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At low x a transition from a dilute parton gas to a dense parton liquid
takes place. We derive geometrical scaling for the structure function in deep
inelastic scattering at low x from a diverging correlation length ξ(x) of Wil-
son lines near the light cone. QCD (SU(3)) in 2+1 space–time dimensions
near the light cone becomes a critical theory in the limit of x→ 0 with a
diverging correlation length ξ(x) ∝ x−1/2λ2 where the exponent λ2 = 2.52
is obtained from the center group Z(3) of SU(3).

PACS numbers: 12.38.Lg

High energy electron proton scattering has presented exciting new exper-
imental results in QCD. The behavior of cross sections with energy, a long
standing issue in hadronic physics, has gained in interest with the availabil-
ity of small size probes. The color dipole in the photon can be made small
by increasing the virtuality Q of the photon. In the course of x-evolution
the photon wave function develops many additional dipoles which in general
diffuse into distance scales beyond the original size 1/Q. This increase in
dipole density and/or size of the photon wave function is generally believed
to be the origin of the increasing high energy cross section. Perturbative
QCD has been partially successful to explain low x physics. In a recent
paper [1] we have shown how DGLAP-evolution of a non perturbatively ob-
tained gluon distribution can lead to a successful description of the structure
function data at HERA.
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In this note we follow the very promising Wilson line method outlined in
Ref. [4] in a Hamiltonian framework near the light cone [3]. Our approach
is all the way nonperturbative in contrast to the standard perturbative ap-
proach in this field. We do not share the assumption that even at high dipole
density when the average transverse distance between dipoles becomes small
the hadronic state is accessible to a simple perturbative treatment, since the
overall size scale is still large. For total cross sections the momentum transfer
is zero and this overall size matters.

We consider it as an advantage that experiment helps us to unravel the
badly understood dynamics of partons near the light cone. For years there
has been a considerable effort to model and investigate QCD in light cone
coordinates. But the current status only gives a moderately encouraging
outlook in this field. Therefore we have followed another approach with
near light cone coordinates which smoothly interpolate between the Lorentz
and light front coordinates :
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1√
2
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In this approach the question of quantum constraint equations does not
arise, since we treat the negative fermion energy states and transverse electric
fields as independent degrees of freedom. The price to pay for this treatment
is high. The arbitrary constant η which labels the nearness to the light cone
appears in the Hamiltonian. For spectrum calculations it is cumbersome
to have such a parameter, since in QCD we have to extrapolate to the
continuum limit with the help of the renormalization group which becomes
difficult in the presence of the extra parameter η. For the discussion of
scattering the parameter η presents an advantage since it allows to follow
the evolution of the physics with increasing energy. Consider high energy
photon–proton scattering at small x = Q2/s, where s = W 2 is the cm
energy squared. Using the photon vector q, q2 = −Q2 and the proton vector
p, p2 = m2 ≈ 0 we can define two light-like vectors

e1 = q − q2

2pq
p

= q + xp , (2)

e2 = p . (3)

For finite energies the vector of the photon q can be calculated as linear
combination of the light-like vector e1 with a small amount of e2 admixed
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eη = q + xp− η2

2
p

= e1 −
η2

2
e2 . (4)

One sees that in the limit of infinite energies the mixing η is related to the
Bjorken variable x and vanishes as η2/2 = x. Therefore it is natural to
formulate high energy scattering in near light cone coordinates. For small
x the eikonal phases acquired by the quarks/antiquarks are the relevant
collective variables. The light cone Hamiltonian on the finite light-like x−

interval of length L has Wilson line or Polyakov operators similarly to QCD
formulated on a finite interval in imaginary time at finite temperature

U(x⊥) = P exp

[
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L
∫
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]

, (5)

P (~x⊥) =
1

Nc
tr U . (6)

The dynamics of these Polyakov operators is determined by the near
light cone Hamiltonian H [3]. In the x → 0 limit, those pieces Hη of the
Hamiltonian H dominate which are most singular at η = 0 and do not
couple to the three-dimensional gauge fields A⊥ and ψ+. These are the
terms which are proportional to 1/η2 and of course also the parts where
the conjugate momenta enter. This reduced Hamiltonian contains all terms
with the collective variables ac0

