagrangian that
describes the nuclear many-body system. This Lagrangian and the corre-
sponding Kohn—-Sham equations can be found in [1,2].

At this point, the important aspect of the wave functions used is that
they are described by Dirac spinors and thus the contributions of both upper
and lower components have to be taken into account to all orders. Both
currents and wave functions are used without a non-relativistic reduction.
The form of the Dirac spinors is given by

1G (1) s Prem (£22)

¢nnm(f) = 1 N, (11)
" _F(T)nnds—nm(gm)

where @, (£2;) are spin spherical harmonics defined by

@nm(Qz) = Z <lml%ms|l%jm> leml(ea ¢)Xms (12)

m;ms

and X, are two-component spinors. 7; is a two component isospinor de-
scribing either a proton or a neutron®.

The currents as well as the multipole operators have a matrix structure
(two by two block matrix) due to the Dirac matrices included in them,
mixing the upper and lower components of the initial and final nucleon
wave functions. In what follows, the elements of the matrix form of these

% For one calculation of higher order contributions within the present framework,
see [21]. There exists a substantial literature on axial-vector exchange currents in
B-decay, see for example [29].

5 The quantum number & is related to the orbital angular momentum quantum number,
I by the following relation: [ =k if K > 0,1 = —(k + 1) if K < 0. The magnitude of k
is given by |k| = j+1/2, where j is the total angular momentum quantum number [4].
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multipoles play an important role and to keep track of them they will be

labeled as follows.
Oynm = . (13)
bJM dgM

Using Eqgs. (9) and (10) and the following matrix form for the Dirac vy ma-
trices (here the conventions of [4]| are used)

. (0 —id

s=(0 %) (15)

then the elements of the multipole matrices can be obtained.

The matrix elements of the multipole operators shown in Eq. (3) will mix
the upper and lower components of the Dirac wave functions as shown in the
following expression. Here all quantum numbers referring to the final state
are indicated by a prime. Those corresponding to the lower components
of the wave functions, either from initial or final states, are denoted by an
underline. Thus the Dirac wave function given in Eq. (11) is symbolically

written as
@ Yn@1/2)m, )

(16)
= Pn(1/2)jm;

Combining this with the matrix given in Eq. (13) one obtains an expres-
sion for the matrix elements of the multipole operators between initial and
final nuclear states

(flOsmli) = ('m}|Osnmlim;)
= (n'(I"1/2)5'm|d{ M |n(1/2)jm;)
+ (0 (U'1/2)7'mfld3 ™ [n(11/2)jm;)
+ifn' (1'1/2)5'mj|b" n(U1/2)jm;)
—i{n' (U1/2)5'mj|b" [n(11/2)jm;) , (17)
where O represents any of the multipole operators occurring in Eq. (3).

By applying the Wigner—Eckard theorem to the above matrix elements
areduced formed is obtained.

(1pm

(7'm510gnelgmy) = ﬁ(jlmﬁ —mj|f§ M) (§'0s1l7), (18)
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where the reduced matrix elements of Ojas are given by
("10sl7) = {(n'('1/2)5" ] |In(11/2)7)
+(n'(I'1/2)5 3 [In(11/2)5)
+i((n'(1'1/2)4']|b”|In(11/2)7)

—i(n'('1/2)7'|b7 | n(11/2)7))} (19)

Each of these reduced matrix elements is composed of a coefficient corre-
sponding to the angular momentum structure of the matrix element and a
radial integral involving the radial wave functions, G(r) and F'(r) and spher-
ical Bessel functions. The angular momentum coefficients are tabulated and
can be found in [22,23]. The radial integrals were performed numerically.

Table II shows the form of each matrix element of every multipole oper-
ator defined by Eqs. (4)—(7). Here we have defined p(k) = k() — Ay)/2m
and n(k) = 1—k?/(m2 + ¢%), where ¢> = k> — w} and k = |g]. The quantity
wq is identified as the total decay energy.

TABLE 11

This table shows the matrix elements for each of the multipole operators. Here
we have used the notation u(k) = k(\, — A\n)/2m and n(k) = 1 — k?/(m2 + ¢?),
where ¢? = k? — w2 and k = |§]. Here wy is the total decay energy.

