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We study the simplest Two-Higgs-Doublet Model that allows for CP
nonconservation, where it can be parametrized by only one parameter in
the Higgs potential. Different concepts of maximal CP-nonconservation
in the gauge-Higgs and the quark-Higgs (Yukawa) sectors are compared.
Maximal CP nonconservation in the gauge-Higgs sector does normally not
lead to maximal CP nonconservation in the Yukawa sector, and vice versa.

PACS numbers: 11.30.Er, 13.85.Fb, 14.80.Cp, 14.65.Ha

1. Introduction

Mendez and Pomarol introduced the concept of maximal CP nonconser-
vation [1] in the context of the gauge—Higgs sector of the Two-Higgs-Doublet
Model (2HDM) [2]|. In the absence of CP nonconservation, only two of the
three neutral Higgs bosons couple to the electroweak gauge bosons (the two
CP even ones, often denoted h and H). When CP is not conserved, all
three do. In fact, Mendez and Pomarol realized that the product of all three
gauge—Higgs couplings, which is bounded by unitarity, is a useful concept to
parametrize the amount of CP nonconservation, and defined the quantity

&v = 2Tgvvm, 9vvi, v, (1.1)

as a measure of CP nonconservation in the gauge-Higgs sector. If the cou-
plings gyvp, are normalized with respect to those of the Standard Model
(SM), then &y, as defined above, satisfies

0<¢&y <1, (1-2)

However, this measure of CP nonconservation is not applicable to the fermion—
Higgs sector.

* Presented at the Cracow Epiphany Conference on Heavy Flavors, Cracow, Poland,
January 3-6, 2003.
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In the fermion—Higgs sector of a given version of the 2HDM, one should
consider quantities other than &y as measures of CP nonconservation. As we
will see from our investigation, the parameters of the 2HDM that maximize
&y are different from those that maximize CP nonconservation in the Yukawa
sector. They are in general also different for the up- and down-quark sectors.

The paper is organized as follows. In Sect. 2 we review the 2HDM
and in Sect. 3 we study the conditions for maximum CP nonconservation
in the gauge-Higgs sector. Sections 4 and 5 are devoted to the Yukawa
sector, at the parton and proton level, respectively, and Sect. 6 contains
some concluding remarks.

2. The Two-Higgs-Doublet Model

We shall here introduce some notation for the Two-Higgs-Doublet Mo-
del [3]. Let the Higgs potential be parametrized as [4]

A A
Vo= S@l00)? + 2 8502) + Xa(dl 1) (6h62) + Ma(8] o) (6hn)
—l—% [A5(¢1¢2)2 + h-C-}

5 M@l + [mhien) +he] mbyalen}. 1)

The parameters A5 and m%Q are allowed to be complex, subject to the con-
straint

Imm?y = Im A5 v1v9, (2.2)

with vy and vy the vacuum expectation values (v + v = v?, with v =
246 GeV).
The corresponding neutral-Higgs mass matrix squared is then given by

)\10% + Vs% (A345 — v)cgsp —%Im A5 83
M =v* | (A3a5 — v)cgsp )\23% + I/C% —%Im A5 € (2.3)
—%Im)\5 58 —%Im)\g, c —Re A5 + v
with the abbreviations cg = cos 3, sg = sinf3, tan 8 = vo/v1, Azas = Az +
A+ Re s, v = Rem?,/(2v% sin Bcos B) and p? = v?v.
The (1,3) and (2,3) elements of this mass-squared matrix (2.3), which

are responsible for CP nonconservation, are related via the angle . In this
sense, CP nonconservation is described by one parameter, namely Im As.
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In order to diagonalize this matrix (2.3), we introduce the rotation matrix

R =R. Ry Rs
1 0 0 cosap 0 singy cosa sina 0
=10 cosa., sina, 0 1 0 —sina@ cosa O
0 —sina. cosag —sinay 0 cosqy 0 0 1
Ca Ch S Ch Sh
= | —(ca spSc+ Sace) Cé Ce — 86 Sb Se Cp Se (2.4)
—casSpCet+ Sase —(caSe+saspce) ¢pce
with ¢; = cos q;, s; = sin ¢;, and satisfying
RMR" = diag(M?, M3, M3). (2.5)

Here, My < My < Mj3. The angular ranges are taken as —7/2 < & < 7/2,
—m < ap <7, and —7/2 < o, < /2. As discussed in [5], only some regions
of the parameter space are physically allowed.

