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In the framework of string percolation, the transverse momentum dis-
tributions in heavy ion collisions at all centralities and energies are shown to
follow an universal behaviour, the shape of the distributions depending es-
sentially on the transverse density of strings. We find that the relative sup-
pression of intermediate and high pT production in central nucleus–nucleus
collisions has the some origin as the narrowing of multiplicity distributions,
the clustering of strings. The clustering of strings also explains naturally
the dependence on the centrality of the transverse momentum fluctuations
and the strength of the two and three body Bose–Einstein correlations.

PACS numbers: 25.75.Nq, 12.38.Mh, 24.85.+p

1. Introduction

Recent experimental results from the Relativistic Heavy Ion Collider
(RHIC) [1–4] show that the inclusive high pT hadron production is strongly
suppressed compared to the scaling with the number of binary nucleon–
nucleon collisions, Ncoll, expected on the basis of the factorization theorem
for hard processes in perturbative QCD (pQCD) [5]. One possible explana-
tion of this suppression is the predicted quenching of produced jets in hot
quark–gluon matter [6–7]. Alternative explanations have been pointed out
as a consequence of gluon saturation in the Color Glass Condensate (CGC)
[8–9] or the percolation of strings [10–13]. These two approaches explicate
also the weak dependence of the multiplicity per participant on the number
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of participants [9–10, 14–15] shown by the different RHIC collaborations. In
addition, both pictures lead to a relation between the mean multiplicity and
the mean transverse momentum [9–10, 12] and to a scaling law for the pT

distributions [8, 10, 13] which explains at least partially the high pT suppres-
sion mentioned above. In this paper, we describe the explanation given in
the framework of percolation of strings.

Multiparticle production is currently described in terms of color strings
stretched between the partons of the projectile and the target. These strings
decay into new ones by sea q–q production, and subsequently hadronize to
produce observed hadrons. Color strings may be viewed as small areas in
the transverse space, π r2

0, with r0 ≃ 0.2–0.25 fm, filled with the color field
created by the colliding partons. With increasing energy and/or atomic
number of the colliding particles, the number of exchanged strings grows,
and they start to overlap, forming clusters, very much like disks in contin-
uum two-dimensional percolation theory. Each cluster of several individual
strings behaves as a single string with a higher color field, and with energy
momentum that correspond to the sum of the energy momenta of the over-
lapping strings. At a certain critical density ηc ≃ 1.18–1.5 a macroscopical
cluster appears which marks the percolation phase transition [16]. For nu-
clear collisions, this density corresponds to η = NS S1/SA where NS is the
total number of strings, each of area S1. SA corresponds to the nuclear
overlapping area. For central AA collisions b = 0 SA = π R2

A.
The percolation theory governs the geometrical pattern of the string

clustering. Its observable implications, however, require the introduction of
some dynamics in order to describe the behaviour of the cluster formed by
several overlapping strings. We assume that a cluster of n strings behaves as

a single string with a high color field
→

Qn corresponding to the vectorial sum of

the color charge of each individual
→

Q1 string. The resulting color field covers

the area Sn of the cluster. As
→

Q2
n= (

∑n
1

→

Q1)
2, and the individual string

colors may be oriented in an arbitrary manner respective to one another,

the average
→

Q1i

→

Q1j is zero, so
→

Q2
n= n

→

Q2
1.

→

Qn depends also on the area
S1 of each individual string that comes into the cluster, as well on the total
area of the cluster Sn,

Qn =

√

nSn

S1
Q1 . (1)

Sn corresponds to the total area occupied by n disks. Notice that if the
strings are just touching each other Sn = nS1 and Qn = nQ1 so the strings
are independent of each other. On the contrary, if they fully overlap, Sn = S1

and Qn =
√

n Q1. Knowing the color charge Qn, one can compute the
multiplicity µn and the mean transverse momentum 〈p2

T〉n of the particles
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produced by a cluster of n strings. One finds [10–11]