− with the color indices c0 = 3, 8

ac0
− =

1

L

L
∫

0

dx−Ac0
− (~x⊥, x

−) (7)

which determine the Wilson lines and live in a 2 + 1 dimensional space. We
consider the dynamics of the fields a− in vacuum, i.e. without the source
term e⊥. The η− coordinates correspond to the physics in a fast moving
frame. Therefore, we factorize the reduced energy from the Lorentz boost
factor ∝ 1/η and the transverse lattice cut off a
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This Hamiltonian is accessible to a lattice treatment in a similar way as the
Hamiltonian in SU(2) Ref. [4]. It can be rewritten in terms of zero mode
fields ϕc0 :

ϕc0(~b⊥) =
1

2
gLac0

− (b⊥) . (10)

Large gauge transformations lead from one part of the fundamential
domain to another. The effective coupling constant of the Hamiltonian cou-
pling the zero mode fields ϕc0 is g2

eff = g2ηL/4a.
In Ref. [4] we have done a Finite Size Scaling (FSS) analysis for SU(2)

QCD obtaining a second order transition as a function of the coupling g2
eff

between a phase with massive excitations at strong coupling and a phase with
mass less excitations at weak coupling. In SU(3) the reduced Hamiltonian
has rather different symmetry properties than the SU(2) Hamiltonian. We
think that the universality class of the reduced Hamiltonian in SU(3) is the
three-state Potts model Z(3). In each subregion of the fundamental domain
the zero mode variables ϕ3, ϕ8 are represented by one-spin orientation. The
relevant center group Z(3) has a weak first order transition whose critical
line ends in a second order point in the presence of an external field. We
conjecture that this external field is provided by the fermion zero mode
density near the light cone. To match the Hamiltonian lattice with scattering
the lattice constant a is chosen to coincide with the photon resolution ≈ 1/Q.
The longitudinal lattice extension L must be larger than the color coherence
length of the qq̄ state in the photon–proton c.m. system. For details we refer
to Ref. [2]. The final conclusion is that near the critical point the Wilson
lines experience long range correlations which means that dipoles in the
photon wave function are correlated over large distances. The correlation
length ξ increases with x→ 0 as

ξ ∝
(

x

x0

)− 1

2λ2

fh(0) . (11)

For finite correlation length there exists an intermediate range in trans-
verse space 1/Q < x⊥ < ξ for which the correlation function of Wilson lines
is power behaved:

〈P (x⊥)P (0)〉 ≈ 1

x1+n
⊥

, (12)

where n = 0.04 in Ising-like systems. This scaling region is responsible for
the well-known effect of critical opalescence in the gas liquid transition. For
larger distances x⊥ > ξ the correlation function decreases exponentially

〈P (x⊥)P (0)〉 ≈ e−x⊥/ξ . (13)
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We do not follow the small x evolution of the photon dipole state, instead
we give a qualitative description of the effective photon size as a function of
x using the results of the 2 + 1 dimensional critical QCD SU(3) theory as a
guiding principle. We parameterize the dipole probability densities for the
longitudinal and transverse photons,

ρT
γ =

6α

4π2

∑

f

ê2f ε
2
[

z2 + (1 − z)2
]

FT(εx⊥) ,

ρL
γ =

6α

4π2

∑

f

ê2f 4Q
2z2(1 − z)2FL(εx⊥) , (14)

ε =
√

Q2z(1 − z) . (15)

The perturbative scale for the dipole density is given by 1/ε. We modify the
photon wave function depending on the relation of the correlation length ξ
of the Wilson loops to the perturbative scale 1/ε. We set

ξ =
1

ε

(

x

x0

)− 1

2λ2

. (16)

