NNLO QCD CALCULATIONS OF RARE B DECAYS*

MikoŁaj Misiak
Institute of Theoretical Physics, Warsaw University Hoża 69, 00-681 Warszawa, Poland

(Received May 30, 2003)

Present status of the NNLO QCD calculations of the rare decays $\bar{B} \rightarrow X_{s} l^{+} l^{-}$and $\bar{B} \rightarrow X_{s} \gamma$ is summarized.

PACS numbers: 13.20.He

1. Introduction

A variety of rare B-meson decays can be studied using large data samples that have been collected so far at the B factories. However, only a limited number of them are sensitive to new physics and theoretically clean at the same time. Among such modes, the inclusive decays $\bar{B} \rightarrow X_{s} l^{+} l^{-} \quad(l=$ e or μ) and $\bar{B} \rightarrow X_{s} \gamma$ are of particular interest. For appropriately chosen kinematical cuts, their widths are well approximated by the perturbatively calculable widths of the b-quark decays $b \rightarrow X_{s}^{\text {parton }} l^{+} l^{-}$and $b \rightarrow X_{s}^{\text {parton }} \gamma$, respectively. The estimated non-perturbative effects and the expected experimental uncertainties are smaller than the perturbative Next-Next-to-Leading-Order (NNLO) QCD corrections. Consequently, calculating such corrections is essential for tightening constraints on extensions of the Standard Model (SM) that can be derived from the measurements of $\bar{B} \rightarrow X_{s} l^{+} l^{-}$ and $\bar{B} \rightarrow X_{s} \gamma$. Actually, these two decay modes are the only rare B-decays for which the NNLO QCD corrections are of phenomenological interest.

Large QCD logarithms $\alpha_{\mathrm{S}} \ln \left(M_{W}^{2} / m_{b}^{2}\right)$ are treated as quantities of order unity in the renormalization-group-improved calculations of b decays. In consequence, the perturbative series for the decay amplitudes take the following form

[^0]\[

$$
\begin{align*}
A\left(b \rightarrow s l^{+} l^{-}\right) & =\frac{1}{\alpha_{\mathrm{S}}\left(m_{b}\right)} f_{\mathrm{LO}}(\eta)+f_{\mathrm{NLO}}(\eta)+\alpha_{\mathrm{S}}\left(m_{b}\right) f_{\mathrm{NNLO}}(\eta)+\ldots \tag{1}\\
A(b \rightarrow s \gamma) & =g_{\mathrm{LO}}(\eta)+\alpha_{\mathrm{S}}\left(m_{b}\right) g_{\mathrm{NLO}}(\eta)+\alpha_{\mathrm{S}}^{2}\left(m_{b}\right) g_{\mathrm{NNLO}}(\eta)+\ldots \tag{2}
\end{align*}
$$
\]

where the functions f and g are computed exactly in $\eta=\alpha_{\mathrm{s}}\left(M_{W}\right) / \alpha_{\mathrm{s}}\left(m_{b}\right)$, i.e. $\eta-1$ is treated as a quantity of order unity.

One can see that there is an essential difference between the two series (1) and (2). Only the first of them contains the $\mathcal{O}\left(1 / \alpha_{s}\right)$ term. If η was formally expanded in powers of α_{s}, the function $f_{\mathrm{LO}}(\eta)$ would become a quantity of order α_{S}, and the considered term would reproduce a logarithm $\ln \left(M_{W}^{2} / m_{b}^{2}\right)$ that occurs in the purely electroweak $b \rightarrow s l^{+} l^{-}$amplitude (Fig. 1). On the other hand, since the electroweak one-loop $b \rightarrow s \gamma$ amplitude (Fig. 2) is free such logarithms, there is no $\mathcal{O}\left(1 / \alpha_{s}\right)$ term in the series (2).

Fig. 1. Leading-order Feynman diagrams for $b \rightarrow s l^{+} l^{-}$in the SM.

Fig. 2. Leading-order Feynman diagrams for $b \rightarrow s \gamma$ in the SM.
The function $f_{\mathrm{LO}}(\eta)$ turns out to be very small for the actual value of $\eta \simeq 0.56$. In effect, the first two terms in Eq. (1) are close in size. Consequently, the NNLO term in this equation is numerically as important as the Next-to-Leading-Order (NLO) QCD corrections in many other processes. Theoretical uncertainties in the SM prediction for $\operatorname{BR}\left[\bar{B} \rightarrow X_{s} l^{+} l^{-}\right]$get reduced below 10% only after this term is included ${ }^{1}$.