µn =

√

nSn

S1
µ1 , 〈p2

T〉n =

√

nS1

Sn
〈p2

T〉1 , (2)

where µ1 and 〈p2
T〉1 are the mean multiplicity and mean p2

T of particles pro-
duced by a simple string. In the saturation limit, all the strings overlap into
a single cluster that approximatively occupies the whole interaction area,
one gets the following universal scaling law that relates the mean transverse
momentum and the multiplicity per unit rapidity and unit transverse are
[10, 12]

〈p2
T〉AA =

S1

SAA

〈p2
T〉1
µ1

µAA . (3)

This relation is similar to the one obtained in the framework of CGC [8].
The comparison with all the experimental data for all kind of collisions at all
available energies show a reasonable agreement [12]. Some small deviations
occur and were expected due to the approximations done in obtaining (3)
and the corrections to (3) due to the energy-momentum conservation.

In the limit of high density µ, one obtains

〈

nS1

Sn

〉

=
η

1 − exp (−η)
≡ 1

F (η)2
, (4)

and equations (2) are

µ = Nstrings F (η)µ1 , 〈p2
T〉 =

1

F (η)
〈p2

T〉1 , (5)

where µ and 〈p2
T〉 are the total multiplicity and mean momentum and

Nstrings is the total number of strings created in the collision. Notice that

as Nstrings ≃ N
4/3
A , where NA is the number of wounded nucleons, and

F (η) ≃ N
−1/3
A we obtain µ ≃ NA, i.e. the saturation of the multiplicity

per participant. The detailed comparison with the experimental RHIC data
at

√
s = 130 and 200 GeV show a good agreement. At LHC are predicted

around 1800 charged particles per unit rapidity in central Pb–Pb collision
what is lower than most of the predictions of other models.

The dependence of the transverse momentum fluctuations on the number
of participants can be naturally understood from Eq. (2). At low density,
most of the particles are produced by individual strings with the same 〈pT〉1
so the fluctuations are small. Similarly, at large density above the percola-
tion critical point, there is essentially only one cluster formed by most of the
strings created in the collision and therefore fluctuations are not expected



156 C. Pajares

either. Instead, the fluctuations are expected to be maximal just below the
percolation critical density, where there are cluster formed by very different
number of strings, with different size, and therefore with different 〈pT〉n.
Indeed the comparison with RHIC and SPS data shows a good agreement
[14–15].

2. Multiplicity and transverse momentum distributions

The multiplicity distribution can be expressed [17] as a superposition of
Poisson distribution with different mean multiplicities

P (n) =

∫

dN W (N)P (N,n) . (6)

The Poisson distribution P (N,n) = exp (−N) Nn

n! , N = 〈n〉, represents
the cluster fragmentation, while the weight factor W (N) reflects the cluster
size distribution. This quantity has contributions due to both the nuclear
structure and the parton distribution inside the nucleon.

Concerning the pT distribution, one needs the distribution f(x,mT) for
each string or cluster and the cluster size distribution W (x). For f(x,mT)
we assume the Schwinger formula f (x,mT) = exp (−m2

T x). In this formula
x is related to the string tension or equivalently to the mean transverse mass
of the string. Therefore, we can write for the total mT distribution

f(mT) =

∫

W (x) f(x,mT) . (7)

W (x) is well approximated by gamma distribution

W (x) =
γ

Γ (k)
(γx)k−1 exp (−γx) . (8)

In fact, in peripheral heavy ion collisions, the density of strings is small
and therefore there is no overlapping. The cluster size distribution in this
case is peaked at low values. As the centrality increases, the density of
strings also increases, so there is more and more overlapping among the
strings. The cluster size distribution is strongly modified. The increase of
centrality can be seen as a transformation of the cluster size distribution of
the type

W (N) −→ N W (N)

〈N〉 −→ . . .
Nk W (N)

〈Nk〉 −→ . . . . (9)

This kind of transformation was studied by Jona-Lasinio related to the
renormalization group in probabilistic theory [18] and correspond to a size-
biasing transformation changing the size of one string by cluster size and
the corresponding associated variables, µ and 〈pT〉.
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Introducing (8) into (6) and (7) we obtain

Γ (n + k)

Γ (n + )Γ (k)

γ′k

(1 + γ′)n+k
=

∞
∫

0

dN
e−NNn

n!