For the reference Bjorken parameter x0 = 10−2 the correlation length is fixed
at the perturbative scale. The critical exponent 1/(2λ2) = 0.2 determines
the Wilson line correlations for x < x0. If the transverse size of the dipole is
smaller than the perturbative length scale x⊥ < 1/ε we use the perturbative
dipole densities FT(εx⊥) = K1(εx⊥)2 and FL(εx⊥) = K0(εx⊥)2. For 1/ε <
x⊥ < ξ we modify the perturbative dipole densities using the correlation
functions of the critical theory, Eqs. (12),(13),

FT/L(εx⊥) = K1/0(εx⊥)2 for x⊥ <
1

ε
,

= K1/0(1)
2

(

1

εx⊥

)2+2n

for
1

ε
< x⊥ < ξ ,

= K1/0(x⊥/ξ)
2

(

1

ξε

)2+2n

for x⊥ > ξ . (17)

The current discussion about geometrical scaling evolves around the con-
cept of saturation which has been carried over from the traditional unitarity
behaviour of profile functions in impact parameter space. Recall that the
integral over the profile function gives the total cross section. When the pro-
file function reaches the unitarity limit, the target/projectile becomes black,
a further increase of the cross section can only be reached by an increase in
transverse size of the profile function. Now the concept of saturation is also
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applied to a dipole nucleon cross section which becomes flat with increasing
dipole size. The Golec-Biernat cross section becomes flat at r⊥ ≈ 1.0 fm
for x = 10−2. Since we consider all the evolution to happen in the photon,
this dipole nucleon cross section is kept fixed as a function of energy, i.e. as
a function of x. In our picture the increasing cross section comes from an
increasing size of the largest dipole state in the photon which is determined
by the Wilson line correlation function as given in the previous chapter. The
fact that this effective density obeys approximate scaling behaviour in the
region r⊥ < ξ is in our opinion the fundamental reason for geometric scaling.
The photon–proton cross section can only depend on the ratio R0/ξ(x). We
see this as follows: The effective dipole density combined with an energy
independent dipole–proton cross section determines the structure function
F2 and the photon–proton cross section.

F2(x,Q
2) =

Q2

4π2α

(

σT,tot
γp + σL,tot

γp

)

, (18)

σT/L,tot
γp =

∫

d2x⊥

1
∫

0

dzρT/L
γ (x⊥, z)σ(x⊥) . (19)

The Golec–Biernat–Wuesthoff [5] dipole–proton cross section is approxi-
mately equal to a simple quadratic function at small distances r < 2R0

and a constant function for r > 2R0,

σ(r) ≈ σ0

(

r2

4R2
0

Θ(2R0 − r) +Θ(r − 2R0)

)

. (20)

The numerical values R0 = 0.33 fm at x0 = 10−2 is independent of x.
One can demonstrate geometrical scaling of the photon–proton cross section
rather simply. We neglect the exponentially suppressed part of the dipole
density in the integral over large transverse distances and set the anomalous
dimension n → 0. Then one gets the dominant transverse cross section
in F2 by integrating up to the correlation length ξ, using the fact that
K1(rε) = 1/(rε) for rε < 1,
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3α

π
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e2fQ
2σ0
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0

dz
(
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∞
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0
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(

1 − r2

ξ2

)

σ(r)

σ0
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(21)

Redefining the integration variable as r′ = r(x/x0)
1/(2λ2) one obtains

that the γ∗–p cross section obeys geometrical scaling and depends only on
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R0/ξ(x) = R(x)Q where

R(x) = R0

(

x

x0

)
1

2λ2

, (22)

1

2λ2
= 0.2 . (23)

Therefore, the agreement with the data cf. Ref. [2] can be understood an-
alytically. The critical theory gives the phenomenologically obtained power
dependence of R with x. The favored x-dependence of GBW is in the range
0.145 and 0.20. The critical behavior gives the power 1/(2λ2) = 0.2. With-
out a model for the proton source, it is not possible to obtain the absolute
length R0. The structure function scales as a function of Q2R2

0(x/x0)
1/λ2 as

can be easily derived for the simplified dipole cross section.
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