This limitation of the parameter space is due to various constraints,
including (i) My < My < M3, and (71) the constraints of perturbativity and
unitarity. We shall represent the latter as

|Ni| <A4m&pert, With Epery = O(1). (2.6)

We show in Fig. 1 typical allowed regions in the ap—a. plane, for a
few values of tan 8 and &. In this figure, we only show regions of positive
a.. Regions of negative «a, are given by the symmetries discussed in [5].
Furthermore, for given values of tan 8 and & (and given sign of a, > 0),
only one sign of ay is realized, requiring Ms < Mjs. The dashed lines at
ap = *m/4 indicate where CP nonconservation is maximal in the Higgs—
top-quark sector, in the limit of one light Higgs boson and two heavier ones,
see Eq. (5.4).

Different choices for the ‘soft parameters’ (in particular, different values
of ;4?) lead to somewhat different allowed regions. Also, a larger value of
pert extends the region. However, there are absolute bounds, indicated by
the solid contours outside the shaded regions in Fig. 1, that can not be
crossed for any choice of the ‘soft parameters’ [5]. In order to cover a range
of different choices for p?, one may take a rather large value of Epert (in
Sect. 5 we shall consider {,ert = 5). For further discussion of these issues,
see [5,6].

In this notation, Egs. (2.3)—(2.5), the gauge—Higgs couplings are, relative
to the corresponding SM coupling, given by

H,Z7Z . gVVH; = cos B R;1 +sin B Ry, (27)
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Fig. 1. Dark: physical regions [see Eq. (2.6)] in the ay—a. plane for various values of
tan 8 and &. Soft parameters: M; = 100 GeV, My = 500 GeV, Mg+ = 600 GeV,
1 = 300 GeV, &pery = 1. Light: Same with &pery = 5. Solid contour: absolute
boundary.

whereas for the Yukawa couplings we consider the so-called Model II [3]
where they are given by

7. 1 : _[® . s

Hjtt m [Rjo — iy5 cos BR;3) = [aj + 150, } , (2.8)
z. 1 o _ [0 o)

H;bb : prys [Rj1 —iyssin fR;3) = [aj + iY50; ] , (2.9)

with R;; an element of the rotation matrix (2.4).
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3. CP nonconservation in the gauge-Higgs sector

In the gauge-Higgs sector, the amount of CP nonconservation |cf. Eq. (1.1)]
is in the above notation given by

3
&y =27 H[COS BR;1 + SinBRZ‘Q]Q. (3.1)
i=1

This &y depends on tan 5 as well as on the three angles &, oy and «, that
determine R;;. However, it only depends on 3 and & through their difference.
In fact, using (2.4) and some trigonometric identities, we find

Ev = 27¢} cos® (B — @)[sp sc cos(f — &) — ¢, sin(B — &)

x[sp cecos(B — @) + sesin(B — &)]?. (3.2)
It is also seen that £y is unchanged under

oy, fixed, (e < /24 ) : v < &y,
(ap < —ap), (. 7/2—a,): v < &y (3.3)
In order to provide some intuition for how the CP nonconservation de-
pends on the parameters of the 2HDM, we show in Fig. 2 contours of constant
&y in the ap—a, plane, for various values of tan 8 and &. We note that there
is little CP nonconservation for ‘large’ values of oy, because of the factor cg

in (3.2). Also, there is CP nonconservation even for a;, = 0 and for o, = 0
(but not when both vanish).

3.1. Simple limits

It is instructive to consider the simple limits of a = 0 or a, = 0.

ap =0

For a3 = 0, the rotation matrix simplifies:

Ca Sa 0
R=|—-sacc cace Sc|, (3.4)
Sé Se CaSe  Ce
and one finds
27 . ) .4 ~ ) ~
Ev(ap=0) = - sin (2a.) sin”™ (B — &) cos“ (B — a). (3.5)

The maximum is given by

fy=1 for a=pf=+arctanVv?2, a, =0, a.==r/4 (3.6)
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Fig.2. Contours of constant {y [see Eq. (3.1)] in the ap—a, plane for various values

of tan § and &. Soft parameters: M; = 100 GeV, M5 = 500 GeV, Mg+ = 600 GeV,
1 =300 GeV. Dark: &pert = 1, light: &pert = 5.

a. =0

For a. = 0, one finds
27 . 2 4 ~\ 92 ~
Ev(a.=0) = - sin (2ap) cos™ (B — @) sin“ (8 — a). (3.7)
This relation holds also for a, = 7/2. The maximum is given by

v =1 for a=p+arctan(1/vV2), oy =+7/4, a.=0o0r a.=7/2.
(3.8)
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3.2. Mazima of &y

