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We calculate the contribution to the B — 7w decay from gluonic pen-
guin operator, Osg, including both hard O(as) and soft gluon effects. As
expected, the soft effects enter at order 1/m?, but are numerically of the
same order as the hard ones, indicating the necessity of taking them into
account.

PACS numbers: 12.38.Lg, 11.55.Hx, 13.25.Hw

1. Introduction

Understanding CP violation within the Standard Model requires infor-
mation on the angles of the unitarity triangles of the Cabibbo-Kobayashi-
Maskawa mixing matrix (CKM) [1]. In the area of B physics, which is
currently extensively investigated in experiments [2|, the process B — nm
provides means of finding sin 2, which is related to the asymmetry [3]

I(BY(t) = ntn~) — ['(BY(t) = ntn)
(BY(t) — ntn—) + T(BY(t) — ntn—)

IS

(1)

The nonleptonic B decays are described by an effective Hamiltonian. While
the Wilson coefficients appearing in this Hamiltonian can be computed per-
turbatively, the main problem in evaluating the transition probabilities are
the matrix elements of the operators mediating the decays. These are essen-
tially non-perturbative quantities and must be found using other methods,
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e.g. factorization, lattice or sum rules. The possibility of deducing informa-
tion on B — 7w decay from the lattice seems remote, while factorization and
sum rules offer interesting ways of estimating the pertinent matrix elements.

Recently, new factorization theorems have been proved for non-leptonic
B decays [4], which turns factorization into a systematic scheme, in partic-
ular allowing estimation of errors related to higher order terms. In the limit
of infinite b quark mass, exact predictions can be made using this approach.
The corrections to such predictions originating from the finiteness of the
real quark mass are, however, worth examining in a quantitative way. It
is not clear whether the formally power suppressed terms are numerically
significant. The light-cone sum rules (LCSR) method is an excellent model
to reliably compare the impact of factorizable and non-factorizable effects,
even though it is inherently of limited accuracy. The main advantage of this
approach is that both hard and soft gluon effects are evaluated in the same
scheme.

The method of light-cone sum rules [5-7] for B — mm decays has been
proposed in Ref. [8]. The results presented in this paper were calculated in
Ref. [9]. We compute the contribution of the gluonic penguin operator to
the B — 7w decay. Apart from being interesting phenomenologically in its
own right, this operator, Og,, gives us the opportunity to apply the LCSR
method without having to do two-loop computations, as is the case for the
remaining operators.

In the next section, we will briefly present the method of light-cone sum
rules as applied to the B decay to two pions. Then we will show the result
for the matrix element of Og, for this decay analytically and then discuss
the numerics. For comparison, we quote the result from the factorization
method. We conclude with a summary and outlook.

2. Method

The effective Hamiltonian to describe B — 7w decays can be written

i = S (a6 + 2) 010 + 2620000

+.+ Atcgg(u)OSg(u)} , (2)

where A, = Vi Vi Av = Vi V}; and we have displayed only the most impor-
tant operators and the gluonic penguin operator Ogy, which is of our interest
in this paper:

O1 = (dTu)(al™b), O = <JFM§U) <arﬂ§b> , (3)
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a

my = A
Osg = ¢ 5do™ (1+75) 5-9:Gi, b (4)

where I, = 7v,(1 —5) and my, is the b quark mass. The contribution of the
operator O; in the emission topology is the main one in the case of B —
7T m~ decays and is referred to as the factorizable contribution although it
must be stressed that other operators appearing in the effective Hamiltonian
(2) are accessible in the framework of QCD factorization. However, it makes
sense to express the size of the remaining contributions in terms of this
leading naively factorized one because it is often the dominant one.

