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EMISSION ANGLE DEPENDENCE OF HBT RADII:

THEORETICAL BACKGROUND

AND INTERPRETATION∗ ∗∗
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The Wigner function formalism which relates source size parameters to
experimental “HBT radii” extracted from two-particle Bose–Einstein cor-
relations is generalized to azimuthally deformed and longitudinally tilted
sources. It is explained how this can be used to complement anisotropic
flow measurements with relevant space-time information on the source.

PACS numbers: 25.75.–q, 25.75.Gz, 25.75.Ld, 24.10.Nz

1. Source size parameters and HBT radii

Two-particle interferometry, which exploits the Bose–Einstein symmetri-
zation effects on the production cross section for pairs of identical bosons, has
become a powerful tool to extract detailed space-time information about the
freeze-out configuration of the hot and dense fireballs formed in relativistic
heavy-ion collisions [1]. Recent exciting data on transverse flow anisotropies
in non-central heavy-ion collisions and their interpretation as evidence for
early and efficient thermalization at RHIC energies [2] have generated new
interest in a better understanding of the space-time structure of the de-
formed sources created in these collisions. This requires the generalization
of the HBT interferometry tool from azimuthally symmetric sources (re-
viewed in [1]) to deformed situations. Applications of this new formalism to
recent RHIC data are reported in the following article by M. Lisa.

For chaotic sources (i.e. independent particle emission), the two-particle
Bose–Einstein correlation function C(p1,p2) = C(q,K) can be expressed
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through a Fourier transform of the emission function S(x,K) which de-
scribes the single-particle phase-space distribution at freeze-out [1]. K is
the average momentum of the pair while q is the relative momentum be-
tween the two particles. The Fourier transform in q is restricted by the
mass-shell constraint q0 = E1−E2 = β · q (where β = K/K0 is the pair
velocity) and therefore not fully invertible. The extraction of the emission
function S(x,K) from the measured correlation function C(K,q) thus re-
quires additional theoretical input [1].

If the source is dominated by a single length scale (its “size”), the emis-
sion function can, for every momentum K, be approximated by a Gaussian
in space-time whose width parameters form a symmetric tensor, the spa-

tial correlation tensor Sµν(K) = [〈xµxν〉 − 〈xµ〉〈xν〉](K) ≡ 〈x̃µx̃ν〉. The
correlation function is then also a Gaussian in the relative momentum q,
C(q,K) = 1 + exp[−

∑
i,j=o,s,l qiqjR

2
ij(K)], where l denotes the beam di-

rection, o the transverse emission direction K⊥ of the pair, and s the third
Cartesian direction perpendicular to l and o. The transverse emission direc-
tion K is characterized by an azimuthal angle Φ with respect to the reaction
plane formed by the beam axis and the impact parameter b. In collisions
between spherical nuclei the emission function is reflection symmetric with
respect to the reaction plane. This and other, more specific symmetries
of the emission function are most easily expressed in a reaction-plane-fixed
coordinate system where z points along the beam direction, x along the im-
pact parameter, and y perpendicular to the reaction plane. On the other
hand, the correlation radii R2

ij(K) are more easily interpreted in the (o, s, l)
system because the qs-dependence, being transverse to the pair velocity β,
is not affected by the mixing of space and time induced by the mass-shell
constraint into the Fourier transform. The (o, s, l) and (x, y, z) systems are
rotated with respect to each other by the azimuthal emission angle Φ.

The Fourier transform between the emission and correlation functions
the leads to the following relations between the “HBT radii” R2

ij(K) and the

components of the spatial correlation tensor Sµν(K) [3]:

R2
s = 1

2
(Sxx+Syy) −

1

2
(Sxx−Syy) cos(2Φ) − Sxy sin(2Φ) ,

R2
o = 1

2
(Sxx+Syy) + 1

2
(Sxx−Syy) cos(2Φ) + Sxy sin(2Φ)

−2β⊥(Stx cos Φ+Sty sinΦ) + β2
⊥Stt ,

R2
os = Sxy cos(2Φ) − 1

2
(Sxx−Syy) sin(2Φ) + β⊥(Stx sin Φ−Sty cos Φ) ,

R2
l = Szz − 2βlStz + β2

l Stt ,

R2
ol = (Sxz−βlStx) cos Φ + (Syz−βlSty) sin Φ − β⊥Stz + βlβ⊥Stt ,

R2
sl = (Syz−βlSty) cos Φ − (Sxz−βlStx) sin Φ . (1)
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These relations display the explicit Φ-dependence arising from the men-
tioned rotation between the (x, y, z) and (o, s, l) systems, but hide the im-

plicit Φ-dependence of the spatial correlation tensor components Sµν(K) =
Sµν(Y,K⊥, Φ). The total emission angle dependence of the HBT radii results
from a combination of both explicit and implicit Φ-dependences [3, 4].

The implicit Φ-dependence of the spatial correlation tensor is restricted
by symmetries of the source [4]. It is a relativistic effect associated with
an azimuthal spatial source deformation superimposed by strong transverse
collective flow [3,5] which vanishes with the 4th power of the transverse flow
velocity vT/c for weak or no collective expansion [5, 6].