In the case of $\operatorname{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$, theoretical uncertainties are brought down to the $\sim 10 \%$ level already after including the NLO corrections. However,

[^1]since the experimental errors will soon become significantly smaller than 10%, a calculation of $g_{\text {NNLO }}(\eta)$ is necessary. Such a calculation is currently underway.

In the present paper, status of the perturbative QCD calculations of the two considered processes is summarized. Section 2 is devoted to the rare semileptonic decay for which the NNLO QCD calculations have been recently completed. The rare radiative decay is discussed in Section 3. Section 4 contains the conclusions.

2. The rare semileptonic decay

Theoretical predictions for the dilepton invariant mass spectrum in $\bar{B} \rightarrow X_{s} l^{+} l^{-}$are presented in Fig. 3. The dashed curve corresponds to the perturbative $b \rightarrow s l^{+} l^{-}$decay. The solid line includes non-perturbative contributions from intermediate $c \bar{c}$ states that have been calculated using "naive" factorization and dispersion relations [1]. The shape of the solid curve tells us that the perturbative methods fail in the region of intermediate ψ and ψ^{\prime} resonances. On the other hand, the perturbative calculations are believed to work fairly well for low values of $m_{l^{+} l^{-}}$(below 2 or even $2.5 \mathrm{GeV})^{2}$.

Fig. 3. Perturbative (dashed) and non-perturbative (solid) dilepton mass spectrum in $\bar{B} \rightarrow X_{s} l^{+} l^{-}$(see the text). The dotted vertical lines indicate cuts imposed by Belle [2] in the $l=e$ case - the vetoed regions are around the ψ and ψ^{\prime} peaks, as well as for very low $m_{l^{+} l^{-}}$.

[^2]The first measurement of the inclusive $\bar{B} \rightarrow X_{s} l^{+} l^{-}$branching ratio was announced in August 2002 by the Belle collaboration [2]. Cuts on $m_{l+l^{-}}$that were applied in their analysis are indicated by the dotted lines in Fig. 3. The perturbative (dashed) curve was used to extrapolate the measured spectrum to the range $m_{l^{+} l^{-}} \in\left[0.2 \mathrm{GeV}, m_{B}-m_{K} \simeq 4.8 \mathrm{GeV}\right]$. After averaging over electrons and muons, the following result for the "total" branching ratio was obtained:

$$
\begin{equation*}
\operatorname{BR}\left[\bar{B} \rightarrow X_{s} l^{+} l^{-}\right]_{\exp }=\left(6.1 \pm 1.4_{-1.1}^{+1.4}\right) \times 10^{-6} . \tag{3}
\end{equation*}
$$

It agrees within 1σ with the SM phenomenological analysis of Ali et al. [3] who have found

$$
\begin{equation*}
\mathrm{BR}\left[\bar{B} \rightarrow X_{s} l^{+} l^{-}\right]_{\mathrm{SM}}=(4.2 \pm 0.7) \times 10^{-6} \tag{4}
\end{equation*}
$$

for the same kinematical cuts.
The uncertainty of the SM prediction (4) can be reduced in the future by reanalyzing the charm-quark mass dependence along the same lines as it is usually done in the determinations of $V_{c b}$. Furthermore, one can get rid of sizeable the non-perturbative uncertainties by restricting to the domain

$$
\begin{equation*}
\hat{s} \equiv\left(\frac{m_{l^{+} l^{-}}}{m_{b}}\right)^{2} \in[0.05,0.25] \tag{5}
\end{equation*}
$$

that has been used in several NNLO QCD analyses [4,5]. It corresponds to $m_{l^{+} l^{-}} \in[1.05,2.35] \mathrm{GeV}$. The upper bound of this domain is determined by the requirement of not getting too close to the intermediate ψ resonance. The lower bound has been introduced in order to exclude intermediate photons of low virtuality and, in consequence, increase sensitivity to such new physics effects that are not yet constrained by $\bar{B} \rightarrow X_{s} \gamma$. In the following, we shall restrict our discussion to the interval (5).