Since maximizing over angles allows us to keep two Higgs masses fixed [5]
and since by Eq. (3.2), the dependence of £y on 8 and & shows up in the
form (8 — &), &y can be maximized for fixed (8 — &) by meeting the two

conditions:
% g ama
Oay, oa,

By substituting from Eq. (3.2), and solving (3.9) for «p and a,, we obtain a
continuum of maxima:

0. (3.9)

1 +tan?(8 — a
&y =1 for ab::tarCCOS\/ + an3(ﬁ a)’

1+ tan?(B — &) — 1/3[2 — tan?(B — @)] tan(B — &)
2tan?(f — &) — 1

a. = * arctan

, (3.10)

which impose the constraint
|tan(8 — @)| < V2 (3.11)

on (8—a). We note that (3.6) and (3.8) are both special cases of this (3.10).

We show in Fig. 3 how these angles oy, and «. vary with tan 3 (for fixed &)
when we maximize £y-. For a given value of &, these curves only cover a finite
range in tan 8. They are cut off by (3.11), which says that, in order to have
& = 1, B and & should not differ by more than arctanv/2 ~ 54.7°. In
addition, they are cut off by the condition of having a physical solution as

o/

0.0

-0.5

Fig.3. Angles o and a. [¢f. Eq. (3.10)] for which the CP nonconservation &y in
the gauge-Higgs sector is maximal, for a range of tan 8 values, and for & = 0, 7/6,
/4, and 7/3.
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discussed in Sect. 2, and delineated by the solid contours in Fig. 1. Note
that there are also solutions having other signs for a; and ., but that the
model is only physically consistent for certain sign combinations.

4. CP nonconservation in the Yukawa sector

In the Yukawa sector, one can define measures of CP nonconservation
analogous to the one for the gauge-Higgs sector |cf. £y of Eq. (1.1)]. Requir-
ing thus that all three Higgs bosons should have CP-nonconserving couplings

to up- and down-type quarks, it is natural to consider the quantities' [see
Egs. (2.8), (2.9) and (5.3)]:

cos 3 62 9 [ cosp 6
b= <sin2ﬁ) H[RZQRB] - <sin2ﬁ) s

=1

sinf \ % £ o [ sinf\°._
& = <m> [[B: Ris)* = <m) Yo - (4.1)

i=1

Both of these differ from the £y defined above in two respects. First of
all, the dependence on  factorizes. Secondly, they individually diverge as
sin 8 — 0 (for up-type quarks) or cos § — 0 (for down-type quarks).

Substituting from (2.4), we obtain for this case of Model II Yukawa
couplings:

2 2

’?t = Cg(sd Sb Ce SC) [sd SpCc 1 Ca Sc] [sd SbSc — Ca Cc]2 )

’?b = CS(C& Sp Ce 30)2

[ca sp Se + Sa 00]2[0& SpCe — 84 50]2 . (4.2)

We note that both these quantities possess the same symmetries (3.3) as &y .
Also, 44 is obtained from 4; by the substitutions

(sa <> ca)y (Se<rce): Ve <> Vo- (4.3)

4.1. Mazima of v

Let us now consider the maxima of 4 in (4.2). We find the maximum
value 4 = 1/1024 for

Casel: a=3m, o==im, ac==im, (4.4)

' One could consider the quantities ¢, = (cos 3/ sin” ﬂ)z S [Ri2 Ris]* and similarly
(» as measures of CP nonconservation in the Yukawa sector. These measures — unlike
those in (4.1) — are consistent with the fact that if H; conserves CP in its couplings
to the up- and down-type quarks, i.e. @, = 0, then the Yukawa sector is still CP
nonconserving, since the other two Higgs states, H» and Hs, have CP nonconserving
couplings to the quarks. Accordingly, ¢+ # 0 and {, # 0 for o, = 0 which is not the
case for & and &.
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where the two signs are independent, and at
1
Case IT: & = +arctan 7 (& =+0.1967), «p==+im, with

1
o, = +arctan ﬁ (e = £0.196 ) or ae = F arctan v/2 (e = £0.304 7).
(4.5)

For Case 1II, the signs are subject to the constraint aapa, > 0 for the first
a, solution, and aapa,. < 0 for the second a, solution. The maxima of 7
are obtained by the substitutions (4.3).