γ′

Γ (k)
(γ′N)k−1 exp (−γ′N) ,

(10)
(

1 +
m2

T

γ

)−k

=

∞
∫

0

dx exp (−m2
Tx)

γ

Γ (k)
(γx)k−1 exp (−γx) . (11)

The distribution obtained in (10) is the well known negative binomial
distribution, whose mean value and dispersion verify

〈n〉 = 〈N〉 =
k

γ′
,

〈N2〉 − 〈N〉2
〈N〉2 =

1

k
,

〈n2〉 − 〈n〉2
〈n〉2 =

1

k
+

1

〈n〉 . (12)

The corresponding values for (11) are

〈x〉 =
k

γ
,

〈x2〉 − 〈x〉2
〈x〉2 =

1

k
. (13)

As we have said before, the increase of centrality can be seen as a process
of size-biasing [18–20] which modifies the cluster size distribution, increasing
the value of k and redefining the multiplicity and mean transverse momen-
tum of the particles created by the new clusters. Indeed, the invariance of
the weight function under the transformation x → λx and γ → γ/λ where
λ = F (η) due to (5), leads to the changes m2

T → m2
T λ and γ′ → γ′/λ in

the transverse mass and multiplicity distributions, respectively. According
to these considerations, k ∼ 1/F (n). On the other hand, the fact that the
pT distribution becomes harder as the energy increases has been taken into
account by assuming k ∼ µ where µ = 1/(1 − √

αs) [13].Therefore the pT

distribution is
A

(

γ + F (η)m2
T

)k
. (14)

We use

k = µ

(

c1 +
c2

F (η)

)

(15)

for η > 0.2. With the values c1 = 3/2 and c2 = 1 is obtained a good
agreement with the data on π0 production for central Au–Au and peripheral
Au–Au collisions at

√
s = 200 GeV as it is seen in Fig. 1. In order to obtain

the values for the densities η, we have computed the number of created
strings using a Monte-Carlo code based on the quark-gluon string model.
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The comparison for π, k and p production is also good [13]. The WA98
data on Pb–Pb central and peripheral collisions at SPS energies are also
reproduced. In Fig. 2 we show our results for d-Au central and minimum
bias collisions. We observe less suppression than the one obtained in Au–Au
collisions, although more than the general trend of experimental data.

Fig. 1. Comparison between our results and experimental data from Au–Au central

and peripheral collisions at
√

s = 200 GeV.

Fig. 2. Our results for d-Au central and minimum bias collisions at
√

s = 200

normalized to our results for p–p minimum bias collisions multiplied by the number

of collisions.
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3. Conclusions

The general trend of our results agree with the obtained independently
in [21] using similar ideas. We have obtained a reasonable description of the
pT distributions by means of universal scaling. The high pT suppression in
this approach is a consequence of the clustering of strings. This effect is also
able to describe the centrality dependence of pT fluctuations. We are aware
of the limitations of our approach, in particular the exponential formula used
for the cluster fragmentations, that neglects the hard pT tail. This can be
at the origin of the differences with d-Au data. We obtain suppression of
the tail of multiplicity distributions.

Our approach has similarities with the CGC. In both approaches the ini-
tial state interactions — gluon saturation in the CGC or clustering of strings
in the percolation approach — produce a suppression of the pT distributions.
In both approaches there is a suppression of high pT and multiplicities. On
the contrary, in the framework of the jet quenching phenomena, the en-
ergy loss of the jet produces additional soft gluons that would fragment into
hadrons increasing the multiplicities, unless strong shadowing occurs in the
gluon structure functions.

This paper is based on works done in collaboration with M.A. Braun,
J. Dias de Deus, E.G. Ferreiro, F. del Moral and R. Ugoccioni. This work
has been done under contracts FPA2002-01161 of CICYT of Spain and Feder
funds from EU. I would like to express my deepest feelings for the great
physicists and exceptionally gentle persons that were Jan Kwieciński and
Fran Verbeure. I thank the organizers for this nice meeting.
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