The standard framework for $\bar{B} \rightarrow X_{s} l^{+} l^{-}$analyses is set by the effective Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b, e, \mu)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) O_{i} . \tag{6}
\end{equation*}
$$

The operators O_{i} and the numerical values of their Wilson coefficients at
the scale $\mu=m_{b}$ are as follows:

$$
O_{i}=\left\{\begin{array}{lll}
\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), & & \left|C_{i}\left(m_{b}\right)\right| \sim 1,2, \tag{7}\\
\left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), & i=3,4,5,6, & \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{\mathrm{L}} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, & i=7, & C_{7}\left(m_{b}\right) \sim-0.3 \\
\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{\mathrm{L}} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, & i=8, & C_{8}\left(m_{b}\right) \sim-0.15 \\
\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} b_{\mathrm{L}}\right)\left(\bar{l} \gamma^{\mu} l\right), & i=9 & \left|C_{9}\left(m_{b}\right)\right| \sim 4, \\
\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} b_{\mathrm{L}}\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right), & i=10 & \left|C_{10}\left(m_{b}\right)\right| \sim 4
\end{array}\right.
$$

Here, Γ and Γ^{\prime} stand for various products of the Dirac and color matrices (see e.g. $[4,5]$).

Calculations of the $b \rightarrow X_{s}^{\text {parton }} l^{+} l^{-}$decay amplitude are usually performed in three steps:

- Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at $\mu_{0} \sim M_{W}$ by requiring equality of the SM and effective theory Green's functions at the leading order in (external momenta) $/ M_{W}$.
- Mixing: Deriving the effective theory Renormalization Group Equations (RGE) and evolving $C_{i}(\mu)$ from μ_{0} down to $\mu_{b} \sim m_{b}$.
- Matrix elements: Evaluating the on-shell amplitudes at $\mu_{b} \sim m_{b}$.

The Wilson coefficients $C_{i}\left(\mu_{b}\right)$ are perturbatively expanded as follows:

$$
\begin{align*}
C_{i}\left(\mu_{b}\right)= & \delta_{i 9} \frac{4 \pi}{\alpha_{\mathrm{s}}\left(\mu_{b}\right)} C_{9}^{(-1)}\left(\mu_{b}\right)+C_{i}^{(0)}\left(\mu_{b}\right)+\frac{\alpha_{\mathrm{s}}\left(\mu_{b}\right)}{4 \pi} C_{i}^{(1)}\left(\mu_{b}\right) \\
& +\left(\frac{\alpha_{\mathrm{s}}\left(\mu_{b}\right)}{4 \pi}\right)^{2} C_{i}^{(2)}\left(\mu_{b}\right)+\ldots \tag{8}
\end{align*}
$$

where $C_{i}^{(n)}\left(\mu_{b}\right)$ depend on α_{S} only via the ratio $\eta \equiv \alpha_{\mathrm{S}}\left(\mu_{0}\right) / \alpha_{\mathrm{S}}\left(\mu_{b}\right)$. The origin of the $\mathcal{O}\left(1 / \alpha_{\mathrm{s}}\right)$ term in C_{9} has been already explained in the introduction. Its presence implies that a calculation in which $C_{9}^{(0)}$ is included is called a NLO one. On the other hand, since $C_{9}^{(0)}\left(\mu_{b}\right) \simeq 2.2$ and

$$
\begin{equation*}
C_{9}^{(-1)}\left(m_{b}\right) \simeq 0.033 \ll 1 \Rightarrow \frac{4 \pi}{\alpha_{\mathrm{s}}\left(m_{b}\right)} C_{9}^{(-1)}\left(m_{b}\right) \simeq 2 \tag{9}
\end{equation*}
$$

the NLO contribution is not smaller (but rather larger) than the LO one. Consequently the first actual QCD correction to the amplitude is the NNLO contribution that includes $C_{i}^{(1)}\left(\mu_{b}\right)$.