Multipole operator M M b M

My MM diM —ip(k)S"M
M3y —i(S)[1—n(k)]Fa 2} a{M Fa M3
Lim 0 diM iX'M
L3y, in(k)Fa XM diM 0

TS (k) 2y —a{MixM
T iFq M M 0
T (k)M —aM )

TiE n(k)Fa 2} aiM 0

Several new definitions taken from [22] have been used in this table.
They are reproduced here for completeness.
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2y (k) = M} (kF) -5,

(k) = —i{

J
M {%WM (kf)} ., (20)

and where

MY (kZ) = jr(kx)Yim(2),
MM (kz) = js(ka) VI (2,). (21)

All reduced matrix elements of the multipole operators are now given by
combining Eq. (19) and the expressions given in Table II. From the derivation
given in [4], one arrives at the following expression which is general for any
semi-leptonic process.

47
23+1ZZ| FIHW " = 2 2j + 1
x{ Z L (IR + 16517 002) 3 (08 =t - 53)
J>1

4 (Ix ) 2Re (GG ITS15)") |
+ 20 (UG ILADIE + ol 45| M) 2

J>0
~ 2Re (105 (' L5190 1M 13)") ] } (22)

The rest of this derivation, and the calculations done, concentrate on S-tran-
sition processes. For this particular semi-leptonic process the transition rate
is given by

2
do = 4. dOyke(wo — €)?
(275 2] +1

(f1HwlD)]",  (23)
lepton m m;
spins

where the € and v subscripts identify quantities related to the electron and
the neutrino, respectively, and wg is the total decay energy. In addition,
V corresponds to the volume of quantization for the lepton wave functions,
{2 is the solid angle in the direction of emission of the lepton, either electron
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or neutrino, 25+ 1 is the statistical factor corresponding to the initial nuclear
state and m; corresponds to the projections of the total angular momentum
of the initial and final nuclear states. Using Eq. (22) and evaluating the spin
sums (7.e. lepton traces) one arrives at the final expression that describes
[-transition rates [4]

V2 ArG?
dw = @ d0. d0, ke (w 0—5)2d52j+1
{3 (1GNP + 161780012 (1= @A)

J>1

=,

a- (= ) 2Re (G153 15157
e (1 -0 B2 Ba-0) 1611

J>0

_l’_

# (1 8- DI 1M )
Q- 0+ ) 2Re (G| LN G 1M 13))] } (24)

where ¢ = ¢/|q], ¥ = 7/v and g = E/e, ¢ is the momentum transfer, 7 is
the momentum of the neutrino and v its energy, k is the momentum of the
electron and ¢ its energy.

This expression can be integrated over the corresponding phase-space
to obtain the desired S-transition rate. All the nuclear structure input to
this formula is embedded in the reduced matrix elements of the multipole
operators. These in turn are generally composed of four terms as given
by Eq. (19) and the expressions of Table II. For the last part of this sec-
tion a summary of the expressions needed to evaluate these reduced matrix
elements is included.

As mentioned above, all reduced matrix elements of the multipole op-
erators are composed of two factors: one corresponding to the angular mo-
mentum structure of the matrix elements and the other corresponding to
an integral over the initial and final wave functions weighted by spherical
Bessel functions. Their expressions are given in [23].

(' (1'1/2)7 | M (k) |n(11/2)5) = (4m) 724,55 5) 07 s ()l (25)
(n'(11/2)7'| (k&) [n(11/2)5) = (4m) 72D (0155103 s ()Inls) . (26)
(' (11/2)7')1 55 (k) In(11/2)5) = (4m) /2

x{ = PEDFWT ) W i (o))

+(+ 02D, ) W )l b (27)



4282 M.A. HUERTAS

(' (1'1/2)7' |25 (k) n(11,/2)5) = (4m) /2
< {7+ 12D 7319 g () k)
+ VDT (W) g (p)lnd) } (28)

In all these expressions j;(p) corresponds to a spherical Bessel function
of order J and argument p = kx. The coefficients Ay, Dy, Dj and D7
are tabulated in [22,23] for a large, but limited number of transitions. For
coefficients of transitions not included in these tables, explicit expressions of
the above coefficients in terms of 3-j and 6-5 symbols can be found in [22]".
The integral over the initial and final radial wave functions is given by

(n'l'3'16(p)|nl5) :/dru Yntw O(P) V(1) e - (29)
0

Here 6(p) stands for the appropriate spherical Bessel function and u(r)
and v(r) for either the upper or lower component of the Dirac wave function,
i.e. either G(r) or F(r) of Eq. (11), of the initial and final nucleon state.