Thus, it is natural to define normalized quantities

3
v = 1024 [ [[Riz Ris]?,

i=1
3
v = 1024 [ J[Ra1 Ris), (4.6)
=1
satisfying

as measures of CP nonconservation in the up- and down-quark sectors, re-
spectively. Contours of constant -; are shown in the ap—a.-plane in Fig. 4.

Let us now keep & fixed. Then, the maxima of v, are at

Casel: ap = ¢ %7‘(’, a. = €qarctan [ﬁ(\/tan_2 a+ % + ep e tan~! d)},

Case Il ap= ¢ §, o = ecarctan [% (\/ tan? &+ 4 — ey . tan &)],

(4.8)

where ¢, and ¢, are independent sign factors: €, = +1, . = 1. For Case I,
the corresponding maximum is (same for all sign choices)

v = sin® &, (4.9)

in agreement with Eq. (4.4), whereas for Case II, the corresponding maxi-
mum is (same for all sign choices)

27 tan? &

- 4.1
4 (1+tan?@&)3’ (4.10)

Tt =

which becomes 1 for tan & = +1/+/2, in agreement with Eq. (4.5).
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Fig.4. Contours of constant ; [see Eq. (4.6)] in the ap—a. plane for various values
of tan # and &. Soft parameters: M; = 100 GeV, M5y = 500 GeV, Mg+ = 600 GeV,
1 =300 GeV. Dark: &pert = 1, light: &pert = 5.

4.2. Mazima of &y

While &; and &, individually diverge as  — 0 and 8 — 7/2, respectively,
the product over couplings to up-type and down-type quarks is less divergent.
We define, analogous to (1.1) and (4.1)

= = — 4.11
&y =66 (cos sm By Y (4.11)
with
: 2
VY = Y0V = Y0 H [Ri1 Ry R?g} . (4.12)

i=1



Mazimal CP Nonconservation in the Two-Higgs-Doublet Model 4541

satisfying

/2

0
/2

Fig.

0<~y <1 (4.13)

Substituting from (4.2), we obtain

Yy = Y062 (ce e 50)* (ca 5a)°[8a ce sb + ca 8¢l [ca e b — 86 5c)°
x[ca 8y 5S¢ + 54 ¢c)?[56 b 8¢ — cace)? . (4.14)
tanf=0.5 tanf=1.0 tanf=2.0
E B Q:ﬂ/Z /2 ! - Q:ﬂ/Z /2 : - Q:ﬂ/Z
i a, i

0
7'(/3 I E 7Y/2

L /3

0 |

n/2 —-n/2 0 /2 —7v/2‘

&, &,

5. Contours of constant vy in the ap—a, plane for various values of tan 5 and a&.

Soft parameters: M; = 100 GeV, My = 500 GeV, Mg+ = 600 GeV, u = 300 GeV.
Dark: &pert = 1, light: Epert = 5.
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This has a maximum for (see Appendix A)

& = +3m, ap = =+ arcsin \/g = 40.133867 (24.1°), o, = +im,
(4.15)
with

_2%312 /8% 1024 x 27
=g T 3125

Fig. 5 exhibits contours of constant yy for some values of & other than
that of the maximum, & = iﬂ', in relation to the physically allowed (dark,
shaded) regions in the ap—a, plane. Note that vy vanishes when & = 0 or
& = £7/2, as well as on the edges of the quadrants: a =0 or £7/2, ae =0
or £m/2. Also, we note that there are secondary, local, maxima.

Although vy is, by definition, independent of 3, Fig. 5 shows contours
of constant 7y for different values of tan 3. The ‘shape’ and location of
the physically allowed regions in the a—a, plane are different for different
values of tan 8. Accordingly, the position of the maxima? of vy, w.r.t. the
physically allowed regions in the ap—a. plane is different for different values
of tanf. For example, consider @ = 7/6. We see from Fig. 5 that for
tan B = 0.5, v'** is located outside the physically allowed region while for
tan 8 = 1.0, this is not the case. Moreover, for tan 8 = 2.0, the physically
allowed region shifts the location to the ‘other’ quadrant. To sum up, for
& = 7 /6, the location of y'** occurs at

2
) = 3.652 x 10°. (4.16)

(Oéb, ac)|tan5:0.5 = (Oéb, ac)|tanﬁ:1.0 = (—Oéb, 77/2 - ac)|tan B=2.0 -

5. CP nonconservation in pp — tt

The above studies refer to the tree-level couplings of Higgs particles to
vector particles and fermions. These are difficult to study directly, since the
Higgs particles as well as the vector particles and the relevant fermions are
unstable. The implication is that it is easier to access these couplings via
various loop effects. We shall here consider one such example, namely the
production amplitudes for the #¢ through gluon fusion, where CP noncon-
servation is induced by non-standard neutral Higgs exchange.