The coefficients $C_{9}^{(-1)}\left(m_{b}\right)$ and $C_{10}^{(0)}$ are known since 1989 when the LO calculations were completed [6]. The coefficients $C_{9}^{(0)}$ and $C_{10}^{(1)}$ were found in Refs. [7,8] and [9,10], respectively. The calculation of $C_{9}^{(1)}$ involves 2 -loop matching and 3 -loop mixing. Two-loop matching results for all the operators (7) were found in Ref. [4]. The necessary 3 -loop mixing calculation (Fig. 4(a)) is currently being completed. Preliminary results have already been announced [11]. Their numerical effect on the branching ratio does not exceed 2%.

(a)

(b)

Fig. 4. Sample diagrams for (a) 3-loop mixing of $O_{1,2}$ into O_{9} (b) 2-loop matrix element of O_{9}.

As far as the matrix elements are concerned, most of the necessary treelevel and one-loop ones were included already at the LO and NLO [6-8]. One-loop diagrams with insertions of O_{9} and O_{10} (and the corresponding bremsstrahlung corrections) were read out from the $b \rightarrow X_{u} e \bar{\nu}$ decay calculations of Jeżabek and Kühn [12].

The most involved terms that arise at the NNLO are the 2-loop matrix elements of the 4 -quark operators $O_{1,2}$ (Fig. 5). They were completed in

Fig. 5. Sample diagrams for 2-loop matrix elements of the 4-quark operators.

2001-2002 by two independent groups. The first of them [5] applied MellinBarnes transforms to the Feynman-parameter integrals. The other one [13] used numerical integration after reduction to the so-called sunrise topologies.

Two elements are still missing in the complete NNLO calculation of $b \rightarrow X_{s}^{\text {parton }} l^{+} l^{-}$:

- Two-loop matrix element of O_{9} (Fig. 4b) and the corresponding bremsstrahlung correction. Its integral over $m_{l^{+} l^{-}}$can be read out from the $b \rightarrow X_{u} e \bar{\nu}$ results of van Ritbergen [14]. Implementing the necessary cuts would require a new calculation. However, the considered contribution is proportional to the small Wilson coefficient $C_{9}^{(-1)}\left(m_{b}\right)(9)$. Thus, its numerical effect on the decay width is expected to be very small.
- Two-loop matrix elements of the so-called penguin operators O_{3}, \ldots, O_{6}. Since the corresponding Wilson coefficients are small (see Eq. (7)), this contribution can hardly exceed 1%.

Thus, the existing NNLO results can be called "practically complete". Uncertainties due to the uncalculated higher-order corrections have already been significantly reduced. It is illustrated in Figs. 6(a) and (b) that originate from Refs. [5] and [13], respectively.

Fig. 6(a) presents the \hat{s}-dependence of

$$
\begin{equation*}
R_{\text {quark }}(\hat{s}) \equiv \frac{d \Gamma\left[b \rightarrow X_{s}^{\text {parton }} l^{+} l^{-}\right] / d \hat{s}}{\Gamma\left[b \rightarrow X_{c}^{\text {parton }} e \bar{\nu}_{e}\right]} \approx \frac{d \Gamma\left[\bar{B} \rightarrow X_{s} l^{+} l^{-}\right] / d \hat{s}}{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}_{e}\right]} \tag{10}
\end{equation*}
$$

for three different values of $\mu_{b}: 2.5,5$ and 10 GeV . The solid lines correspond to the current NNLO results. The dashed lines show what one would obtain

Fig. 6. (a) $R_{\text {quark }}(\hat{s})$ and (b) $A_{\mathrm{FB}}(\hat{s})$ for different values of μ_{b} (see the text).
before including the NNLO matrix elements of the 4 -quark operators. The weaker scale-dependence of the new results is clearly seen.

Fig. 6(b) shows the forward-backward asymmetry

$$
\begin{equation*}
A_{\mathrm{FB}}(\hat{s}) \equiv \frac{1}{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}_{e}\right]} \int_{-1}^{1} d \cos \theta \frac{d^{2} \Gamma\left[\bar{B} \rightarrow X_{s} l^{+} l^{-}\right]}{d \hat{s} d \cos \theta} \operatorname{sgn}(\cos \theta) \tag{11}
\end{equation*}
$$

as a function of \hat{s}. The three lower curves describe the current NNLO results, while the three upper curves refer to the old NLO case. In both cases, the middle solid line corresponds to $\mu_{b}=5 \mathrm{GeV}$ and the two dashed lines correspond to the two other values of $\mu_{b}(2.5$ and 10 GeV$)$. Again, it is clearly seen that the scale-dependence has shrinked after including the NNLO corrections.