Related relativistic calculations of electroweak processes have been pre-
viously carried out for A = 3, 17 in [32], and of first-forbidden [-decay for
A =207, 209 in [31]. In both cases, Dirac wave functions where generated
from a simple model lagrangian, effective covariant current operators were
used, and the decay involved a stable partner.

3. Results

The calculations of S-transition rates are done by numerical integration
of Eq. (24) over the electron and neutrino phase-space. These transition
rates are very sensitive to the exact decay energy wg. Although the results
obtained for total binding energies of the nuclei involved in this study agree
within 1% of its experimental values, here the calculations of the decay rates
are done using the experimental decay energies so as to take into account the
full phase—space available to the process. This way, no additional uncertain-
ties are introduced and the direct contributions coming from the calculated
nuclear wave functions can be accounted for. The decay energies used here
are taken from [19,20]. The Dirac wave functions used in these calcula-
tions are solutions to the Kohn—Sham equations derived from the effective
Lagrangian given in [2]| using the G1 parameter set.

7 Some coefficients for the hole-hole transition (1519/2)71 — (1h11/2)71 where obtained
using the explicit expressions given in [22] and tabulated 3-j and 6-j coefficients [24].
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Fig.1. Single-particle level spectrum of parent and daughter nuclei in the case of
particle-particle transitions. All energy levels are measured from the calculated or
experimental ground-state level, accordingly.

Two types of transitions are investigated in this paper: (i) particle-
particle and (71) hole-hole. The diagrammatic representation of the transi-
tions studied here are shown in Fig. 1 for transitions of the particle—particle
type and in Fig. 2 for the hole-hole type. The level structure indicated
on the left side of each figure corresponds to the results obtained using the
EFT/DFT approach. On the right are the measured levels. In both cases the
energy levels are measured with respect to the ground-state level, either the
calculated (left) or experimental (right). The results obtained give, for the
nuclei considered in the particle-particle transitions, the correct level order-
ing although not the right splitting. This is in accord with DFT with regard
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Fig. 2. Single-hole level spectrum of parent and daughter nuclei in the case of hole—
hole transitions. All energy levels are measured from the calculated or experimental
ground-state level, accordingly.
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to excited states. On the other hand, based on the agreement obtained for
the ground-state binding energies of the parent and daughter nuclei [1], it
is expected that the wave functions corresponding to these states, i.e. 2f7/9
and 1g7 /9, respectively, are a good approximation. These particles are out-
side a filled core and in this approach they only interact with it through the
mean-fields. An assumption has been made here that these nuclei, with one
particle outside its core, can be described by spherically symmetric wave
functions.

The approximation of an undistorted core neglects core polarization due
to the valence particle. Such an effect resolved the previous “magnetic mo-
ment problem”, whereby the single-particle isoscalar convection current was
reduced by a factor of M*/M [4,25,26], bringing the static moments back
to the Schmidt values. Here the weak currents are pure isovector and are
derived consistently from the same effective Lagrangian that renders the en-
ergy functional and corresponding Kohn—-Sham equations. Core-polarization
of this type (ie. “backflow”) in first-forbidden S-decay with a simple model
relativistic Lagrangian has been examined in [31] and found to be small.
Corrections to the isovector currents coming from many-body effects and
exchange currents within the present framework [3] remain to be investi-
gated.