2. Azimuthal oscillations and harmonic analysis

A full analysis of the symmetry constraints on Sµν(Y,K⊥, Φ) for symmet-
ric collisions between spherical nuclei and for pairs detected in a symmetric
rapidity window around Y = 0 can be found in Ref. [4]. One finds the
following most general form for the azimuthal oscillations of the HBT radii:

R2
s = R2

s,0 + 2
∑

n=2,4,6,...

R2
s,n cos(nΦ) ,

R2
os = 2

∑

n=2,4,6,...

R2
os,n sin(nΦ) ,

R2
o = R2

o,0 + 2
∑

n=2,4,6,...

R2
o,n cos(nΦ) ,

R2
ol = 2

∑

n=1,3,5,...

R2
ol,n cos(nΦ) ,

R2
l = R2

l,0 + 2
∑

n=2,4,6,...

R2
l,n cos(nΦ) ,

R2
sl = 2

∑

n=1,3,5,...

R2
sl,n sin(nΦ) . (2)

We see that only even or odd sine or cosine terms occur, but no mixtures
of such terms. Statistical errors in the resolution of the reaction plane angle
as well as finite angular bin sizes in Φ tend to reduce the actually mea-
sured oscillation amplitudes; fortunately, these dilution effects can be fully
corrected by a model-independent correction algorithm [4]. A Gaussian
fit to the thus corrected correlation function, binned in Y , K⊥ and emis-
sion angle Φ, then yields the “true” HBT radius parameters R2

ij(Y,K⊥, Φ)

from which the nth order azimuthal oscillation amplitudes are extracted
via R2

ij,n(Y,K⊥) = 1

nbin

∑nbin

j=1
R2

ij(Y,K⊥, Φj)osc(nΦj). Here nbin indicates
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the number of (equally spaced) Φ bins in the data and osc(nΦj) stands
for sin(nΦj) or cos(nΦj) as appropriate, see Eqs. (2). (Note that Nyquist’s
theorem limits the number of harmonics that can be extracted to n ≤ nbin.)

3. HBT oscillation amplitudes and source shape

We would like to relate the azimuthal oscillation amplitudes of the 6 HBT
radius parameters to the geometric and dynamical anisotropies of the source,
as reflected in the azimuthal oscillations of the 10 independent components
of the spatial correlation tensor. Their allowed oscillation patterns at midra-
pidity Y = 0 are given by [4]

A(Φ) ≡
1

2
〈x̃2 + ỹ2〉 = A0 + 2

∑

n≥2,even

An cos(nΦ) ,

B(Φ) ≡
1

2
〈x̃2−ỹ2〉 = B0 + 2

∑

n≥2,even

Bn cos(nΦ) ,

C(Φ) ≡ 〈x̃ỹ〉 = 2
∑

n≥2,even

Cn sin(nΦ) ,

D(Φ) ≡ 〈t̃2〉 = D0 + 2
∑

n≥2,even

Dn cos(nΦ) ,

E(Φ) ≡ 〈t̃x̃〉 = 2
∑

n≥1,odd

En cos(nΦ) ,

F (Φ) ≡ 〈t̃ỹ〉 = 2
∑

n≥1,odd

Fn sin(nΦ) ,

G(Φ) ≡ 〈t̃z̃〉 = 2
∑

n≥1,odd

Gn cos(nΦ) ,

H(Φ) ≡ 〈x̃z̃〉 = H0 + 2
∑

n≥2,even

Hn cos(nΦ) ,

I(Φ) ≡ 〈ỹz̃〉 = 2
∑

n≥2,even

In cos(nΦ) ,

J(Φ) ≡ 〈z̃2〉 = J0 + 2
∑

n≥2,even

Jn cos(nΦ) . (3)

The missing terms in the sums over n have amplitudes which are odd func-
tions of Y and vanish at midrapidity. They do, however, contribute to the
HBT radii if the data are averaged over a finite, symmetric rapidity win-
dow around Y = 0 [4]. Their contributions can be eliminated by varying
the width ∆Y of this rapidity window and extrapolating quadratically to
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∆Y → 0. Note that C0 = E0 = F0 = G0 = I0 = 0 by symmetry, i.e. the
corresponding components of Sµν oscillate around zero.