The integrated $\operatorname{BR}\left[\bar{B} \rightarrow X_{s} l^{+} l^{-}\right]$over the domain (5) reads $[15]^{3}$

$$
\begin{equation*}
\mathrm{BR}=\left(1.36 \pm 0.08_{\text {scale }}\right) \times 10^{-6}, \tag{12}
\end{equation*}
$$

where the scale-dependence uncertainty has been determined using the same variation of μ_{b} as above. This scale dependence serves us as an estimate of the yet uncalculated higher-order corrections. The remaining uncertainties have been analyzed so far only in Ref. [3] where other kinematical cuts were used and the m_{c}-dependence errors were overestimated. Thus, a detailed analysis of theoretical uncertainties in the domain (5) is still awaited. Several groups plan to perform such an analysis once the final results on the 3-loop anomalous dimensions [11] are published.

3. The rare radiative decay

The effective Lagrangian that governs the $\bar{B} \rightarrow X_{s} \gamma$ decay is the same as in Eq. (6), except for that O_{9} and O_{10} do not need to be included at the leading order in α_{em}. Thus, at the LO, one includes only $C_{i}^{(0)}\left(\mu_{b}\right)$ in Eq. (8), at the NLO - also $C_{i}^{(1)}\left(\mu_{b}\right)$, and at the NNLO - also $C_{i}^{(2)}\left(\mu_{b}\right)$. The history of the LO and NLO calculations together with appropriate references has

Fig. 7. Two-loop $b \rightarrow s \gamma$ matrix elements of the operators O_{1} and O_{2}.

[^3]

Fig. 8. Sample diagram for the NLO matching.

Fig. 9. Sample diagrams for the mixing.
been summarized in Ref. [16]. Figs. 7, 8 and 9 show examples of Feynman diagrams that have been evaluated for the matrix elements, matching and mixing, respectively.

Fig. 10 presents a comparison of the experimental determinations of $\operatorname{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$ with some of the theoretical calculations. It is interesting to notice that the central value of the current world average [17]

$$
\begin{equation*}
\mathrm{BR}\left[\bar{B} \rightarrow X_{s} \gamma, \quad\left(E_{\gamma}>\frac{1}{20} m_{b}\right)\right]=(3.34 \pm 0.38) \times 10^{-4} \tag{13}
\end{equation*}
$$

practically overlaps with the central value of the first SM prediction [32] in which most of the leading-logarithmic QCD effects were taken into account. The visible shrinking of the theoretical uncertainties in 1996 was due to (practical) completion of the NLO QCD calculations by that time. The central value of the SM prediction got modified of in $2001 / 2002$ as a result of changing the parameter $\frac{m_{c}}{m_{b}}$ from the ratio of pole masses to $m_{c}(\mu)^{\overline{\mathrm{MS}}} / m_{b}^{1 S}$ (see below) ${ }^{4}$.

The largest NLO QCD correction (in the $\overline{\mathrm{MS}}$ scheme) originates from the 2-loop matrix elements of O_{1} and O_{2} (Fig. 7) that involve charm-quark loops. These on-shell diagrams were calculated first with the help of MellinBarnes transform of Feynman-parameter integrals [26]. The results had a form of a series in powers of $\frac{m_{c}}{m_{b}}$ and $\ln \frac{m_{c}}{m_{b}}$. They were later confirmed with the help of asymptotic expansions [33].

[^4]

Fig. 10. Measurements and (some of the) theoretical calculations of $\operatorname{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$.

Recently, two-loop matrix elements of all the four-quark operators (not only O_{1} and O_{2}) have been found [20]. This was the very last element in the NLO QCD program for $\bar{B} \rightarrow X_{s} \gamma$. It required calculating the diagrams from Fig. 7 with q-quark loops for $m_{q} \in\left\{m_{b}, m_{c}, 0\right\}$. In practice, analytic expressions were obtained for arbitrary values on m_{q} / m_{b}. Apart from formally completing the NLO QCD calculation, these results allow us to study the behaviour of $\mathrm{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$ for arbitrary values of m_{c}, which is going to be very useful in the following discussion.