In the case of the nuclei considered here for hole-hole transitions, sev-
eral complications emerge. First, the level ordering of the daughter nucleus,
131Sng; is reproduced except for the (2ds /2)_1 state, which is the measured
ground-state. The calculated ground-state corresponds to the 1hyy/o level,
which lays approximately 200keV off the experimental value. Another com-
plication arises from the fact that there are no ground-state to ground-state
transitions in the hole-hole case, so a direct comparison with the particle—
particle situation cannot be made. Here all transitions go from or to excited
states. Yet another complication comes from the assumption that it is pos-
sible to approximate a hole state wave function by a single-particle wave
function. The hole state corresponds to an unfilled core, with one particle
missing, and no interactions among the particles in the unfilled core have
been taken into account beyond the mean-field one. These three situations
make it difficult to compare the hole-hole type of transitions with experi-
ment. Still the results, as will be shown below, are not so different than other
calculations and in general follow the pattern of behavior of the experimental
transition rates.

The calculation of S-transition rates using Eq. (24) employs the initial
and final nuclear wave functions. These wave functions enter into the calcu-
lation in a different form depending on the type of transition, i.e. particle—
particle or hole-hole. In the particle—particle case the initial and final wave
functions correspond with the initial and final nuclear states. For example,
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for the ground-state to ground-state transition 1§gSn83 —>1§i3 Sbgs the initial
and final wave function are 2f;/, and 1g7/, respectively, see Fig. 1. Hole-
hole transitions, on the contrary, can be interpreted as a particle transitions
going in the opposite direction [27]. Thus, for example, in the transition
HoIngy —'3) Sng; going from ground-state to the (1hyq/o) ' state, the ini-
tial and final wave functions would be (1hy1/5) and (1gg/2) respectively®.
Examples of the single-particle wave functions used in the calculation of
[-transition rates are given in Fig. 3 through 6. In these figures the upper

=4
(=2}
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o
~

S
o

G(r) and F(r) (fm™?)

Fig.3. Upper and lower components of the initial and final nucleon wave functions.
This corresponds to a particle—particle transition proceeding from the ground-state
of 128Sng3 to the ground-state of '37Sbg,.

and lower components of the Dirac wave functions, i.e. the G(r) and F(r)
functions, are plotted simultaneously as a function of the radial distance r,
in Fermis.

The results of the calculation of [-transition rates for the particle—
particle type are shown in Fig. 7. These are compared with experimental
values for each of the transitions. Here the calculated results are indicated
with a cross. The ratio of calculated to experimental value for the ground-
state to ground-state transition is 1.47, or a deviation of 47%. The other
transitions go from the ground-state of the parent nucleus to an excited state
in the daughter nucleus.

8 In the hole-hole case, there is an additional phase factor coming from exchanging
the creation and destruction operators in the matrix elements of the tensor operator.
The states are characterized by their total angular momentum quantum number j,
therefor, if the initial and final states are denoted by |5, ') and |j, '), then the matrix
elements of the transitiqn matrix element of a tensor operator Oy will be given by
(Ga N0ll35 1) = = (=1 =7 (3|01 [27]-
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Fig.4. Upper and lower components of the initial and final nucleon wave functions.
This corresponds to a particle—particle transition proceeding from the ground-state
of 133Sng3 to an excited state of 13Sbg,.
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Fig.5. Upper and lower components of the initial and final nucleon wave functions.
This corresponds to a hole-hole transition proceeding from the ground-state of
134 Ings to the calculated ground-state of '3} Sng;.

The results for these transitions show systematically a larger value of
the decay rates compared with the experimental ones. This agrees well
with what is expected of DFT. Since the calculations have been performed
using the experimental decay energies, the only input from the EFT/DFT
approach at this point has been the single-particle Dirac wave functions.
These, on the other hand, are used to construct the nuclear ground-state
densities and since this quantity is in principle well reproduced, the result
of the ground-state to ground-state transition serves as an indirect way of
checking it.
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Fig.6. Upper and lower components of the initial and final nucleon wave functions.
This corresponds to a hole-hole transition proceeding from the ground-state of

134 Tngs to an excited state of 13}Sng;.

¥
H’-\ ; + =
"0 r +
3 o1
8 £ 3
§ 0.01 3 +
g K 133
o 0001; s~ 5190 L2
0.0001 ‘ ‘ ‘

2f7/2 - lg7/2 2f7/2 - 2dg/z A mn” 2dé/z

Fig. 7. This figure shows the calculated results of the S-transition rates in the cases
of particle—particle transitions and the experimental values.