In order to find the matrix element (B|Og,|7n7), we define the correlation
function

Folp,q, k) = _/d4xd4ye—i(p—q)w+i(p—k)y
(m .(B —
(01T {057 @)} |7 @), ©)
where the quark currents jg;) = UYaYsd and jéB) = mybiysd interpolate

m and B mesons, respectively. This correlation function is evaluated in
the spacelike region of the variables s; = (p — k)2, s = (p — ¢q)?, and
Q? = (p — q — k). Then the result is analytically continued and matched
with the double dispersion relation to give a sum rule for the desired matrix
element, see [8,9] for details. After Borel transformations in the variables s;
and s, the final formula for the matrix element is [§]

(m(p)m(—q) | Ogg | B(p — q))
, s7 5P
-t 5 /dse_sl/Miz dS?Q(m%_52)/M§Imsl:[m52F($1,SQ,m}%),(6)
7T2f7rmeB 0

2
my,

where F' is the part of the correlation function F, (5) proportional to the
momentum (p — k):

Fy = (p - k)ozF + Qaﬁl + kaﬁ2 + eaﬁkpqﬂp)\kpﬁii ) (7)

and the thresholds s7 and s§ are fitted from other sum rules, while f, and
fB are the pion and B meson decay constants, respectively, and mp stands
for the B meson mass. My and My are the Borel parameters.

3. Results

The correlation function defined in Eq. (5) is evaluated in the spacelike
region of the variables s, s9, and @2, see [9] for details. The different terms
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emerging from this calculation can be traced to three kinds of physical ef-
fects: the hard gluon, soft gluon, and quark condensate contribution. They
can be ordered according to the powers of ag and 1 /mg, and thus the cal-
culation includes the twist-2 and 3 hard gluon effects as well as soft gluon
effects of twist 3 and 4. The latter are suppressed by the quark mass but
not by ag so that they become numerically of the same order as the hard
gluonic ones. Also we include the quark condensate contribution as a check
on the validity of the twist expansion. The calculation was done with the
help of FORM |[10].
The result for the matrix element is,

ACD(BY 5 wta) = (n (Pt (~9)|Os| Blp — )

O O O
= Al(lafdg)—i_Agofig) +Ag 8)9)7 (8)
where
C 1 2f
(Osg) _ .GsLF o —s/M2 | MyJn
Aprd) = o mb<4ﬂ2fﬂ/d3e / 1>72m%f}3
0
1
x/d—u ei/Ms—m [uM; <S07r( w) + twist 3) 9)
U U
Ug
. 55 f 1 p
(Osg) . —s/M? 7f U ;2 /M2 —m2/uM?2
ASofEtsg = —’nn%(m/dse / 1)(@/36 B/M3—my [uM;
0 ug,
mQ
<1+ 2) [(pJ_(l—u,O,u)—l—(ﬁJ_(l—u,O,u)} , (10)
my
4(0s) _ osCF of —(qa) \ [ mpfa [ du
@) ~°' My 2 —
3 fﬂmb QmeB Uu
ug
o omh/ME—m? [ub} <s07r( W st 3> a1)
U

where uf = m?/sf. The twist-2 distribution amplitude ¢, as well as the
omitted terms of higher twist can be found in [9]. The parameter §2 deter-
mines the normalization of the twist-4 quark—antiquark—gluon distribution
amplitude and (gq) is the quark condensate density.
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For the sake of better numerical accuracy, rather than working directly
with the decay amplitude we will consider the following ratio of this ampli-
tude to the factorizable one:

_ A(OSQ) BY & o~
r(0%)(BY - ™) = (O)(fd T ) (12)
AV (BY = 7wt

Notably, the above ratio does not depend on fg. The parameters entering
the numerical evaluation are f; = 132 MeV, s = 0.7 GeV?, and the Borel
parameter range MZ = 0.5 + 1.5 GeV2. The parameters for the B channel
are my = 4.74+0.1 GeV, s = 35F 2GeV?, M2 = 8+ 12 GeV? for the second

Borel parameter, and p, = ,/m% — mg ~ 2.4GeV for the renormalization

scale of the pion distribution amplitudes and of ag, where we take the two-
loop running with A = 280 MeV. However, we give an estimate of the
effect of varying this renormalization scale within the range py/2 + 2up. For
the quark condensate density, we take {gq) (1GeV) = (—240 + 10MeV)?, or
equivalently (1 GeV) = 1.59 £ 0.2 GeV, and the normalization parameter
of the twist-4 DA 62(1GeV) = 0.17 £ 0.05 GeV2.