The main uncertainty in the present SM prediction $[19,20]$

$$
\begin{align*}
\mathrm{BR}\left[\bar{B} \rightarrow X_{s} \gamma, \quad\left(E_{\gamma}>1.6 \mathrm{GeV}\right)\right] & =(3.57 \pm 0.30) \times 10^{-4} \tag{14}\\
\mathrm{BR}\left[\bar{B} \rightarrow X_{s} \gamma, \quad\left(E_{\gamma}>\frac{1}{20} m_{b}\right)\right] & =3.70 \times 10^{-4} \tag{15}
\end{align*}
$$

originates from the 2-loop matrix elements of O_{1} and O_{2} (Fig. 7). These diagrams with charm quark loops are the only source of m_{c}-dependence of
the $b \rightarrow s \gamma$ amplitude. Since the NNLO QCD corrections are unknown yet, the renormalization scheme for m_{c} remains arbitrary, at least within a certain class of "reasonable" schemes that do not artificially enhance the unknown corrections. As argued in Ref. [19], the uncertainty in Eq. (14) stemming from this scheme-dependence can be accounted for by setting $m_{c} / m_{b}=$ $m_{c}(\mu)^{\overline{\mathrm{MS}}} / m_{b}^{1 S}$ and varying the scale μ between m_{c} and m_{b}. Such a variation is the dominant source of the error in Eq. (14).

The considered uncertainty should be removed because the errors in Eqs. (13) and (14) are close in size, while prospects for improvement on the experimental side are bright. Thus, the NNLO QCD corrections $b \rightarrow$ $X_{s}^{\text {parton }} \gamma$ should be calculated. Some of the diagrams that need to be evaluated can be obtained from Figs. 7,8 and 9 by adding one more gluon.

The NNLO matching conditions for $O_{1}-O_{6}$ are already known [4]. The 3loop matching conditions for O_{7} and O_{8} are currently being calculated [34]. Our preliminary results imply that the effect of all the NNLO matching conditions on $\operatorname{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$ is negative and amounts to around -1.5% (in the $\overline{\mathrm{MS}}$ scheme).

As far as the NNLO mixing is concerned, all the 3-loop contributions should soon be known [11]. Computer algebra algorithms for evaluating the necessary 4-loop diagrams exist [35]. However, no calculation has yet begun.

Evaluation of the matrix elements is technically much more difficult than the matching or mixing because no expansion in external momenta can be applied. Finding the 2-loop on-shell matrix elements of O_{7} and O_{8} as well as the corresponding bremsstrahlung contributions is in the plans of the Bern group [36]. The diagrams with fermionic loops have already been calculated [37]. There remain 10 two-loop 1PI diagrams for O_{7} and 34 such diagrams for O_{8}. The quasi-numerical approach of Ref. [13] might be applied for their evaluation.

The 3-loop matrix elements of O_{1} and O_{2} are the most problematic ${ }^{5}$. The massive on-shell 3-loop diagrams that one obtains from Fig. 7 by inserting a fermion loop on the gluon line have been already found [37]. However, if a new gluon line is added instead, the presently known techniques fail. The number of such 3-loop diagrams is too large (around 200) to follow the "manual" approach of Ref. [37]. On the other hand, algorithmic procedures for such diagrams are not well developed even at the 2-loop level.

A method of estimating contributions from such 3-loop diagrams can be found by studying charm-mass dependence of $\mathrm{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$. It is shown in Fig. 11 where m_{c} is varied between 0 and 40 GeV , while all the other SM parameters are set to their measured values. The two dotted vertical lines

[^5]

Fig. 11. Dependence of $\mathrm{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$ on m_{c}
indicate the "measured" values of $m_{c}\left(\mu=m_{c}\right)$ and $m_{c}\left(\mu=m_{b}\right)$. The solid curve is found from the complete NLO formulae for $\mathrm{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$. The dashed one corresponds to the asymptotic behaviour at $m_{c} \gg m_{b}$, i.e. all the functions of $\frac{m_{c}}{m_{b}}$ are replaced by (const. $)_{1}+(\text { const. })_{2} \ln \frac{m_{c}}{m_{b}}$.