Returning to the results for the ground-state to ground-state transition in
the particle—particle case, Fig. 9 shows the dominant multipoles as a function
of the k = |g]. The values plotted correspond to the square of the magnitude
of the multipoles defined in Eqs. (4)—(7). The multipoles plotted correspond
to values of J = 0 and J = 1, with | M (k)|? being the most dominant term.
From this figure it is also clear that at low momentum transfer the only non-
vanishing multipoles are |[Mg(k)|?, | T (k)|? and | £1(k)|?, in accordance with
the analysis made in [4].
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Fig.9. Magnitude of the multipoles defined in Eqs. (4)—(7) for J =0 and J = 1.
These multipoles are the dominant terms contributing to the particle-particle tran-
sition undergoing between the ground-states of 133Sngs and '37Shgs. In this figure
M;=My, Ly =Ly, T$ = T5" and T7™ = T,"¢.

The results obtained in the hole-hole type of transitions are shown in
Fig. 8. In this case, the results are less satisfactory than in the particle-
particle case. The experimental results are shown here as arrows indicating
upper limits to the decay rates. From the three cases calculated here, only
one lies within the experimentally determined range. This transition cor-
responds to a ground-state to excited state hole-hole transition. The two
other cases shown occur from ground-state to excited state and excited to
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ground-state respectively. Their numerical results are very similar. In these
cases, there is no direct ground-state to ground-state transition which makes
it difficult to compare with the particle-particle case.

4. Conclusions

This paper shows the results of calculations of the S-transition rates of
nuclei close to 1§§Sn182. These calculations were inspired from the success of
the results obtained in a previous paper [1| dealing with the application of
the EFT/DFT approach to the nuclear many-body system to nuclei far from

stability. In reaching this goal several important results have been obtained:

1. A general expression to calculate any semi-leptonic process has been
derived. The main equations and definitions needed are given by Eqgs.
(19)—(22), (25)—(28) and Table II. The nucleon wave functions are the
Dirac wave functions obtained from solving the Kohn—Sham equations
derived in the EFT/DFT approach and considers relativistic correc-
tions to all orders in the nucleon wave functions. Additionally, the
single-particle electroweak currents used correspond to the leading
Noether currents obtained directly from the same effective Lagrangian.
In this sense, the calculation is self-consistent since all relevant ele-
ments have been obtained directly from a single theory.

2. The assumption at the beginning of this paper regarding the view that
the transitions between ground-states are expected to be in better
agreement than those involving excited states, can at this point be
considered only as a conjecture since the amount of evidence provided
by the two test cases studied here, while suggestive, do not conclusively
support this view. A more comprehensive study has to be undertaken
that requires a whole set of systematic calculations on a larger set
of nuclei using the framework presented here. This goes beyond the
present scope of the paper.

Although first-forbidden single-particle beta transitions have been ex-
tensively studied in the past, and a comprehensive analysis on this matter
can be found in such basic texts as [5,28,30], the author believes he has
made acontribution to this subject: The nuclear dynamics (binding en-
ergies, chemical potentials, predictions for ground-state J™ of odd nuclei,
etc.), and the weak currents used to probe the nuclei studied here, fol-
low self-consistently from a single, covariant Lagrangian that manifests the
spontaneously broken chiral symmetry of (QCD. Furthermore, the author has
successfully extended the original approach of Furnstahl, Serot and Tang
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to nuclei far from stability. To the author’s knowledge these are new con-
tributions. In addition, general expressions are given for calculating any
semi-leptonic process within this framework. A theory capable of reliable
extrapolation and predictions of beta decay properties should be of interest
for nuclear astrophysics.

I like to thank Dr. J.D. Walecka for his encouragement, support and
advice, and Dr. B. Serot for reading the manuscript and for his useful com-
ments. This work is supported in part by DOE grant DE-FG02-97TER41023.
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