CP nonconservation in the production of #t pairs at future hadronic col-
liders has been studied in considerable detail [7]. For a detailed application
to the 2HDM, see also [5].

One process of particular interest is

pp — X, (5.1)

2 This is not a ‘maximum’ in the same sense as above, since @& is held fixed.
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where the t and ¢ decay semileptonically, and the lepton energy difference is
measured [5,7]:
A1 = E_|_ - E_ . (52)

(For a discussion of other observables, see [7,8].) The expectation value of
this observable will in general be non-zero if there between the quarks in the
final state is exchange of Higgs bosons that are not eigenstates under CP.
The quantity [see Eq. (2.8)]

(t)~(t) _ cosp

YCP,j = —aj aj = —singﬁ RjQRjg (53)
then plays a crucial role, together with non-trivial functions of the kinematics
(given by the loop integrals).

If the neutral-Higgs spectrum has a large gap between the lightest Higgs
boson and the next one, then the lightest one will give the dominant contri-
bution to Ay, and the amount of CP nonconservation is roughly proportional
to
sin & sin(2ay)

tanBsinf

which is maximized for small tan and for (&, ap) = £(n/2,7/4), corre-
sponding to the dashed lines in Figs. 1, 2, 4 and 5. It is immediately obvious
that this is not compatible with the condition of maximal CP nonconserva-
tion in the gauge-Higgs sector [1], &y = 1.

There will in general also be non-negligible contributions from the other
Higgs bosons. Because of the orthogonality of the rotation matrix R, not all
Ycp,j can have the same sign, so there will be cancellations.

Let us define the ‘signal-to-noise ratio’, or sensitivity [7]

YeP1 = 3 (5.4)

S _ 2<A—1>, (5.5)
N A - Ay

which provides a measure of how much data would be required to see an
effect.

It is interesting to maximize the amount of CP nonconservation that
results for the observable A1, over the relevant parameters of the model. In
Fig. 6 we show the result of such a maximization of the sensitivity (5.5).
The quantity A; and its spread A? are computed as given in [5, 7], using
the ‘LoopTools’ package [9,10], and convoluted with the CTEQ6 parton
distribution functions [11] for the LHC energy of 14 TeV. The resulting
quantity is then maximized using the ‘MINUIT’ package [12].
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Fig.6. Left panel: Maximal sensitivity [see (5.5)] for the observable (5.2), for fixed
My, My and two values of tan 8. Right panel: Corresponding values of the angles
&, ap and a.. Soft parameters: My = 500 GeV, Mg+ = 600 GeV, &pery = 5.

The actual maximization is rather CPU-intensive: In order to evalu-
ate A; and S/N, three-dimensional integrals (a convolution integral over
the parton distribution functions, an integral over the polar angle of the
top quark with respect to the beam, an integral over §, the invariant mass
squared of the #f pair) involving non-trivial loop functions are required.
These are then maximized in the three angles parameterizing the 2HDM
mass matrix: &, oy and «. (keeping the two lowest Higgs masses fixed).

In this maximization, we have kept My = 500 GeV fixed, and considered
two values of tan 5 (0.5 and 1.0), and a range of values of M;. The resulting
angles & and q are rather independent of M7 as well as the choice of tan 3,
whereas «, has some dependence on tan 3, as shown in the right panel of
Fig. 6.

For a given value of M7, the resulting maximum is close to that found
in [5], maximizing only with respect to the H; contribution. We note that,
considered as a function of My, there is a peak associated with the ¢t thresh-
old. This is due to the contribution of the ¢t triangle diagram [5,7].

As discussed in [5], the heavier Higgs states have a tendency to reduce
the CP-violating effect of the lightest one, unless they are sufficiently heavy
to decouple. Thus, for a fixed value of the lightest Higgs mass, My, the over-
all CP-nonconservation should increase as the second Higgs boson becomes
heavier. This effect is illustrated in Fig. 7 for the case of M7 = 100 GeV and
two values of tan £ (0.5 and 1.0). Apart from some wiggles due to numerical
noise, it is seen that there is a rather smooth increase of the sensitivity as
the mass gap My — M increases.
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Fig. 7. Maximum sensitivity S/N [see (5.5)] vs. M>, for fixed M; = 100 GeV. Soft
parameters: Mg+ = 700 GeV, &pert = 5.