The large- m_{c} behaviour of the branching ratio is qualitatively explained by that it should vanish for $m_{c}=m_{t}$, up to small $\mathcal{O}\left(V_{u b}^{2} / V_{c b}^{2}\right)$ effects. It is interesting that the asymptotic large- m_{c} expression (dashed curve) remains a good approximation even for relatively small values of m_{c}. A reasonable approximation of the NLO results at realistic values of m_{c} can be found by following the asymptotic curve down to $m_{c}=\frac{1}{2} m_{b}$ and then performing a linear extrapolation. This approach would give even better results if the asymptotic formula was supplemented by higher-order terms in the $\frac{m_{b}}{m_{c}}$-expansion, because such an expansion turns out to be convergent down to the threshold $m_{c}=\frac{1}{2} m_{b}$.

If a similar approach worked at the NNLO, the 3-loop matrix element calculation would become technically feasible, because the large- m_{c} NNLO expressions could be found using an expansion in external momenta. The success of the considered extrapolation at the NLO (no matter whether accidental or not) implies that at least the effects related to the renormalization of m_{c} could be taken into account with reasonable accuracy. Such effects at the NNLO are proportional to the derivative of the NLO amplitude with respect to m_{c}. At present, the proportionality coefficient remains unknown. It could be found at $m_{c}=\frac{1}{2} m_{b}$ using the large- m_{c} expansion, and then extrapolated down to the realistic values of m_{c}.

Such a method of estimating the NNLO matrix elements of O_{1} and O_{2} is going to be used soon [34]. Even though the procedure is rather rough, we will definitely know more than we know now, i.e. more than just an expected
order of magnitude of the NNLO corrections. The question whether an onshell calculation might be feasible for $m_{c}=0$ is currently under investigation. If it was, the extrapolation in m_{c} would become an interpolation, which would definitely improve our control over the final result and its uncertainty. However, no definite statement concerning the $m_{c}=0$ case can be made yet.

4. Summary

The NNLO QCD calculations of rare B decays are of phenomenological interest only for the inclusive modes $\bar{B} \rightarrow X_{s} l^{+} l^{-}$and $\bar{B} \rightarrow X_{s} \gamma$. Sensitivity of these decays to new physics, relatively good control over non-perturbative effects and prospects for small experimental errors at the B-factories make the NNLO enterprise inevitable. In fact, the NNLO corrections for $\bar{B} \rightarrow$ $X_{s} l^{+} l^{-}$are known since more than a year. Order α_{s}^{2} calculations for $\bar{B} \rightarrow$ $X_{s} \gamma$ have only just started. However, it is realistic to expect their completion within a year or so given the number of research groups that have undertaken complementary tasks.

This work was supported in part by the Polish State Committee for Scientific Research (KBN) under the grant 2 P03B 12120 and by the European Community's Human Potential Programme under the contract HPRN-CT-2002-00311, EURIDICE.