In evaluating the decay amplitude, one must decide on some form of the
pion distribution amplitudes. They are given in detail in Ref. [9]. In general,
one may first approximate the distribution amplitudes with their asymptotic
forms. Doing this, we find that the result is stable against variation of both
Borel parameters and that the soft gluon contribution amounts to about 50%
of the hard-gluon contribution with an opposite sign. This is due to a factor
of 20 coming from the twist-4 DA and compensating for the suppression
factor 62/m?. The quark-condensate contribution is about 30%.

The inclusion of non-asymptotic corrections brings no essential change
to the hard gluon and condensate contribution, but diminishes dramatically
the role of the soft gluon contribution, down to about —10% + +20% of the
hard effects. This change is due to the fact that in the kinematics of the
soft-gluon process the gluon carries the dominant fraction of the momentum,
see [9] for a detailed explanation.

Our estimate for the ratio of the gluonic-penguin and factorizable am-
plitudes is, including non-asymptotic effects,

r%(BY — ntr™) = 0.035 £ 0.015. (13)

The uncertainty above does not include the variation of the renormalization
scale p = pp/2 =+ 2pp, which adds another 20% to the error given above.

As for the validity of the heavy quark limit, it is interesting to note that
the value of 7?8 given above for the physical b quark mass varies between
0.6 and 1.1 of its heavy quark limit.
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To put the gluonic penguin decay amplitude in the right perspective,
let us compare its role with that of the factorizable contribution, which is
dominant in the BdN — mtw~ decay. We also include the emission topology
contribution from Oy:

A(BY = ntn™) = (xt 7~ |Hw|BY)

= i%fwfgw(o) m%{Au [C1(,u) + @éu) + QCQ(M)T(Eal) (B — ntn™)

+...+ )\t08g(,u)r(089) (BY = ™) } , (14)
with N
61) A%Ol) (B} = ntr)

riy (B — wtnT) = , (15)

ASEOI) (BY = ntm)

where A%Ol) is the B) — 777~ matrix element of O, in the emission topol-
ogy. The hard contribution to this ratio is taken from QCD factorization [8]
while the soft part was found in [8]. We obtain,

ABY = ntn) = i%fﬁ m%(0.28 + 0.05){,\u (1.03

+[—0.004 + 0.024 + 0.025¢]) + .= A0.003 = 0.008]} , (16)

where, for consistency, the Wilson coefficients [11] are taken at the scale puy.
In Eq. (16), the first bracket contains the contribution of O; while the second
that of the gluonic penguin operator. It is seen that both non-factorizable
contributions are negligibly small, but remaining such contributions must
be computed before one concludes that the decay By — 77~ is dominated
by the factorizable amplitude.

The prediction of the QCD factorization for the ratio r©® is,

1

asCr er(u) | 2px
d — 1
2w N, / ul—u+mb ’ (17)

r(%%) (B = 7t 17)qeDfact. =
0
together with the O(u;/myp) correction which is the only 1/my effect re-

tained in QCD factorization [4] because of the large numerical value of pr.
For my — oo, this result coincides with the heavy quark limit of LCSR.
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Subleading terms differ, however. Apart from the factor of 2 of difference
between the quark condensate contribution, the soft gluon corrections in
LCSR are suppressed by 1 /mg and thus absent from the prediction of the
QCD factorization. While this omission is consistent on the grounds of
power-counting, it has been shown to matter numerically.

4. Conclusion

We have presented the results of the calculation of the gluonic penguin
operator contribution to B — 7w decay, done in Ref. [9]. Using LCSR made
it possible to include the soft and hard gluon effects systematically within
the same scheme. In this way the finite quark mass effects were seen to be
important. On the other hand, the overall size of the result suggests that the
gluonic penguin operator does not play significant role in the By — w7~
decay.

This work was partly supported by the Polish State Committee for Sci-
entific Research (KBN) grant 5P03B09320. I would also like to thank the
Hertie Foundation and the Humboldt Foundation.
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