Let us now comment on the maximum CP nonconservation in the Yukawa
sector, as given by the sensitivity in the quantity Ai, compared with that
of the gauge-Higgs sector, &. We already stated that these concepts are
different. This statement can be made quantitative by considering the value
of &y that corresponds to the rotation angles &, ap and «, for which the
sensitivity in A; is maximal. We find that &y ~ 0.6 and 0.3, for tan 5 = 0.5
and 1.0, respectively.

6. Concluding remarks

We have here studied the simplest version of the 2HDM that allows
for CP nonconservation, where this CP nonconservation is given by one
parameter, namely Im A5 in the potential (2.1). The concept of maximal
CP nonconservation has been extended from the gauge-Higgs sector to the
Yukawa sector. In general, the maxima of CP nonconservation will in these
two sectors not coincide. There could even be mazimal CP nonconservation
in one sector, and little or none in the other.

One could consider two more, independent parameters in the Higgs po-
tential that generate CP nonconservation, namely Im A¢ and Im A7 (see,
e.g., [6]). These terms in the potential are often considered less attrac-
tive, since they violate the Zy symmetry of the potential by terms which
are quartic in the Higgs fields and thus make it more difficult to control
flavour-changing neutral currents [13,14].

However, if present, such terms would lead to a less constrained the-
ory. While the Yukawa couplings (for Model II) are still given by the same
elements of the rotation matrix R (and hence by the same expression in
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terms of tan 8 and the rotation angles &, a; and «,), the masses My and M3
would be less constrained. By making these masses larger, the contribution
of the lightest one, Hy, would be a better approximation to the over-all CP
nonconservation.

It is a pleasure to thank the organizers of the Epiphany 2003 Conference
for creating a most stimulating atmosphere, and for excellent hospitality.

Appendix A
Mazimizing vy

This appendix deals with the maximization of vy, Eq. (4.12). We shall first
rewrite py; in terms of double angles. Let

x = (55 SpCc + Ca Sc)(Ca spCc — Sa Sc) »

Yy = (ca Sp Se + Sa ) (Sa Sb Se — €4 Ce) (A1)

then
W = 22 (A.2)

with
2= ¢ cssa50(cese)?xy. (A.3)

Maximizing 45%; amounts to maximizing the absolute value of z.
We first note that

T = %sm[(l + 52)coe — €2 + %025 Sp S2c (A.4)
where co5 = c0s(2a), co. = cos(2a.), etc. Furthermore, y can be obtained

from z by the substitutions cz <> sg and ¢, <> ¢, implying cog < —cog,
Coc <> —Coc, With s95 and sg. unchanged. Thus,

Ty = {—%32& cg + [%CQ& Sp S9¢ + %52&(1 + 35)026]}
x{—1s0a ¢ — [$2a 8 S2¢ + Ts2a(1 + 57)cac]}

= 5[534 ch — 434 5p 55 — 534 (1 + 53)° 65, — deaa saa(1+ 53 5p C2c 526 -
(A.5)

The maximum is given by the three conditions:

oz 0z oz

IEA— 0’ R 0’ = 0’ A6
o0& ooy oo, (4.6)
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or equivalently:

3cog (1 — c%&)(l — cgc)(l + sg) + 4894 C2c S2¢ Sp(1 — 303&)(1 + sz)

+ 2¢94 s2[1 — T3, — 3c5(1 —3¢3.)] =0, (A7)
(1 —35)(1 —3.)(1 = 650) + coa S25 Cac 520 55(2254 + 857 — 6)
= 8s5(1 = 3ac3.) + s[13 — 2763565, + T(c35 + ¢3.)] = 0, (A-8)
cae (1= 3) (1 — &3.) (1 4 53) + caa s2a S2¢ 55(1 — 463, (1 + s7)
— 290 532635 + c3.(1 —3c35)] = 0. (A.9)

While these three equations are highly non-linear, the solution of interest
is actually obtained quite simply by setting

Cop — 0, Coe — 0, (AlO)

whereby Egs. (A.7) and (A.9) become trivially satisfied, whereas Eq. (A.8)
takes the simple form

659 —13s) + 852 —1 =0, (A.11)

the interesting solution of which is s7 = 1/6.
Summarizing, the maxima are obtained for

a=+im, ab::iﬁucﬂn\/%::iOJBSSGW (241°),  a.=+im,
(A.12)
at which point
3125
p=do—— (A.13)

8 x 1024 x 27?
determines the 7y of (4.16).
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