REFERENCES

[1] F. Krüger, L. M. Sehgal, Phys. Lett. B380, 199 (1996).
[2] J. Kaneko et al. (Belle Collaboration), Phys. Rev. Lett. 90, 021801 (2003).
[3] A. Ali, E. Lunghi, C. Greub, G. Hiller, Phys. Rev. D66, 034002 (2002).
[4] C. Bobeth, M. Misiak, J. Urban, Nucl. Phys. B574, 291 (2000).
[5] H.H. Asatrian, H.M. Asatrian, C. Greub, M. Walker, Phys. Lett. B507, 162 (2001); Phys. Rev. D66, 034009 (2002); H.M. Asatrian, K. Bieri, C. Greub, A. Hovhannisyan, Phys. Rev. D66, 094013 (2002).
[6] B. Grinstein, M.J. Savage, M.B. Wise, Nucl. Phys. B319, 271 (1989).
[7] M. Misiak, Nucl. Phys. B393, 23 (1993); B439, 461 (E) (1995).
[8] A.J. Buras, M. Münz, Phys. Rev. D52, 186 (1995).
[9] G. Buchalla, A.J. Buras, Nucl. Phys. B398, 285 (1993), B400, 225 (1993).
[10] M. Misiak, J. Urban, Phys. Lett. B451, 161 (1999).
[11] U. Haisch, talk presented at the Ringberg Phenomenology Workshop on Heavy Flavors, Tegernsee, Germany, April 27-May 2, 2003; P. Gambino, M. Gorbahn, U. Haisch, to be published.
[12] M. Jeżabek, J.H. Kühn, Nucl. Phys. B320, 20 (1989).
[13] A. Ghinculov, T. Hurth, G. Isidori, Y.-P. Yao, Nucl. Phys. B648, 254 (2003); hep-ph/0211197.
[14] T. van Ritbergen, Phys. Lett. B454, 353 (1999).
[15] T. Hurth, hep-ph/0212304, to appear in Rev. Mod. Phys.
[16] A.J. Buras, M. Misiak, Acta Phys. Pol. B 33, 2597 (2002).
[17] C. Jessop, SLAC report SLAC-PUB-9610, November 2002.
[18] B. Aubert et al. (BaBar Collaboration), hep-ex/0207131; hep-ex/0207076.
[19] P. Gambino, M. Misiak, Nucl. Phys. B611, 338 (2001).
[20] A.J. Buras, A. Czarnecki, M. Misiak, J. Urban, Nucl. Phys. B631, 219 (2002).
[21] S. Chen et al. (Cleo Collaboration), Phys. Rev. Lett. 87, 251807 (2001).
[22] K. Abe et al. (Belle Collaboration), Phys. Lett. B511, 151 (2001).
[23] A.L. Kagan, M. Neubert, Eur. Phys. J. C7, 5 (1999).
[24] R. Barate et al. (Aleph Collaboration), Phys. Lett. B429, 169 (1998).
[25] K.G. Chetyrkin, M. Misiak, M. Münz, Phys. Lett. B400, 206 (1997), B425, 414 (E) (1998).
[26] C. Greub, T. Hurth, D. Wyler, Phys. Rev. D54, 3350 (1996).
[27] K. Adel, Y.-P. Yao, Phys. Rev. D49, 4945 (1994).
[28] A. Ali, C. Greub, Z. Phys. C49, 431 (1991); Phys. Lett. B259, 182 (1991), B361, 146 (1995).
[29] M.S. Alam et al. (Cleo Collaboration), Phys. Rev. Lett. 74, 2885 (1995).
[30] M. Ciuchini et al., Phys. Lett. B316, 127 (1993); Nucl. Phys. B421, 41 (1994).
[31] A.J. Buras, M. Misiak, M. Münz, S. Pokorski, Nucl. Phys. B424, 374 (1994).
[32] B. Grinstein, R.P. Springer, M.B. Wise, Phys. Lett. B202, 138 (1988); Nucl. Phys. B339, 269 (1990).
[33] A.J. Buras, A. Czarnecki, M. Misiak, J. Urban, Nucl. Phys. B611, 488 (2001).
[34] M. Misiak, M. Steinhauser, work in progress.
[35] Y. Schroder, hep-ph/0211288; K. Kajantie, M. Laine, K. Rummukainen, Y. Schroder, J. High Energy Phys. 0304, 036 (2003).
[36] C. Greub, talk presented at the "Euridice" meeting, Frascati, Italy, October 18-20, 2002; H.M. Asatrian, C. Greub, T. Hurth, work in progress.
[37] K. Bieri, C. Greub, M. Steinhauser, hep-ph/0302051, to appear in Phys. Rev. D.

[^0]: * Presented at the Cracow Epiphany Conference on Heavy Flavors, Cracow, Poland, January 3-6, 2003.

[^1]: ${ }^{1}$ The necessary kinematical cuts will be discussed in the next section.

[^2]: ${ }^{2}$ Provided $\bar{B} \rightarrow \psi X_{s}^{(1)}$ followed by $\psi \rightarrow X^{(2)} l^{+} l^{-}$is treated as background.

[^3]: ${ }^{3}$ The non-perturbative $\mathcal{O}\left(\Lambda^{2} / m_{c, b}^{2}\right)$ corrections are included in this number.

[^4]: ${ }^{4}$ Here, $m_{b}^{1 S}$ stands for the b-quark mass in the so-called " $1 S$-scheme". It is defined as half of the perturbative contribution to the Υ mass.

[^5]: ${ }^{5}$ The remaining 4-quark operators have so small Wilson coefficients that their NNLO matrix elements can safely be neglected.