The oscillation amplitudes of the HBT radii relate to the oscillation
amplitudes of the source parameters as follows: For the odd harmonics
n = 1, 3, 5, . . . we have

R2
ol,n = 1

2
〈Hn−1+Hn+1−In−1+In+1 − βl(En−1+En+1−Fn−1+Fn+1)〉

−〈β⊥Gn − βlDn〉 ,

R2
sl,n = 1

2
〈−Hn−1+Hn+1+In−1+In+1 − βl(−En−1+En+1+Fn−1+Fn+1)〉 ,

(4)

whereas the even harmonics n = 0, 2, 4, . . . satisfy

R2
s,n = 〈An〉 + 1

2
〈−Bn−2−Bn+2+Cn−2−Cn+2〉,

R2
o,n = 〈An〉 + 1

2
〈Bn−2+Bn+2−Cn−2+Cn+2〉

−β⊥〈En−1+En+1−Fn−1+Fn+1〉+β2
⊥〈Dn〉,

R2
os,n = 1

2
〈−Bn−2+Bn+2+Cn−2+Cn+2+β⊥(En−1−En+1−Fn−1−Fn+1)〉,

R2
l,n = 〈Jn〉 − 2〈βlGn〉 + 〈β2

l Dn〉. (5)

In these relations it is understood that all negative harmonic coefficients
n < 0 as well as C0, E0, F0, G0 and I0 are zero. The angular brackets 〈. . .〉
indicate an average over a finite, symmetric rapidity window around Y = 0.
The terms involving the longitudinal pair velocity βl vanish quadratically as
the width ∆Y of that window shrinks to zero.

Even after extrapolating to Y = 0 in this way, we have still many more
source parameters than measurable HBT amplitudes. One counts easily that
up to n = 2 there are 9 measurable Fourier coefficients which (at Y = 0)
depend on 19 source amplitudes. From there on, increasing n by 2 yields
6 additional measured amplitudes which depend on 10 additional source
amplitudes. This lack of analysis power is an intrinsic weakness of the HBT
microscope and due to the fundamental restrictions arising from the mass-
shell constraint q0 = β · q. The reconstruction of the source thus must
necessarily rely on additional assumptions.

One such assumption which may not be too unreasonable is that the
emission duration D = 〈t̃2〉 is approximately independent of emission an-
gle and that the source is sufficiently smooth that higher order harmonics
n ≥ 3 of Sµν can be neglected. Such source properties would result in the
“Wiedemann sum rule” [3]

R2
o,2 − R2

s,2 + 2R2
os,2 = 0 (6)

which can be experimentally tested. If verified for all K⊥ it would provide
strong support for the underlying assumptions on the source. In this case we



34 U. Heinz

can measure 3 azimuthally averaged HBT radii and 5 independent oscillation
amplitudes with n ≤ 2, depending on 14 source parameters of which 5 can
be eliminated by going to K⊥ = β⊥ = 0 (see [4] for explicit expressions).
This makes the geometry of the effective source for particles with K⊥ = 0
“almost solvable” [7], as confirmed by hydrodynamical calculations [9] which
show that at K⊥ = 0 the effective emission region closely tracks the overall
geometry of the source even if it is strongly and anisotropically expanding.

The source geometry can be completely reconstructed from HBT data
if transverse flow is so weak that all implicit Φ-dependence (i.e. all higher
harmonics n ≥ 1) of Sµν can be neglected. In this case one obtains at Y = 0
the “geometric relations” [6]

R2
s,0 = A0 = 1

2
〈x̃2 + ỹ2〉0 ,

R2
o,0 − R2

s,0 = β2
⊥D0 = β2

⊥〈t̃
2〉0 ,

R2
l,0 = J0 = 〈z̃2〉0 ,

R2
ol,1 = −R2

sl,1 = 1

2
H0 = 1

2
〈x̃z̃〉0 ,

R2
o,2 = −R2

s,2 = −R2
os,2 = 1

2
B0 = 1

4
〈x̃2−ỹ2〉0 . (7)

A0 describes the average transverse size and B0 (which generates a second-
order harmic in the transverse HBT radii) the transverse deformation of the
source. H0 generates a first-order harmonic in the ol and sl cross terms and
describes a longitudinal tilt of the source away from the beam direction [6].
Such a tilt was found in Au + Au collisions at the AGS [10]. Its sign yielded
important information on the kinetic pion production mechanism [6, 10].

4. Conclusions

Azimuthally sensitive HBT interfrometry is a powerful tool for analyzing
the dynamic origin and space-time manifestations of the strong anisotropic
collective flow seen in single-particle spectra at RHIC. Symmetries strongly
constrain the azimuthal Fourier series of the emission angle dependent HBT
radii. This is helpful but not sufficient for a fully model independent recon-
struction of the source deformations from such data. To separate tempo-
ral from geometric contributions to the HBT radii, the source must satisfy
special properties. One can test for them experimentally, albeit not in a
fully model-independent way. Hydrodynamic simulations [9] (which were
reported at the meeting but are not included here) show that at RHIC and
LHC energies emission from the source at non-zero transverse momentum is
very strongly surface dominated (“source opacity”). To obtain an unambigu-
ous estimate of the transverse deformation of the source at freeze-out one
should study the Φ-oscillations of the HBT radii at very small K⊥. A pos-
sible longitudinal tilt of the source away from the beam direction manifests
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itself through first-order harmonics in R2
ol and R2

sl. The K⊥-dependence
of the oscillation patterns of the transverse HBT radius parameters can be
analyzed to obtain evidence for or against a faster expansion of the source
in-plane than out-of-plane due to anisotropic collective flow [9].
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